Регулировка индуктивности на сварочном полуавтомате
Приветствую Вас на блоге kuzov.info!
p, blockquote 1,0,0,0,0 —>
В этой статье рассмотрим как настроить сварочный полуавтомат. Разберёмся в его регулировках, настройке потока защитного газа, а также посмотрим какие сварочные швы формируются при разных настройках напряжения. Итак, начнём с краткого определения полуавтоматической сварки.
p, blockquote 2,0,0,0,0 —>
Полуавтоматическая сварка – это электродуговая сварка, в которой электродом является сварочная проволока, подаваемая к месту сварки автоматически через горелку. Газ защищает сварочную зону от кислорода и азота воздуха, которые делают шов пористым и хрупким. Он также подаётся через горелку одновременно с проволокой после нажатия триггера на горелке. Этот вид сварки часто называют сварка MIG / MAG (Metal Inert Gas/Metal Active Gas – сварка в среде инертного газа/ сварка в среде активного газа). Более правильное, техническое название этого вида сварки – GMAW (Gas Metal Arc Welding – электродуговая сварка в среде защитного газа), а сленговое – «сварка проволокой», «сварка полуавтоматом».
p, blockquote 3,0,0,0,0 —>
Сварка полуавтоматом, при всей своей простоте, требует много практики и изучения основ. Важно правильно настроить сварочный аппарат и правильно подготовить металл для сварки.
p, blockquote 4,0,0,0,0 —>
Здесь мы рассмотрим настройку наиболее доступного и распространённого сварочного полуавтомата трансформаторного типа.
p, blockquote 5,0,1,0,0 —>
Содержание:
Какие регулировки имеет сварочный полуавтомат?
На полуавтомате три настройки:
p, blockquote 7,0,0,0,0 —>
- Напряжение (несколько режимов)
- Скорость подачи проволоки
- Скорость потока газа (количество расходуемого газа)
Настройка потока защитного газа
Какой газ использовать?
Тип защитного газа влияет на характеристики сварки: на глубину проникновения, электрическую дугу и механические свойства шва.
p, blockquote 8,0,0,0,0 —>
- 100%-ая углекислота (чаще всего используется для сварки сталей) обеспечивает более глубокое проникновение при сварке, но увеличивается количество брызг и шов более грубый, чем при смеси аргона с углекислотой.
- Смесь 75%-ного аргона и 25% углекислоты (называется 75/25 или С25) можно считать лучшей смесью для углеродистой стали. При сварке с таким газом образуется мало брызг, получается красивый шов и при сварке тонкий металл не прожигается насквозь, так как нет сильного проникновения.
- Для сварки нержавейки используется смесь 98% аргона и 2% углекислоты. Для алюминия – 100% аргон.
Настройка напряжения сварочного полуавтомата
Настройка скорости подачи проволоки
p, blockquote 9,0,0,0,0 —>
- Регулятор скорости подачи проволоки также служит другой цели – регулирует силу тока. Напряжение и сила тока взаимосвязаны и, в некоторой степени, базируются на размере проволоки и её скорости. В полуавтомате установленное напряжение остаётся неизменным, но сила тока немного меняется в зависимости от скорости подачи проволоки и вылета электрода (проволоки). Таким образом, чем быстрее подача проволоки к месту сварки, тем больше силы тока и выше температура сварки, но для конкретного, установленного типа напряжения это лишь небольшой диапазон изменения силы тока.
- Проволока вне процесса сварки (без электрической дуги) движется быстрее. Когда образуется дуга, скорость проволоки снижается.
- Как узнать, что настройки подачи проволоки правильные? Для этого нужно попробовать сваривать. Если скорость слишком высокая для вашей настройки напряжения, то проволока будет сгибаться, при касании с металлом, не успевая расплавиться, и будет много брызг. Если скорость слишком медленная для вашей настройки напряжения, то проволока будет сгорать до того, как коснётся металла, и будет забиваться наконечник. Таким образом, при неправильной настройке скорости подачи проволоки, сварка вообще не получится. Этот параметр нужно настраивать экспериментальным путём. Важно выставить правильное напряжение для конкретной толщины свариваемого металла и пробовать варить, а скорость подачи проволоки регулировать в процессе.
Полярность при сварке полуавтоматом
Перед сваркой нужно определиться, какую полярность Вы будете использовать.
p, blockquote 10,0,0,0,0 —>
Простая обмеднённая проволока, которая используется с защитным газом должна использоваться с обратной полярностью, когда на проволоку подаётся плюс. Прямая полярность используется, когда в полуавтомате установлена проволока с флюсом, которая применяется без газа. В этом случае на проволоку подаётся минус, а на свариваемый металл, через клемму плюс. Таким образом, максимальное тепловыделение образуется на проволоке. Это нужно для того, чтобы флюс в ней смог подействовать должным образом.
p, blockquote 11,1,0,0,0 —>
Если использовать неправильную полярность для определённого электрода (в случае с полуавтоматом, проволоки), то прочность сварочного шва будет плохой. При использовании неправильной полярности появится много брызг, будет плохое проникновение при сварке и сварочную дугу будет сложно контролировать.
p, blockquote 12,0,0,0,0 —>
Для смены полярности, нужно открыть крышку полуавтомата и поменять местами клеммы. Рядом с клеммами находится таблица, уточняющая порядок расположения клемм.
p, blockquote 13,0,0,0,0 —>
Проволока для сварки
p, blockquote 14,0,0,0,0 —>
В полуавтомате может использоваться два вида проволок: простая проволока, покрытая медью и проволока с флюсом.
p, blockquote 15,0,0,0,0 —>
- Простая проволока для полуавтоматической сварки применяется с защитным газом, не имеет никаких добавок, которые могут «противостоять» коррозии и загрязнениям. Поэтому поверхность нужно подготавливать тщательно.
- У второго вида проволоки в центре расположен флюс, который при сгорании образует защитный газ. Таким образом, можно обойтись без баллона с газом. Такая проволока создаёт более глубокое проникновение при сварке, чем обычная с газом. Проволока с флюсом создаёт много брызг и шлака в зоне сварки, которые после завершения сварки нужно счистить. При сварке такой проволокой требуется минимальная подготовка поверхности, прощаются незначительные загрязнения. Также эта проволока хорошо работает при ветре на улице. Для сварки проволокой с флюсом требуется, чтобы на аппарате была установлена прямая полярность (см. выше).
- Чем больше толщина свариваемого металла, тем большего диаметра проволоку нужно использовать, так как проволока большего диаметра проводит больше электричества и даёт больший нагрев и лучшее проникновение.
Вылет проволоки
Вылет проволоки – это расстояние между концом наконечника и концом проволоки. При использовании углекислоты или смесей, сохраняйте вылет от 0.6 мм до 1 см. Слишком длинный вылет ослабит арку. Чем меньше вылет проволоки, тем стабильнее электрическая дуга и тем лучшее проникновение будет получаться даже с низким напряжением. Таким образом, лучший вылет проволоки – как можно более короткий. Однако, вылет проволоки может зависеть от того, насколько наконечник горелки углублен внутрь газового сопла. Чем больше наконечник углублён в сопло, тем длиннее должен быть вылет проволоки.
p, blockquote 16,0,0,0,0 —>
Положение наконечника горелки относительно сопла
Начало работы сварочным полуавтоматом
Чтобы начать работу, сварочный полуавтомат должен быть полностью готов к процессу сварки. Проволока должна быть установлена и газовый баллон подключен. Нужно установить зажим заземления на свариваемый металл. Его нужно устанавливать на расстояние от 15 до 50 см от зоны сварки. Металл должен быть очищен от ржавчины, краски, масел и грязи. Любое незначительное сопротивление будет влиять на процесс сварки. Грязный металл при сварке станет причиной брызг и прожига насквозь, а также возгорания.
p, blockquote 17,0,0,1,0 —>
В результате правильно настроенного напряжения и скорости подачи проволоки должен получиться хороший сварочный поток. Правильные настройки будут давать характерный шипяще-жужжащий звук, который хорошо знают все сварщики. Более подробно о процессе сварки можно прочитать в статье “Технология сварки полуавтоматом MIG / MAG ”.
p, blockquote 18,0,0,0,0 —>
Примеры сварочных швов с разными настройками напряжения
Напряжение определяет высоту и ширину сварочного шва.
p, blockquote 19,0,0,0,0 —>
На фотографии показаны швы на листовом металле толщиной 1. 2 мм, сделанные с возрастанием напряжения (слева направо). Швы, сделанные на низких настройках, получились узкими и высокими, а на высоких настройках – широкими и плоскими.
p, blockquote 20,0,0,0,0 —> На фото слева показаны швы на листовом металле, сделанные с увеличением напряжения. Слева на право от меньшего напряжения к большему. На втором фото обратная сторона листа показывает проникновение (провар).
Если посмотреть с обратной стороны, то два шва слева получились без хорошего проникновения (провара) по всей длине. Три шва справа – имеют хорошее проникновение по всей длине.
p, blockquote 21,0,0,0,0 —> Сварочные швы в разрезе
Эти швы в разрезе показывают эффект возрастания напряжения более ясно. На первых двух – шов наверху, но совсем не проник сквозь металл. Третий имеет как шов сверху, так и хорошее проникновение и является лучшим швом из всех. Два шва справа имеют большее проникновение под листом, чем сверху, так как настройки напряжения слишком высокие.
С каждым годом дуговая механизированная («полуавтоматическая») сварка плавящимся электродом MIG/MAG становится все более популярной, медленно, но верно вытесняя ручную дуговую сварку покрытыми электродами. Этому способствует появление доступных сварочных полуавтоматов, обеспечивающих качественную, производительную сварку как омедненными проволоками сплошного сечения, так и порошковыми самозащитными сварочными проволоками. Современный сварочный полуавтомат инверторного типа позволяет в полной мере реализовать все преимущества механизированной сварки плавящимся электродом:
- возможность сварки как тонкостенных, так и толстостенных изделий;
- повышение производительности труда;
- «длинные» швы;
- снижение себестоимости сварочных работ;
- высокий коэффициент наплавки, малые потери на угар и разбрызгивание;
- сварка сложных стыков сварщиками низкой квалификации, новичками;
- безопасная работа – ток не поступает до момента поджига;
- отсутствие значительных деформаций свариваемых деталей ввиду меньшего тепловложения;
Важной особенностью многих сварочных полуавтоматов инверторного типа является возможность ручной дуговой сварки штучным электродом (ММА). Приобретая оборудование такого типа, Вы получаете в свое распоряжение универсальный инструмент, позволяющий выполнять обширный спектр сварочных работ.
Особый интерес для частного хозяйства, небольших производств, автомастерских представляет собой использование именно сварочных порошковых самозащитных проволок, ввиду того, что их применение позволяет исключить использование тяжелых баллонов с защитным газом, редукторов и шлангов. Порошковая проволока представляет собой трубчатый электрод с порошкообразным наполнителем – сердечником. Входящие в состав сердечника проволок компоненты при нагреве в сварочной дуге создают необходимую шлаковую и газовую защиту расплавленного металла. Порошковые проволоки позволяют в широких пределах варьировать своим составом и свойствами, ввиду чего сфера их применения практически не имеет ограничений. Как правило, оболочкой порошковой проволоки служит углеродистая сталь, а сердечник представляет собой смесь металлов, сплавов, а также шлакообразующих, газообразующих материалов, стабилизаторов дуги и специальных добавок. Многие при использовании впервые сварочной порошковой самозащитной проволоки жалуются на повышенное разбрызгивание, трудности с качественным формированием сварного шва. Все это проходит с опытом или в более сжатые сроки благодаря возможности точной настройки сварочного аппарата с помощью параметров индуктивности, сварочного тока, напряжения на дуге. Для устойчивого процесса сварки скорость подачи проволоки должна быть примерно равна скорости ее плавления.
Остановимся подробнее на такой крайне полезной функции, как регулировка индуктивности. Для уменьшения разбрызгивания металла во время сварки необходимо сделать плавным сжимающее усилие, возникающее при коротком замыкании. Достигается это с помощью введения в источник сварочного тока регулируемой индуктивности. Максимальная величина сжимающего усилия определяется уровнем тока короткого замыкания, который зависит от конструкции блока питания. Величина индуктивности регулирует скорость нарастания сжимающего усилия. При малой индуктивности капля металла будет быстро и сильно сжата — электрод начинает брызгать (капельный перенос). При большой индуктивности увеличивается время отделения капли, и она плавно переходит в сварочную ванну (струйный перенос). Сварной шов получается более гладким и чистым.
Достаточно часто используется и «классическая» механизированная сварка плавящимся электродом в среде защитных газов. Плавящимся электродом в этом случае является сварочная проволока. В этом случае Вам потребуется баллон с защитным газом (углекислота CO2 или ее смесь с аргоном Ar+CO2), редуктор с расходомером и газовый рукав. Дополнительно, для работы в холодное время года, понадобится и подогреватель газа во избежание перемерзания газосварочного оборудования. Углекислый газ при сварке малоуглеродистых и низколегированных сталей способствует устранению пористости сварных швов. При добавке в количестве 15-25% к аргону повышает стабильность дуги и улучшает формирование шва при сварке, что особенно важно при сварке тонколистовых сталей. Поэтому, рекомендуем Вам использовать газовую смесь – коргон, фогон. Важным недостатком при использовании смеси является ее повышенный расход по сравнению с чистой углекислотой. Расход защитного газа обычно составляет 8-12 л/мин, однако может и отличаться от этих цифр как в большую, так и в меньшую сторону, ввиду различных конструкций газовых сопел горелок, погодных условий и т.д. Наилучшая защита расплавленного металла обеспечивается при ламинарном характере течения газового потока, формирующегося при выходе из сопла горелки. После окончания сварки на большинстве бюджетных сварочных полуавтоматов защитный газ поступает в зону сварки еще в течение 1 с (post gas) для лучшей защиты.
Нельзя не упомянуть о том, что использование более прогрессивного сварочного аппарата, которым и является полуавтомат по сравнению с обычным сварочным источником для ручной дуговой сварки, накладывает повышенные требования по уходу за оборудованием. В обязательном порядке необходимо содержать сварочный аппарат в чистоте, регулярно продувать механизм подачи проволоки и внутренний направляющий канал горелки. Следите за состоянием контактного наконечника и сопла, не допускайте перегиба шланга горелки. Притупляйте напильником острый край проволоки и снимайте токоподводящий наконечник перед ее заправкой в горелку (особенно это касается сплошной проволоки) во избежание повреждения внутреннего направляющего канала. Порошковую проволоку после выполнения сварочных работ рекомендуется снимать и хранить в полиэтилене ввиду возможного образования коррозии. Под порошковую проволоку необходимо устанавливать меньшую степень сдавливания прижимным роликом (обычно это 1-2 деление), иначе существует вероятность «закусывания» проволоки.
Будьте внимательны и при операциях по заправке проволоки в подающее устройство и сварочную горелку. Случайное нажатие на кнопку подачи проволоки на подающем механизме или горелке может привести к травмам. Из-за мощного механизма подачи сплошная проволока легко протыкает пальцы и кисти рук. Не направляйте на себя горелку при протяжке проволоки!
Рекомендуем приобретать сварочное оборудование и расходные материалы в ТД «Дока», так как мы предлагаем продукцию очень хорошего качества по низким ценам.
В ТД «Дока» с продаже представлена качественная сварочная порошковая самозащитная проволока E71T-GS диаметром 0,8 мм в катушках по 0,45; 0,8; 1 и 5 кг, позволяющая вести сварку во всех пространственных положениях, обеспечивая высокое качества шва при минимальном разбрызгивании.
Также Всегда в наличии для Вас сплошная омедненная сварочная проволока ER 70S-6 (аналог СВ-08Г2С-О) диаметром 0,8; 1; 1,2; 1,6 мм в катушках по 5 и 15 кг.
Копирование контента без указания ссылки на первоисточник ЗАПРЕЩЕНО.
Попадается информация про различные варианты полуавтоматов. Процессорное управление (по всей видимости протяжкой проволоки), плавный пуск, растяжка дуги и еще кое-чего. Может кто поделится информацией, что это за примочки, если в них реальная польза.
Например
Инверторные п/а стоят очень дорого (мин 50тыр), кто что видел слышал про них какие они в работе?
Напрмер MIX 180 TIG-MIG-MMA или ALUSTAR 200
см.
Основная фишка процессорного управления — параметры режима могут быть заданы очень точно и можно навводить кучу пресетов, это оч. удобно и ценно на производстве, например сварной знает только, на какой операции какой номер включать, а режимы соответствующие выставляются сами. Т.е. это как-то дополнительно гарантирует соблюдение технологии.
Ну а из «наворотов», это:
1) двух или четырёхтактная работа — двух, это если нажал и вариш пока нажата, а останов когда отпустил, а четырёх, это кратковременно нажал-отпустил, процесс пошёл, останов когда ещё раз нажал-отпустил; вроде мелочь, а приятно.
2) точечный режим — нажал кнопку, варит заданное время от долей секунды до где-то 3-4 сек, потом сам останавливается, следующая точка по следующему нажатию.
3) пульсирующий режим — задаётся длительность/режим для импульса и для паузы между импульсами и пошёл, шов получается как бы пятаками с перекрытием, красиво. Причём в паузе может даже вообще останавливаться подача (MAG/MIG), а на вылете горит дуга на оч. малом токе, проволока почти не плавится, типа подсветка.
4) всякие внутренние навороты для управления переносом капель металла, в т. ч. получения т.н. «струйного» переноса. Суть фишки в том, что в нужные моменты ток/напряжение очень быстро меняются хитрым образом (то уменьшит, то импульс наложит, всё это на интервале от долей до единиц миллисекунд), и от этого сильно улучшается процесс. Какие это «нужные моменты» и как именно всё это меняется — тайна сия велика есть, страшный секрет. Сварному эти все нюансы недоступны, надо только включить эту фичу, аппарат сам определяется по толщине проволоки и свариваемого металла, в зависимости от заданного режима, пространственного положения потолок/вертикал/нижнее, ещё кой-чего, например состава газа (всё это должно быть введено). Особо важно и ценно для MIG.
Всё это в том или ином виде может быть и в обычном «классическом», и в инверторном полуавтомате. П.4 особо чётко и наиболее полно может быть реализован только в инверторном, т.к. требуется высокое быстродействие управления, принципиально недостижимое в обычных, потому в обычных только в каком-то усечённо-упрощённом виде.
Под обычным имеются в виду конешно с трёхфазным питанием, т.к. только в них режимы могут быть чётко заданы и стабилизированы от колебаний сети.
Обычные с однофазным питанием — это всегда что-то предельно примитивное и самое дешовое, типа всяких там бимаксов, тритонов, питонов и т.п. дребедени. Варят они гораздо хуже трёхфазников, режимы стабилизировать не могут принципиально (ну разве только подачу), т.е. это вариант абы хоть што-то где нету трёхфазного ввода. Например напряжение выходное там задаётся переключением отводов первичной обмотки трансформатора, обычно 4-5 положений от фонаря. Напряжение при этом конешно меняется, но скачет вместе со всеми просадками и колебаниями сети. Потому особые навороты в них не имеют никакого смысла.
Совсем другое дело и несколько особняком инверторные с однофазным питанием. Эти варят ничуть не хуже трёхфазников, могут всё стабилизировать и отслеживать, а значит и иметь полный фарш наворотов. Например телвиновский Technomig 200, правда в России его ещё не торгуют, но и дорогая игрушка, как появится тыр под 60 будет стоить. Пытался найти инверторные с однофазным питанием попроще, но что-то ничё не попалось, если кто подскажет — респект.
Ну и ещё у однофазных инверторных иногда встречается весьма ценная фича — активный корректор коэффициента мощности, по ихому PFC. Суть фичи в том, что у инверторных очень плохой коэффициент мощности, обычно 0,6-0,7, а пефека поднимает его до почти 1,0. Это означает, что при том же сварочном токе инвертор с пефека на входе будет примерно на 30% меньше грузить сеть, и вообще может терпеть гораздо большие колебания сети, например 170-270В лехко. К качеству сварки это прямого отношения не имеет, но для наших реалий может быть весьма кстати. Но правда тот же Technomig 200 например без пефека, и даже не представляю его цену, если туда ещё и это добавят.
Настройка индуктивности на полуавтомате — Яхт клуб Ост-Вест
С каждым годом дуговая механизированная («полуавтоматическая») сварка плавящимся электродом MIG/MAG становится все более популярной, медленно, но верно вытесняя ручную дуговую сварку покрытыми электродами. Этому способствует появление доступных сварочных полуавтоматов, обеспечивающих качественную, производительную сварку как омедненными проволоками сплошного сечения, так и порошковыми самозащитными сварочными проволоками. Современный сварочный полуавтомат инверторного типа позволяет в полной мере реализовать все преимущества механизированной сварки плавящимся электродом:
- возможность сварки как тонкостенных, так и толстостенных изделий;
- повышение производительности труда;
- «длинные» швы;
- снижение себестоимости сварочных работ;
- высокий коэффициент наплавки, малые потери на угар и разбрызгивание;
- сварка сложных стыков сварщиками низкой квалификации, новичками;
- безопасная работа – ток не поступает до момента поджига;
- отсутствие значительных деформаций свариваемых деталей ввиду меньшего тепловложения;
Важной особенностью многих сварочных полуавтоматов инверторного типа является возможность ручной дуговой сварки штучным электродом (ММА). Приобретая оборудование такого типа, Вы получаете в свое распоряжение универсальный инструмент, позволяющий выполнять обширный спектр сварочных работ.
Особый интерес для частного хозяйства, небольших производств, автомастерских представляет собой использование именно сварочных порошковых самозащитных проволок, ввиду того, что их применение позволяет исключить использование тяжелых баллонов с защитным газом, редукторов и шлангов. Порошковая проволока представляет собой трубчатый электрод с порошкообразным наполнителем – сердечником. Входящие в состав сердечника проволок компоненты при нагреве в сварочной дуге создают необходимую шлаковую и газовую защиту расплавленного металла. Порошковые проволоки позволяют в широких пределах варьировать своим составом и свойствами, ввиду чего сфера их применения практически не имеет ограничений. Как правило, оболочкой порошковой проволоки служит углеродистая сталь, а сердечник представляет собой смесь металлов, сплавов, а также шлакообразующих, газообразующих материалов, стабилизаторов дуги и специальных добавок.
Многие при использовании впервые сварочной порошковой самозащитной проволоки жалуются на повышенное разбрызгивание, трудности с качественным формированием сварного шва. Все это проходит с опытом или в более сжатые сроки благодаря возможности точной настройки сварочного аппарата с помощью параметров индуктивности, сварочного тока, напряжения на дуге. Для устойчивого процесса сварки скорость подачи проволоки должна быть примерно равна скорости ее плавления.Остановимся подробнее на такой крайне полезной функции, как регулировка индуктивности. Для уменьшения разбрызгивания металла во время сварки необходимо сделать плавным сжимающее усилие, возникающее при коротком замыкании. Достигается это с помощью введения в источник сварочного тока регулируемой индуктивности. Максимальная величина сжимающего усилия определяется уровнем тока короткого замыкания, который зависит от конструкции блока питания. Величина индуктивности регулирует скорость нарастания сжимающего усилия. При малой индуктивности капля металла будет быстро и сильно сжата – электрод начинает брызгать (капельный перенос). При большой индуктивности увеличивается время отделения капли, и она плавно переходит в сварочную ванну (струйный перенос). Сварной шов получается более гладким и чистым.
Достаточно часто используется и «классическая» механизированная сварка плавящимся электродом в среде защитных газов. Плавящимся электродом в этом случае является сварочная проволока. В этом случае Вам потребуется баллон с защитным газом (углекислота CO2 или ее смесь с аргоном Ar+CO2), редуктор с расходомером и газовый рукав. Дополнительно, для работы в холодное время года, понадобится и подогреватель газа во избежание перемерзания газосварочного оборудования. Углекислый газ при сварке малоуглеродистых и низколегированных сталей способствует устранению пористости сварных швов. При добавке в количестве 15-25% к аргону повышает стабильность дуги и улучшает формирование шва при сварке, что особенно важно при сварке тонколистовых сталей. Поэтому, рекомендуем Вам использовать газовую смесь – коргон, фогон. Важным недостатком при использовании смеси является ее повышенный расход по сравнению с чистой углекислотой.
Нельзя не упомянуть о том, что использование более прогрессивного сварочного аппарата, которым и является полуавтомат по сравнению с обычным сварочным источником для ручной дуговой сварки, накладывает повышенные требования по уходу за оборудованием. В обязательном порядке необходимо содержать сварочный аппарат в чистоте, регулярно продувать механизм подачи проволоки и внутренний направляющий канал горелки. Следите за состоянием контактного наконечника и сопла, не допускайте перегиба шланга горелки.
Притупляйте напильником острый край проволоки и снимайте токоподводящий наконечник перед ее заправкой в горелку (особенно это касается сплошной проволоки) во избежание повреждения внутреннего направляющего канала. Порошковую проволоку после выполнения сварочных работ рекомендуется снимать и хранить в полиэтилене ввиду возможного образования коррозии. Под порошковую проволоку необходимо устанавливать меньшую степень сдавливания прижимным роликом (обычно это 1-2 деление), иначе существует вероятность «закусывания» проволоки.Будьте внимательны и при операциях по заправке проволоки в подающее устройство и сварочную горелку. Случайное нажатие на кнопку подачи проволоки на подающем механизме или горелке может привести к травмам. Из-за мощного механизма подачи сплошная проволока легко протыкает пальцы и кисти рук. Не направляйте на себя горелку при протяжке проволоки!
Рекомендуем приобретать сварочное оборудование и расходные материалы в ТД «Дока», так как мы предлагаем продукцию очень хорошего качества по низким ценам.
В ТД «Дока» с продаже представлена качественная сварочная порошковая самозащитная проволока E71T-GS диаметром 0,8 мм в катушках по 0,45; 0,8; 1 и 5 кг, позволяющая вести сварку во всех пространственных положениях, обеспечивая высокое качества шва при минимальном разбрызгивании.
Также Всегда в наличии для Вас сплошная омедненная сварочная проволока ER 70S-6 (аналог СВ-08Г2С-О) диаметром 0,8; 1; 1,2; 1,6 мм в катушках по 5 и 15 кг.
Копирование контента без указания ссылки на первоисточник ЗАПРЕЩЕНО.
Рекомендованные сообщения
Создайте аккаунт или войдите в него для комментирования
Вы должны быть пользователем, чтобы оставить комментарий
Создать аккаунт
Зарегистрируйтесь для получения аккаунта. Это просто!
Войти
Уже зарегистрированы? Войдите здесь.Сейчас на странице 0 пользователей
Нет пользователей, просматривающих эту страницу.
#1041 brat_h
Опять полюбопытствую. Угловой шов, нижнее положение, какой максимальный катет реально сформировать за один проход? 10? 12? из реального опыта у кого как получается?
В книге на фото указано 7-8 мм катета для одного прохода многопроходного шва и не потому, что больше невозможно физически, а как раз для любителей наплевать на «технологию», которые с удовольствием сварят за раз, но при этом металл шва будет черезмерно окислен, или шов будет просто «присран» большим толстым слоем, но без качественного провара, или деталь покрутит от чрезмерного нагрева и появится риск трещин – некоторые из этих проблем описаны на этой же странице.
Но так как сварщики не сильно ученые, и не сильно разбираются во всех этих нюансах – дефектах, химии, физике и т.п., им дают инструкцию «технологию», которую им тоже не хочется понимать, но хочется заварить все побыстрее и сделать все за один проход.
По нормальному в технологии учитываются все нюансы – и качество, и скорость, и затраты, и трудоемкость, если что.
PS: а что за книга на фото?
Сообщение отредактировал brat_h: 03 Сентябрь 2019 10:00
Электропитание | |
Электропитание, В | однофазная сеть 220 В 50 Гц |
Основные характеристики | |
Основной режим работы | MIG/MAG |
Дополнительные режимы работы | MMA, TIG |
Диапазон регулирования напряжения в режиме MIG/MAG, В | 14-28 |
Диаметр электрода, мм | 1,6-5 |
Диапазон регулирования сварочного тока, А | |
— режим ММА | 15-200 |
Напряжение холостого хода, В | |
— в активном режиме | 70 |
Процент нагрузки, % | |
— при сварочном токе 140А | 100 |
— при сварочном токе 160А | 80 |
— при сварочном токе 200А | 40 |
Максимальная мощность сети питания, кВА | 9,6 |
Диаметр сварочной проволоки, мм | 0,6-1,0 |
Диаметр катушки проволоки, мм | 200 |
Регулируемое время продувки газа, с | |
— перед сваркой | 0-0,5 |
— после сварки | 0-10 |
Скорость подачи проволоки, м/мин | 1,0-12,0 |
Регулируемое время растяжки дуги, с | 0-0,5 |
Мощность мотора редуктора, ВА | 40 |
Число роликов механизма подачи, шт | 2 |
Индикация и управление | |
Цифровая индикация установленных и текущих параметров | + |
Массо-габаритные показатели | |
Габариты, мм | 445х245х335 |
Масса, кг | 12,5 |
Другие характеристики | |
Рабочий диапазон температуры окружающей среды, °С | -20. .. +40 |
Сравнение сварки нержавейки полуавтоматом и аргоном — ПРОМСТРОЙМЕТАЛЛ
Особенности сварки нержавеющей стали полуавтоматом. В чем разница между сваркой нержавейки полуавтоматом и аргоном? На что стоит обратить внимание.
Изделия из железа считаются самыми прочными, однако, даже у них есть недостаток. Называется этот недостаток – ржавчина. По причине окисления изделия, в основе которых находится железо, становятся непригодными для использования, а железные конструкции и вовсе разрушаются. С течением прогресса люди сумели отыскать оптимальное решение, и была создана нержавеющая сталь.
Учитывая всю нестандартность нержавейки как таковой, у сварки такой стали также имеются свои особенности. Существует несколько методов, которыми осуществляется сварка нержавейки, но самые распространенные – это сварка полуавтоматом, а также аргоновая сварка.
Сварка нержавеющей стали полуавтоматомТакой метод по праву считается самым надежным: он учитывает особенности используемого материала и его непосредственные химические свойства. Сварка нержавейки полуавтоматом осуществляется в среде углекислого газа. Важно оставить в таком случае зазор между элементами, которые надлежит сварить друг с другом, по всей длине (согласно нормативу, зазор между деталями должен составлять полтора миллиметра).
К тому же, для настройки глубины воздействия на сталь, регулировке подвергается индуктивность – ее малый показатель делает сварку глубже, в то время как завышенный, напротив, смягчает ее. Для осуществления сварки полуавтоматом используется разное оборудование – выбор делается на основе того, каковы марка стали, ее габариты и прочие параметры.
Обычно работы данным методом производятся тремя вариантами, которые подходят для определенных ситуаций:
- импульсной сваркой;
- струйным переносом;
- короткой дугой.
Допускается метод полуавтоматоматической сварки нержавейки без газа: для этого, как правило, используется специальная проволока, при помощи которой создается аккуратный и прочный шов. Правда, у такого метода имеются недостатки – со временем шовный материал поржавеет. Решается проблема использованием проволоки из нержавейки.
В результате, суть данной методики сводится к обеспечению оптимальных условий для осуществления сварки при учете используемого материала. К тому же, среди неоспоримых преимуществ данного метода – минимальное разбрызгивание расплавленной проволоки и защита самой стали по краям сварочного шва.
Сварной шов нержавейки при сварке полуавтоматомСварка нержавеющей стали аргономВарить нержавеющую сталь углекислотой можно лишь тогда, когда привлекательность внешнего вида не имеет значения, поскольку брызг при таком методе не избежать. Качество шва в данном методе остается высоким.
Среди преимуществ сварки аргоном без углекислоты числятся:
- аккуратный прочный шов;
- экономия проволоки для сварки;
- отсутствие необходимости шлифовки.
В качестве оборудования для сварки нержавейки аргоном используется стандартный набор, состоящий из инвертора, осциллятора и баллона с аргоном. Также необходима непосредственно горелка вместе с проводами и шлангами, проволока и аргон.
Впрочем, аргон не является единственным защитным газом, используемым в данном способе сварки, однако его смело можно называть основным. Расход аргона зависит от типа металла, который сваривается такой технологией. Так, для сварки алюминия необходимо 20 литров/мин, титана – 50 литров/мин, нержавеющей стали – 8 литров/мин.
Несмотря на то, что сварка нержавеющей стали – довольно сложный процесс, при должном подходе он порадует качественным результатом: важно учитывать особенности стали или любого другого металла, с которым осуществляются работы, выбрать правильный метод сварки и использовать качественные материалы.
Сварной шов нержавейки при сварке аргоном
Полуавтоматы с самыми простыми настройками или что такое синергетика.
Эта статья посвящена синергетическому управлению сварочным процессом. Гонка технологий, которая началась в 70-е годы прошлого века, вместе с бурным развитием компьютерных технологий продолжается до сих пор. Можно сказать, что вычислительная техника, а вместе с ней и все остальные отрасли производства развиваются такими темпами, которым могли позавидовать самые одаренные фантасты начала 20 века. Электронные разработки добрались в том числе и до области сварки. Сначала на рынке появились аппараты на базе mosfet транзисторов, а их усовершенствование вывело на рынок источники тока, которые базируются на технологии IGBT. Сегодня речь пойдет о следующем этапе в развитии технологии: синергетическом правлении сварочным процессом. В данной статье мы постараемся рассказать о плюсах и простоте синергетического управления, как она устроена и чем лучше традиционных настроек.Начнем пожалуй с простоты настроек синергетических аппаратов. Многие покупатели сварочной техники, особенно новички в данной области имеют стойкое предубеждение перед интеллектуальным управлением. Дескать это сложно и не доступно пониманию среднестатистического сварщика. На самом деле это не так. Чтобы не быть голословными, сравним настройку двух аппаратов с классической регулировкой сварочного напряжения и скорости подачи, а также синергетический invertor. Вот классический пример освоения нового полуавтомата одним из популярных видеоблогеров. Как видите, избежать прожогов металла и быстро освоить традиционные настройки не получается даже у искушенного в гаражном ремонте специалиста. Проведем наш эксперимент. Пригласим к аппарату Аврора Спидвей 160 девушку и посмотрим, сможет ли наш сварщик соединить две пластины, никого при этом не покалечив и не испортив заготовки. Спустя 10 минут мы имеем вот такой результат:
Шов не идеален, однако прожогов и других самых грубых ошибок нам удалось избежать. Как видите с процессом настройки аппарата с синергетическим управлением может справиться даже человек с нулевым опытом. Профессионал же, с помощью ручных корректировок заводских настроек сможет добиться любого результата. Практически все синергетические полуавтоматы позволяют откорректировать напряжение и индуктивность в широком диапазоне от заводских установок. При работе с традиционными настройками сварщику необходимо выбрать диаметр сварочной проволоки, который подходит для работы с конкретным материалом, выставить соответствующее сварочное напряжение, подобрать скорость подачи проволоки. Для профессионала эта задача не представляет трудности, однако у новичка в сварке на выяснение всех тонкостей может уйти масса времени и сил, а иногда и средств на исправление ошибок. Именно поэтому синергетическое управление является находкой для сварщика — любителя. Аппарат не позволит допустить грубых ошибок и убережет металл от прожогов. На сегодняшний день покупатель может выбрать себе по душе аппарат из широкого ассортимента сварочных полуавтоматов с синергетическим управлением. Аппараты с синергетическим управлением.
С настройкой разобрались. Давайте вернёмся к теории и поговорим о том, что же такое синергетика. Синергетическое управление это использование микропроцессорных систем микроконтроллеров для выбора и обеспечения оптимальной циклограммы, то есть параметров импульсов и вида сварочного тока с учетом марки толщины и свойств металлоизделия, а также особенностей сварочных материалов, диаметра и марки проволоки, вида и состава защитного газа и так далее. Чтобы понять что такое синергетика, представим себе часовой механизм, слаженная работа которого позволяет очень точно отмерять время. Если мы поворачиваем любую из шестеренок, весь механизм меняет свою конфигурацию. Синергетика также позволяет изменять все настройки, меняя только один параметр. Если, к примеру изменить на аппарате состав защитного газа, это повлечёт за собой изменение сварочного напряжения и скорости подачи проволоки, повлияет на индуктивность дуги и количество импульсов в цепи переменного тока.
Синергетическое управление позволяет использовать огромную библиотеку программ, которая загружена в память устройства на производстве. Данный архив — результат кропотливого труда инженеров и опытных сварщиков, которые составили коллекцию разнообразных вариантов настроек параметров и их сочетаний. До появления синергетики сварщику перед выполнением ответственных работ приходилось долго настраивать аппарат. Чтобы выбрать оптимальный вариант скорости подачи сварочного напряжения и индуктивности, специалисту порой приходилось тратить до 30 минут, а если задачи в течение дня менялись, то время, необходимое на каждую подстройку превращалось в часы. Синергетические аппараты упрощают задачу с помощью предустановленных программ, а также памяти аппарата, которая позволяет сохранить все данные и переключаться между задачами скажем сваркой алюминия и стали нажатием всего одной кнопки. Синергетика не новинка. Данная система управления появилось более 15 лет назад, но до недавнего времени интеллектуальное управление применялось исключительно на промышленном оборудовании. Развитие технологий сделало синергетику доступной и рядовому сварщику. Главной задачей новой системы управления было максимальное сокращение времени необходимого для настройки аппарата, а также снижение требований к уровню квалификации сварщика. Огромное разнообразие марок и типов свариваемых металлов, тонкости процесса сварки, защиты шва требует от современного сварщика не только профессиональных умений, но также глубоких знаний в области материаловедения, химии защитных газов электротехники и прочих областях, познаниями в которых обладают далеко не все доктора наук. Чтобы упростить жизнь простому сварщику, но при этом сохранить качество работы на высоком уровне, было начато производство интеллектуальных программируемых аппаратов, которые взяли бы на себя всю теоретическую часть сварочного процесса, позволив сварщику сконцентрироваться на ведении шва. Оператору синергетического аппарата остается выбрать сварочные материалы и выставить необходимые напряжения, все остальное сделает аппарат. Каждый уважающий себя производитель имеет в своем штате инженерный отдел, который занимается в том числе созданием программного обеспечения для интеллектуальной сварочной техники. Инженеры и сварщики из отдела разработок делают бесконечную лабораторную работу, посвященную изменению свойств сварочного шва при изменение одного из параметров процесса. Отдел разработок сваривает сотни образцов, которые затем отправляются в лабораторию неразрушающего и разрушающего контроля. По результатам проверок выбираются идеальные параметры сварки для каждого конкретного образца. Сочетание лучших настроек закладывается в память инвертора для получения оптимального результата.
Почти каждый известный в мировых масштабах производитель сварочной техники на сегодняшний день имеет в своем модельном ряду грядку синергетических аппаратов. Среди наиболее известных производителей стоит отметить Lincoln Electric, Kemppi, Esab. Также отечественному сварщику хорошо знакомые серии HighPULSE и Alpha Q немецких производителей MERKLE и EWM. Можно предположить, что будущее сварки именно за программируемыми сварочными аппаратами. Скорее всего производители начнут оснащать свои инверторы обновляемым программным обеспечением, которое позволит еще более тонко подходить к процессу сварки и подстраивать параметры под конкретную задачу. Среди разработчиков все активнее обсуждается вопрос оснащения аппаратов USB — интерфейсом, который позволит обновлять ПО через интернет. Свежие прошивки аппаратов позволят сварщиком не покупать новое оборудование, а производить апгрейт старых устройств до уровня передовых новинок.
Материал взят с канала Aurora Online Channel. Ссылка на видео.
Инвертор серии ПРОФИ MIG 500 при максимальном сварочном токе имеет ПВ 60%. Работает от питающей сети 380 В в диапазоне ± 15% без снижения характеристик. Блок подачи проволоки оснащён мощным четырёхроликовым механизмом. Для качественной работы в CO2 на задней панели расположена розетка 36 вольт для подключения подогревателя. При необходимости сварки порошковой проволокой достаточно просто переключить клавишу выбора вида проволоки на передней панели. Благодаря новым технологиям вес источника составляет всего 42 кг. Преимущества
Виды сваркиMIG/MAG Комплект поставки
|
Настройка полуавтомата для сварки: как для работы с тонким металлом, таблицы
Насыщенность домашних мастерских сложным электроинструментом профессионального уровня впечатляет. Но не все паспортные возможности оборудования используются. Как настроить полуавтомат сварочный на металл различного сечения, перенастроить на алюминий, нержавейку – сухой информации инструкции недостаточно. Обратимся к знаниям производственников.
Внешнее влияние на настройки
Изменение пространственного положения шва, усиление катета, толщины, конфигурации стыков одного металла потребуют разных настроек. Основные настройки полуавтомата (ПА):
- Напряжение дуги, регулировка отражается на изменении величины тока.
- Ток – подача проволоки, увеличение скорости подачи проволоки отзывается пропорциональным ростом величины тока и наоборот.
- Расход газа задаётся с опорой на основные параметры, регулируется оценкой качества шва при исключении порообразования.
Первичная настройка параметров сварки проводится по усреднённым табличным значениям.
Далее по результатам тестового прохода режимы электродуговой сварки в среде защитных газов подвергаются корректировке.
Для опытного практика даже звучание зажжённой дуги информативно. Придётся с приобретением полуавтомата привыкать к его особенностям, необходимости подстраивать под изменения:
- Комплектация и сборка ПА с равноценными характеристиками отличаются начинкой, различие в настройке встречаются у одного производителя.
- Перепады напряжения сбивают настройки, трансформаторный ПА отключится, а инвертор может сгореть.
- Изменение состава защитного газа.
- Смена марки и диаметра проволоки.
- Повлияет даже незначительный ремонт или замена комплектующих.
Газозащита
Газопоток также относится к расчётным табличным величинам. Напрямую на настройку сварочного полуавтомата не влияет. Контроль упрощается, если редуктор оснащён 2 шкалами. Регистрация величины редуцированного потока воспринимается объективнее с установкой ротаметра.
Расходомер ротаметрический показывает подачу углекислоты (аргона) рабочего давления в постоянных величинах. Показание статического давление снизится, когда сработает курок горелки, создастся защитное облако. Начальный диапазон для ротаметра 6–10 л/мин, для редуктора с манометрами – 1–2 атм.
Экономный расход подбирается по пористости шва: газопоток увеличивается, пока не исчезнут поры. В помещении с принудительной вытяжкой и на ветру в целях экономии предпочтительно воспользоваться порошковой самозащитной проволокой.
Подбор газовой смеси
Выбор смеси определяют требования качества исполнения и свойства материала:
- СО2 – идеальное предохранение сварочной ванны конструкционных сталей, глубокий проплав, но разбрызгивание и грубоватость шва для тонких работ не подходят.
- Смесь аргона и углекислого газа С25 (75% Ar, 25% CO2) – сочетание подходит для сварки тонколистовых конструкций, создаётся равномерный шов с минимумом брызг.
- Композиция из 98% Ar, 2% CO2 – для нержавеющих сталей.
- Для алюминия – аргон в чистом виде.
Настройка напряжения
Затраты мощности на горение дуги и плавление металла определяет настройка вольтажа. Энергозатраты возрастают с увеличением глубины провара (толщины материала) и диаметра проволоки.
Настройки бытовых ПА ступенчатые. Огрубление режимами min/max или многорежимные, с мягкой подстройкой как расширенный диапазон регулировки сварочного напряжения полуавтомата Wester MIG-110i на 10 установок.
На внутренней стороне крышки кожуха находится таблица регламента установочных величин напряжения. Это главная подсказка производителя, печатается на модели, разнящиеся по мощности и техоснащению.
Итоговое решение, как настроить полуавтомат сварочный за оператором. Расплывчатые рекомендации не догма, основной критерий – глубина провара и прочность соединения.
Скорость подачи проволоки
Регулятор скорости подачи проволоки управляет силой тока. Величина подачи – одна из основных изменяемых характеристик. Устанавливается после выбора напряжения: скорость плавления определяет движение электрода в горелке.
Эта величина подлежит регулировке после смены марки и диаметра проволоки, изменения напряжения. Существуют ПА с автоматической подстройкой режима, но они в сегменте дорогостоящей аппаратуры.
Желательна тонкая настройка движения расходного материала для оптимизации корректировок. Излишнее ускорение приведёт к наплывам, замедление – к просадке, волнистости, разрывам шва. Баланс тока и напряжения, управляемого скоростью подачи, в сумме дают оптимальный валик.
Первый показатель несоответствия режима выявляется в действии – скорость подачи с зажжённой дугой снижается, но проволока не успевает плавиться, сгибается, липнет к заготовке, идёт активное разбрызгивание.
Недостаточность подачи – электрод инвертора сгорает до касания, забивается наконечник. Подбор режима скорость/ток под выставленное напряжение – первый шаг к профессионализму.
Скорости подачи проволоки в полуавтомате, таблица прямой зависимости влияния изменения настроек на конечный результат:
Полярность
Процедура изменения полярности проста. Под крышкой табличка с указанием, какой металл вид и проволоки требуют прямой или обратной полярности. Прямая – горелка подключается к клемме минус. При прямой полярности плавление проволоки ускоряется на 50%, но стабильность дуги падает.
Сварка порошковой самозащитной проволокой ведётся при прямой полярности. Максимум энергии тепловыделения расходуется на защиту шва. Флюс прореагирует без остатка. Склонность к разбрызгиванию компенсируется безразличием к недоочистке рабочих зон, и порывам ветра. Издержки в виде брызг и корки шлака – неизбежное зло.
Цельная омеднённая в газовом облаке подсоединяется к положительной клемме. Подготовка материала к сварке связана с зачисткой проявлений коррозии, загрязнений стыков, разделки. Токопроводность возрастает с увеличением диаметра. Для заготовок большого сечения есть резон увеличить сечение проволоки.
Невнимание к такой «мелочи» приводит к падению качества: избытку брызг, снижению глубины сварочной ванны (непровару). Управление и контроль качества горения дуги существенно затруднится.
Вылет и выпуск проволоки
Длина вылета расходного электрода из контактной трубки (наконечника), величина рабочего зазора горелки влияют на качество неразъёмного соединения.
Важно! Коробление, непровар, прожиг избыток брызг – причины несоразмерности диаметра проволоки и величины выхода из сопла.
Взаиморасположение наконечника горелки относительно сопла в отдельных конструкциях меняется. Они располагаются на одном уровне, контактная трубка утапливается или выдвигается относительно сопла до 3,2 мм.
На коротком вылете ведётся швообразование конструкционных низколегированных сталей – увеличение расстояния разрежает прикрытие защитным газом. Флюсовую проволоку искусственно удлиняют для увеличения температуры плавления.
Настройка дуги
Уже простые модели ПА имеют верньер управления величинами индуктивности. Настройка жёсткости меняет температуру дуги, глубину проплавления при заметной выпуклости шва. Чувствительность деталей к перегреву, тонкие стенки теперь не препятствуют сварке.
Снижение сжатия токового канала (рост индуктивности) поднимает температуру плавления, проплав глубокий, сварочная ванна разжижается. Валик шва уплощается. Управление глубиной провара, температурой дуги и ванны – качественно новый уровень настройки сварочного полуавтомата.
Малые диаметры присадки делают дугу устойчивее, коэффициент наплавки растёт, глубина проплавления оптимизируется, разбрызгивание снижается. По выпуклости шва и величине разбрызгивания уточняется длина дуги: короткая даёт объёмный шов, длинная мешает концентрации расплава.
Индуктивность max | Индуктивность min |
Проплав углубляется | Низкотемпературная дуга |
Разжижение сварочной ванны | Брызгообразование усилено |
Валик шва ровный, гладкий | Валик шва объёмный |
Угловые, усиленные швы | Настройка полуавтомата для сварки тонкого металла |
Управление скоростью подачи проволоки
Переключатель активизации подачи проволоки бывает двухпозиционный (High/Low) или многоступенчатый. Припой большего диаметра выдаётся с замедлением, что оптимизирует процесс.
Перед началом работы
Когда ПА подготовлен к работе согласно инструкции, нелишне потратить время на уточнение режимов настройки. В помощь предлагаем таблицу в качестве ориентира. Составление аналога с индивидуальными свойствами ПА поможет в определении лучших режимов и уточнении возможности техники.
Собственная таблица сварочного тока для полуавтомата имеет тенденцию к разрастанию с новым материалом, условий сварки. Уточнение на бумаге для памяти положения переключателя не повредит.
Выбирается рекомендуемое напряжение. Манипулированием с силой тока и скоростью подачи присадки подбираем оптимум при уменьшении тока и максимуме подачи. Затем при росте ампеража. Вольтаж меняется через 0,5 А. Подробная таблица станет личной инструкцией скоростной настройки.
Ориентировочная таблица: сварочный ток (скорость подачи проволоки), взаимозависимость компонентов процесса:
Влияние величины напряжения на качество шва
Выпуклый шов с достаточным проплавом без пористости, наплывов и подрезов выйдет только при сбалансированности основного компонента – напряжения с сопутствующими.
Низкие настройки дают зауженный высокий шов с малым проникновением вглубь. Высокие – уплощённый с расползанием и глубоким кратером ванны. Завышение напряжения негативно влияет на формирование шва: не удаётся создать валик достаточного объёма при глубине расплава на грани прожига.
На фото сверху:
- теплотворность напряжения оптимальна,
- недостаточна,
- избыточна.
Возможные проблемы и ошибки
Проблемы и промахи при слепом следовании усреднённым рекомендациям – вина сварщика. Об этом упоминалось выше. Подбор режима сварки дело тонкое. Творческий подход и внимание к мелочам – половина пути к успеху.
Опора на опыт профи поможет:
- Потрескивание, щелчки – сигнал недостаточной скорости подачи припоя.
- Присадка плавится на удалении, до наконечника – скорость подачи занижена.
- Избыток брызг – увеличьте подачу газа и индуктивность.
- Пористость, оттенки коричневого и зелёного на шве – слабая газозащита.
- Прожиг, непровар – перебор или недостаток напряжения, скорректируйте индуктивность.
- Неравномерность шва, неустойчивость дуги, непровар – загрязнение сварочного поля, ослаб зажим массы.
- Переменчивость полноты валика, зазубрины – скорость ведения горелки и положение относительно шва нарушены.
- Шов прерывается, неконтролируемое разбрызгивание – превышена длина дуги.
BSIDE ESR02 PRO Цифровой тестер транзисторов Измеритель компонентов SMD Mega328 Индуктивность конденсатора диодного триода NPN / PNP Устройство проверки ESR с помощью пинцета Электрические инструменты и товары для дома adios.co.il
BSIDE ESR02 PRO Цифровой тестер транзисторов Измеритель компонентов SMD Mega328 NPN / PNP Индуктивность конденсатора диодного триода ESR Проверка с помощью пинцета — -. [Широкое применение]: очень легко тестировать подключаемые устройства и устройства SMD, его также можно использовать для тестирования различных типов триодов, тиристоров, MOSFET, что позволяет анализировать тип устройства, полярность контакта, выходной HFE , напряжение клапана, емкость перехода полевого транзистора. 。 [Автоматическая идентификация]: интеллектуальная программа проверки транзисторов может автоматически обнаруживать транзисторы NPN и PNP, N-канальные и P-канальные MOSFET, диоды, тиристоры, резисторы, конденсаторы и другие устройства. 。 [2 кнопки POWER / TEST]: кнопка POWER / TEST с обеих сторон, вы можете управлять ею левой или правой рукой. 。 [Типичная таблица значений ESR]: на задней панели имеется таблица «Типичное значение ESR электролитического конденсатора», которая четко указывает на то, что вы можете быстро понять и использовать ее. 。 [Добавленные функции]: тестер транзисторов будет автоматически отключаться для экономии энергии, если в течение примерно 10 секунд не выполняется никаких действий.Большой ЖК-дисплей с функцией подсветки для удобного чтения. 。 Особенности: — Ключевая операция, тест загрузки, ключ для получения。 — Автоматическое тестирование элементов вывода и отображение их на ЖК-дисплее。 — Автоматическое обнаружение биполярных транзисторов NPN, PNP, N-канального и P-канального MOS-поля — транзисторы, полевые транзисторы переходного типа, диоды, диоды, тиристоры, маломощные однонаправленные и двунаправленные тиристоры。 — Расположение выводов элемента автоматической идентификации。 — Измерение коэффициента усиления тока биполярного транзистора и измерения порогового напряжения база-эмиттер。 — Идентификация ЖК-транзистора по базовому эмиттеру пороговое напряжение и высокий коэффициент усиления тока。 — Измерение порогового напряжения затвора MOS FET и емкости затвора。 — Два резистора и символы резисторов могут быть измерены одновременно. Справа показано десятичное значение 4. Обе стороны символа резистора показывают количество контактов。 — Может измерять обратную емкость одного диода. Если биполярный транзистор подключен к коллектору и эмиттеру базы и вывода, можно измерить обратную емкость коллектора или эмиттерного перехода。 Технические характеристики: — Резистор: 0–50 МОм; Разрешение: 0,01 Ом。 — Конденсатор: 25 пФ — 100 мФ; Разрешение: 1 пФ。 — Индуктор: 0,01 мГн — 20 ч; Разрешение: 0,01 мГн。 — ESR конденсатора: 2 мкФ — 50 мФ; Разрешение: 0,01 Ом。 — Мощность: 1 * 9 В 6LR61 (не входит в комплект)。 — Размер: 14.0×8,2×4,6 см。 — Вес: 223 г。 В комплект входит:。 1 * Цифровой тестер транзисторов。 1 * Пинцет для тестирования。 1 * Руководство пользователя。 Примечания: — Перед проверкой конденсатора обязательно разрядите его, иначе он может Повреждение внутренней цепи。 — При использовании источника питания постоянного тока выберите адаптер постоянного тока 9 В — 12 В (включая 9 В и 12 В)。 — Он питается от 1 батареи 9 В 6LR61 (не входит в комплект), когда напряжение батареи ниже 6 В, пожалуйста заменить на новый。。。
BSIDE ESR02 PRO Цифровой тестер транзисторов Измеритель компонентов SMD Mega328 NPN / PNP Диодный триодный конденсатор Индуктивность ESR Проверка с помощью пинцета
Fine With Plastic Box Точилка для ручных инструментов DMT W6FP 6-дюймовая алмазная точилка для точильных камней. Transolid RTDO3322-17-ABC Radius Granite 3-луночная встраиваемая кухонная мойка с двойной чашей 33 x 22 x 9, серый. Узел дивертора Delta RP19653A. EATON Lighting SNF115RB Люминесцентная лента Metalux 18 T8. Для складывающейся двустворчатой двери шириной 7/8 дюйма New Life App New Life Products 9-1148 Ремонтный комплект для двустворчатой двери / шкафа. 25 Болты с шестигранной головкой 8-1,25 X 25 мм, черный Polyseal. Ltd. 4500 фунтов на квадратный дюйм Регулируемый автоматический останов компрессора воздуха Pcp с водяным охлаждением Акваланг 110 В, 60 Гц TUXING Xiamen Subang Technology Co, 3/8-дюймовая насадка из карбида вольфрама Forney 60127 с заостренным хвостовиком 1/4 дюйма, Howard Lighting SFL-100-MH- Прожектор 4T с металлогалогенными лампами M90 / E, малый, хромированный, треугольный, смеситель T24967 Ara Angular Modern Monitor 14 Обрезка клапана с 6 положениями встроенного дивертора.D-reamy с-ô-ç-k P-é-n-Ïs Ç-ô-ç-Kring Ri-ň-g S-ét для M-é-ň G-â-y T-ô-y F -HY Привлекательная, состаренная бронзовая фурнитура Dynasty, натертая маслом CP-TAH-12P Набор замков входа ручки передней двери Tahoe и комбинированный комплект одноцилиндрового ригеля. Оксфордская ткань для материалов для карманов Черный соответствует стандартам ANSI / ISEA X-Large, черный JKSafety 9 карманов Застежка-молния с высокой видимостью Передний защитный жилет со светоотражающими полосами, дышащая сетка HQ, инструмент для скручивания арматурной проволоки 2PCS Heavy Duty Bit Полуавтоматический прямой съемник Стальной крюк Мягкий Обращайтесь к Гохантеру.Dainolite Lighting с матовым хромированием 1038-1P-SC Одинарная подвеска из матового белого стекла с 1 лампой. Timeless Bronze 2.75 Nostalgic Warehouse Meadows Plate с каналом для ручки Waldorf Crystal, шлицевой привод с круглой головкой, соответствует стандарту ASME B18.6.3 / SAE J82 Комплект с полной резьбой 100 # 3-48 резьбовых оцинкованных стальных винтов 3/4 длины. Комплект светодиодных трубок Hyperikon T8 из 4 ламп, 2 фута 8 Вт, кристально-белое свечение, с двухсторонним питанием, включенное в список UL — матовая крышка 5000K, эквивалент 25 Вт.
Полуавтоматический USB-проигрыватель с ременным приводом 33 и 45 об / мин для винила со встроенным стерео предусилителем и подвижным магнитным картриджем MMC
Lenco L-85 Красный | Полуавтоматический ременной привод 33 и 45 об / мин: электроника. Купить Lenco L-85 Red | Полуавтоматический USB-проигрыватель с ременным приводом 33 и 45 об / мин для винила со встроенным стерео предусилителем и подвижным магнитным картриджем (MMC) — Red Record Player. Бесплатная доставка и возврат соответствующих заказов. ЗАПИСЬ НА USB — прямое кодирование MP3 позволяет записывать с винила на USB для воспроизведения на компьютере или мобильных устройствах. ОСОБЕННОСТЬ ТЯЖЕЛАЯ — Движущийся магнитный картридж для высококачественного звука, механический подъем руки, автоматический возврат, разделение дорожек при записи。 ВЫХОД RCA — легко подключите проигрыватель к домашней аудиосистеме с помощью соединения RCA (кабели RCA в комплекте)。 ВСТРОЕННЫЙ ПРЕДУСИЛИТЕЛЬ — нет необходимости тратить лишние деньги на дополнительный усилитель, все это встроено в L- 85。 ОТЛИЧНЫЙ СТИЛЬ — Уникальный внешний вид с защитным чехлом от пыли, доступный в 6 цветах: черный, белый, серый, красный, желтый и зеленый。 Описание продукта Проигрыватель L-5 с USB-записью. L-5 — это красочный и современный способ принести Ваша виниловая коллекция оживает. Он наполнен удобными конструктивными особенностями и функциональными возможностями, поэтому, независимо от того, новичок вы в виниле или хотите сохранить свою коллекцию пластинок, этот проигрыватель предлагает впечатляющую производительность. L-5 — популярный выбор для новичков, вступающих в мир пластинок, а также давние коллекционеры виниловых пластинок. your Этот многофункциональный проигрыватель, доступный в шести ярких цветовых вариантах, оживит вашу виниловую музыку своим впечатляющим качеством. Адаптер питания переменного тока и защитный пылезащитный чехол.。 СОЗДАЙТЕ АУТЕНТИЧНОЕ ЗВУЧАНИЕ ВИНИЛА С МОЛОДЕЖИ L-5 поддерживает прямое кодирование MP3, так что вы можете записать свою коллекцию виниловых пластинок на USB-накопитель и брать музыку с собой в цифровом формате куда угодно. L-5 также автоматически разделяет дорожки для вас, когда вы записываете!。 ОТЛИЧНОЕ ЗВУКОВОЕ ХАРАКТЕРИСТИКАНаш проигрыватель винила имеет встроенный стерео предусилитель, а это значит, что вам не понадобится дополнительное усилительное оборудование для получения отличного звука. Просто подключите проигрыватель к домашним динамикам и наслаждайтесь воспроизведением своих пластинок.。 ПОЛУ АВТОМАТИЧЕСКИЙ Модный проигрыватель грампластинок L-5 доступен в нескольких цветах: красном, желтом, зеленом, белом, черном и сером.Он имеет ременной привод, стереофонические аудиоразъемы RCA, две номинальные скорости (33 об / мин и 45 об / мин), сбалансированный механический тонарм, подвижный магнитный картридж (MMC) для четкости звука, автоматический возврат и съемную пылезащитную крышку. ? имеют богатое наследие в области проектирования, разработки и производства проигрывателей с использованием инновационных швейцарских технологий. продукты сделаны меломанами для меломанов.。。 Коробка содержит проигрыватель пластинок L-5, адаптер переменного тока, кабели RCA, пылезащитный чехол, руководство пользователя. 。。。
Полуавтоматический ременной привод 33 и 45 об / мин USB-проигрыватель виниловых пластинок со встроенным стерео предусилителем и подвижным магнитным картриджем MMC — Red Record Player Lenco L-85 Red
Складная подставка — Серый кожаный чехол с магнитной застежкой для Huawei Honor 6X Флип-кошелек с тисненым цветком и узором мандалы для Huawei Honor 6X со слотом для ремешка на запястье, батарейки для слухового аппарата Rayovac Extra Mercury Free, размер 312 x 60, чехол-кошелек ZCDAYE для Samsung Galaxy S20 FE , Чехол для Samsung Galaxy S20 FE, Магнитный флип-чехол-книжка из искусственной кожи премиум-класса с прорезями для карт Подставка для Samsung Galaxy S20 FE-Red. Кольцо Digital HD® 67 мм, диаметр 62, повышающий фильтр для линз диаметром 62 мм и / или аксессуара Ø 67 мм, Италия. Водонепроницаемый рюкзак Goggles V2 Supfoto для DJI FPV Combo, сумка для переноски Сумка для хранения, совместимая с пультом дистанционного управления DJI FPV Drone 2, контроллером движения, аккумулятором и аксессуарами с держателем штатива. DOT для Motorola Moto E6 Play Тонкий чехол из натуральной мягкой кожи с выдвижным вкладышем в виде чехла-чехла Синий. Прозрачный Falandi, совместимый с Fitbit Versa 2 Чехол с покрытием из ПК, жесткая защитная рамка для умных часов Versa 2 для женщин и девочек, крышка для лица с блестящими кристаллами, бриллиантами, блестящий бампер со стразами.KateHome PHOTOSTUDIOS 2,2 × 1,5 м Рождественский фото фон Ретро деревянная стена Фотофон с блестками Фон для фотостудии Рождественские украшения для вечеринок, TINKTEEK 380 см высотой Сверхмощная подставка для фотостудии 4 секции Professional для большого софтбокса Максимальная нагрузка 6 кг Алюминий 4 ножки Дизайн для неровной поверхности Земля или ветер, кабель зарядного устройства iPhone 6 футов / 1,8 м, сертифицированный MFi розовый кабель RAVIAD Lightning Кабель для быстрой зарядки с нейлоновой оплеткой для iPhone 11 Pro Max Xs X XR 8 7 6s 6 SE 5 5s 5c. H HILABEE Фотография 3 в 1 Черный Белый 18% Серый Баланс Панель Отражатель Фокусная плата.
Цепи переменного тока | Безграничная физика
Индуктивность
Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока, например изменением тока в проводнике.
Цели обучения
Опишите свойства индуктора
Основные выводы
Ключевые моменты
- В случае электроники индуктивность — это свойство проводника, благодаря которому изменение тока в проводнике создает напряжение как в самом проводнике, называемое самоиндукцией, так и в любых соседних проводниках, называемое взаимной индуктивностью.
- Согласно закону Ленца, изменяющийся электрический ток в цепи с индуктивностью индуцирует пропорциональное напряжение, которое противодействует изменению тока.
- Взаимная индуктивность обозначена. Изменение тока I 1 в одном устройстве, катушка 1 на рисунке, вызывает эдс I 2 в другом. Мы выражаем это в форме уравнения как [латекс] \ text {emf} _2 = — \ text {M} \ frac {\ Delta \ text {I} _1} {\ Delta \ text {t}} [/ latex]. M то же самое для обратного процесса.
- Самоиндукция — это действие закона индукции Фарадея устройства на самого себя. Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока, задаваемой [latex] \ text {emf} = — \ text {L} \ frac {\ Delta \ text {I}} {\ Delta \ text {t}} [/ латекс].
- Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором и обозначается символом в.
Ключевые термины
- взаимная индуктивность : отношение напряжения в цепи к изменению тока в соседней цепи.
- самоиндукция : Отношение напряжения к изменению тока в той же цепи.
- индуктор : Пассивное устройство, которое вводит индуктивность в электрическую цепь.
Индуктивность
ОБЗОР
Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока. В частности, в случае электроники индуктивность — это свойство проводника, благодаря которому изменение тока в проводнике создает напряжение как в самом проводнике (самоиндукция), так и в любых соседних проводниках (взаимная индуктивность).Этот эффект основан на двух фундаментальных физических наблюдениях: во-первых, постоянный ток создает постоянное магнитное поле, а во-вторых, изменяющееся во времени магнитное поле индуцирует напряжение в соседнем проводнике (закон индукции Фарадея). Согласно закону Ленца, изменяющийся электрический ток через цепь с индуктивностью индуцирует пропорциональное напряжение, которое противодействует изменению тока (если бы это было не так, можно легко увидеть, что энергия не может быть сохранена, с изменяющимся током, усиливающим изменение тока). петля положительной обратной связи).
ВЗАИМНАЯ ИНДУКТИВНОСТЬ
Взаимная индуктивность — это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. Посмотрите, где простые катушки наводят друг на друга ЭДС.
Взаимная индуктивность катушек : Эти катушки могут вызывать ЭДС друг в друге, как неэффективный трансформатор. Их взаимная индуктивность M указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2.(Обратите внимание, что «E2 индуцированная» представляет наведенную ЭДС в катушке 2.)
Во многих случаях, когда геометрия устройств фиксирована, магнитный поток изменяется за счет изменения тока. Поэтому мы сконцентрируемся на скорости изменения тока Δ I / Δ t как причине индукции. Изменение тока I 1 в одном устройстве, катушка 1 на рисунке, вызывает эдс I 2 в другом. Мы выражаем это в форме уравнения как
[латекс] \ text {emf} _2 = — \ text {M} \ frac {\ Delta \ text {I} _1} {\ Delta \ text {t}} [/ latex]
, где M определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность M , тем эффективнее связь. Единицы измерения для M : (V⋅s) / A = Ωs, который назван генри (H) в честь Джозефа Генри (обнаружил самоиндукцию). То есть 1 H = 1 Ом.
Природа здесь симметрична. Если мы изменим ток I 2 в катушке 2, мы индуцируем ЭДС 1 в катушке 1, что равно
[латекс] \ text {emf} _1 = — \ text {M} \ frac {\ Delta \ text {I} _2} {\ Delta \ text {t}} [/ latex]
, где M то же, что и для обратного процесса.Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью М.
Большая взаимная индуктивность M может быть, а может и не быть желательной. Мы хотим, чтобы трансформатор имел большую взаимную индуктивность. Но такой прибор, как электрическая сушилка для одежды, может вызвать опасную ЭДС на корпусе, если взаимная индуктивность между его катушками и корпусом велика. Один из способов уменьшить взаимную индуктивность M состоит в том, чтобы намотать катушки противотоком для подавления создаваемого магнитного поля.(Видеть ).
Противоточная намотка : Нагревательные катушки электрической сушилки для одежды могут быть намотаны в противоположную сторону, так что их магнитные поля нейтрализуют друг друга, что значительно снижает взаимную индуктивность по сравнению с корпусом сушилки.
САМОИНДУКЦИЯ
Самоиндуктивность, действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, увеличивается ток через катушку, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца.И наоборот, если ток уменьшается, индуцируется ЭДС, которая препятствует уменьшению. Большинство устройств имеют фиксированную геометрию, и поэтому изменение магнитного потока полностью связано с изменением тока ΔI через устройство. Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока. Выдается
[латекс] \ text {emf} = — \ text {L} \ frac {\ Delta \ text {I}} {\ Delta \ text {t}} [/ latex]
, где L — собственная индуктивность устройства.Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором и обозначается символом в.
.Обозначение индуктора
Знак минус является выражением закона Ленца, означающего, что ЭДС препятствует изменению тока. Единицами самоиндукции являются генри (Гн), как и для взаимной индуктивности. Чем больше самоиндукция L устройства, тем сильнее оно сопротивляется любому изменению тока через него. Например, большая катушка с множеством витков и железным сердечником имеет большой L и не позволит току быстро меняться.Чтобы избежать этого эффекта, необходимо добиться небольшого L, например, за счет встречной намотки катушек, как в.
СОЛЕНОИДЫ
Можно рассчитать L для индуктора, учитывая его геометрию (размер и форму) и зная создаваемое магнитное поле. В большинстве случаев это сложно из-за сложности создаваемого поля. Индуктивность L обычно является заданной величиной. Единственным исключением является соленоид, потому что он имеет очень однородное поле внутри, почти нулевое поле снаружи и простую форму.{2} \ text {A}} {\ mathscr {\ text {l}}} [/ latex] (соленоид).
Поучительно вывести это уравнение, но это оставлено читателю в качестве упражнения. (Подсказка: начните с того, что отметьте, что индуцированная ЭДС определяется законом индукции Фарадея как ЭДС = −N (Δ / Δt), а по определению самоиндукции задается как ЭДС = −L (ΔI // Δt) и приравняем эти два выражения). Обратите внимание, что индуктивность зависит только от физических характеристик соленоида, в соответствии с его определением.
Цепи RL
Цепь RL состоит из катушки индуктивности и резистора, включенных последовательно или параллельно друг другу, с током, управляемым источником напряжения.{\ frac {- \ text {t}} {\ tau}}) [/ latex]. {\ frac {- \ text {t }} {\ tau}} [/ латекс].В первом временном интервале τ ток падает в раз [латекс] \ frac {1} {\ text {e}} [/ latex] до [latex] 0,368 \ cdot \ text {I} _0 [/ latex].
Ключевые термины
- характеристическая постоянная времени : Обозначается $ \ tau $, в цепях RL она задается $ \ tau = \ frac {L} {R} $, где R — сопротивление, а L — индуктивность. Когда переключатель замкнут, это время, необходимое для того, чтобы сила тока уменьшилась с коэффициентом 1 / e.
- индуктор : Устройство или компонент схемы, который демонстрирует значительную самоиндукцию; устройство, которое хранит энергию в магнитном поле.
RL Схемы
Цепь резистор-индуктор (цепь RL) состоит из резистора и катушки индуктивности (последовательно или параллельно), приводимых в действие источником напряжения.
Обзор
Напомним, что индукция — это процесс, в котором ЭДС индуцируется изменением магнитного потока. Взаимная индуктивность — это действие закона индукции Фарадея одного устройства на другое, в то время как самоиндукция — это действие закона индукции Фарадея устройства на самого себя.Катушка индуктивности — это устройство или компонент схемы, который демонстрирует самоиндукцию.
Энергия индуктора
Мы знаем из закона Ленца, что индукторы противодействуют изменениям тока. Мы можем думать об этой ситуации с точки зрения энергии. Энергия хранится в магнитном поле. Требуется время, чтобы накопить энергию, а также время, чтобы истощить ее; следовательно, есть противодействие быстрым изменениям. В индукторе магнитное поле прямо пропорционально току и индуктивности устройства.{2} [/ латекс].
Катушки индуктивности в цепях
Мы знаем, что ток через катушку индуктивности L нельзя включить или выключить мгновенно. Изменение тока изменяет магнитный поток, вызывая противодействие изменению ЭДС (закон Ленца). Как долго длится противостояние? Текущий будет потоком, а можно выключить , но сколько времени это займет? На следующем рисунке показана схема переключения, которую можно использовать для измерения тока через катушку индуктивности как функции времени.
Ток в цепи RL : (a) Цепь RL с переключателем для включения и выключения тока. В положении 1 батарея, резистор и катушка индуктивности включены последовательно, и устанавливается ток. В положении 2 аккумулятор извлекается, и ток в конечном итоге прекращается из-за потери энергии в резисторе. (b) График роста тока в зависимости от времени, когда переключатель перемещен в положение 1. (c) График уменьшения тока, когда переключатель перемещается в положение 2.
Когда переключатель сначала перемещается в положение 1 (при t = 0 ), ток равен нулю и в конечном итоге повышается до I 0 = В / R , где R — полное сопротивление цепи, а V — напряжение батареи.{\ frac {- \ text {t}} {\ tau}}) [/ latex]
— это ток в цепи RL при включении. (Обратите внимание на сходство с экспоненциальным поведением напряжения на зарядном конденсаторе.) Начальный ток равен нулю и приближается к I 0 = В / R с характеристической постоянной времени для цепи RL , задаваемой формулой :
[латекс] \ tau = \ frac {\ text {L}} {\ text {R}} [/ latex],
, где [latex] \ tau [/ latex] имеет единицы измерения в секундах, поскольку [latex] 1 \ text {H} = 1 \ Omega \ cdot \ text {s} [/ latex].В первый период времени [латекс] \ тау [/ латекс] ток возрастает от нуля до 0,632I 0 , так как I = I 0 (1 − e −1 ) = I 0 ( 1−0,368) = 0,632I 0 . В следующий раз ток составит 0,632 от остатка. Хорошо известным свойством экспоненциальной функции является то, что конечное значение никогда не достигается точно, но 0,632 остатка от этого значения достигается за каждое характерное время [латекс] \ тау [/ латекс]. Всего за несколько кратных промежутков времени [латекс] \ тау [/ латекс] конечное значение почти достигнуто (см. Часть (b) на рисунке выше).
Характерное время [латекс] \ тау [/ латекс] зависит только от двух факторов: индуктивности L и сопротивления R . Чем больше индуктивность L , тем она больше, что имеет смысл, поскольку большая индуктивность очень эффективна в противодействии изменению. Чем меньше сопротивление R, тем больше [латекс] \ тау [/ латекс]. Опять же, это имеет смысл, поскольку небольшое сопротивление означает большой конечный ток и большее изменение, чтобы добраться до него. В обоих случаях (большой L и маленький R) в катушке индуктивности накапливается больше энергии, и требуется больше времени для ее ввода и вывода.
Когда переключатель в (a) перемещается в положение 2 и отключает батарею из цепи, ток падает из-за рассеивания энергии резистором. Однако это также не происходит мгновенно, поскольку катушка индуктивности противодействует уменьшению тока, вызывая ЭДС в том же направлении, что и батарея, управляющая током. Кроме того, в катушке индуктивности накапливается определенное количество энергии, (1/2) LI 0 2 , и она рассеивается с конечной скоростью. Когда ток приближается к нулю, скорость уменьшения замедляется, поскольку скорость рассеяния энергии составляет I 2 R.{\ frac {- \ text {t}} {\ tau}} [/ latex]
В (c), в первый период времени [latex] \ tau = \ text {L} / \ text {R} [/ latex] после того, как переключатель замкнут, ток падает до 0,368 от своего начального значения, поскольку I = I 0 e −1 = 0,368I 0 . В каждый последующий раз [латекс] \ тау [/ латекс] ток падает до 0,368 от предыдущего значения, а через несколько кратных [латекс] \ тау [/ латекс] ток становится очень близким к нулю.
Цепь серииRLC: на больших и малых частотах; Фазорная диаграмма
Отклик цепи RLC зависит от частоты возбуждения — на достаточно больших частотах преобладает индуктивный (емкостной) член.
Цели обучения
Различать поведение цепей серии RLC на больших и малых частотах
Основные выводы
Ключевые моменты
- Цепи RLC можно описать (обобщенным) законом Ома. Что касается фазы, когда прикладывается синусоидальное напряжение, ток отстает от напряжения на 90 ° по фазе в цепи с индуктором, в то время как ток опережает напряжение на 90 ° в цепи с конденсатором.
- На достаточно больших частотах [латекс] (\ nu \ gg \ frac {1} {\ sqrt {2 \ pi \ text {LC}}}) [/ latex] схема почти эквивалентна цепи переменного тока только с индуктор.Следовательно, среднеквадратичный ток будет Vrms / XL, а ток отстает от напряжения почти на 90 °.
- На достаточно малых частотах [латекс] (\ nu \ ll \ frac {1} {\ sqrt {2 \ pi \ text {LC}}}) [/ latex] схема почти эквивалентна цепи переменного тока с конденсатор. Следовательно, среднеквадратичный ток будет равен В, / X C, , а ток опережает напряжение почти на 90 ∘ .
Ключевые термины
- Закон Ленца : Закон электромагнитной индукции, который гласит, что электродвижущая сила, индуцированная в проводнике, всегда имеет такое направление, что возникающий ток будет противодействовать изменению, вызвавшему его; этот закон является формой закона сохранения энергии.
- резонанс : Увеличение амплитуды колебаний системы под действием периодической силы, частота которой близка к собственной частоте системы.
- rms : Среднеквадратичное значение: статистическая мера величины переменной величины.
В предыдущих версиях Atoms мы узнали, как последовательная цепь RLC, показанная на рисунке, реагирует на источник переменного напряжения. Объединив закон Ома (I среднеквадратичное значение = В действующее значение / Z; I действующее значение и среднеквадратичное значение — среднеквадратичное значение тока и напряжения) и выражения для импеданса Z из:
Цепь RLC серии : Цепь последовательного RLC: резистор, катушка индуктивности и конденсатор (слева).2}} [/ латекс].
Из уравнения мы исследовали условия резонанса для контура. Мы также изучили фазовые соотношения между напряжениями на резисторе, конденсаторе и катушке индуктивности: при подаче синусоидального напряжения ток отстает от напряжения на фазу 90º в цепи с катушкой индуктивности, в то время как ток опережает напряжение на 90 ∘ в цепи с конденсатором. Теперь мы исследуем отклик системы в пределах больших и малых частот.
На больших частотах
На достаточно больших частотах [латекс] (\ nu \ gg \ frac {1} {\ sqrt {2 \ pi \ text {LC}}}) [/ latex], X L намного больше, чем X C .Если частота достаточно высока, так что X L также намного больше, чем R, то в импедансе Z доминирует индуктивный член. Когда [latex] \ text {Z} \ приблизительно \ text {X} _ \ text {L} [/ latex], схема почти эквивалентна цепи переменного тока с одним индуктором. Следовательно, среднеквадратичный ток будет составлять В, действующее значение / X L , а ток отстает от напряжения почти на 90 ∘ . Этот отклик имеет смысл, потому что на высоких частотах закон Ленца предполагает, что полное сопротивление катушки индуктивности будет большим.
на малых частотах
В импедансе Z на малых частотах [латекс] (\ nu \ ll \ frac {1} {\ sqrt {2 \ pi \ text {LC}}}) [/ latex] преобладает емкостной член, предполагая, что частота достаточно высока, так что X C намного больше R. Когда [latex] \ text {Z} \ приблизительно \ text {X} _ \ text {C} [/ latex], схема почти эквивалентна AC схема только с конденсатором. Следовательно, среднеквадратичный ток будет равен В, / X C, , а ток опережает напряжение почти на 90 ∘ .
Резисторы в цепях переменного тока
В цепи с резистором и источником питания переменного тока все еще применяется закон Ома ( В, = IR ).
Цели обучения
Применение закона Ома для определения силы тока и напряжения в цепи переменного тока
Основные выводы
Ключевые моменты
- При напряжении переменного тока, определяемом следующим образом: [latex] \ text {V} = \ text {V} _0 \ sin (2 \ pi \ nu \ text {t}) [/ latex], ток в цепи задается как : [latex] \ text {I} = \ frac {\ text {V} _0} {\ text {R}} \ sin (2 \ pi \ nu \ text {t}) [/ latex] Это выражение происходит от Ohm закон: [латекс] \ text {V} = \ text {IR} [/ latex].2} {2 \ text {R}} [/ латекс].
Ключевые термины
- Закон Ома : Согласно наблюдениям Ома, постоянный ток, протекающий в электрической цепи, состоящей только из сопротивлений, прямо пропорционален приложенному напряжению.
Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник переменного напряжения. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление.Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. показывает графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.
Синусоидальное напряжение и ток : (a) Напряжение и ток постоянного тока постоянны во времени после установления тока.(б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.
Мы изучили закон Ома:
[латекс] \ text {I} = \ frac {\ text {V}} {\ text {R}} [/ latex]
, где I — ток, В, — напряжение, а R — сопротивление цепи. Закон Ома применяется как к цепям переменного тока, так и к цепям постоянного тока.Следовательно, при напряжении переменного тока, определяемом по формуле:
[латекс] \ text {V} = \ text {V} _0 \ sin (2 \ pi \ nu \ text {t}) [/ latex]
, где В 0 — пиковое напряжение, а [латекс] \ nu [/ latex] — частота в герцах, ток в цепи определяется как:
[латекс] \ text {I} = \ frac {\ text {V} _0} {\ text {R}} \ sin (2 \ pi \ nu \ text {t}) [/ latex]
В этом примере, в котором у нас есть резистор и источник напряжения в цепи, напряжение и ток считаются синфазными, как показано на (b). 2} {\ text {R}} \ cdot \ sin (2 \ pi \ nu \ text {t}) [/ latex]
Чтобы найти среднюю мощность, потребляемую этой схемой, нам нужно взять среднее значение функции по времени.2} {2 \ text {R}} [/ латекс]
Конденсаторыв цепях переменного тока: емкостное сопротивление и фазовые диаграммы
Напряжение на конденсаторе отстает от тока. Из-за разности фаз для описания этих схем полезно вводить векторы.
Цели обучения
Объясните преимущества использования векторного представления
Основные выводы
Ключевые моменты
- Когда конденсатор подключен к переменному напряжению, максимальное напряжение пропорционально максимальному току, но максимальное напряжение не возникает одновременно с максимальным током.
- Если источник переменного тока подключен к резистору, то ток и напряжение будут пропорциональны друг другу. Это означает, что ток и напряжение будут «пиковыми» одновременно.
- Среднеквадратичное значение тока в цепи, содержащей только конденсатор C, определяется другой версией закона Ома как [латекс] \ text {I} _ {\ text {rms}} = \ frac {\ text {V} _ {\ text {rms}} {\ text {X} _ \ text {C}} [/ latex], где [latex] \ text {X} _ \ text {c} [/ latex] — это емкостное реактивное сопротивление.
Ключевые термины
- rms : Среднеквадратичное значение: статистическая мера величины переменной величины.
В предыдущем Atom «Резисторы в цепях переменного тока» мы представили источник питания переменного тока и изучили, как резисторы ведут себя в цепях переменного тока. Там мы использовали закон Ома (V = IR), чтобы получить соотношение между напряжением и током в цепях переменного тока. В этом и последующих разделах «Атомы» мы обобщим закон Ома, чтобы мы могли использовать его, даже если в цепи присутствуют конденсаторы и катушки индуктивности. Чтобы добраться туда, мы сначала представим очень общий графический способ представления синусоидальной волны с помощью фазора.
Конденсаторы в цепях переменного тока с фазорами
Фазор
Ключевая идея представления вектора состоит в том, что сложный, изменяющийся во времени сигнал может быть представлен как произведение комплексного числа (которое не зависит от времени) и сложного сигнала (которое зависит от времени). Фазоры разделяют зависимости от A (амплитуда), [latex] \ nu [/ latex] (частота) и θ (фаза) на три независимых фактора. Это может быть особенно полезно, потому что частотный коэффициент (который включает временную зависимость синусоиды) часто является общим для всех компонентов линейной комбинации синусоид.{\ text {i} \ theta} [/ латекс]. Поскольку векторы представлены величиной (или модулем) и углом, они графически представлены вращающейся стрелкой (или вектором) в плоскости x-y.
Рис. 3 : Вектор можно рассматривать как вектор, вращающийся вокруг начала координат в комплексной плоскости. Функция косинуса — это проекция вектора на действительную ось. Его амплитуда — это модуль вектора, а его аргумент — полная фаза \ omega t + \ theta. Фазовая постоянная \ theta представляет собой угол, который вектор образует с действительной осью при t = 0.
Конденсаторы в цепях переменного тока
Ранее в предыдущем Atom мы изучали, как напряжение и ток меняются со временем. Если источник переменного тока подключен к резистору, то ток и напряжение будут пропорциональны друг другу. Это означает, что ток и напряжение будут «пиковыми» одновременно. Мы говорим, что ток и напряжение совпадают по фазе.
Когда конденсатор подключен к переменному напряжению, максимальное напряжение пропорционально максимальному току, но максимальное напряжение не возникает одновременно с максимальным током.Ток имеет максимум (пик) за четверть цикла до пика напряжения. Инженеры говорят, что «ток опережает напряжение на 90 90 273 90 274». Это показано на.
Рис. 2 : Пик тока (имеет максимум) за четверть волны до напряжения, когда конденсатор подключен к переменному напряжению.
Для цепи с конденсатором мгновенное значение V / I непостоянно. Однако значение V max / I max является полезным и называется емкостным реактивным сопротивлением (X C ) компонента.Поскольку это по-прежнему напряжение, деленное на ток (например, сопротивление), единицей измерения является ом. Значение X C (C означает конденсатор) зависит от его емкости (C) и частоты (f) переменного тока. [латекс] \ text {X} _ \ text {C} = \ frac {1} {2 \ pi \ nu \ text {C}} [/ latex].
Конденсатор влияет на ток, имея возможность полностью его остановить, когда он полностью заряжен. Поскольку применяется переменное напряжение, возникает среднеквадратичный ток, но он ограничивается конденсатором.Это считается эффективным сопротивлением конденсатора переменному току, поэтому среднеквадратичное значение тока I , действующее значение в цепи, содержащей только конденсатор C, определяется другой версией закона Ома как [латекс] \ text {I} _ {\ text {rms}} = \ frac {\ text {V} _ {\ text {rms}}} {\ text {X} _ \ text {C}} [/ latex], где V rms — это действующее значение напряжения. Обратите внимание, что X C заменяет R в версии закона Ома для постоянного тока.
Фазовое представление
Поскольку напряжение на конденсаторе отстает от тока, вектор, представляющий ток и напряжение, будет иметь вид.На схеме стрелки вращаются против часовой стрелки с частотой [латекс] \ ню [/ латекс]. (Следовательно, ток ведет к напряжению.) В следующих атомах мы увидим, как эти векторы можно использовать для анализа цепей RC, RL, LC и RLC.
Рис. 4 : Фазорная диаграмма для цепи переменного тока с конденсатором
Катушки индуктивности в цепях переменного тока: индуктивно-реактивные и фазовые диаграммы
В цепи переменного тока с катушкой индуктивности напряжение на катушке индуктивности «ведет» ток в соответствии с законом Ленца.
Цели обучения
Объясните, почему напряжение на катушке индуктивности «опережает» ток в цепи переменного тока с катушкой индуктивности.
Основные выводы
Ключевые моменты
- С индуктором в цепи переменного тока напряжение опережает ток на одну четверть цикла или на фазовый угол 90º.
- Среднеквадратичный ток I среднеквадратичное значение через катушку индуктивности L определяется версией закона Ома: [latex] \ text {I} _ {\ text {rms}} = \ frac {\ text {V} _ { \ text {rms}}} {\ text {X} _ \ text {L}} [/ latex].X L называется индуктивным реактивным сопротивлением, которое задается как [латекс] \ text {X} _ \ text {L} = 2 \ pi \ nu \ text {L} [/ latex].
- Фазоры — это векторы, вращающиеся против часовой стрелки. Вектор для катушки индуктивности показывает, что напряжение опережает ток по фазе 90º.
Ключевые термины
- Закон Ленца : Закон электромагнитной индукции, который гласит, что электродвижущая сила, индуцированная в проводнике, всегда имеет такое направление, что возникающий ток будет противодействовать изменению, вызвавшему его; этот закон является формой закона сохранения энергии.
- rms : Среднеквадратичное значение: статистическая мера величины переменной величины.
- phasor : представление комплексного числа в виде комплексной экспоненты.
Предположим, что индуктор подключен непосредственно к источнику переменного напряжения, как показано на рисунке. Разумно предположить, что сопротивление пренебрежимо мало, потому что на практике мы можем сделать сопротивление индуктора настолько малым, что оно окажет незначительное влияние на схему. График показывает напряжение и ток как функции времени.(б) начинается с максимального напряжения. Обратите внимание, что ток начинается с нуля, затем повышается до своего пика после управляющего им напряжения (как показано в предыдущем разделе, когда было включено напряжение постоянного тока).
Источник переменного напряжения, подключенный последовательно с индуктором : (a) Источник переменного напряжения, подключенный последовательно с индуктором, имеющим незначительное сопротивление. (б) График зависимости тока и напряжения на катушке индуктивности от времени.
Когда напряжение становится отрицательным в точке а, ток начинает уменьшаться; оно становится нулевым в точке b, где напряжение является самым отрицательным.Затем ток становится отрицательным, снова вслед за напряжением. Напряжение становится положительным в точке c, где оно начинает делать ток менее отрицательным. В точке d ток проходит через ноль, когда напряжение достигает своего положительного пика, чтобы начать следующий цикл. Следовательно, когда на катушку индуктивности подается синусоидальное напряжение, оно опережает ток на одну четверть цикла или на фазовый угол 90º.
Ток отстает от напряжения, поскольку индукторы препятствуют изменению тока. Изменение тока вызывает ЭДС.Это считается эффективным сопротивлением катушки индуктивности переменному току. Среднеквадратичное значение тока I RMS через катушку индуктивности L определяется версией закона Ома: [latex] \ text {I} _ {\ text {rms}} = \ frac {\ text {V} _ {\ text { rms}}} {\ text {X} _ \ text {L}} [/ latex] где V rms — среднеквадратичное значение напряжения на катушке индуктивности, а [латекс] \ text {X} _ \ text {L} = 2 \ pi \ nu \ text {L} [/ latex] с [latex] \ nu [/ latex] частота источника переменного напряжения в герцах. X L называется индуктивным реактивным сопротивлением. Поскольку катушка индуктивности препятствует прохождению тока, X L имеет единицы измерения Ом (1 Гн = 1 Ом · с, так что частота, умноженная на индуктивность, составляет (циклов / с) (Ом · с) = Ом), что соответствует его роли эффективное сопротивление.
Представление фазора
Напряжение на катушке индуктивности «ведет» ток в соответствии с законом Ленца. Следовательно, вектор, представляющий ток и напряжение, будет иметь вид. Опять же, вектора — это векторы, вращающиеся против часовой стрелки с частотой [latex] \ nu [/ latex] (вы можете видеть, что напряжение опережает ток) . В последующих выпусках Atoms будет обсуждаться, как эти векторы можно использовать для анализа цепей RC, RL, LC и RLC.
Векторная диаграмма : Векторная диаграмма для цепи переменного тока с индуктором.
Фазоры для индукторов в цепях переменного тока
Резонанс в цепях RLC
Резонанс — это тенденция системы к колебаниям с большей амплитудой на некоторых частотах — в последовательной цепи RLC он возникает на [latex] \ nu_0 = \ frac {1} {2 \ pi \ sqrt {\ text {LC}} }[/латекс].
Цели обучения
Сравнить резонансные характеристики цепей с высоким и низким сопротивлением
Основные выводы
Ключевые моменты
- Условие резонанса последовательной цепи RLC может быть получено приравниванием X L и X C , так что два противоположных вектора компенсируют друг друга.
- В резонансе влияние катушки индуктивности и конденсатора компенсируется, так что Z = R, а I среднеквадратичное значение является максимальным.
- Цепи с более высоким сопротивлением не так сильно резонируют по сравнению с цепями с более низким сопротивлением, и при этом они не будут такими избирательными, например, в радиоприемнике.
Ключевые термины
- реактивное сопротивление : Противодействие изменению протекания тока в цепи переменного тока из-за индуктивности и емкости; мнимая часть импеданса.
- rms : Среднеквадратичное значение: статистическая мера величины переменной величины.
- импеданс : мера сопротивления течению переменного тока в цепи; совокупность его сопротивления, индуктивного и емкостного сопротивления. Обозначается символом Z.
Резонанс — это тенденция системы к колебаниям с большей амплитудой на одних частотах, чем на других. Частоты, при которых амплитуда отклика является относительным максимумом, известны как резонансные частоты системы.2}} [/ latex],
, где I rms и V rms — среднеквадратичные значения тока и напряжения соответственно. Реактивные сопротивления изменяются в зависимости от частоты [латекс] \ nu [/ latex], при этом X L большое на высоких частотах и X C большое на низких частотах, представленных как:
[латекс] \ text {X} _ \ text {L} = 2 \ pi \ nu \ text {L}, \ text {X} _ \ text {C} = \ frac {1} {2 \ pi \ nu \ text {C}} [/ латекс].
На некоторой промежуточной частоте [latex] \ nu_0 [/ latex] реактивные сопротивления будут равны и отменены, давая Z = R — это минимальное значение для импеданса, а максимальное значение для I rms результатов.Мы можем получить выражение для [latex] \ nu_0 [/ latex], взяв X L = X C . Подставляя определения X L и X C , получаем:
[латекс] \ nu_0 = \ frac {1} {2 \ pi \ sqrt {\ text {LC}}} [/ латекс].
[латекс] \ nu_0 [/ latex] — это резонансная частота последовательной цепи RLC. Это также собственная частота, на которой цепь будет колебаться, если не будет управляться источником напряжения. В [latex] \ nu_0 [/ latex] эффекты катушки индуктивности и конденсатора нейтрализуются, так что Z = R, а I rms является максимальным.Резонанс в цепях переменного тока аналогичен механическому резонансу, где резонанс определяется как вынужденные колебания (в данном случае вызванные источником напряжения) на собственной частоте системы.
Приемник в радиостанции — это RLC-цепь, которая лучше всего колеблется на своем [latex] \ nu_0 [/ latex]. Переменный конденсатор часто используется для регулировки резонансной частоты, чтобы получить желаемую частоту и отклонить другие. представляет собой график зависимости тока от частоты, иллюстрирующий резонансный пик I rms при [латексе] \ nu_0 = \ text {f} _0 [/ latex].Две кривые относятся к двум разным схемам, которые различаются только величиной сопротивления в них. Пик ниже и шире для цепи с более высоким сопротивлением. Таким образом, цепи с более высоким сопротивлением не резонируют так сильно, и, например, в радиоприемнике они не будут такими избирательными.
Зависимость тока от частоты : График зависимости тока от частоты для двух цепей серии RLC, различающихся только величиной сопротивления. Оба имеют резонанс при f0, но для более высокого сопротивления он ниже и шире.Источник управляющего переменного напряжения имеет фиксированную амплитуду V0.
Мощность
Мощность, подаваемая в цепь переменного тока серии RLC, рассеивается сопротивлением в цепи и определяется как [латекс] \ text {P} _ {\ text {avg}} = \ text {I} _ {\ text {rms }} \ text {V} _ {\ text {rms}} \ cos {\ phi} [/ latex]. Здесь [latex] \ phi [/ latex] называется фазовым углом.
Цели обучения
Рассчитать мощность, подаваемую в цепь переменного тока серии RLC с учетом тока и напряжения.
Основные выводы
Ключевые моменты
- Фазовый угол ϕ — это разность фаз между напряжением источника V и током I.См. Векторную диаграмму в.
- На резонансной частоте или в чисто резистивной цепи Z = R, так что cosϕ = 1. Это означает, что ϕ = 0º и что напряжение и ток синфазны.
- Среднюю мощность, рассеиваемую в цепи RLC, можно рассчитать, взяв среднее во времени мощность, P (t) = I (t) V (t), за период.
Ключевые термины
- rms : Среднеквадратичное значение: статистическая мера величины переменной величины.
Если ток изменяется в зависимости от частоты в цепи RLC, то мощность, подаваемая на него, также зависит от частоты.Однако средняя мощность — это не просто ток, умноженный на напряжение, как в случае чисто резистивных цепей. Как было замечено в предыдущих атомах, напряжение и ток в цепи RLC не совпадают по фазе. Между напряжением источника V и током I существует фазовый угол ϕ, равный
.[латекс] \ cos {\ phi} = \ frac {\ text {R}} {\ text {Z}} [/ latex], как показано на схеме.
Векторная диаграмма для последовательной цепи RLC : Векторная диаграмма для последовательной цепи RLC. \ phi — фазовый угол, равный разности фаз между напряжением и током.
Например, на резонансной частоте [латекс] (\ nu_0 = \ frac {1} {2 \ pi \ sqrt {\ text {LC}}}) [/ latex] или в чисто резистивной цепи Z = R, так что cosϕ = 1. Это означает, что ϕ = 0º и что напряжение и ток синфазны, как и ожидалось для резисторов. На других частотах средняя мощность меньше, чем в резонансе, потому что напряжение и ток не совпадают по фазе, а I rms ниже.
Тот факт, что напряжение и ток источника не совпадают по фазе, влияет на мощность, подаваемую в цепь.Можно показать, что средняя мощность
[латекс] \ text {P} _ {\ text {avg}} = \ text {I} _ {\ text {rms}} \ text {V} _ {\ text {rms}} \ cos {\ phi} [/ латекс]
(уравнение, полученное путем взятия среднего значения мощности по времени, P (t) = I (t) V (t), за период. I (t) и V (t) — ток и напряжение в момент времени t). Таким образом, cosϕ называется коэффициентом мощности, который может находиться в диапазоне от 0 до 1. Коэффициенты мощности, близкие к 1, желательны, например, при проектировании эффективного двигателя. На резонансной частоте cosϕ = 1.
Мощность, подаваемая в цепь переменного тока серии RLC, рассеивается только за счет сопротивления.Катушка индуктивности и конденсатор имеют входную и выходную энергию, но не рассеивают энергию из цепи. Скорее, они передают энергию назад и вперед друг другу, а резистор рассеивает именно то количество, которое источник напряжения дает цепи. Это предполагает отсутствие значительного электромагнитного излучения от катушки индуктивности и конденсатора (например, радиоволн).
Схема аналогична колесу автомобиля, движущегося по гофрированной дороге, как показано на рисунке. Равномерно расположенные неровности дороги аналогичны источнику напряжения, приводящему колесо в движение вверх и вниз.Амортизатор аналогичен демпфирующему сопротивлению и ограничивающему амплитуду колебаний. Энергия внутри системы перемещается между кинетической (аналогично максимальному току и энергии, запасенной в индукторе) и потенциальной энергией, запасенной в автомобильной пружине (аналогично отсутствию тока и энергии, запасенной в электрическом поле конденсатора). Амплитуда движения колес максимальна, если неровности дороги встречаются с резонансной частотой.
Принудительное демпфированное движение колеса на автомобильной пружине : Принудительное, но демпфированное движение колеса на автомобильной пружине аналогично цепи переменного тока серии RLC.Амортизатор гасит движение и рассеивает энергию аналогично сопротивлению в цепи RLC. Масса и пружина определяют резонансную частоту.
Высокочастотный генератор онлайн
Camcrest westies
Код скидки на излучатель Dewitts
Кроме того, Национальный институт вычислительных наук (NCSI) проводит общенациональные семинары, демонстрирующие ресурсы и учебные идеи для преподавателей средних и старших классов и студентов старших курсов для использования в класс.
Comsol matlab link
Многоугольник частот — это еще один способ показать информацию в таблице частот. Это немного похоже на линейный график. Это немного похоже на линейный график. Чтобы создать частотный многоугольник, вам просто нужно построить несколько точек, а затем соединить точки прямыми линиями. Цель этой заметки — продемонстрировать основанную на моделировании методологию проектирования широкополосных усилителей мощности с использованием методов линейной нагрузки, нагрузки и синтеза реальной частоты. Конструкция, показанная в этой инструкции по применению, представляет собой усилитель класса F и была создана с использованием транзистора Qorvo 30 Вт GaN HEMT T2G6003028-FL.
Blue merle corgi на продажу в Огайо
Скачать Frequency Generator бесплатно. Генерирует звук желаемой частоты. Самый простой возможный генератор частоты, введите частоту, нажмите кнопку воспроизведения, и вы можете изменить частоту во время его воспроизведения, он автоматически обновит звук. Генератор сигналов. Генератор сигналов — бесценное испытательное оборудование. Выходной сигнал генератора сигналов представляет собой повторяющийся сигнал, характеристики которого задаются пользователем. Генераторы сигналов могут использоваться в исследовательских и опытно-конструкторских целях, а также при обслуживании и ремонте электронного оборудования.
Yuasa cross reference
Используя функциональный генератор, получите неоднородную прямоугольную форму сигнала с размахом 4 В от пика до пика и минимальным напряжением около +0,5 В. Установите частоту на 400 кГц. Попробуйте установить T S = 2T M. На рисунке 4 показан типичный сигнал, полученный за счет использования топологии инвертора высокочастотной (ВЧ) линии связи. Популярной топологией инвертора ВЧ-линии является так называемый преобразователь постоянного тока в постоянный, рис. 2а. В этой схеме [3] мостовой инвертор используется для преобразования прямого входного напряжения в прямоугольный высокочастотный сигнал, который, в свою очередь, выпрямляется и фильтруется.Выходной сигнал фильтра нижних частот является прямым …
Рабочий лист
Онлайн-тон-генератор. Бесплатно, просто и удобно. Просто введите желаемую частоту и нажмите кнопку воспроизведения. Вы услышите синусоидальную волну чистого тона с частотой дискретизации 44,1 кГц. Звуковой сигнал будет продолжаться, пока не будет нажата кнопка остановки. Тональный генератор может воспроизводить четыре различных сигнала: синусоидальный, квадратный, пилообразный и треугольный.
300 дикарь для медведя гризли
Опросы, связанные с этим высокочастотным тестом на форумах.stevehoffman.tv @ forum.digitalspy.co.uk. Другие тесты высокочастотного слуха. Онлайн-тест слуха (аудиограмма) (125–8000 Гц). Высокочастотный слепой тест на слышимость (10+ кГц). Тест на слух «москитным тоном» (17+ кГц), низкочастотный тест. Тест сабвуфера и низкочастотной характеристики. Другие внешние ссылки
Обучение Iuoe
27 ноября 2020 г. · Заказать онлайн на сайте Screwfix.com. Компактный и легкий, этот инверторный генератор вырабатывает 100% чистую мощность синусоидальной волны, что делает его безопасным для чувствительного электронного оборудования.4-тактный двигатель объемом 40 куб. См означает низкий уровень шума и отсутствие необходимости смешивать топливо или масло. Идеально подходит для зарядки литий-ионных аккумуляторов на месте или для электроснабжения вне помещений. Возможна БЕСПЛАТНАЯ доставка на следующий день, бесплатный сбор за 5 минут.
600 Вт 2×2 палатка
PV1800 Pro Series High Frequency Off Grid Solar Inverter (3 / 5.5KW) PV1800PRO — это многофункциональный инвертор / зарядное устройство, сочетающее в себе функции инвертора, солнечного зарядного устройства MPPT и зарядного устройства для обеспечения бесперебойного питания в портативных устройствах. размер. Высокочастотный генератор BD-20A работает на очень высокой частоте в диапазоне МГц, генерируя мягкую искру.Работа на этой частоте делает его проводящим для ионизации (свечения) газа внутри лампы, фармацевтических вакуумных флаконов или аналогичных стеклянных контейнеров. Напряжение регулируется.
Wells fargo международный номер IBAN
1. Будьте постоянны по частоте. Многие тактовые генераторы используют кристалл для управления частотой. Поскольку кварцевые генераторы обычно генерируют высокие частоты, там, где требуются более низкие частоты, исходная частота генератора делится с очень высокой частоты на более низкую с использованием счетных схем.31 октября 2017 г. · Mega Millions ® Number Frequency. Включает все чертежи Mega Millions, начиная с 31.10.2017 по 29.12.2020 .. Общее количество розыгрышей: 331 Версия для печати
Этот сертификат не может быть проверен доверенным центром сертификации chrome
Частота была 2 на Суббота, 1 в четверг и 3 на всю неделю. Распределение частоты. Подсчитав частоты, мы можем составить таблицу распределения частот. «Радио» частоты выше 100 кГц. Электрохирургический генератор потребляет 60 циклов тока и увеличивает частоту до 200 000 циклов в секунду.На этой частоте электрохирургическая энергия может проходить через пациента с минимальной нервно-мышечной стимуляцией и без риска поражения электрическим током. Принципы электрохирургии в O.r.
Lorex home manual
Интернет-магазин Cavlon Жидкость теплообменника высокочастотного генератора RF LEPEL RWWEX-20 [RWWEX-20] — На продажу выставлен Жидкость теплообменника высокочастотного генератора RF RWWEX-20 LEPEL к жидкости. Размеры сырца 37 * 19 * 24. Измените скорость вращения генератора, и вы измените его выходную частоту.До появления высокоскоростных транзисторов это был один из немногих вариантов, доступных для изменения скорости двигателя, однако изменения частоты были ограничены, поскольку снижение скорости генератора приводило к снижению выходной частоты, но не напряжения.
Ford f250 реле щелчка
Размер карты. Бинго-карта 5×5 является традиционной, но вы можете попробовать и другие размеры. Количество квадратов Большое количество квадратов Варианты печати в высоту. Для достижения наилучших результатов выбирайте альбомную ориентацию страницы при печати. 16 апреля 2016 г. · Аббревиатура — ELF.Чрезвычайно низкая частота (ELF) — это обозначение ITU для электромагнитного излучения (радиоволн) с частотами от 3 до 30 Гц и соответствующими длинами волн от 100 000 до 10 000 километров. ELF-волны также могут проникать на значительные расстояния в землю или скалы, и «через- В подземных шахтных системах связи «земля» используются частоты от 300 до 3000 Гц.
Conan exiles grandmaster armorsmith
Первые радиопередачи произошли примерно в 1906 году, а распределение частот для AM-радио произошло в 1920-х годах (предшественник FCC был учрежден Конгрессом в 1927 году.). В 1920-е годы возможности радио и электроники были довольно ограничены, отсюда и относительно низкие частоты для AM-радио. AnimeGANv2 использует нормализацию слоев для объектов, чтобы сеть не создавала высокочастотных артефактов в сгенерированных изображениях. Однако AnimeGAN склонен генерировать высокочастотные артефакты из-за использования нормализации экземпляров, что является той же причиной, по которой styleGAN генерирует высокочастотные артефакты.
Международные сборные дома
Кроме того, вы можете «удерживать», «пропускать» или «приостанавливать» частотную пару.Другая особенность MEND Professional ™ — это возможность использовать его в ручном режиме.