Делаем конденсаторную сварку своими руками
Конденсаторная сварка – это технология создания бесшовного соединения металлических изделий. Соединения осуществляется за счет кратковременных импульсов электрической энергии.
Блок: 1/12 | Кол-во символов: 177
Источник: https://svarka.guru/vidy/kontaktnaya/kondensatornaya.html
Конденсаторная сварка: что это такое
Конденсаторная сварка своими руками была разработана еще в 30-х годах XX века. Сегодня эта технология активно используется предприятиями промышленности и умельцами с целью выполнения бытовых сварных операций.
Особенно популярна такая технология в цехах ремонта кузовов транспортных средств: в отличие от дугового, при конденсаторном методе создания сварного шва не происходит прожигание и деформация тонких стенок листов кузовных деталей. В последующее время соединенным деталям кузова не нужна дополнительная рихтовка.
Такую технологию применяют в радиоэлектронике для соединения изделий, не паяющихся посредством обычных флюсов или выходящих из строя при перегреве.
Активно применяются аппараты конденсаторной сварки ювелирами при изготовлении и ремонте ювелирных украшений, на предприятиях, выпускающих коммуникационные шкафы, лабораторное, медицинское, пищевое оборудование, при строительстве зданий, мостов, инженерных коммуникаций.
Столь широкое распространение можно объяснить действием ряда факторов:
- простая конструкция сварочного аппарата, который при желании можно собрать своими руками;
- точечная сварка отличается относительно низкой энергоемкостью и малыми нагрузками, создаваемыми на электрическую сеть;
- высокие показатели производительности, что крайне важно при серийном производстве;
- возможность снизить термическое влияние на соединяемые поверхности, что позволяет сваривать детали малых размеров и работать с теми конструкциями, стенки которых чрезмерно тонки и могут деформироваться при обычной сварке.
На заметку! Достоинством технологии конденсаторной сварки является простота ее реализации: даже средний уровень квалификации позволяет мастеру создать качественные сварные швы.
Способ конденсаторной сварки изделия.
Правила осуществления сварных операций с помощью энергии конденсаторов регламентируются ГОСТ. Принцип технологии основывается на трансформации энергии электрического заряда, накопленного на конденсаторах, в тепловую энергию.
При соприкосновении электродов происходит разряд и образуется электрическая дуга краткого действия. За счёт выделяемого ею тепла кромки соединяемых деталей из металла плавятся, образуя сварной шов.
При конденсаторной сварке ток подается на сварной электрод в виде кратковременного импульса высокой мощности, который получается за счет монтажа в оборудование конденсаторов большой емкости.
В случае использования контактной сварки ток непрерывен. В этом заключается основное отличие этих видов выполнения сварных операций.
В итоге, мастер может достичь высоких показателей двух важных параметров:
- на термический нагрев соединяемых деталей требуется гораздо меньше времени, что особенно ценно для производителей электронных компонентов;
- ток, используемый для соединения деталей, обладает высокой мощностью, поэтому и сами сварные швы получаются более качественными.
В процессе сварных операций для крепления элементов и узлов разных изделий могут потребоваться разные по разновидности и назначению шпильки.
Достоинством конденсаторной сварки является возможность уменьшить площадь термического воздействия, снизить напряжение и свести к нулю риск деформации поверхностей ввиду высокой плотности энергии и кратковременности сварного импульса. Технология позволяет работать с цветными металлами с малой толщиной.
Также отметим, что огромным плюсом конденсаторного сварного аппарата является его компактность. Для применения такой технологии на практике не потребуется мощный источник питания, устройство можно заряжать между переносом электрода к следующей точке.
Блок: 2/5 | Кол-во символов: 3711
Источник: https://tutsvarka.ru/vidy/kondensatornaya-svarka
Сварочные машины для конденсаторной сварки
Сварочные машины Power-KES (рис . 2) работают по принципу преобразованного разряда конденсатора. Во время остановки процесса сварки электронное зарядное устройство заряжает специальные конденсаторы до необходимого для сварочного процесса напряжения Во время сварки конденсаторы разрежаются с помощью трансформаторов . Поскольку во время этого процесса энергия из сети не поступает, то подключенная нагрузка очень мала (примерно в 20 раз меньше по сравнению с аналогичными машинами контактной сварки), а нагрузка сети симметрична. Большие машины Power-KES рассчитаны на потребление из сети 32 А.
Рис. 2. Машина портального типа Power-KES для конденсаторной сварки
Сварочная машина обеспечивает высокую точность сварки без искажений и отжигов, сварку различных материалов (сталь и медь, латунь и сталь) и деталей различной формы с разными поверхностями . Можно сваривать высокопрочные и жаростойкие стали и стали с содержанием углерода больше 0,2 %.
С помощью пульта управления Qualy-KES можно вводить и регулировать параметры сварочного процесса: мощность сварки, сварочный ток, усилие сжатия электродов и время сварки. В Qualy-KES встроен программируемый логический контроллер Все значения параметров, а также результаты работы отображаются на дисплее ПК.
Конденсаторная сварка легко механизируется и автоматизируется.
Блок: 2/3 | Кол-во символов: 1364
Источник: https://extxe.com/3221/oborudovanie-dlja-kondensatornoj-svarki/
Типы сварочных конденсаторных аппаратов
Существует две разновидности аппаратов конденсаторной сварки — с разрядом накопителей энергии непосредственно на свариваемых поверхностях и с разрядом от вторичной обмотки трансформатора. Первый, бестрансформаторный способ, чаще используется в ударно-конденсаторной сварке. Второй способ, трансформаторный, применяется для создания качественного шва.
Ударно-конденсаторная аппаратура сваривает детали во время удара одного из электродов по детали. Во время удара детали поверхности плотно прижимаются друг к другу. Происходит разряд конденсатора, образующий микродугу, которая нагревает поверхности до температуры плавления металлов. Детали прочно соединяются.
В трансформаторном способе сварки конденсатор после заряда подключается к первичной обмотке понижающего трансформатора. На вторичной обмотке появляется потенциал, в несколько раз меньшей амплитуды входящего импульса. Во время разряда происходит сваривания деталей, конденсатор вновь заряжается и снова отдает энергию первичной обмотке трансформатора. Это позволяет производить длительные серии с частотой до 5 разрядов в секунду, которые создают прочные и точные сварочные швы.
Блок: 3/5 | Кол-во символов: 1175
Источник: https://WikiMetall.ru/oborudovanie/kondensatornaya-svarka.html
Аппараты для конденсаторной сварки
Силовой блок сварочного аппарата NOMARK 66 D (рис. 3) конденсаторного типа (производитель: Thomas Welding Systems, Бельгия). Источником сварочной энергии служит батарея мощных электролитических конденсаторов большой емкости. Зарядный ток формируется источником питания трансформаторного типа, который выполнен на современной интегральной элементной базе по технологии IGBT, имеет очень высокие КПД и надежность.
Рис. 3. Силовой блок сварочного аппарата NOMARK 66 D со сварочным пистолетом, цанговым держателем для привариваемых метизов и кабелем заземления
Цифровая схема управления контролирует все параметры работы аппарата, а также обеспечивает стабильность сварочных параметров при различных режимах работы и колебаниях питающего напряжения. Сварочный аппарат имеет электрическую и термозащиту. Основные элементы индикации режимов и индикатор цифрового вольтметра выведены на переднюю панель
Пистолет для приварки шпилек HBS имеет небольшую массу (0,7 кг), сделан из ударопрочного пластика. С помощью резьбы присоединяется цанговый зажим . Есть автоматическая настройка на длину метиза, регулируется усилие пружины ударного механизма головки . Диапазон длин привариваемых метизов от 6 до 55 мм . Скорость сварки от 8 до 20 метизов в минуту Из-за того что время сварки незначительно, а пауза между циклами довольно велика, сварка выполняется при воздушном охлаждении электродов Пистолеты для ударной сварки имеют устройство для подъема метиза. Высота подъема цанги для закрепления привариваемого изделия регулируется с точностью ±0,25 мм. Высокая точность движения сварочного плунжера пистолета обеспечивается шариковой направляющей
Универсальная конденсаторная сварочная машина типа МТК- 6301 (рис . 4) имеет короткий импульс тока, довольно высокую мощность и возможность приложения ковочного усилия, она позволяет соединять стали и алюминиевые сплавы. Жесткость корпуса машин данной серии (МТК-6301, МТК-5001) увеличена за счет бокового расположения трансформатора.
Рис. 4. Конденсаторная точечная машина МТК-6301
Основные технические характеристики аналогичных машин приведены в табл . 1
Таблица 1
Технические характеристики универсальных конденсаторных машин
Тип машины | Силатока, кА | Номинальная мощность, кВ • А | Толщина свариваемых сталей, мм | Толщина свариваемых листов алюминия, мм | Длина консолей, мм | Усилие сварочное, Н | Усилие ковочное, Н | Диаметр обечайки, мм | Длина обечайки, мм |
МТК-5001 | 50 | 30 | 0,3… 1,2 | 0,3.. .1,8 | 500 | 1 500. . .8 000 | 17 500 | 480 | 470 |
МТК-6301 | 63 | 40 | 0,4… 1,5 | О Ю О | 1200 | 1 500. . .9 500 | 20 000 | 320 | 1000 |
МТК-75 | 80 | 75 | 0,5… 1,5 | 0,8.. .2,5 | 1500 | 2 500.. .14 000 | 32 000 | 500 | 650 |
Блок: 3/3 | Кол-во символов: 3000
Источник: https://extxe.com/3221/oborudovanie-dlja-kondensatornoj-svarki/
Особенности работы самодельного агрегата
Осуществить ударную конденсаторную сварку можно с помощью специального аппарата заводского производства, который продается в специализированных магазинах. Однако, вполне реально изготовить сварку конденсаторного типа самостоятельно в условиях маленькой мастерской.
Изготовленные своими силами агрегаты демонстрируют высокие эксплуатационные параметры и в работе не уступают заводским моделям.
Самодельный аппарат конденсаторной сварки.
Перед работой самодельному аппарату для сварки, использующему энергию конденсаторов, задают основные параметры функционирования:
- напряжение в зоне контактной сварки металлоизделий;
- вид и сила тока;
- длительность действия сварного импульса;
- число и размеры сварной проволоки, применяемой в работе.
Платы управления, присутствующие в конструкции и заводских, и самодельных сварочных агрегатов, предоставляют мастеру возможность привести поступающее напряжение и постоянную величину тока к стабильному значению. Самодельный агрегат важно оснастить переключателем для выполнения сварки электродами без особенных трудностей.
Самодельные агрегаты, как и заводские модели, долговечны, просты в использовании, если при их конструировании придерживаться схемы, технологических требований и норм безопасности.
А технические параметры изготовленной своими силами модели должны соответствовать характеристикам заводских конструкций. Тогда аппарат позволит даже малоопытному сварщику выполнять надежные и долговечные сварные швы методом конденсаторной сварки.
Но не стоит забывать, что весомая доля успеха при выполнении сварочных операций зависит от тщательности подготовительных работ. Обязательно позаботьтесь о том, чтобы свариваемые поверхности не имели загрязнений, слоя пыли, ржавчины перед началом работы.
Такие дефекты могут свести на нет усилия сварщика, став преградой для качественного соединения расплавленных кромок изделий.
Блок: 4/5 | Кол-во символов: 1945
Источник: https://tutsvarka.ru/vidy/kondensatornaya-svarka
Достоинства и недостатки СА на конденсаторах
Поскольку сварной шов это всего две точки, вероятность хорошего сварного соединения очень высока (около 99%). Также здесь ничего не греется. Сварные швы становятся холодными сразу после сварки, потому что это всего лишь короткий импульс и несколько мелких искр. Давление почти постоянное благодаря пружинам, ход электрода составляет около 2 мм. Вот фотографии сварных швов. Таким образом, плюсы и минусы этого СА следующие:
Достоинства
- очень короткий импульс сварки
- хорошая настройка сварочной мощности
- быстрая генерация тепла и сварка элементов
- легкая конструкция
- немного компонентов
- возможность работы от батареи, портативность
- высокая повторяемость правильных сварных швов
Недостатки
- большая стоимость исполнения
- более быстрое разрушение конденсаторов
- более длительный период ожидания для полной мощности
- не предназначен для сварки листового металла более 1 мм.
Но несмотря на множество недостатков сварочной машины с конденсаторами, её определенно можно советовать для самостоятельной сборки, потому что если все хорошо подобрать — работает очень быстро и безопасно. Это идеальное решение для сварки батарейных ячеек, а также для ювелирных изделий. Заметим, что сварку аккумуляторов лучше всего делать с использованием цинковой пластины. Цинковая фольга может быть куплена в катушке.
Блок: 4/5 | Кол-во символов: 1334
Источник: https://2shemi.ru/kondensatornyj-svarochnyj-apparat-dlya-akkumulyatorov/
Самодельные устройства
Есть несколько способов смастерить своими руками аппарат для конденсаторной сварки. Каждый из них выбирается исходя из особенности формы и размера конструкции, которую нужно сваривать, а также её назначения.
Простой вариант
Самая простая конструкция применяется только для соединения деталей толщиной до 0,5 миллиметра. Во всех остальных случаях установка не сможет качественно справиться со своей задачей. Такой аппарат можно изготовить в любой мастерской или гараже. Принцип его работы основывается на подачи импульса через трансформатор. Один из концов его вторичной обмотки подводится к электроду, а другой — к обрабатываемой детали.
Особенности процесса изготовления аппарата:
- За основу можно взять схему, в которой первичная обмотка подсоединяется к электросети.
- Один из её концов должен проходить через диагональ преобразователя в виде диодного моста, а другой — через тиристор, управляемый кнопкой пуска.
- Для вырабатывания необходимого импульса следует применять конденсатор ёмкостью от 1 до 2 тыс. микрофарад.
- Его обмотку (300 витков) лучше всего делать из ПЭВ провода с сечением не более 0,8 миллиметров.
- Вторичную обмотку (10 витков) следует изготавливать из медной шины.
- В качестве прибора управления может служить тиристор ПТЛ-50 или КУ200.
Сложная конструкция
Для изготовления более многофункционального прибора понадобится больше материалов и времени. Однако это даст возможность соединять заготовки толщиной около 1 миллиметра.
Нюансы создания аппарата своими руками:
- В качестве прибора для управления импульсом применяется бесконтактный пускатель МТТ4К, который рассчитан на силу электрического тока в 80 ампер. Блок дополняется диодами, резистором и тиристорами.
- В главной цепи входного трансформатора встраивается реле. С его помощью можно настроить скорость и интервал срабатывания установки.
- Необходимая для импульса энергия накапливается в электролитических конденсаторах, которые объединены в общую батарею при помощи параллельного соединения.
- Первичная обмотка трансформатора выполняется из провода сечением не более полутора миллиметров, а вторичная — из медной шины.
Принцип действия изготовленного своими руками прибора соответствует стандартной схеме. Она одинакова для всех подобных устройств и идеально подходит для работы аппарата в домашних условиях.
Порядок действий:
- После включения устройства срабатывает реле.
- С его помощью активируются контакты тиристоров, и включается трансформатор.
- Как только конденсатор будет полностью разряжен, происходит отключение аппарата.
Блок: 3/5 | Кол-во символов: 2526
Источник: https://rusenergetics.ru/ustroistvo/sxema-kondensatornoj-svarki
Подведем итоги
Конденсаторная сварка актуальна при необходимости соединить детали из цветных металлов в единую конструкцию.
Технология имеет ряд достоинств, среди которых особенно ценна возможность уменьшить площадь термовоздействия, снизить напряжение и устранить риск деформации металлоповерхностей. Аппараты для конденсаторной сварки просты в использовании и легко собираются своими руками, что позволяет сэкономить.
Блок: 5/5 | Кол-во символов: 419
Источник: https://tutsvarka.ru/vidy/kondensatornaya-svarka
Техника безопасности
Во время эксплуатации аппарата для контактной сварки нужно соблюдать простые меры предосторожности. С их помощью можно избежать поломки оборудования и снизить риск получения какой-либо серьёзной травмы (ожог от попадания раскалённого металла, удар электрическим током, раны, нанесённые движущимися частями устройства).
Основные правила техники безопасности:
- Запрещается выполнять какие-либо сварочные работы с незаземленным устройством.
- Чтобы избежать поражения электрическим током, не рекомендуется эксплуатировать аппарат, имеющий повреждения в защитном корпусе.
- Рабочий должен иметь прямой доступ к устройству аварийного отключения.
- Включать прибор можно только сухими руками. При этом также нужно проверить пространство вокруг аппарата на наличие влаги.
- Перед началом сварки мастер должен стать на резиновый коврик и проверить всё защитное обмундирование.
- Сварку на конденсаторах может выполнять только высококвалифицированный опытный рабочий.
- При смене электродов или установке детали необходимо обеспечить защиту рук и глаз от воздействия высоких температур.
- Рабочее место должно быть огорожено со всех сторон. Такая мера предосторожности поможет избежать возгорания в случае отлетания капель горячего металла.
- Около сварочного аппарата нельзя хранить горючие и легковоспламеняющиеся материалы.
- Если работа выполняется в полностью закрытом помещении, то необходимо обеспечить хорошую вентиляцию для удаления вредных паров.
- При возникновении какой-либо неисправности следует сразу же приостановить процесс сварки и отключить аппарат от источника питания.
Конденсаторная сварка — это быстрый и простой способ качественно соединить две металлические детали. При правильном её проведении и соблюдении всех правил техники безопасности можно значительно упростить процесс и снизить риск получения серьёзной травмы.
Блок: 5/5 | Кол-во символов: 1837
Источник: https://rusenergetics.ru/ustroistvo/sxema-kondensatornoj-svarki
Преимущества и недостатки
К достоинствам аппаратов относят:
- производительность работ;
- возможно применение в промышленных и бытовых целях;
- низкое энергопотребление;
- простая конструкция;
- длительный период эксплуатации;
- точечное воздействие позволяет выполнить соединения без тепловой деформации изделия;
- не требуется применение расходных материалов;
- малые размеры позволяют свободно перемещать устройство самостоятельно.
Конденсаторы в сварочных аппаратах, функционирующих по прочим технологиям, также играют важную роль. Например, алюминиевые электролитические конденсаторы в инверторах и полуавтоматических аппаратах они отвечают за повышение уровня напряжения, а также сглаживают возможные пульсации.
Недостатков всего два:
- Малая мощность не позволяет соединять заготовки большого сечения.
- Эксплуатация аппарата вызывает помехи, которые нарушают функционирование рабочей сети.
Блок: 6/12 | Кол-во символов: 879
Источник: https://svarka.guru/vidy/kontaktnaya/kondensatornaya.html
Схема и описание более мощного устройства
Схема устройства для точечной сварки на конденсаторах, способной работать с изделиями большей толщины, имеет следующий вид:
Основу аппарата составляют 6 конденсаторов на 10000 мкФ, соединенные в единую батарею. В данном случае, в качестве ключей были использованы два тиристора 70TPS12, подключенные параллельно. Зарядка конденсаторов осуществляется с помощью повышающего преобразователя. Сопротивление резистора составляет 130 Ом.
Для визуального контроля над уровнем заряда имеется блок светового индикатора с 3 делениями.
Расчетная сила тока составляет 2000 А, а величина напряжения – 32 В.
В качестве электродов рекомендуем использовать состав из хромированной бронзы. Срок службы классического медного контакта не превышает 900 разрядов.
Единственный недостаток данной модели – продолжительность зарядки конденсаторов, которая составляет 45 секунд.
Собранный аппарат не сможет приварить шпильку большого диаметра, однако вполне справится с проводом, сечением до 5 мм.
Обращаем внимание, что промышленные образцы изготовлены с соблюдением ГОСТов, регулирующих данную отрасль промышленности. В случае самостоятельных изобретений вся ответственность за возможные последствия ложится на конструктора.
Блок: 8/12 | Кол-во символов: 1245
Источник: https://svarka.guru/vidy/kontaktnaya/kondensatornaya.html
Заключение
Можете использовать трансформаторы малой мощности для зарядки конденсаторов, но тогда нужно выбрать резистор соответственно с максимальным током зарядки, иначе он быстро нагреется и сгорит. Готовность возникает из-за достижения напряжения постоянного тока на конденсаторе, что является результатом преобразования переменного напряжения (для сети 50 Гц это около 1,41 х значение переменного напряжения), и это можно контролировать, например, вольтметром. Очевидно следует использовать специальные конденсаторы для импульсной работы. Стоит позаботиться о том, чтобы допустимое рабочее напряжение конденсаторов находилось с определенным запасом по отношению к предполагаемому значению.
Блок: 5/5 | Кол-во символов: 693
Источник: https://2shemi.ru/kondensatornyj-svarochnyj-apparat-dlya-akkumulyatorov/
Устройство контактного блока
Механизм для фиксации и перемещения электродов по рабочей плоскости называется контактным блоком. Примитивная конструкция подразумевает ручную регулировку контактов. В продвинутых моделях за надежность крепления отвечает блок из метизов.
В этом случае нижний стержень фиксируется в неподвижном положении. Его длина должна быть в диапазоне 10-20 мм, а сечение – не менее 8 мм.
Второй стержень крепят на подвижную площадку. Для регулировки давления устанавливают простейшие винты.
Для обеспечения безопасности следует о наличии надежной изоляции между площадкой и основанием энергетического блока.
Блок: 9/12 | Кол-во символов: 625
Источник: https://svarka.guru/vidy/kontaktnaya/kondensatornaya.html
Порядок проведения работ
Рабочий процесс можно условно разделить на три этапа:
- Подготовка. Рабочая поверхность должна быть тщательно очищена от коррозии и масляных пятен.
- Рабочий цикл. Изделия стыкуют в нужно положении. После этого к ним подводят электроды. Заряд подается после нажатия пусковой кнопки.
- Изменение положения детали. В случае необходимости, изделие перемещают для нового точечного воздействия.
Блок: 10/12 | Кол-во символов: 409
Источник: https://svarka.guru/vidy/kontaktnaya/kondensatornaya.html
Количество использованных доноров: 7
Информация по каждому донору:
- https://tutsvarka.ru/vidy/kondensatornaya-svarka: использовано 3 блоков из 5, кол-во символов 6075 (23%)
- https://rusenergetics.ru/ustroistvo/sxema-kondensatornoj-svarki: использовано 2 блоков из 5, кол-во символов 4363 (16%)
- https://WikiMetall.ru/oborudovanie/kondensatornaya-svarka.html: использовано 2 блоков из 5, кол-во символов 2017 (8%)
- https://svarka.guru/vidy/kontaktnaya/kondensatornaya.html: использовано 8 блоков из 12, кол-во символов 5745 (21%)
- https://2shemi.ru/kondensatornyj-svarochnyj-apparat-dlya-akkumulyatorov/: использовано 4 блоков из 5, кол-во символов 3038 (11%)
- https://electrod.biz/accessories/delaem-kondensatornuyu-svarku.html: использовано 2 блоков из 5, кол-во символов 1134 (4%)
- https://extxe.com/3221/oborudovanie-dlja-kondensatornoj-svarki/: использовано 2 блоков из 3, кол-во символов 4364 (16%)
своими руками схема и описание, контактная для аккумуляторов, точечная – Контактная сварка на Svarka.guru
Конденсаторная сварка является одним из видов контактной сварки, которую активно используют в промышленности, а также для выполнения сварных операций своими руками в быту.
Технологическая схема операции следующая: в конденсаторах при их зарядке от выпрямителя осуществляется накопление энергии, которая при разряде трансформируется в тепловую энергию.
С помощью этой энергии и осуществляется соединение кромок металлических изделий. Расскажем, как выполнить конденсаторную сварку своими руками: схема и описание технологии.
Отличительные особенности
Классический электродуговой метод подразумевает использование громоздкого оборудования, которое отличается сложностью конструкции. Соединение выполняется за счет температурного воздействия на поверхность, создаваемого постоянной электрической дугой.
Расплавленный металл и присадочный материал перемешиваются, после застывания образуется сварочный шов. В процессе выполнения работ сварщик подвергаются интенсивному воздействию ультрафиолета, который оказывает негативное влияние на организм человека.
В отличие от данного метода, конденсаторная сварка не вредит здоровью, поэтому для выполнения работ не требуется минимальный комплект средств индивидуальной защиты. Благодаря точности устройств, после соединения элементов на поверхности практически не остаются следы. Рациональное использование энергии позволяет сэкономить электричество.
Современная наука не располагает возможностями для создания массивных аппаратов, поэтому в настоящее время конденсаторная точечная сварка используется для соединения компактных элементов.
Конденсаторная сварка: что это такое
Конденсаторная сварка своими руками была разработана еще в 30-х годах XX века. Сегодня эта технология активно используется предприятиями промышленности и умельцами с целью выполнения бытовых сварных операций.
Особенно популярна такая технология в цехах ремонта кузовов транспортных средств: в отличие от дугового, при конденсаторном методе создания сварного шва не происходит прожигание и деформация тонких стенок листов кузовных деталей. В последующее время соединенным деталям кузова не нужна дополнительная рихтовка.
Такую технологию применяют в радиоэлектронике для соединения изделий, не паяющихся посредством обычных флюсов или выходящих из строя при перегреве.
Активно применяются аппараты конденсаторной сварки ювелирами при изготовлении и ремонте ювелирных украшений, на предприятиях, выпускающих коммуникационные шкафы, лабораторное, медицинское, пищевое оборудование, при строительстве зданий, мостов, инженерных коммуникаций.
Столь широкое распространение можно объяснить действием ряда факторов:
- простая конструкция сварочного аппарата, который при желании можно собрать своими руками;
- точечная сварка отличается относительно низкой энергоемкостью и малыми нагрузками, создаваемыми на электрическую сеть;
- высокие показатели производительности, что крайне важно при серийном производстве;
- возможность снизить термическое влияние на соединяемые поверхности, что позволяет сваривать детали малых размеров и работать с теми конструкциями, стенки которых чрезмерно тонки и могут деформироваться при обычной сварке.
На заметку! Достоинством технологии конденсаторной сварки является простота ее реализации: даже средний уровень квалификации позволяет мастеру создать качественные сварные швы.
Способ конденсаторной сварки изделия.
Правила осуществления сварных операций с помощью энергии конденсаторов регламентируются ГОСТ. Принцип технологии основывается на трансформации энергии электрического заряда, накопленного на конденсаторах, в тепловую энергию.
При соприкосновении электродов происходит разряд и образуется электрическая дуга краткого действия. За счёт выделяемого ею тепла кромки соединяемых деталей из металла плавятся, образуя сварной шов.
При конденсаторной сварке ток подается на сварной электрод в виде кратковременного импульса высокой мощности, который получается за счет монтажа в оборудование конденсаторов большой емкости.
В случае использования контактной сварки ток непрерывен. В этом заключается основное отличие этих видов выполнения сварных операций.
В итоге, мастер может достичь высоких показателей двух важных параметров:
- на термический нагрев соединяемых деталей требуется гораздо меньше времени, что особенно ценно для производителей электронных компонентов;
- ток, используемый для соединения деталей, обладает высокой мощностью, поэтому и сами сварные швы получаются более качественными.
В процессе сварных операций для крепления элементов и узлов разных изделий могут потребоваться разные по разновидности и назначению шпильки.
Достоинством конденсаторной сварки является возможность уменьшить площадь термического воздействия, снизить напряжение и свести к нулю риск деформации поверхностей ввиду высокой плотности энергии и кратковременности сварного импульса. Технология позволяет работать с цветными металлами с малой толщиной.
Также отметим, что огромным плюсом конденсаторного сварного аппарата является его компактность. Для применения такой технологии на практике не потребуется мощный источник питания, устройство можно заряжать между переносом электрода к следующей точке.
Принцип точечного способа
Технологический процесс соединения выглядит следующим образом:
- Две заготовки соединяют двумя проводниками, для создания замкнутой цепи.
- Конденсаторы накапливают необходимое количество энергии от питающей сети.
- На проводники поступает кратковременный заряд, под действием которого контактная область плавится, образуя соединения.
Далее процедура повторяется в той же последовательности.
Метод позволяет соединить изделия, которые отличаются по типу металла. Однако толщина одного из элементов не должна превышать 0,15 см.
Выполнение работ не требует применения каких-либо расходных материалов. Зона расплава состоит исключительно из сплава заготовок.
Этапы работы
Процесс выполнения конденсаторной сварки довольно простой, и понять его сможет даже человек, который никогда не делал подобную работу. Она выполняется в три этапа, на которые затрачивается минимальное количество времени. От точности соблюдения порядка действий будет зависеть качество шва и прочность конструкции.
Порядок действий:
- Начальная стадия процесса подразумевает тщательную подготовку свариваемых деталей. Первым делом с их поверхности счищается ржавчина. Затем удаляются пыль, остатки каких-либо веществ и прочие загрязнения. Если этого не сделать, то шов получится кривым и хрупким.
- Обе заготовки стыкуются друг с другом в нужном положении.
- Затем они помещаются между двумя электродами.
- К месту соединения подводятся контакты.
- Мастер включает устройство, и на них подаётся импульс нужной силы.
- После завершения этой процедуры электроды возвращаются в начальное положение.
- Соединённые детали вынимаются, и проверяется качество шва.
- При необходимости заготовки поворачиваются под нужным углом, и сварка продолжается аналогичным образом.
Читать также: Отвал для мотоблока мтз своими руками
Требования
Для получения качественного результата необходимо соблюдать следующие требования:
- Длительность рабочего цикла не превышает 3 мс.
- Конденсаторы получают рабочий уровень энергии за короткий промежуток времени.
- В качестве предварительной подготовки выполняют очистку от загрязнений и обезжиривание поверхности.
- На роль электродов лучше всего подойдут медные стрежни. Их толщина быть в три раза больше, чем самое тонкое место заготовки.
- В момент контакта соединяемые элементы должны быть плотно прижаты друг к другу. После разряда необходим небольшой промежуток времени, для кристаллизации соединения, поэтому электроды отсоединяют с небольшой задержкой.
Технологические приемы
Существует три варианта воздействия на заготовки:
- Конденсаторная точечная сварка в основном применяется для соединения деталей с разным соотношением толщины. Она успешно используется в сфере электроники и приборостроения.
- Роликовая сварка представляет собой определенное количество точечных соединений, выполненных в виде сплошного шва. Электроды напоминают вращающиеся катушки.
- Ударная конденсаторная сварка позволяет создавать стыковые соединения элементов с небольшим сечением. Перед столкновением заготовок образуется дуговой разряд, оплавляющий торцы. После соприкосновения деталей осуществляется сваривание.
Что касается классификации по применяемому оборудованию, то можно разделить технологию по наличию трансформатора. При его отсутствии упрощается конструкция основного прибора, а также происходит выделение основной массы тепла в зоне непосредственного контакта. Основным достоинством трансформаторной сварки является возможность обеспечения большим количеством энергии.
Разновидности
Различают несколько технологических приемов для выполнения конденсаторной контактной сварки. Рассмотрим их подробнее.
Точечная
Метод предназначен для соединения изделий с разными габаритами, например тонкой проволоки и листа металла. Соединение выполняется за счет короткого импульса тока, накопленного в конденсаторах. Широко применяется в электротехнической промышленности.
Роликовая
В данном случае шов состоит из множества точечных соединений перекрывающих друг друга. Они обеспечивают полную герметичность. Сварку выполняют специальными электродами, непрерывно вращающимися вокруг своей оси. Основная сфера использования – производство приборов преобразования электромагнитной энергии.
Стыковая
Свое название получила благодаря возможности выполнять сварку проводов малого сечения стык в стык. Выполняется методом оплавления или сопротивления. В первом случае перед соприкосновением концы деталей оплавляются, под действием электрической дуги. Затем приступают к сварке. Во втором случае все действия выполняются в момент соприкосновения заготовок.
Схема самостоятельной сборки аппарата
Составляющие конденсаторной сварки достаточно просты, поэтому агрегат можно собрать самостоятельно, следуя определенной схеме. Основным элементом является трансформатор, способный значительно понижать силу электрического тока из бытовой сети. Оптимальными параметрами являются цифры – 10-12 V. При этом необходимо добиться силы электричества в 300-500 А. С такими показателями возможно выполнение конденсаторной сварки в домашних условиях.
Схема сварочного конденсаторного аппарата
Работа аппарата основана на преобразовании используемого напряжения и его передаче на накопители. Накопителями в данном случае являются конденсаторы, емкость которых должна быть в пределах 46 мкФ. Конструкция оснащается диодным мостом и диодами в количестве две штуки. Управление сварочным процессом происходит при помощи реле РЭК 74. Это устройство подает ток на встроенные электроды, таким способом осуществляя процесс.
Конденсаторный аппарат должен содержать специальный автомат, который будет срабатывать во время перегрузки. Для предотвращения перегрева используется кулер, который встраивают сзади конденсаторной конструкции. На клешнях устанавливают пусковую кнопку, с помощью которой осуществляют запуск сварочного процесса. Сварщик зажимает соединяемые стороны изделия между клешнями, совершает конденсаторную сварку точечным способом.
Преимущества и недостатки
К достоинствам аппаратов относят:
- производительность работ;
- возможно применение в промышленных и бытовых целях;
- низкое энергопотребление;
- простая конструкция;
- длительный период эксплуатации;
- точечное воздействие позволяет выполнить соединения без тепловой деформации изделия;
- не требуется применение расходных материалов;
- малые размеры позволяют свободно перемещать устройство самостоятельно.
Конденсаторы в сварочных аппаратах, функционирующих по прочим технологиям, также играют важную роль. Например, алюминиевые электролитические конденсаторы в инверторах и полуавтоматических аппаратах они отвечают за повышение уровня напряжения, а также сглаживают возможные пульсации.
Недостатков всего два:
- Малая мощность не позволяет соединять заготовки большого сечения.
- Эксплуатация аппарата вызывает помехи, которые нарушают функционирование рабочей сети.
Отличие точечного метода сварки от других существующих
Конденсаторная сварка с разрядом конденсатора через первичную обмотку трансформатора: а—схема процесса; б—диаграмма тока.
Основным отличием подобного метода соединения является экологичность. Стандартное устройство конденсаторной сварки работает на высоких токах, благодаря чему есть возможность получить шов отменного качества при небольшом расходе электроэнергии.
Конденсаторный метод сварки, как и приспособления для него, используется чаще всего в случаях, когда необходимо выполнить микросварку или соединить заготовки больших сечений и толщин. Точечная сварка своими руками заключается в следующем:
- В конденсаторах накапливается энергия в необходимом количестве.
- Заряды превращаются в тепло, которое используется для сварки.
Следует знать, что точечная сварка является экологичной, так как она практически не оказывает влияния на окружающую среду. Используемые устройства не нуждаются в жидкости для охлаждения, так как из них не выделяется тепло. Подобное значительное преимущество дает возможность увеличить цикл жизни всего устройства для получения неразъемных соединений.
Вместо типичных цилиндров в конструкциях используются специальные сервоприводы, в связи с чем отсутствует необходимость в пневмоподключении. Встраиваемые компоненты позволяют скопить сварочное усилие довольно быстро и эффективно. Электроды при этом будут действовать на основание деликатно.
Конденсаторная сварка имеет следующие преимущества:
- возможность производить сварку на высокой скорости;
- точность соединения элементов;
- высокий уровень экологичности;
- надежность соединения;
- долговечность сварочных устройств.
Схема конденсаторной сварки.
За счет высокой скорости точечная сварка не будет деформировать и расплавлять металл. Устройства действуют на различные обрабатываемые заготовки щадящим образом. Отличные показатели качества можно получить при контактном или ударном способе соединения заготовок. Например, ударно-конденсаторный метод лучше всего использовать для соединения цветных металлов и сплавов на их основе. В итоге шов получится эстетичным, надежным, а процесс получения неразъемных соединений займет небольшое количество времени.
Конденсаторная сварка достаточно часто используется в промышленных условиях благодаря сочетанию эксплуатационных характеристик. Образуется технологическое явление, в процессе которого нераздельный контакт заготовок из металла производится ввиду выделения тепла. При этом из места сварки путем усилия сжатия устранятся грязь, оксидные пленки, различные включения и выпуклости. В результате появятся соединения между атомами соединяемых покрытий.
Заряды энергии будут аккумулироваться при зарядке от генератора или выпрямителя. Производить регулировку энергии можно с помощью изменения напряжения и емкости зарядки.
Cвоими руками: схема простейшего прибора
Помимо работ промышленного назначения, точечную сварку часто используют в быту. Аппарат заводского производства стоит довольно дорого. На просторах интернета можно найти множества чертежей для самостоятельной сборки различного направления деятельности. Например, конденсаторная сварка для аккумулятора своими руками изготавливается из дипольной катушки и трансформатора с контактными триодами.
Рассмотрим схему и описание конденсаторной сварки своими руками, в которой для передачи импульсов используется трансформатор.
Схема устройства имеет следующий вид:
Для сборки понадобится:
- Конденсатор емкостью 1000 мкФ. Для накопления заряда.
- Ферритовый сердечник с Ш-образными пластинами для изготовления трансформатора.
- Медная проволока сечением 0,8 мм. Для первичной обмотки будет достаточно 3 витков.
- Медная шина. Будет использована для изготовления вторичной обмотки, которая должна насчитывать 10 витков.
- Тиристор типа КУ-202М. Для управления коммутацией напряжением.
Такой прибор будет с легкость справляться с элементами, толщиной до 0,5 мм.
Особенности работы самодельного агрегата
Осуществить ударную конденсаторную сварку можно с помощью специального аппарата заводского производства, который продается в специализированных магазинах. Однако, вполне реально изготовить сварку конденсаторного типа самостоятельно в условиях маленькой мастерской.
Изготовленные своими силами агрегаты демонстрируют высокие эксплуатационные параметры и в работе не уступают заводским моделям.
Самодельный аппарат конденсаторной сварки.
Перед работой самодельному аппарату для сварки, использующему энергию конденсаторов, задают основные параметры функционирования:
- напряжение в зоне контактной сварки металлоизделий;
- вид и сила тока;
- длительность действия сварного импульса;
- число и размеры сварной проволоки, применяемой в работе.
Платы управления, присутствующие в конструкции и заводских, и самодельных сварочных агрегатов, предоставляют мастеру возможность привести поступающее напряжение и постоянную величину тока к стабильному значению. Самодельный агрегат важно оснастить переключателем для выполнения сварки электродами без особенных трудностей.
Самодельные агрегаты, как и заводские модели, долговечны, просты в использовании, если при их конструировании придерживаться схемы, технологических требований и норм безопасности.
А технические параметры изготовленной своими силами модели должны соответствовать характеристикам заводских конструкций. Тогда аппарат позволит даже малоопытному сварщику выполнять надежные и долговечные сварные швы методом конденсаторной сварки.
Но не стоит забывать, что весомая доля успеха при выполнении сварочных операций зависит от тщательности подготовительных работ. Обязательно позаботьтесь о том, чтобы свариваемые поверхности не имели загрязнений, слоя пыли, ржавчины перед началом работы.
Такие дефекты могут свести на нет усилия сварщика, став преградой для качественного соединения расплавленных кромок изделий.
Схема и описание более мощного устройства
Схема устройства для точечной сварки на конденсаторах, способной работать с изделиями большей толщины, имеет следующий вид:
Основу аппарата составляют 6 конденсаторов на 10000 мкФ, соединенные в единую батарею. В данном случае, в качестве ключей были использованы два тиристора 70TPS12, подключенные параллельно. Зарядка конденсаторов осуществляется с помощью повышающего преобразователя. Сопротивление резистора составляет 130 Ом.
Для визуального контроля над уровнем заряда имеется блок светового индикатора с 3 делениями.
Расчетная сила тока составляет 2000 А, а величина напряжения – 32 В.
В качестве электродов рекомендуем использовать состав из хромированной бронзы. Срок службы классического медного контакта не превышает 900 разрядов.
Единственный недостаток данной модели – продолжительность зарядки конденсаторов, которая составляет 45 секунд.
Собранный аппарат не сможет приварить шпильку большого диаметра, однако вполне справится с проводом, сечением до 5 мм.
Обращаем внимание, что промышленные образцы изготовлены с соблюдением ГОСТов, регулирующих данную отрасль промышленности. В случае самостоятельных изобретений вся ответственность за возможные последствия ложится на конструктора.
Аппарат с повышенной мощностью
Тут необходимо переделывать агрегат по другой методике, но это даст возможность сваривать более толстые листы и проволоку. Это также самодельная конструкция, но конденсаторная сварка получиться ничуть не хуже. Чтобы её сотворить потребуется: пускатель MTT4K с током 8 А и возвратным напряжением 800 В. К модулю управления присоединены тиристоры, пара диодов и один резистор.
Все реакции протекают, как и в предыдущем случае, но здесь нужно уделить внимание выбору конденсаторов. Их наличие – 3 пары со следующей мощностью:
- 1-я 47мкФ;
- 2-я 100мкФ;
- 3-я 470мкФ.
Герконовое реле
При этом напряжение повинно быть не меньше 50 В. Также потребуется герконовое реле с напряжением 20 В. Что касается обмотки, то тут понадобиться 1,5 мм провод и шина с 60 мм2. Сила электротока в зоне варки будет достигать 1500 А.
Разумеется, такой аппаратурой не получиться приварить трубы или арматуру, но для малых дел она будет отличным помощником.
Устройство контактного блока
Механизм для фиксации и перемещения электродов по рабочей плоскости называется контактным блоком. Примитивная конструкция подразумевает ручную регулировку контактов. В продвинутых моделях за надежность крепления отвечает блок из метизов.
В этом случае нижний стержень фиксируется в неподвижном положении. Его длина должна быть в диапазоне 10-20 мм, а сечение – не менее 8 мм.
Второй стержень крепят на подвижную площадку. Для регулировки давления устанавливают простейшие винты.
Для обеспечения безопасности следует о наличии надежной изоляции между площадкой и основанием энергетического блока.
Как отремонтировать инверторный сварочный аппарат
Общеизвестно, что ремонт сварочных аппаратов в подавляющем большинстве случаев может быть организован и проведён самостоятельно.
Исключением является лишь восстановление работоспособности электронного инвертора, сложность схемы которого не позволяет провести полноценный ремонт в домашних условиях. Одна только попытка отключить защиту инвертора может поставить в тупик даже специалиста по электротехнике.
Так что в этом случае лучше всего обратиться за помощью в специализированную мастерскую. Ремонт всегда начинается с осмотра сварочного аппарата, проверки питающего напряжения. Провести ремонт трансформаторных сварочных аппаратов несложно, к тому же они непривередливы в обслуживании.
У инверторных аппаратов определить поломку сложнее, а ремонт в домашних условиях зачастую невозможен. Однако при правильном обращении инверторы служат долго, и не ломаются. Необходимо защищать от пыли, высокой влажности, мороза, хранить в сухом месте.
Есть наиболее характерные неисправности сварочных аппаратов, устранить которые можно своими руками. В этом случае, прежде всего, необходимо убедиться в наличии напряжения в сети и целостности предохранителей, установленных в обмотках трансформатора.
При их исправности следует прозвонить с помощью тестера токовые обмотки и каждый из выпрямительных диодов, проверив тем самым их работоспособность. При обрыве одной из токовых обмоток потребуется её перемотка, а в случае неисправности обеих проще заменить трансформатор целиком. После ремонта сварочный аппарат снова включают и проверяют на исправность.
Иногда из строя выходит фильтрующий конденсатор. В этом случае ремонт будет заключаться в его проверке и замене новой деталью. В случае исправности всех элементов схемы необходимо разобраться с сетевым напряжением, которое может быть сильно занижено и его просто не хватает для нормального функционирования сварочного аппарата. Причиной залипания электрода и прерывания дуги может быть снижение напряжения из-за короткого замыкания в обмотках трансформатора, неисправности диодов или ослабления соединительных контактов.
Также возможен пробой конденсаторного фильтра или замыкания отдельных деталей на корпус сварочного аппарата. К причинам организационного характера, вследствие которых аппарат не варит как надо, можно отнести чрезмерную длину сварочных проводов более 30 метров. Если залипание сопровождается сильным гудением трансформатора — это также свидетельствует о перегрузке в нагрузочных цепях прибора или замыкании в сварочных проводах.
Одним из вариантов ремонта с устранением этих эффектов может стать восстановление изоляции соединительных кабелей, а также подтяжка ослабевших контактов и клеммников. В некоторых случаях ремонт можно провести самостоятельно, если аппарат начал самопроизвольно отключаться. Большинство моделей сварочных аппаратов оснащено защитной схемой автоматом , срабатывающей в критической ситуации, сопровождающейся отклонением от нормальной работы.
Один из вариантов такой защиты предполагает блокировку работы устройства при отключении вентиляционного модуля. После самопроизвольного отключения сварочного аппарата, прежде всего, следует проверить состояние защиты и попытаться возвратить этот элемент в рабочее состояние. При повторном срабатывании защитного узла необходимо перейти к поиску неисправности по одной из описанных выше методик, связанных с замыканиями или неисправностью отдельных деталей.
В этой ситуации в первую очередь следует убедиться в том, что узел охлаждения агрегата работает нормально, и что перегрев внутренних пространств исключён.
Бывает и так, что узел охлаждения не справляется со своими функциями из-за того, что сварочный аппарат в течение длительного времени находился под нагрузкой, превышающей допустимую норму. При отсутствии внутренней защиты предохранительный автомат может быть установлен в электрическом щитке. Для поддержания нормального функционирования сварочного агрегата его настройки должны соответствовать выбранным режимам. Так, некоторые модели таких аппаратов сварочный инвертор, в частности в соответствии с инструкцией должны работать по графику, предполагающему перерыв на минуты после ми минут непрерывной сварки.
Перед ремонтом инверторного сварочного аппарата своими руками желательно ознакомиться с принципом действия, а также с его электронной схемой. Их знание позволит быстрее выявить причины поломок и постараться своевременно устранить их. В основу работы этого устройства заложен принцип двойного преобразования входного напряжения и получения на выходе постоянного сварочного тока путём выпрямления высокочастотного сигнала.
Использование промежуточного сигнала высокой частоты позволяет получить компактное импульсное устройство, располагающее возможностью эффективной регулировки величины выходного тока. С характером и причиной поломок, а также со способами ремонта более подробно можно ознакомиться в сводной таблице.
Там же приводятся данные по основным параметрам сварки, обеспечивающие режим безаварийной без отключения инвертора работы устройства. Обслуживание и ремонт сварочных аппаратов инверторного типа отличается рядом особенностей, связанных со сложностью схемы этих электронных агрегатов. Для их ремонта потребуются определённые знания, а также умение обращаться с такими измерительными приборами, как цифровой мультиметр, осциллограф и подобные им.
Если в ходе осмотра никаких нарушений обнаружить не удаётся — поиск неисправности продолжается путём выявления нарушений в работе электронной схемы проверки уровней напряжения и наличия сигнала в её контрольных точках.
Для этого потребуется осциллограф и мультиметр, приступать к работе с которыми следует лишь при наличии полной уверенности в своих силах. Если возникли какие-либо сомнения по поводу своей квалификации — единственно верным решением будет отвезти отнести прибор в специализированную мастерскую.
Специалисты по ремонту сложных импульсных устройств оперативно найдут и устранят возникшую неисправность, а заодно и проведут техобслуживание данного агрегата. В случае принятия решения о самостоятельном ремонте платы — рекомендуем воспользоваться следующими советами опытных специалистов. При обнаружении в ходе визуального осмотра сгоревших проводов и деталей следует заменить их новыми, а заодно и переткнуть все разъёмы, что позволит исключить вариант пропадания контакта в них.
Если такой ремонт не привел к желаемому результату — придётся начать поблочное обследование цепей преобразования электронного сигнала. Для этого необходимо найти источники, в которых приводятся эпюры напряжений и токов, предназначенные для более полного понимания работы этого агрегата.
Ориентируясь на эти эпюры с помощью осциллографа можно последовательно проверить все электронные цепочки и выявить узел, в котором нарушается нормальная картинка преобразования сигнала. Одним из наиболее сложных узлов инверторного сварочного аппарата считается плата управления электронными ключами, проверить исправность которой можно с помощью того же осциллографа.
При сомнениях в работоспособности этой платы можно попробовать заменить её исправной от другого, работающего инвертора и попытаться вновь запустить сварочный аппарат. В случае благоприятного исхода останется только отдать свою плату в ремонт или заменить её купленной новой.
Таким же образом следует поступать и при появлении подозрений в исправности всех других модулей или блоков сварочного аппарата.
В заключении напомним, что ремонт любых сварочных агрегатов и инверторов, в частности считается достаточно сложной процедурой, требующей определённых навыков и умения обращаться со сложной измерительной техникой.
При наличии малейших сомнений в своём профессионализме следует воспользоваться помощью специалистов и предоставить им возможность вернуть неисправный аппарат в работу. Детали, вышедшие из строя можно легко определить визуально — это треснутые элементы, имеющие потемневший корпус, либо вздутые конденсаторы.
При смене всех негодных частей схемы , производится их аккуратное выпаивание, предварительно зачистив все контактные разъемы. Затем делается замена и повторное запаивание на плате.
Отбор необходимых запчастей производятся по их техническим характеристикам, указанных на корпусе каждой единицы. Либо можно воспользоваться справочными таблицами, для более корректного подбора элементов цепи. В случае отсутствия дефектов при визуальном осмотре , применяются специализированные приборы мультиметр, либо омметр. Одни из самых часто выходящих из строя элементов являются транзисторы. Это один из самых уязвимых элементов инверторного сварочного аппарата.
Поломанный транзистор можно достаточно легко обнаружить по разломанному корпусу и выгоревшими выводами. Самый правильным решением в такой ситуации — будет замена сломанного транзистора. Следовательно припайка диода должна быть проведена с максимальной аккуратностью, поскольку плохо выполненная пайка приведет к появлению перегрева элемента схемы, и в дальнейшем появлению неисправности.
Самое сложное при ремонте инверторных сварочных аппаратов — это выявление поломки в схемах управления, которая напрямую влияет на правильную работоспособность устройства.
При появлении всякого рода неисправностей, или отсутствии соответствующих навыков в ремонте инверторов, рекомендуется обращаться к специалистам, это позволит в дальнейшем сохранить свои финансовые расходы и драгоценное время.
Таким образом можно проводить ремонт, не сомневаясь, что причиной могло стать короткое замыкание цепи. Если прозвон в электрической цепи закорачивается, то следует произвести поиск поврежденного диода. Проверка работы полуавтоматов. Проблема полуавтоматов заключается в исключительно механических неисправностях. К таким неполадкам можно отнести: задержку подачи сварочной проволоки, вызванным невысоким прижимом, либо высоким трением проволоки с элементами рукава.
Самым надежным решением такой поломки является замена сварочного канала. Рекомендация по замене заключается в удалении старого рукава и, установка нового должны проводиться за один поход, то есть, соединив конец старого с началом нового. Основные неисправности Некорректное регулирование сварочного заряда. В каждой конструкции сварочного генератора может возникать такая поломка из-за повреждения механизма регулирования. Это могут быть: попадание различных предметов извне; смещение катушек; замыкание в катушках.
Необходимо разобрать корпус регулятора аппарата и провести контроль всех элементов на наличие неисправностей. Невысокое значение сварочного тока. Данный фактор имеет место — в случае понижения напряжения в сети, а также поломки регулятора свариваемого тока. Громкий шум при работе генератора. Сильный гул, зачастую свидетельствует о перегреве. Причина может быть скрыта в таких факторах, как:.
В таком случае, наиболее вероятной причиной может стать короткое замыкание в цепи между корпусом и проводом, или между самими проводами. К числу причин замыкания можно также отнести:.
Современные сварочные аппараты являются сложным электротехническим оборудованием. Возникающие в процессе работы неисправности могут быть следствием совершенно разных причин. Разобравшись в них, можно без проблем осуществить качественный ремонт сварочного аппарата своими руками. Следует отметить, что основными характеристиками сварочных аппаратов являются надежная работа и простота конструкции. Но иногда даже самые лучшие сварочные аппараты выходят из строя. Зачастую следствием поломок оборудования является их использование в сложных погодных условиях снег, дождь, повышенная влажность и в сильно загрязненных помещениях.
К наиболее уязвимому месту сварочных аппаратов относится клеммная колодка. К ней осуществляется подключением кабелей для сварки. Наличие плохого контакта вкупе с максимальным значением тока является причиной сильного перегрева соединяющихся элементов и проводов. На концах обмотки происходит плавление изоляции на проводах. По этой причине происходит замыкание электрической цепи. В данном случае ремонт сварочных аппаратов предусматривает зачистку контактов и их плотное стыкование с греющимся соединением.
Самопроизвольное выключение сварочного аппарата происходит при срабатывании защитного устройства.
Применение готовых аппаратов
Для конденсаторных сварочных аппаратов нашлось множество применений:
- Автомобилестроение. Элементы кузова соединяют только посредством точечной сварки.
- Авиастроение. Данная отрасль отличается особыми требованиями к точности проведения работ.
- Приборостроение. Для соединения миниатюрных элементов, которые не должны подвергаться деформации.
- Строительство. С помощью данной технологии выполняют соединение тонколистовых металлов.
- Домашние работы. Приборы помогают в ремонте бытовой техники.
Техника безопасности
Во время эксплуатации аппарата для контактной сварки нужно соблюдать простые меры предосторожности. С их помощью можно избежать поломки оборудования и снизить риск получения какой-либо серьёзной травмы (ожог от попадания раскалённого металла, удар электрическим током, раны, нанесённые движущимися частями устройства).
Основные правила техники безопасности:
- Запрещается выполнять какие-либо сварочные работы с незаземленным устройством.
- Чтобы избежать поражения электрическим током, не рекомендуется эксплуатировать аппарат, имеющий повреждения в защитном корпусе.
- Рабочий должен иметь прямой доступ к устройству аварийного отключения.
- Включать прибор можно только сухими руками. При этом также нужно проверить пространство вокруг аппарата на наличие влаги.
- Перед началом сварки мастер должен стать на резиновый коврик и проверить всё защитное обмундирование.
- Сварку на конденсаторах может выполнять только высококвалифицированный опытный рабочий.
- При смене электродов или установке детали необходимо обеспечить защиту рук и глаз от воздействия высоких температур.
- Рабочее место должно быть огорожено со всех сторон. Такая мера предосторожности поможет избежать возгорания в случае отлетания капель горячего металла.
- Около сварочного аппарата нельзя хранить горючие и легковоспламеняющиеся материалы.
- Если работа выполняется в полностью закрытом помещении, то необходимо обеспечить хорошую вентиляцию для удаления вредных паров.
- При возникновении какой-либо неисправности следует сразу же приостановить процесс сварки и отключить аппарат от источника питания.
Конденсаторная сварка — это быстрый и простой способ качественно соединить две металлические детали. При правильном её проведении и соблюдении всех правил техники безопасности можно значительно упростить процесс и снизить риск получения серьёзной травмы.
Конденсаторная сварка является методом сварки с запасенной энергией. Энергетические заряды будут накапливаться в конденсаторах в процессе зарядки от выпрямителя, после чего трансформироваться в теплоту. Она будет образовываться в процессе протекания тока между свариваемыми деталями. Именно поэтому конденсаторная сварка также называется контактной.
Электрическая схема точечной микросварки.
Элементы, которые будут необходимы:
- устройство для сварки;
- электрод;
- трансформатор;
- проволока;
- конденсатор.
Ремонт и доработки сварочных инверторов своими руками
Задать вопрос. Ваш вопрос в очереди. Светлана Николаевна Оператор справочной. Ответы справочной 23 июня При включении сварочного инвертора взорвался конденсатор на входе питания. Полезно: Да Нет. Наталья Ивановна Оператор справочной.
Войти через. На AliExpress мы предлагаем тысячи разновидностей продукции всех брендов и спецификаций, на любой вкус и размер. Если вы хотите купить сварочный аппарат конденсатор с алюминиевой крышкой и подобные товары, мы предлагаем вам позиций на выбор, среди которых вы обязательно найдете варианты на свой вкус.
Сварка своими руками
Сварочный инверторный аппарат, как и любое другое оборудование, рано или поздно может дать сбой в работе. И если это случается, то проблему можно решить двумя путями: отдать прибор в сервисный центр, специализацией которого является ремонт инверторных сварочных аппаратов, или попытаться устранить неисправность самостоятельно. Перед началом ремонта сварочного инвертора убедитесь, что он отключен от электросети. Овладев необходимой информацией, вы сможете устранить некоторые неисправности своими руками, не прибегая к помощи мастеров. Это, разумеется, сэкономит ваши денежные средства. Однако и времени может уйти немало.
Улучшит ли работу конденсатор на выходе инверторного сварочного полуавтомата? Перед дросселем? (не знаю зачем, электрик так.
Литература
- Принципиальная электрическая схема сварочного инвертора – 2012;
- Импульсные источники питания;
- https://www.aic-europe.com;
- https://www.samwha.com/;
- https://www.yageo.com/;
- Электролитические конденсаторы Hitachi;
- Электролитические конденсаторы Yageo;
- Каталог по конденсаторам Samwha.
Получение технической информации, заказ образцов, заказ и доставка.
•••
Принципиальная схема сварочного аппарата конденсаторного типа
Иногда, делая те или иные проекты с применением литиевых аккумуляторов, зрители часто критикуют, что литиевые батарейки нельзя паять. Контактная сварка – вещь нужная и в ходе этого ролика реализуем очередной интересный проект, а точнее соберем сварочный аппарат для контактной сварки конденсаторного типа. Ролик, скорее всего, будет изложен в трех частях. В первой части подробно показан принцип работы электрической схемы, основные параметры и подбор компонентов. Во второй части займемся монтажом и тестом. Ответы на многие вопросы именно в ролике.
В чем особенность конденсаторной сварки?
На самом деле есть очень много вариантов построения таких аппаратов, но остановимся на самом простом и безотказном. Это бестрансформаторная или ударная контактная сварка. Трансформатор в нашей схеме все же есть, он только для зарядки конденсаторов. Но есть сварочный аппарат, где емкость конденсаторов разряжается на место сварки не напрямую, а через разделительный трансформатор. Такие аппараты называют трансформаторными. В отличие от обычных аппаратов контактной сварки, в которых процесс происходит нагреванием двух металлов, конденсаторная сварка не нагревает деталь из-за очень кратковременного процесса сварки, это особенно хорошо для пайки аккумуляторов.
Принцип работы сварочного аппарата
Напряжение сетевого трансформатора выпрямляется двух полупериодным выпрямителем и заряжает электролитический конденсатор большой емкости. Целесообразно использовать батарею из параллельно соединенных конденсаторов одинакового напряжения и емкости. Емкости могут отличаться, важно чтобы конденсатры имели одинаковое расчетное напряжение.
В момент сварки вся емкость конденсаторов разряжается на определенные точки, куда подключаются токосъемные контакты. В качестве этих контактов иногда могут быть использованы сами детали, которые нужно сварить вместе. Моментальный разряд емкости мощных конденсаторов вызыывает огромный скачок тока. Процесс очень кратковременный, но токи могут доходить до десятков тысяч ампер в зависимости от емкости и напряжения конденсаторной батареи. Кратковременные разряд такой емкости приводит к моментальному плавлению металла под электродами.
Более подробно рассмотрим систему
Напряжение было выбрано в районе 40 вольт. Оно полностью безопасно для человека, хотя все зависит от организма. Для некоторых ощутимо даже 12 вольт, но во всяком случае 40 вольт не смертельно. Поскольку аппарат планировался с питанием от бытовой сети, нужно использовать понижающий трансформатор для зарядки конденсаторов. В представленном случае под рукой оказался трансформатор, который на вторичных обмотках может выдавать около 30 вольт при токе 1,5 А. Как раз отлично подходит для наших целей и после выпрямителя напряжение на конденсатора будет порядка 40 Вольт. из-за нестабилизированного источника это напряжение может отклоняться в ту или иную сторону в зависимости от напряжения в сети. В принципе подойдет любой трансформатор мощностью свыше 50 ватт, который обеспечивает на выходе нужное напряжение. От тока вторичной обмотки будет зависеть время зарядки конденсатора.
Ддля ограничения тока заряда конденсаторов использован 10-ватный резистор проволочного типа с сопротивлением 10-15 ом. Если же не ограничивать ток заряда, то система будет потреблять колоссальные токи, вследствие чего может сгореть диодный мост. В аппарате предусмотрен тиристорный замыкатель и при нажатии слаботочной кнопки сработает мощный тиристор, который разрядит всю емкости конденсаторов. Иными словами происходит короткое замыкание.
Далее смотрите на видео с 5:32
Для труб из полипропилена есть своя модель аппарата.
Перед началом ролика его автор Ака Касьян рекомендует отличный инструмент для людей, которые занимаются ремонтом цифровой техники. Новый 2016 HDMI микроскоп Andonstar с отличными параметрами и возможностью передачи данных через HDMI порт. Микроскоп получил эксклюзивный пылезащищенный объектив с возможности максимально точной фокусировки Full HD разрешение и отличный процессорного Новотек 96650 и это далеко не все. Микроскоп дополнен мощной подсветкой и отличной металлической стойкой. Имеется слот для карт памяти до 32 гигабайт. Возможна также передача данных по USB. Запись видео в реальном времени и куча всевозможных настроек. Присутствует также русский язык. Одним словом отличный товар, хотя и не из дешевых, но понимающий человек оценит по достоинству. Если денег не жаль, действительно отличный продукт. Очень качественная картинка без шумов. Куплен в этом китайском магазине.
Конденсаторная точечная сварка — Контактная и точечная сварка
Привет всем.
Для контактной сварки конденсаторы дорогие, там токи приличные и не у всякого конденсатора ноги выдержат, фольга от ног отваливается. Собственно поэтому тема у любителей загнулась.
Мне приходилось ремонтировать Советские контактные сварки.Там были самые обычные бумажные конденсаторы МБГЧ и подобные емкостью по 10 — 20-50 мкф.Вот только стояло их там огромное количество .Каждый конденсатор подключался короткими проводками к сборным медным шинам.Было несколько групп конденсаторов , переключением их последовательно-параллельно изменялась мощность сварки.Шкаф с конденсаторами и переключателями был по размеру как не большой советский холодильник.Конденсаторы заряжались от трехфазного выпрямителя через ограничительный резистор.И проблем с конденсаторами там почти не было.
С намагничиванием трансформатора там боролись переменой полярности на трансформаторе.Был вариант, где у трансформатора была первичка с отводом от середины и два тиристора.Конденсаторы были одним концом подключены к отводу.А второй конец батареи поочередно подключался к одному или другому концу обмотки.Это чередовалось на каждой последующей точке сварки.
Был вариант, где батарея была из двух половин, которые заряжались с разной полярностью и разряжались поочередно .Коммутация то же двумя тиристорами.Этот аппарат долбил точки сварки как пулемет.Потому что пока одна половина батареи варит точку-вторая заряжается.
Воспроизвести такой аппарат сейчас думаю достаточно просто.Этих конденсаторов полно и стоят копейки.
Вот только всякие контроллеры в таком аппарате ни к чему кроме проблем не приведут.Там достаточно простейшей схемы с парой реле времени.А мощность сварки проще регулировать коммутацией батареи или заряжать ее от выпрямителя, с регулируемым напряжением.
Конденсаторная сварка своими руками: описание, схема
Конденсаторная сварка была изобретена почти столетие назад. В ее основе лежит принцип сварного соединения металлических элементов под действием энергии, вырабатываемой при коротко импульсном разряде конденсаторной батареи.
Разберем основные особенности данного процесса.
Общее представление
Конденсаторная сварка – это одна из разновидностей контактной сварки. Энергия на расплавление поверхности контактирующих элементов берется из основного аппарата – конденсатора повышенной емкости. При этом ее выход осуществляется практически моментально – не дольше 3 миллисекунд. Благодаря этому уменьшается влияние повышенной температуры на сварную область. Поэтому сварной шов практически не заметен, а качество крепления не хуже, чем при стандартной электродной сварке.
Механизм сварного процесса выглядит следующим образом:
- К свариваемым деталям подсоединяют проводники.
- Далее на них подается постоянный ток высокого напряжения от конденсаторов.
- Между поверхностями их контакта образуется электрическая дуга.
- Происходит расплавление металла в зоне взаимодействия свариваемых элементов.
- Затем детали под нагрузкой скрепляют.
- Образуется общий сварной шов у скрепленных частей.
Чтобы качество соединения отвечало нормативам ГОСТа, величина напряжения должна строго соответствовать площади контакта сварных элементов и типу их материалов.
Например, для крепления к стальному основанию стального метиза диаметром 3 мм требуется ток в 70 вольт, а для аналогичного крепежного элемента 4 мм уже 100 В.
Область применения
Первое описание техпроцесса конденсаторной сварки относится к началу 30-х гг. прошлого столетия. Изначально она использовалась для присоединения различных мелких элементов к металлической основе – шпилек, болтов, метизов и прочих крепежных элементов. В наши дни технология нашла более широкое применение в различных отраслях:
- Автомобилестроение.
Используется для скрепления кузовных элементов из листового металла, где стандартная дуговая сварка просто прожигает тонкие детали.
- Радиоэлектроника, строительство точных приборов, изготовление цифровой техники.
Преимущество конденсаторного способа в этом случае сводится к тому, что чувствительные радиоэлементы не горят и не перегреваются, но при этом надежно фиксируются.
- Самолетостроение.
Сварные швы авиатехнических изделий должны быть максимально надежны, качественны и герметичны. Что обеспечивает только данный вид сварных технологий.
- Производство наводной и подводной техники.
Помимо важности точности и прочности, к сварным швам предъявляется фактор экономии. В судостроительстве существенный объем сварочных работ, а конденсаторная сварка позволяет снизить расходы на электроэнергию и материалы.
Кроме того, технология широко используется в строительной сфере – ввиду большого распространения листовых металлоконструкций.
Плюсы и минусы
Конденсаторная сварка – универсальна и может применяться как в промышленных масштабах, так и в быту. В зависимости от целей применения, оборудование можно изготовить даже своими руками. Помимо этого, у технологии имеется следующий ряд преимуществ:
- Возможность применения к различным производственным и частным процессам.
- Большой процент производительности.
- Приварной шов можно создать между деталями из разных металлов.
- Незначительное выделение тепла.
- Отсутствие вредных факторов для сварщика – дыма, УФ-излучения, паров металлов, брызг расплава.
- Возможность быстрого обучения и освоения методики.
- Сварка очень маленьких и чувствительных компонентов.
- Высокая аккуратность, точность и прочность шва.
- Отсутствие необходимости трат на расходные компоненты.
- Не возникает перегрузка сети при максимальных токах.
Недостатков у конденсаторного способа сварки всего два. Это необходимость применения специального оборудования и ограниченность по площади сечения зоны контакта скрепляемых элементов.
Описание технологии
В конденсаторной сварке существуют три основных технологических приема:
Скрепляемые объекты соединяются медными проводниками, идущими от конденсатора. Сварочное скрепление возникает в момент контакта элементов.
В качестве электродов применяют вращающиеся ролики. Образуемый под их действием сплошной шов по сути представляет собой набор точечных контактов. Применяется для сварки сверхчувствительных элементов.
Подразделяется на два метода – оплавления и сопротивления. В первом случае расплавление площадей соединяемых деталей происходит до момента контакта, а сам процесс крепления – во время осадки. Во втором варианте термическое воздействие и соединение происходит непосредственно во время контакта элементов.
Наиболее распространенной в быту является точечная схема сварки. Она позволяет ремонтировать бытовые приборы, кабеля, автотехнику. Оборудование для нее можно при желании изготовить своими руками.
Оборудование и материалы
Существует два типа принципа конденсаторной сварки – бестрансформаторный и трансформаторный. Первый используется в ударно-конденсаторном способе, второй – для создания прочных, точных соединений. Оба метода имеют свои особенности применения:
- Сваривание в ударно-конденсатором способе осуществляется в момент удара – электродом по изделию. Образуется электрическая дуга от разряда конденсатора, расплавляющая металл. Она передается на поверхность контакта деталей, которые в момент удара максимально прижимаются друг ко другу.
- При трансформаторном способе разряд с конденсатора передается на обмотку понижающего трансформатора, а оттуда на место сварки. В результате происходит серия циклов разряда/перезаряда конденсатора, и на место стыковки подается серия разрядов. В результате образуется точный и очень прочный шов.
На производстве, чтобы не допустить ошибок, в технологических чертежах каждый способ обязательно имеет свое уникальное обозначение. Что касается использования дополнительных материалов, то в конденсаторной сварке они отсутствуют – в сравнении с аргонно-дуговой или полуавтоматической технологиями, где требуются защитный газ, электроды и специальная проволока.
Конденсаторная сварка своими руками схема и описание
Главная › Новости
Опубликовано: 06.09.2018
Конденсаторная точечная сварка вариант с мощным тиристоромУстройство, которые мы представим в этой статье носит название «конденсаторная сварка». Этой сваркой можно соединять очень мелкие или тонкие предметы и детали. Ее отличие от стандартной точечной сварки состоит в том, что нагрев места соединения деталей осуществляется за счет энергии разряда конденсаторов.
Куча электронных увлекательных штучек в этом китайском магазине .
Удобство этого вида конструкций в относительной простоте электрической схемы, которую можно собрать своими руками. Модель, представленная на видео, питается от сварочного трансформатора, переменный ток преобразуется выпрямителем. Напряжение составляет 70 вольт. Ток поступает на емкостное сопротивление, которое при необходимости можно заменить обычным сопротивлением, равным 10 кОм. После сопротивления ток поступает на конденсаторную батарею общей емкостью 30000 Мкф. Накопленный заряд на конденсаторах высвобождается через тиристор.
Конденсаторная точечная сварка. Собираем аппарат своими руками
Далее посмотрите, как работает точечная конденсаторная сварка.
После включения питания загорается лампочка, которая в данном случае играет роль индикатора напряжения. Когда лампочка перестает гореть, это означает, что конденсаторная батарея полностью заряжена. После этого сварочный аппарат готов к работе. Включение разряда осуществляется нажатием на кнопку, встроенной в держатель. Такая сварка позволяет приваривать не только тонкие пластинки, но и шпильки разного диаметра к металлическим поверхностям. Для этого предусмотрена возможность удержания шпильки в держателе.
Сварочный аппарат своими руками
Приветствую всех читателей сайта « Вольт-Индекс », иногда делая те или иные проекты на основы литиевых аккумуляторов, многие читатели часто критикуют, что литиевые батарейки нельзя паять. Это конечно так, но если паять очень быстро и не нагревать чрезмерно – можно. Входе этой статьи мы постараемся сделать аппарат для контактной сварки конденсаторного типа.
На самом деле в интернете очень много вариантов построения таких аппаратов, но мы остановимся на самом простом и безотказном. Это бестрансформаторная или ударная контактная сварка, чтобы потом не путаться хочу сказать, что трансформатор на нашей схеме.
Все же есть, он предназначен для зарядки конденсатора. Но есть сварочные аппараты, где емкость конденсатора разряжается на месте сварки не напрямую, а через разделительный трансформатор.
Такие аппараты называют трансформаторными.
В отличие от обычных аппаратов контактной сварки, у которых процесс происходит нагреванием двух металлов, конденсаторная сварка не нагревает деталь из-за очень кратковременного процесса сварки. Это особенно хорошо для пайки аккумуляторов.
В схеме S3 подключается на массу. В архиве на схеме, все исправлено.
Напряжение с сетевого трансформатора выпрямляется двухполупериодным выпрямлителем и заряжает электролитический конденсатор большой емкости. Целесообразно использовать батарею из параллельно соединенных конденсаторов одинакового напряжения и емкости.
Если честно, емкости могут отличаться, но важно чтобы конденсаторы имели одинаковое расчетное напряжение.
В момент сварки вся емкость конденсатора разряжается на определенной точке, к которой подключаются съемные контакты. Притом в качестве этих контактов иногда могут быть использованы сами детали, которые нужно сварить вместе.
Моментальный разряд емкости мощных конденсаторов вызывает огромный скачок тока, процесс очень кратковременный, но токи могут доходить до десятков тысяч ампер в зависимости от емкости и напряжения конденсаторной батареи. Кратковременный разряд такой емкости приводит к моментальному плавлению металла под электродами.
Давайте более подробно рассмотрим систему.
Напряжение было выбрано порядка 40 вольт. Такое напряжение полностью безопасно для человека, хотя все зависит от физиологии индивида. Для кого-то и 12 вольт максимум.
Но, во всяком случае, 40 вольт не смертельно. Поскольку аппарат планировался с питанием от сети нужно использовать понижающий трансформатор для зарядки конденсаторов.
В нашем случае был использован трансформатор, выдающий на вторичке около 30 вольт при токе в 1.5 ампера, что отлично подходит для наших целей.
После выпрямителей напряжение на конденсаторах будет порядка 40 вольт. Естественно из-за нестабилизированного источника это напряжение может отклоняться в ту или иную сторону в зависимости от напряжения в сети.
В принципе подойдет любой трансформатор мощностью свыше 50 ватт, которое обеспечивает на выходе нужное напряжение. От тока вторичной обмотки будет зависеть время зарядки конденсаторов.
Для ограничения тока заряда конденсатора использован 10 ваттный резистор проволочного типа с сопротивлением 10-15 Ом.
Если же не ограничивать ток заряда, то система будет потреблять колоссальные токи, в следствие чего может сгореть диодный мост.
В аппарате предусмотрен тиристорный замыкатель.
При нажатии слаботочной кнопки сработает мощный тиристор, который разрядит всю емкость конденсаторной батареи, то есть произойдет короткое замыкание. В нашем случает был взят тиристор Т 171-320.
Кратковременный ударный ток в нашей системе может доходить до 4 000 ампер.
Для того, чтобы этот «монстр» сработал нужно подать на управляющий электрод напряжение от 3.5 – 12 вольт. Указанное напряжение можно получить путем использования делителя напряжение на базе двух резисторов на 0.5 -1 ватт. Их подбором в средней точке нужно получить раннее указанное напряжение.
В качестве диодного выпрямителя был использован готовый мост на 10 Ампер, напряжение моста не менее 100 вольт, хотя такие мосты делают на 400 и более вольт. Мост в ходе работы не нагревается, но желательно посадить его на теплоотвод.
Цепочка из резистора, светодиода и стабилитрона представляет собой индикатор заряда конденсаторов и при достижении на них около 40 вольт светодиод загорается, что свидетельствует, о том, что аппарат готов к использованию.
Можно также использовать цифровой вольтметр.
При отсутствии стабилитронов на 40 вольт можно использовать несколько штук меньших номиналов.
Светодиод можно взять любой, а ограничительный резистор 0.25 ватт.
Конденсаторы были взяты с напряжением в 50 вольт — желательно на 63 либо 100 вольт. Общая емкость батареи составила 41 000 мкф.
Конечно можно увеличить емкость конденсатров лишь бы тиристор справился, а увеличение емкости даст возможность варить более крупные детали.
Конденсаторы были запаяны на общую плату, дорожки были дополнительно усилены. Также парралельно к конденсаторам был запаян 5 ваттный резистор на 1.5 кОм. Для разряда последних после выключения прибора. Также была предусмотрена кнопка для экстренного разряда емкости. Здесь принцип тот же – разряд через резистор только в этом случае он низкоомный.
Для запуска тиристора можно использовать абсолютно любой низковольную кнопку.
В первичной цепи трансформатора можно внедрить простой диммер. Это позволит регулировать напряжение на конденсаторах и выбрать оптимальное напряжение для сварки деталей из определенных металлов.
Members 244 сообщений Город: Кишинев Имя: ВладимирКонтактная сварка — DIY конденсаторная
Народ, привет!
Назрела проблема ремонтировать аккумуляторные сборки (NiMh, LiIon etc), а следовательно нужен аппарат точечной сварки. Паять буду тонкой никелевой лентой. Вникнув немного в тему, определили для себя, что с этой задачей хорошо будет справляться самодельный конденсаторный аппарат.За основу буду брать буржуйскую конструкцию:
Оригинальная конструкцияУ буржуинов получается очень хорошо.
Как накопитель энергии возьму т.н. «автомобильный9quot; силовой аудио конденсатор на 1-2 Фарада, 24В. Эти конденсаторы довольны распространены, стоят около 70 долларов даже в нашем молдавском захолустье. С учетом местных цен один такой конденсатор брать дешевле, чем набирать батарею + компактнее + стильный корпус с вольтметром и подсветкой.
Блок питания — 24В 5А от ноутбука, благо он имеет второй выход USB На 5В. Тиристор — на 100А (есть в наличии симистор ТС171-250-8-3 на 250А, но, по моему, лучше брать именно тиристор, т.к. односторонняя проводимость уменьшит длительность импульса (с симистором будет образоваться колебательный контур — проверено на практике, когда делал подобие Гаусс-пушки).
Микросхема контроллера тоже есть в наличии, LM22678, получал как образцы.
Что хочется поменять во второй конструкции — иметь возможность устанавливать длительность импульса. Благо один вывод контроллера свободен, значит можно поменять его на PIC12F675 — совместим по выводам + есть АЦП, программу переписать не проблема. На свободный вывод садим линейный потенциометр + шкалу к нему.
Вообще-то у меня есть и личная разработка программируемого таймера на PI16F628 и ЖКИ экране, в свое время делал для устройства экспозиции УФ-светом печатных плат. Может возьму и ее за основу, т.к. ЖКИ экран более информативен + можно точно задавать форму и длительность импульса.
Буду постепенно выкладывать результаты.
Кто желает изучать тему по второй ссылке — будьте внимательны . в лучших традициях открытых разработок заложены несколько ошибок в разводке платы (не проведена дорожка к 4-й ноге контроллера зарядки) и в программе — разные имена процедур в теле программы DLY_xxx против Dly_xxx, ассемблер будет ругаться на необьявленные переменные).
Не верю, что так и было, автор специально поставил, чтоб народ хоть немного думал !Прикрепленные изображения
Сообщение отредактировал kreitzz: 12 December 2010 — 14:11
Members 2339 сообщенийКонтактная сварка — DIY конденсаторная
Лет 15 назад делал такую сварку, т.е. именно для сварки (соединения) аккумуляторов таких. За основу брал схемку из Радио (именно та, где держак выполнен в виде пистолета). Немного переработал, и на базе ее собрал три варианта. В том числе и конденсаторный. Кондер использовал какой-то обычный. О фарадных емкостях тогда можно было только мечтать. Схемки реализовывал на коленке, очень срочно нужно было. Что интересно, все работали неплохо. Ленточка соединительная отрывалась от тела аккумуляторов с дырками, т.е. ее куски оставались на местах сварки, что говорило о неплохом качестве сварки. На сколько помню, не все типы тиристоров хорошо работали, симисторы тоже не хотели (кажется). Держаки делал с прямой рукояткой, ставил вертикально, кнопка пуск монтировалась на вершине рукоятки (микрик обычный), удобно. Выбирая усилие прижима опытным путем быстро находил оптимальный вариант. Схемы были простыми, без контроллеров.
ВВ.#5 kreitzz
kreitzz Отправлено 16 December 2010 — 02:23
16 December 2010 — 02:23
Members 2339 сообщенийКонтактная сварка — DIY конденсаторная
А контроллер, по моему, прилада необходимая, если он способен запоминать режимы сварки.2*T, но как искать я так и не понял.
Или BTA40 взять? Или Т171-250-9?
Я насколько понимаю, на пригодность схемы влияет не только мощность тиристора, но в первую очередь быстродействие. Если можете посоветуйте несколько аналогов подходящих тиристров.
Раскрыть ветвь 3
Ищите параметр «ударный ток» или «I tsm», пользуйтесь калькулятором, например для нашей схемы нужен тиристор, который способен выдержать 2000 А. 2 тиристора 70TPS12 выдержат 2200 ампер. Если же брать 40TPS12, то у них 500А и их нужно будет 4 шт. минимум, а лучше 5.
ESR каждого конденсатора принимается за 0,1 (по таблице на просторах интернета, лучше конечно измерить, но прибора нет под рукой) в итоге 6 параллельных конденсаторов будут иметь ESR 0,01667 Ом, это значение нужно подставить в формулу закона Ома 32/0,016=2000А
Раскрыть ветвь 2
У меня в магазине из мощных тиристров только Т171-250-9 и 40TPS12. У Т171-250-9 ударный ток 6000, но di/dt в два раза меньше чем у 40TPS12, т.е. 80 против 150. Что лучше будет сборка из 40TPS12 или один Т171-250-9?
Раскрыть ветвь 1
я бы взял Т171-250-9, di/dt — 80 а/мкс, а постоянная времени для 60000х32 — почти 1мс. то есть 1000 мкс. и если разделить 2000А на 80 а/мкс, то получим 25 мкс. а это значительно меньше 1000 мкс
Конденсаторная сварка является методом сварки с запасенной энергией. Энергетические заряды будут накапливаться в конденсаторах в процессе зарядки от выпрямителя, после чего трансформироваться в теплоту. Она будет образовываться в процессе протекания тока между свариваемыми деталями. Именно поэтому конденсаторная сварка также называется контактной.
Электрическая схема точечной микросварки.
Элементы, которые будут необходимы:
устройство для сварки; электрод; трансформатор; проволока; конденсатор.Отличие точечного метода сварки от других существующих
Конденсаторная сварка с разрядом конденсатора через первичную обмотку трансформатора: а—схема процесса; б—диаграмма тока.
Основным отличием подобного метода соединения является экологичность. Стандартное устройство конденсаторной сварки работает на высоких токах, благодаря чему есть возможность получить шов отменного качества при небольшом расходе электроэнергии.
Конденсаторный метод сварки, как и приспособления для него, используется чаще всего в случаях, когда необходимо выполнить микросварку или соединить заготовки больших сечений и толщин. Точечная сварка своими руками заключается в следующем:
В конденсаторах накапливается энергия в необходимом количестве. Заряды превращаются в тепло, которое используется для сварки.Следует знать, что точечная сварка является экологичной, так как она практически не оказывает влияния на окружающую среду. Используемые устройства не нуждаются в жидкости для охлаждения, так как из них не выделяется тепло. Подобное значительное преимущество дает возможность увеличить цикл жизни всего устройства для получения неразъемных соединений.
Вместо типичных цилиндров в конструкциях используются специальные сервоприводы, в связи с чем отсутствует необходимость в пневмоподключении. Встраиваемые компоненты позволяют скопить сварочное усилие довольно быстро и эффективно. Электроды при этом будут действовать на основание деликатно.
Конденсаторная сварка имеет следующие преимущества:
возможность производить сварку на высокой скорости; точность соединения элементов; высокий уровень экологичности; надежность соединения; долговечность сварочных устройств.Схема конденсаторной сварки.
За счет высокой скорости точечная сварка не будет деформировать и расплавлять металл. Устройства действуют на различные обрабатываемые заготовки щадящим образом. Отличные показатели качества можно получить при контактном или ударном способе соединения заготовок. Например, ударно-конденсаторный метод лучше всего использовать для соединения цветных металлов и сплавов на их основе. В итоге шов получится эстетичным, надежным, а процесс получения неразъемных соединений займет небольшое количество времени.
Конденсаторная сварка достаточно часто используется в промышленных условиях благодаря сочетанию эксплуатационных характеристик. Образуется технологическое явление, в процессе которого нераздельный контакт заготовок из металла производится ввиду выделения тепла. При этом из места сварки путем усилия сжатия устранятся грязь, оксидные пленки, различные включения и выпуклости. В результате появятся соединения между атомами соединяемых покрытий.
Заряды энергии будут аккумулироваться при зарядке от генератора или выпрямителя. Производить регулировку энергии можно с помощью изменения напряжения и емкости зарядки.
Существующие разновидности точечной сварки
Конструкция трансформаторов для точечной сварки.
Иногда используется соединение без трансформаторов. Конденсаторы в данном случае будут разряжать энергию на соединяемое основание. Допускаются следующие схемы зарядки:
1000 мкФ устройства будут аккумулировать энергию на напряжение до 1000 В путем повышающего трансформатора, при этом время сварки составит 0,005 с. Ток сварки находится в промежутке от 10 до 100 А. Подобный способ опасен для человека в связи с высоким напряжением. 40000-400000 мкФ устройства будут аккумулировать энергию на напряжение до 60 В путем понижающего трансформатора. Время сварки может достигать 0,6 с. при этом ток сварки находится в промежутке от 1000 до 2000 А.В других случаях используется сварка с использованием трансформаторов. В данном случае конденсатор будет разряжать заряд энергии на первичную обмотку устройства трансформатора.
Виды контактной сварки: а – стыковая; б – точечная; в – роликовая; 1 – сварочный шов; 2 – электрод; 3 – свариваемые детали; 4 – подвижная плита с перемещаемой деталью; 5 – сварочный трансформатор; 6 – неподвижная плита.
Соединяемые детали при этом размещаются в контуре сварки, который соединяется со вторичной обмоткой трансформатора. Данный способ соединения используется в качестве микросварки со следующими параметрами:
напряжение зарядки – 1000 В; время сварки – 0,001 с.; ток сварки – 6000 А; емкость конденсаторных устройств – 1000 мкФ.Конденсатор будет аккумулировать энергию до конкретного количества при левом размещении рычага. При правом выполняется разряд тепловых обменников на первичную обмотку трансформаторной конструкции. Конденсаторный метод соединения во вторичной обмотке индуктируется электродвижущей силой. Данная сила обусловливает силу тока в цепочке сварки.
Сварка цветных металлов точечной сваркой
Цветные металлы контрастируют с обыкновенной сталью. В данном случае могут использоваться различные методы тепловой обработки. Все будет зависеть от вида соединяемого металла. Сварка подобных металлов имеет следующие особенности:
температура плавления; плотность; сродство к газам атмосферы; механические показатели при низких и высоких температурах.Сварочные горелки для точечной сварки.
По совокупности данных можно выделить металлы:
тяжелые цветные; активные и тугоплавкие; легкие.Из первой группы можно плавить металлы точечной сваркой без особых трудностей. Для проводов из меди в большинстве случаев применяются механизированные устройства. Они способны обеспечить соединение высокого качества и сохранять исходные размеры заготовок.
Для обработки металлов двух остальных групп понадобятся устройства с высокой концентрацией энергии. Сварка своими руками заготовок из данных групп выполняется крайне редко, так как в данном случае могут образовываться летучие вредные соединения.
Технология конденсаторной сварки
Процесс соединения заготовок точечным способом состоит из нескольких этапов. Прежде всего, соединяемые заготовки понадобится совместить в необходимом положении, поместить между электродами устройства для сварки, после чего прижать друг к другу. После этого их понадобится нагреть до состояния пластичности и подвергнуть последующей пластической деформации. В условиях промышленности в процессе использования автоматических конструкций частота сварки достигает 600 точек/мин. Чтобы можно было произвести качественную конденсаторную сварку своими руками, понадобится поддерживать одинаковую скорость перемещения всех электродов. Обязательно надо обеспечить необходимую величину давления и полный контакт свариваемых заготовок.
Заготовки будут нагреваться за счет прохождения тока сварки в виде кратковременного импульса. Длительность импульса зависит от условий сварки и может составлять от 0,01 до 0,1 с. Данным импульсом обеспечится расплавление элемента в зоне действия электродов и образуется общее жидкое ядро двух заготовок. Диаметр ядра может составлять от 4 до 12 мм. После того как прекратит действовать импульс тока, заготовки некоторое время под давлением будут удерживаться, чтобы образованное ядро могло остыть и кристаллизоваться.
Продолжительность нагрева и сила давления
Продолжительность нагрева или прохождения тока сварки может изменяться, она зависит от условий сварки и мощности используемой конструкции. В случае соединения элементов из сталей, которые склонны к закалке и образованию трещинок, понадобится увеличить продолжительность нагрева. Это делается для того, чтобы была возможность замедлить дальнейшее охлаждение металла. Сварку заготовок из нержавеющей стали понадобится производить с минимальной продолжительностью нагрева. Это нужно для того, чтобы была возможность предотвратить опасность нагрева наружного основания точки соединения до температуры превращений структуры. Следует знать, что в результате могут быть нарушены высокие антикоррозийные свойства внешних слоев металла.
Сила давления между электродами должна обеспечить надежное соединение заготовок в месте сварки. Она зависит от вида соединяемого металла и толщины свариваемых заготовок. Давление после нагрева имеет важное значение, так как его величина будет обеспечивать мелкозернистую структуру металла в месте соединения, при этом прочность точки соединения будет равна прочности базового металла.
Особенности выбора и использования электродов
Положение электрода при сварке.
Факторы, от которых зависит качество сварки:
Качество сварки будет зависеть от правильного выбора диаметра электрода из меди. Диаметр точки соединения обязательно должен превышать толщину тонкого элемента соединения сварки в несколько раз. Прижимом заготовок в момент прохождения импульса сварки может обеспечиться появление пояска для уплотнения возле расплавленного ядра. Благодаря этому не понадобятся какие-либо дополнительные меры защиты места соединения. Чтобы была возможность улучшить кристаллизацию расплавленной заготовки, электроды понадобится разжать с небольшой задержкой после прохождения импульса сварки. Чтобы можно было получить качественный и надежный шов сварки, соединяемые основания понадобится первым делом подготовить. В данном случае имеется в виду очистка элементов от ржавчины. Расстояние между точками соединения должно обеспечить уменьшение шунтирования тока через ближние точки. К примеру, для соединения двух заготовок толщиной в 2-5 мм расстояние между точками соединения будет изменяться от 15 до 50 мм.Электроды, которые используются для конденсаторной сварки, должны обеспечить прочность в интервале рабочих температур, высокую электро- и теплопроводность, а также легкость их обработки. Подобным требованиям соответствуют некоторые бронзы, которые включат в себя кобальт и кадмий. Подходят и сплавы меди с содержанием хрома. Следует знать, что по показателям тепло- и электропроводности медь существенно превосходит бронзу и сплавы, но данный металл во много раз хуже по показателям износостойкости. Поэтому лучше всего подходит для подобных целей сплав типа ЭВ, который являет собой практически чистую медь с добавлением хрома и цинка.
Чтобы уменьшить износ электродов, в процессе использования нужно интенсивно охлаждать их водой.
Как своими руками сделать устройство для сварки точечным способом?
Схема шовной сварки.
Устройство для сварки проволоки из меди можно с легкостью собрать самому. Для этого следует приобрести трансформатор мощностью 450 Вт. Трансформатор нужен стандартного типа, с первичной медной обмоткой толщиной в 0,75х2 мм и вторичной обмоткой силовым кабелем из алюминия 6 мм. В данном случае понадобится и угольный электрод.
Устройство для сварки проводов из меди работает на переменном токе от 35 до 40 А. Высшая точка напряжения составляет 15 В. В качестве держателя электрода можно использовать несколько зажимов. Проводником для изготавливаемого устройства может служить угольный электрод, который изготавливается из щетки троллейбусного контакта.
Если аккуратно эксплуатировать данное приспособление, то оно может прослужить несколько лет. Нужно следить за контактами, а также за тем, чтобы не разряжался аккумулятор. Схема сварки проводов из меди не подразумевает применение устройств с высокими ресурсами. Самодельное приспособление способно отлично справиться со значительными объемами работы.
Следует заметить: сварочные работы в данном случае можно автоматизировать, что является существенным преимуществом.
Конденсаторная сварка является сложным процессом, поэтому необходимо знать все нюансы.
Внимание, только СЕГОДНЯ!Конденсаторная сварка своими руками схема и описание
Приветствую всех читателей сайта «Вольт-Индекс», иногда делая те или иные проекты на основы литиевых аккумуляторов, многие читатели часто критикуют, что литиевые батарейки нельзя паять. Это конечно так, но если паять очень быстро и не нагревать чрезмерно – можно. Входе этой статьи мы постараемся сделать аппарат для контактной сварки конденсаторного типа.
На самом деле в интернете очень много вариантов построения таких аппаратов, но мы остановимся на самом простом и безотказном. Это бестрансформаторная или ударная контактная сварка, чтобы потом не путаться хочу сказать, что трансформатор на нашей схеме.
Все же есть, он предназначен для зарядки конденсатора. Но есть сварочные аппараты, где емкость конденсатора разряжается на месте сварки не напрямую, а через разделительный трансформатор.
Такие аппараты называют трансформаторными.
В отличие от обычных аппаратов контактной сварки, у которых процесс происходит нагреванием двух металлов, конденсаторная сварка не нагревает деталь из-за очень кратковременного процесса сварки. Это особенно хорошо для пайки аккумуляторов.
В схеме S3 подключается на массу. В архиве на схеме, все исправлено.
Принцип работы следующий.
Напряжение с сетевого трансформатора выпрямляется двухполупериодным выпрямлителем и заряжает электролитический конденсатор большой емкости. Целесообразно использовать батарею из параллельно соединенных конденсаторов одинакового напряжения и емкости.
Если честно, емкости могут отличаться, но важно чтобы конденсаторы имели одинаковое расчетное напряжение.
В момент сварки вся емкость конденсатора разряжается на определенной точке, к которой подключаются съемные контакты. Притом в качестве этих контактов иногда могут быть использованы сами детали, которые нужно сварить вместе.
Моментальный разряд емкости мощных конденсаторов вызывает огромный скачок тока, процесс очень кратковременный, но токи могут доходить до десятков тысяч ампер в зависимости от емкости и напряжения конденсаторной батареи. Кратковременный разряд такой емкости приводит к моментальному плавлению металла под электродами.
Давайте более подробно рассмотрим систему.
Напряжение было выбрано порядка 40 вольт. Такое напряжение полностью безопасно для человека, хотя все зависит от физиологии индивида. Для кого-то и 12 вольт максимум.
Но, во всяком случае, 40 вольт не смертельно. Поскольку аппарат планировался с питанием от сети нужно использовать понижающий трансформатор для зарядки конденсаторов.
В нашем случае был использован трансформатор, выдающий на вторичке около 30 вольт при токе в 1.5 ампера, что отлично подходит для наших целей.
После выпрямителей напряжение на конденсаторах будет порядка 40 вольт. Естественно из-за нестабилизированного источника это напряжение может отклоняться в ту или иную сторону в зависимости от напряжения в сети.
В принципе подойдет любой трансформатор мощностью свыше 50 ватт, которое обеспечивает на выходе нужное напряжение. От тока вторичной обмотки будет зависеть время зарядки конденсаторов.
Для ограничения тока заряда конденсатора использован 10 ваттный резистор проволочного типа с сопротивлением 10-15 Ом.
Если же не ограничивать ток заряда, то система будет потреблять колоссальные токи, в следствие чего может сгореть диодный мост.
В аппарате предусмотрен тиристорный замыкатель.
При нажатии слаботочной кнопки сработает мощный тиристор, который разрядит всю емкость конденсаторной батареи, то есть произойдет короткое замыкание. В нашем случает был взят тиристор Т 171-320.
Кратковременный ударный ток в нашей системе может доходить до 4 000 ампер.
Для того, чтобы этот «монстр» сработал нужно подать на управляющий электрод напряжение от 3.5 – 12 вольт. Указанное напряжение можно получить путем использования делителя напряжение на базе двух резисторов на 0.5 -1 ватт. Их подбором в средней точке нужно получить раннее указанное напряжение.
В качестве диодного выпрямителя был использован готовый мост на 10 Ампер, напряжение моста не менее 100 вольт, хотя такие мосты делают на 400 и более вольт. Мост в ходе работы не нагревается, но желательно посадить его на теплоотвод.
Цепочка из резистора, светодиода и стабилитрона представляет собой индикатор заряда конденсаторов и при достижении на них около 40 вольт светодиод загорается, что свидетельствует, о том, что аппарат готов к использованию.
Можно также использовать цифровой вольтметр.
При отсутствии стабилитронов на 40 вольт можно использовать несколько штук меньших номиналов.
Светодиод можно взять любой, а ограничительный резистор 0.25 ватт.
Конденсаторы были взяты с напряжением в 50 вольт – желательно на 63 либо 100 вольт. Общая емкость батареи составила 41 000 мкф.
Конечно можно увеличить емкость конденсатров лишь бы тиристор справился, а увеличение емкости даст возможность варить более крупные детали.
Конденсаторы были запаяны на общую плату, дорожки были дополнительно усилены. Также парралельно к конденсаторам был запаян 5 ваттный резистор на 1.5 кОм. Для разряда последних после выключения прибора. Также была предусмотрена кнопка для экстренного разряда емкости. Здесь принцип тот же – разряд через резистор только в этом случае он низкоомный.
Для запуска тиристора можно использовать абсолютно любой низковольную кнопку.
В первичной цепи трансформатора можно внедрить простой диммер. Это позволит регулировать напряжение на конденсаторах и выбрать оптимальное напряжение для сварки деталей из определенных металлов.
Конденсаторная сварка – это технология создания бесшовного соединения металлических изделий. Соединения осуществляется за счет кратковременных импульсов электрической энергии.
Отличительные особенности
Классический электродуговой метод подразумевает использование громоздкого оборудования, которое отличается сложностью конструкции. Соединение выполняется за счет температурного воздействия на поверхность, создаваемого постоянной электрической дугой.
Расплавленный металл и присадочный материал перемешиваются, после застывания образуется сварочный шов. В процессе выполнения работ сварщик подвергаются интенсивному воздействию ультрафиолета, который оказывает негативное влияние на организм человека.
В отличие от данного метода, конденсаторная сварка не вредит здоровью, поэтому для выполнения работ не требуется минимальный комплект средств индивидуальной защиты. Благодаря точности устройств, после соединения элементов на поверхности практически не остаются следы. Рациональное использование энергии позволяет сэкономить электричество.
Современная наука не располагает возможностями для создания массивных аппаратов, поэтому в настоящее время конденсаторная точечная сварка используется для соединения компактных элементов.
Принцип точечного способа
Технологический процесс соединения выглядит следующим образом:
- Две заготовки соединяют двумя проводниками, для создания замкнутой цепи.
- Конденсаторы накапливают необходимое количество энергии от питающей сети.
- На проводники поступает кратковременный заряд, под действием которого контактная область плавится, образуя соединения.
Далее процедура повторяется в той же последовательности.
Выполнение работ не требует применения каких-либо расходных материалов. Зона расплава состоит исключительно из сплава заготовок.
Требования
Для получения качественного результата необходимо соблюдать следующие требования:
- Длительность рабочего цикла не превышает 3 мс.
- Конденсаторы получают рабочий уровень энергии за короткий промежуток времени.
- В качестве предварительной подготовки выполняют очистку от загрязнений и обезжиривание поверхности.
- На роль электродов лучше всего подойдут медные стрежни. Их толщина быть в три раза больше, чем самое тонкое место заготовки.
- В момент контакта соединяемые элементы должны быть плотно прижаты друг к другу. После разряда необходим небольшой промежуток времени, для кристаллизации соединения, поэтому электроды отсоединяют с небольшой задержкой.
Разновидности
Различают несколько технологических приемов для выполнения конденсаторной контактной сварки. Рассмотрим их подробнее.
Точечная
Метод предназначен для соединения изделий с разными габаритами, например тонкой проволоки и листа металла. Соединение выполняется за счет короткого импульса тока, накопленного в конденсаторах. Широко применяется в электротехнической промышленности.
Роликовая
В данном случае шов состоит из множества точечных соединений перекрывающих друг друга. Они обеспечивают полную герметичность. Сварку выполняют специальными электродами, непрерывно вращающимися вокруг своей оси. Основная сфера использования – производство приборов преобразования электромагнитной энергии.
Стыковая
Свое название получила благодаря возможности выполнять сварку проводов малого сечения стык в стык. Выполняется методом оплавления или сопротивления. В первом случае перед соприкосновением концы деталей оплавляются, под действием электрической дуги. Затем приступают к сварке. Во втором случае все действия выполняются в момент соприкосновения заготовок.
Преимущества и недостатки
К достоинствам аппаратов относят:
- производительность работ;
- возможно применение в промышленных и бытовых целях;
- низкое энергопотребление;
- простая конструкция;
- длительный период эксплуатации;
- точечное воздействие позволяет выполнить соединения без тепловой деформации изделия;
- не требуется применение расходных материалов;
- малые размеры позволяют свободно перемещать устройство самостоятельно.
Недостатков всего два:
- Малая мощность не позволяет соединять заготовки большого сечения.
- Эксплуатация аппарата вызывает помехи, которые нарушают функционирование рабочей сети.
Cвоими руками: схема простейшего прибора
Помимо работ промышленного назначения, точечную сварку часто используют в быту. Аппарат заводского производства стоит довольно дорого. На просторах интернета можно найти множества чертежей для самостоятельной сборки различного направления деятельности. Например, конденсаторная сварка для аккумулятора своими руками изготавливается из дипольной катушки и трансформатора с контактными триодами.
Рассмотрим схему и описание конденсаторной сварки своими руками, в которой для передачи импульсов используется трансформатор.
Схема устройства имеет следующий вид:
Для сборки понадобится:
- Конденсатор емкостью 1000 мкФ. Для накопления заряда.
- Ферритовый сердечник с Ш-образными пластинами для изготовления трансформатора.
- Медная проволока сечением 0,8 мм. Для первичной обмотки будет достаточно 3 витков.
- Медная шина. Будет использована для изготовления вторичной обмотки, которая должна насчитывать 10 витков.
- Тиристор типа КУ-202М. Для управления коммутацией напряжением.
Такой прибор будет с легкость справляться с элементами, толщиной до 0,5 мм.
Схема и описание более мощного устройства
Схема устройства для точечной сварки на конденсаторах, способной работать с изделиями большей толщины, имеет следующий вид:
Основу аппарата составляют 6 конденсаторов на 10000 мкФ, соединенные в единую батарею. В данном случае, в качестве ключей были использованы два тиристора 70TPS12, подключенные параллельно. Зарядка конденсаторов осуществляется с помощью повышающего преобразователя. Сопротивление резистора составляет 130 Ом.
Для визуального контроля над уровнем заряда имеется блок светового индикатора с 3 делениями.
Расчетная сила тока составляет 2000 А, а величина напряжения – 32 В.
Единственный недостаток данной модели – продолжительность зарядки конденсаторов, которая составляет 45 секунд.
Собранный аппарат не сможет приварить шпильку большого диаметра, однако вполне справится с проводом, сечением до 5 мм.
Обращаем внимание, что промышленные образцы изготовлены с соблюдением ГОСТов, регулирующих данную отрасль промышленности. В случае самостоятельных изобретений вся ответственность за возможные последствия ложится на конструктора.
Устройство контактного блока
Механизм для фиксации и перемещения электродов по рабочей плоскости называется контактным блоком. Примитивная конструкция подразумевает ручную регулировку контактов. В продвинутых моделях за надежность крепления отвечает блок из метизов.
В этом случае нижний стержень фиксируется в неподвижном положении. Его длина должна быть в диапазоне 10-20 мм, а сечение – не менее 8 мм.
Второй стержень крепят на подвижную площадку. Для регулировки давления устанавливают простейшие винты.
Порядок проведения работ
Рабочий процесс можно условно разделить на три этапа:
- Подготовка. Рабочая поверхность должна быть тщательно очищена от коррозии и масляных пятен.
- Рабочий цикл. Изделия стыкуют в нужно положении. После этого к ним подводят электроды. Заряд подается после нажатия пусковой кнопки.
- Изменение положения детали. В случае необходимости, изделие перемещают для нового точечного воздействия.
Применение готовых аппаратов
Для конденсаторных сварочных аппаратов нашлось множество применений:
- Автомобилестроение. Элементы кузова соединяют только посредством точечной сварки.
- Авиастроение. Данная отрасль отличается особыми требованиями к точности проведения работ.
- Приборостроение. Для соединения миниатюрных элементов, которые не должны подвергаться деформации.
- Строительство. С помощью данной технологии выполняют соединение тонколистовых металлов.
- Домашние работы. Приборы помогают в ремонте бытовой техники.
Заключение
Аппарат для конденсаторной сварки – это отличное устройство, способное соединять изделия, обладающие разной структурой. Его главные достоинства – простота и надежность при малых габаритах. В случае необходимости можно изготовить простой аппарат для бытовых нужд.
Вы должны быть пользователем, чтобы оставить комментарий
Создать аккаунт
Зарегистрируйтесь для получения аккаунта. Это просто!
Войти
Уже зарегистрированы? Войдите здесь.
Сейчас на странице 0 пользователей
Нет пользователей, просматривающих эту страницу.
Сварочный аппарат емкостного разряда с суперконденсатором 350 Фарад
по snm, 14 января 2018 г.
Суперконденсаторымогут обеспечивать высокий ток, что позволяет использовать их при точечной сварке, в частности, при сварке емкостным разрядом .
Supercap
Использовал этот конденсатор: Maxwell Technologies Inc. CAP 350F 2.7V. При впечатляющих 350 фарадах, низком напряжении 2,7 В, но эквивалентном последовательном сопротивлении 3,2 миллома, это устройство может похвастаться отличной мощностью.Электроника в двух словах ϟ писал об этом же конденсаторе здесь: Зарядка ультраконденсатора Maxwell 350F !.
Зарядите его до 2,7 В, когда ток упадет, закоротите провода с помощью провода и посмотрите, как он расплавится. Работает по концепции, теперь, чтобы сделать его общедоступным.
Другой конденсатор, всего 1 фарад, также 2,7 В, но с сопротивлением 4 Ом: Nichicon CAP 1F 20% 2,7 В ЧЕРЕЗ ОТВЕРСТИЕ. Емкость или напряжение можно увеличить, подключив несколько таких конденсаторов параллельно или последовательно, но высокое эквивалентное последовательное сопротивление является проблемой для быстрого сброса большого тока.Закорочил, ничего интересного не происходит. Придерживаемся 350 фарадов.
Бак
Купил регулируемый понижающий преобразователь для точного понижения до 2,7 В, а также для ограничения тока: понижающий понижающий преобразователь постоянного тока, макс. 9 А, 300 Вт, понижающий преобразователь с 5-40 В до 1,2-35 В Модуль питания для светодиодного драйвера Arduino XL4016 с низкой пульсацией на выходе. Прибыл и выглядит как на фото:
Винтовые клеммы для ввода / вывода слева и регулируемые потенциометры для напряжения и тока справа.На оборотной стороне шелкография:
Подключите входные клеммы к нерегулируемой настенной бородавке 12-24 В. Измерьте выход мультиметром, отрегулируйте верхний потенциометр, пока напряжение не станет меньше 2,7 В.
Для контроля напряжения конденсатора без выхода из строя мультиметра и для отображения во время зарядки: DC mini 0,36 “Цифровой красный светодиодный дисплей 0–100 В Вольтметр 3 провода Вольтметр Тестер напряжения для проверки автомобильного аккумулятора 40% скидка. Поскольку они стоили всего 87 каждый, заказанные три таких вольтметра также могут быть полезны для многих других проектов.Здесь я подключаю его к плате ARM, которую можно увидеть в STM32 Blue Pill. Плата для разработки ARM. Первый взгляд: от Arduino до программирования на «голом металле» : черный — земля, красный — +5 В, желтый — +3,3 В:
Обратите внимание, что для этих дисплеев требуется 4–30 В на красном проводе (источник питания), 3,3 В недостаточно. Некоторые платы, такие как плата ESP32 в Espressif IDF IoT Development Framework на WEMOS LOLIN32 ESP32 для управления OLED-дисплеем SSD1305 через SPI без Arduino , принимают вход USB, но не имеют разорванного вывода +5 В, что делает это неудобным. поскольку он не может работать с 3.3 В, поскольку оно ниже минимального значения 4 В. Но поскольку я поставляю понижающий преобразователь с входом ~ 16 В, этого достаточно для питания обоих дисплеев вольтметра, я подключил по одному к каждому входу и выходу:
Подключите выход к суперконденсатору. Напряжение резко падает, и светодиод понижающего преобразователя загорается красным, что указывает на ограничение тока (который регулируется до 8 ампер, я установил его ниже):
Выходное напряжение увеличивается по мере заряда конденсатора почти до 2.7 В. На более поздних этапах зарядки ток падает, поэтому понижающий преобразователь перестает ограничиваться, и светодиод становится синим:
Теперь его можно использовать для сварки. Отключите понижающий преобразователь (чтобы мы не закоротили его — хотя он все равно ограничивал бы ток), затем протяните несколько проводов от конденсатора, который вы хотите сварить. Между ними происходит короткое замыкание, и через них проходит сильный ток, нагревая их, пока они не станут красными, а затем испарятся. Если их ненадолго держать вместе, они нагреваются и соединяются — это сварной шов.
Требуются некоторые силовые кабели для передачи такого высокого тока. Провода 28 AWG, которые я спас от старого телефонного кабеля CAT3, не выдерживают даже этого тока. Согласно закону Ома, при 2,7 вольтах, разделенных на 3,2 миллома, мы можем ожидать до 843,75 ампер!
Диод
Чтобы предотвратить заряд конденсатора обратно в понижающий преобразователь, когда он выключен (это необходимо?), Я добавил диод на выходе понижающего преобразователя. Изначально хотел использовать вот такой диод:
, потому что он выглядит круто, но я наблюдал противоречивые результаты при измерении напряжения на нем.Даже не регистрирует диодный режим на мультиметре. По маркировке HVR-1X 3 SK 6301 найдите технический паспорт: HVR-1X-4 Datasheet, это высоковольтный силовой диод, пиковое обратное напряжение 12000 В, максимальное прямое падение напряжения: 11,0 В, ничего себе! Несмотря на номинальные значения в киловольтах, средний прямой ток составляет 500 мА, максимальный обратный ток — 0,3 мкА. Не подходит для этого низковольтного и сильноточного применения.
Переключитесь на кремниевый диод меньшего размера, взял этот, случайно обозначенный «F5408 G1944», если верить этому листу данных: UF5408-2C3A-2CDO-27 Datasheet, то это 3.Высокоэффективный выпрямитель на 0 ампер. От 50 до 1000 вольт, низкое прямое падение напряжения, высокая токовая нагрузка, высокая надежность, высокая устойчивость к импульсным токам, мне нравится это звучание. Провод к выходу понижающего преобразователя, измерьте выходное напряжение:
Как и ожидалось, падение напряжения на диоде составляет около 0,7 В, поэтому понижающий преобразователь необходимо отрегулировать в сторону увеличения (чтобы на выходе было немного меньше 2,7 В после диода, чтобы более полно зарядить суперконденсатор).
Провода для печатных плат и магнитов
Для поддержки суперкапса я хотел установить его на печатную плату.Нашел немного исправной печатной платы, которая подошла, и просверлил отверстия, чтобы конденсатор защелкнулся:
Средняя большая клемма — отрицательная, три внешних клеммы — положительные. Хотя теперь он подходит, на печатной плате есть токопроводящие дорожки:
Их необходимо удалить, чтобы не закоротить компонент. Для этого мы можем использовать трюк, вызывая то, что Луи Россманн называет «попкорнингом» (это процессоры «попкорнинг» в вашем сервисном центре?). Обычно это происходит непреднамеренно, когда кто-то пытается отремонтировать плату, обдувая ее горячим воздухом.Слои расслаиваются, и под следами появляются пузыри. У меня есть термофен, впервые распакованный в предыдущем сообщении в блоге Термовоздушный пистолет Youyue 858D, первый взгляд , поэтому я использовал его для приготовления попкорна, на самом деле, фотография выше была сделана после нанесения горячего воздуха: обратите внимание на пузыри справа. Теперь их легче снять и соскрести ножом, оставив чистую пустую доску:
Переверните плату, вставьте крышку и припаяйте толстые магнитные провода:
, также известный как «эмалированный провод», этот толстый провод малого сечения пришел от линейного трансформатора, он должен выдерживать ток.С этим проводом нелегко работать, эмаль нужно соскрести, чтобы припаять, иначе он действует как паяльная маска, и он не просто сгорает от тепла, в отличие от более тонкой магнитной проволоки. Но это работоспособно, и я припаял два провода: один на + (центр), а другой на -. Удобно, что на плате есть знак «(+)» возле плюсового вывода (клянусь, чистое совпадение).
Переключатель
Для включения или выключения зарядки можно использовать переключатель. Это нужно (почему бы не отключить зарядное устройство)? Да, потому что, когда зарядка выключена, мы все еще хотим видеть напряжение конденсатора на вольтметре, а для этого требуется мощность (больше, чем низкое напряжение, которое может иметь конденсатор).Сначала я подключил этот переключатель SPST на 120 В последовательно:
, но было несколько проблем. Провод датчика вольтметра был на неправильной стороне переключателя, поэтому он измерял выходное напряжение понижающего преобразователя, когда мы хотим измерить напряжение конденсатора на другой стороне. Исправить:
но потом после некоторых тестов выключатель сдох. Не прямой разрыв, а плохое соединение внутри переключателя, в любом случае он был слишком старым. Замените его более мощным металлическим переключателем, который оказался SPDT:
.Здесь переключатель повернут вправо, замыкая противоположные клеммы (центральная клемма — общая), которая не подключена, поэтому зарядка выключена.Переверните его, и зарядка будет включена, что видно по токоограничивающему понижающему преобразователю (красный светодиод):
Другой ход переключателя пригодится для…
Гидравлические резисторы
Я подключил другую сторону переключателя SPDT к кнопке и мощным цементным резисторам, через конденсатор к двум последовательно соединенным 0,47 Ом (да, миллиом), позаимствованным из Pioneer SD-P453S для разборки системы обратной проекции (RPTV): внутри винтажного телевизора с большим экраном 80-х годов .Знал, что резисторы пригодятся. От телевизора на 31 000 вольт они должны выдерживать рассеивание мощности от этого суперконденсатора.
Поскольку положение переключателя «зарядка выключено» подключено к резисторам сброса, я последовательно включил дополнительный переключатель, кнопку, которую нужно нажать и удерживать, чтобы сбросить заряд. Возможности пользовательского интерфейса теперь:
Переключатель | Кнопка | Государство | Описание |
---|---|---|---|
Вниз | любой | Зарядка | Блок питания подает питание на суперконденсатор, вольтметр показывает напряжение зарядки |
вверх | не нажата | Холдинг | Нет питания, вольтметр показывает напряжение заряда суперконденсатора |
вверх | прессованный | Выгрузка | Энергия медленно рассеивается от суперконденсатора к резисторам |
Клеммы
Что можно надеть на концы проводов, чтобы обеспечить хороший контакт? Шина пропускала ток, но у меня его не было, к счастью, я нашел эти радиаторы, которые были прикреплены к диодам, я их кропотливо демонтировал:
Демонтаж радиатора требует много энергии, просто наберитесь терпения и дайте ему нагреться с помощью паяльника с регулируемой температурой.Накачивая все это тепло, радиаторы можно было снять с диодов. Большой будет хорошей отрицательной клеммой. Я не использую какое-либо профессиональное сварочное оборудование, поэтому чем больше площадь поверхности сварочного вывода, тем лучше, тем более что он не сгорает, не окисляется и не ухудшает контакт. Могу ли я использовать настоящие сварочные провода?
В любом случае для положительного вывода я использовал более крупный жёлтый многожильный провод, который, надеюсь, сгорит раньше, чем более длинные выводы магнитного провода.
бокс это вверх
Ни один проект не будет полным без кейса. Вот полная схема в открытом виде:
Подходящий футляр (возможно, разработанный с использованием САПР и 3D-печать?) Был бы идеальным, но для прототипа не может быть картона. Повторно использовал оригинальную коробку из . Сборка небольшого нестандартного ноутбука Raspberry Pi Zero в картонной коробке , так как я заменил его в модификациях для ноутбука Custom: внутренний макет, индикатор питания и более крупный корпус , и у меня осталась небольшая коробка.Компоненты подходят идеально:
Сверху приклеены вольтметры для блока питания и конденсатора, соответственно, внутри коробки находится понижающий преобразователь (питание идет от сетевого адаптера, провода идут вне коробки), диод с радиатором, сам суперконденсатор, спускные резисторы. На передней панели у обоих переключателей, которые я использовал, удобно есть шайбы и гайки, поэтому я закрепил их через картонную панель: левый переключатель — включение / выключение зарядки, правый — кнопка разрядки.Снаружи сзади идут провода для сварщика.
Закройте коробку, и она аккуратно упакует:
Можно ли сваривать?
Сможет ли этот сварщик сваривать все эти работы? Резонный вопрос.
Я попытался сделать несколько сварных швов, но понял, что на самом деле у меня нет ничего, что нужно сваривать. Пайка делает свою работу большую часть времени. Немного поэкспериментировал, и можно было почувствовать какое-то заедание, но я не очень хорошо разбираюсь в технике. Сварщик может, как минимум, расплавить провода и следы от печатной платы.
Это просто случайный эксперимент с сильным током. Другой проект, созданный tatus1969 на форумах eevblog, может быть более практичным и законченным: kWeld — DIY точечный сварочный аппарат для аккумуляторов «нового уровня». Тем не менее, если мне когда-нибудь понадобится низковольтный сильноточный источник, теперь он у меня есть.
Сварщик для точечной сварки своими руками | Hackaday
[NixieGuy] планировал построить роботов с тросовыми соединениями, когда разразилась пандемия. Теперь, когда поставщиков компонентов мало, ему пришлось проявить творческий подход, когда дело дошло до непрерывных кабелей.Эти кабели должны быть как можно более бесшовными, чтобы не зацепиться за шкивы, поэтому [Никси] придумал способ сварить то, что у него уже есть под рукой, — отрезки стального троса 0,45 мм.
Приспособление для 3D-печати предназначено для использования под цифровым микроскопом и даже для крепления к столбу винтами. Другой набор винтов удерживает два провода на месте, пока они приварены встык между двумя кусками меди.
[Никси] для удобства добавляет пятно паяльной пасты, а затем соединяет провода, подключив свой настольный блок питания, настроенный на 20 В @ 3.5А к медным электродам. Нам нравится, что [Никси] нашел время, чтобы оптимизировать дизайн приспособления, потому что он выглядит великолепно.
Это просто показывает, что великие дела могут происходить с ограниченными ресурсами и небольшим количеством воображения. [Никси] не только решил свою проблему с цепочкой поставок, но и в то же время оттачивал навык. Если у вас нет настольного источника питания, вы можете обойтись без устройства для точечной сварки с батарейным питанием, в зависимости от области применения.
В прошлый раз мы рассказали о хранении и зарядке суперконденсатора на 3000 Фарад для создания портативного аппарата для точечной сварки, работающего на солнечной энергии.С тех пор я внес некоторые улучшения в схему зарядки и запустил ее. Напомним, в зарядном устройстве используется понижающий преобразователь постоянного тока в постоянный для преобразования диапазона постоянного напряжения до 2,6 В. Однако он может выдавать максимум 5 А, а суперконденсатор потребляет больше, если это разрешено.
Ток заряда конденсатора уменьшается со временем по мере заряда конденсатора. Источник: HyperphysicsПосле нескольких неудачных попыток я решил эту проблему, пропустив выходной сигнал понижающего преобразователя через восстановленный силовой полевой МОП-транзистор.Запасной модуль NodeMCU обеспечивал выход с широтно-импульсной модуляцией, который включал полевой МОП-транзистор на контролируемые периоды времени для ограничения зарядного тока. Это было хорошо, но зарядное устройство постоянного напряжения — неправильный способ заряжать конденсатор. Поскольку пластины конденсатора создают напряжение при зарядке, выходной ток зарядного устройства постоянного напряжения сначала высокий, но в конце концов падает до очень низкого уровня.
Читать далее «Создание портативного аппарата для точечной сварки на солнечных батареях: почти практично!» →
Перед Лунным Новым годом я заказал две по 3000 F, 2.Суперконденсаторы на 7 В из Китая примерно по 4 доллара за штуку. Не помню почему, но они приехали (неожиданно) как раз перед праздником.
Суперконденсаторы (часто называемые ультраконденсаторами) заполняют нишу где-то между перезаряжаемыми литиевыми элементами и обычными конденсаторами. Обычные конденсаторы имеют низкую плотность энергии, но высокую плотность мощности: они могут очень быстро накапливать и выделять энергию. Литиевые элементы накапливают много энергии, но заряжаются и разряжаются со сравнительно низкой скоростью. По весу суперконденсаторы хранят в десять раз меньше энергии, чем литиевые элементы, и могут обеспечивать примерно в десять раз меньшую мощность, чем конденсаторы.
В целом это странная технология. Несмотря на восторженное освещение в новостях, они — плохая замена батареям или конденсаторам, но их длительный срок службы и умеренная энергия и удельная мощность делают их пригодными для некоторых изящных приложений сами по себе. В частности, они используются для сбора энергии, рекуперативного торможения, для продления срока службы или замены автомобильных свинцово-кислотных аккумуляторов, а также для сохранения данных в некоторых типах памяти. Вы вряд ли будете использовать в ноутбуке суперконденсаторы.
Все равно у меня был недельный отпуск и два больших конденсатора сомнительного происхождения. Иногда мы живем в лучшем из возможных миров. Читать далее «Создание портативного аппарата для точечной сварки на солнечных батареях: зарядка суперконденсаторов» →
Ей-богу, посмотрите на качество сборки самодельного сварочного аппарата .
Почти все здесь знают, что вполне возможно построить одну из этих вещей, используя повторно завернутый микроволновый трансформатор, но они обычно сделаны из дерева, как тот, который мы меняем в пятницу, и мы часто задаемся вопросом, сколько реального использования они получают. кроме «Эй, смотри, я сделал точечную сварку!».Я сам сделал один, но потом купил профессиональный, потому что он работает лучше. Но не [Мэтью Боргатти], он выглядит лучше и имеет больше функций, чем даже тот, который я купил!
Почему? Потому что он серьезно задумался над своим дизайном. Он даже 3D смоделировал все это в SolidWorks.
Помимо превосходного корпуса для лазерной резки (в комплекте с храповым механизмом зажима заготовки), [Matt’s] также добавил Arduino для создания схемы синхронизации. В большинстве случаев вы просто сжимаете зажим, нажимаете кнопку и наблюдаете, как нагревается металл — «Думаю, это хорошо…»
Но с реальной схемой синхронизации вы можете рассчитать, сколько времени вам нужно в зависимости от тока и размера электрода, чтобы произвести сварной шов хорошего качества.
Читать далее «Самая лучшая самодельная машина для точечной сварки, которую мы когда-либо видели» →
Время от времени наступает время, когда вам нужен инструмент для одной конкретной работы. В таких случаях нет смысла покупать дорогой инструмент для одного или двух раз. Для большинства из нас в эту категорию попадают точечные сварщики. [mrjohngoh] потребовалось соединить два куска листового металла. Вместо того, чтобы покупать коммерческое оборудование, он решил сделать своего собственного сварочного аппарата.
Сварщик точечной сварки пропускает электрический ток через два тонких куска металла. Сопротивление металлических деталей и проходящий через них ток создают достаточно тепла, чтобы расплавиться и соединить их в одном месте. Чтобы получить высокий ток, необходимый для этого проекта, [mrjohngoh] начал со старого микроволнового трансформатора. Он удалил стандартную вторичную катушку и снова обмотал ее проводкой толщиной 1 см, чтобы получить максимальный ток от трансформатора. Концы провода катушки присоединяются к электродам, которые сделаны из сильноточной электрической вилки.Электроды установлены на концах пары шарнирных рычагов. Сварка выполняется, когда два куска металла зажаты между электродами и подается питание.
Точечная сварка предназначена не только для соединения двух частей листового металла. Он также используется для приваривания язычков к клеммам аккумулятора. Универсальность и простота сборки этих сварочных аппаратов делают их одним из самых популярных инструментов, которые мы когда-либо видели.
Сварочные аппараты для точечной сварки — одно из немногих устройств для металлообработки, которое на самом деле намного дешевле построить самостоятельно, чем купить на коммерческой основе.Фактически, между восстановлением трансформатора из старой микроволновой печи и покупкой некоторых других компонентов в большинстве случаев это можно сделать менее чем за 100 долларов США.
Мы уже несколько раз делились этим хаком, но [Альберт ван Дален] действительно взял пирог, создав очень подробное и обширное руководство не только по его созданию, но и по тому, как правильно использовать его для различных целей.
[Альберт] спроектировал его таким образом, чтобы его можно было настраивать как в противоположном, так и в последовательном положении электродов, что означает, что помимо возможности точечной сварки листового металла, вы также можете точечно сваривать язычки батареи, находясь на элементах!
Читать далее «Профессиональный сварщик точечной сварки, сделанный из микроволнового трансформатора» →
Аппараты для точечной сваркиочень удобны для изготовления корпусов из листового металла для ваших проектов.Проблема в том, что коммерческие довольно дороги … Хорошая новость в том, что их действительно легко сделать! Это первая работа [Кайо Паулуччи] для Hack a Day, и это был проект выходного дня, который он и его отец только что завершили.
Сварщик работает за счет рассеивания большого количества тепла между двумя электродами в склеиваемом материале. В нем используется трансформатор, который преобразует сетевое напряжение в очень низкий, но сильный источник энергии. Самое замечательное в этом типе сварочного аппарата — это совершенно безопасно держать электроды, так как напряжение настолько низкое, что вас не ударит током.Пропуская сверхсильный ток (обычно> 1000 А при ~ 1-2 В) через небольшую площадь поверхности, вы можете перегреть большинство материалов до такой степени, чтобы их можно было сварить вместе.
Их можно сделать, используя трансформатор из микроволновки, немного сварочной проволоки для тяжелых условий эксплуатации (обычно 2/0 или более толстой), а также некоторые другие мелочи, такие как дерево, электроды и, возможно, несколько гаек и болтов. На самом базовом уровне вы в основном перематываете вторичные обмотки трансформатора, чтобы изменить соотношение, чтобы получить трансформатор низкого напряжения и высокого тока.
Читать далее «Точечная сварка; Не покупай, строй »→
Переносной прибор для точечной сварки с суперконденсатором:
Для сборки аккумулятора хорошо иметь место для сварки. Я разрабатываю эту портативную версию, используя суперконденсатор и перезаряжаемую стандартной батареей 18650
Я давно думал сделать простую точечную сварку. Выполнение обычной пайки при сборке батареи часто вызывает проблемы с механикой и толщиной. Мы можем найти много литературы о месте сварки своими руками. Многие из них основаны на трансформаторе (из микроволновки) или, в последнее время, на суперконденсаторе.
Суперконденсатор большой емкости может обеспечивать ток от 200 до 400 А, что достаточно для образования точки пайки.
Кроме того, похоже, что двойной импульс лучше, чем одиночный. После некоторых исследований кажется, что первый импульс должен быть около 2,5 мс, затем время ожидания 10 мс, а затем второй импульс 10 мс. Этот второй импульс создает настоящую точку сварки.
У меня есть 2 конденсатора по 400 Ф (один от Eaton и один от AVX), 2,7 В, чтобы сделать этот проект. Пиковый ток Eaton составляет 200 А, 3,2 МОм ESR.
Для импульса я мог бы использовать uC, но по какой-то причине, объясненной позже, я оставил его «дискретным», основанным на традиционном NE556 (здесь TLC556). TCL556 может принимать напряжение постоянного тока от 3 В до 15 В. Кнопка запускает первый таймер (2,5 мс), затем после задержки (сделанной с помощью простого RC + BC338) запускает второй таймер с 10 мс. Первоначальная идея заключалась в том, чтобы запитать эту схему от простой батареи 18650 (3v-4.2В).
Для устранения короткого замыкания конденсатора я выбрал МОП-транзистор, способный управлять током 460 А, FDB0105N407L. Согласно спецификации, минимальное напряжение VGS составляет 2,7 В, чего должно хватить для аккумулятора 18650. Mosfet припаивается непосредственно к суперконденсатору с пробниками.
Во время первых тестов возникли проблемы. Ток, генерируемый конденсатором, был очень низким, и задержка от RC тоже зависела от напряжения батареи. Итак, сначала RC был ограничен 4 1N4148 в // и таким стабильным (у меня не было стабилитрона 2.7в на руках). Для слабого тока он исходил от МОП-транзистора. VGS был слишком низким. Увеличение общего VCC до более чем 10 В приводит к увеличению VGS до 10 В (выход TLC556) и хорошо «искрится». По этой причине (высокий VCC) микроконтроллер нельзя было легко использовать или с большей стабилизацией напряжения.
Чтобы получить VCC на 10–12 В, требуется DC-Dc от 19650. Это делается с помощью LT1308, настроенного на 12 В.
После этого эти 2 части работают нормально. Измерял токоизмерительными клещами больше 150А с полностью заряженным суперкапом до 2.7V
Последняя часть — это зарядка суперкапа. Он должен быть DC-DC в понижающем режиме, но с ограничением по напряжению и току и с низким падением напряжения, с током до 2 А или более. После некоторого исследования лучшим компромиссом, похоже, будет LT3086 с низким падением напряжения, настраиваемый на 2,7 В и ограниченный до 2,1 А. Некоторые измерения показали, что при токе 2А для полной зарядки суперкапы требуется не менее 7 минут.
В конце концов, необходимо спланировать литиевое зарядное устройство для зарядки элемента 18650.
Зонд для сварки выполнен из медной проволоки большого диаметра.
Этот проект еще не завершен. Планируется несколько модификаций:
— необходимо добавить индикацию со светодиодами: Низкий уровень конденсатора 18650
— Настройте длительность второго импульса, так как припой может зависеть от используемого металла
— Возможно отображение точной длительности второго импульса
К некоторым картинкам текущих версий присоединились
напряжение — Машина для точечной сварки суперконденсаторов — какие конденсаторы использовать?
Я построил аппарат для точечной сварки с использованием большого трансформатора (примерно 4 кВт от старого сварочного аппарата), но теперь мне нужно построить аппарат для точечной сварки с большей мощностью (больший ток.)
Современный точечный сварочный аппарат отлично подходит для стали с никелевым покрытием, но ему не хватает мощности для точечной сварки меди.
Сварочный аппарат с трансформатором мощностью 4 кВт имеет напряжение холостого хода примерно 8 В. Я использую медный провод 35 мм2, общая длина провода примерно 1 метр (вперед и назад) от трансформатора до электродов точечной сварки.
Я думаю, что использование суперконденсаторов — мой лучший вариант для создания более мощного аппарата для точечной сварки.
Согласно моим исследованиям, мне нужно примерно 3000-4000 ампер тока, чтобы сварить 0.2 мм медь (это моя цель). Время разряда конденсатора должно быть <20 мс, если возможно (чем меньше, тем лучше) PS: это значение силы тока основано на следующем веб-сайте: https://sunstonewelders.com/product / linear-dc / и комментарий под следующим видео, в котором Sunstone комментирует, что для сварки двух пластин из меди 0,25 мм вместе с этим аппаратом вам потребуется около 4000 ампер (видео: https://www.youtube.com/watch?v= 16JOF-bYgWE)
Подходит ли что-то подобное (или комбинация нескольких / многих из них последовательно / параллельно) для этой цели?
https: // www.aliexpress.com/item/32950120538.html?spm=a2g0o.productlist.0.0.1fc72679PGnQqn&algo_pvid=e5b35dfe-59f6-40ee-92cd-bb0dd81b5685&algo_expidee=e5b35dfed8-40d2d5b3d7d6d7d6d6d7d6d7d6d6d6d6d6d6d7d6d6d7d6d7d6d6d6d6d7fd6d6d7d6d6d6d6d6d6d6d6d6d6d, 8a1f6cfae7c3 & ws_ab_test = searchweb0_0, searchweb201602_8, searchweb201603_52
При каком напряжении холостого хода я должен стремиться приблизительно для достижения желаемой силы тока? Какое значение емкости подходит для конденсаторной батареи?
Ручка для точечной сварки, которую я буду использовать: https: // www.aliexpress.com/item/4000159606521.html?spm=a2g0o.productlist.0.0.46332b7duxXLLm&algo_pvid=86b2cbd1-50eb-4bf4-b0f7-9a33915fa1dc&algo_expid=86b2-4cbd7d1-23b2cfcfcd7d5d5d5d5d5d5d8cd8cfcd8cfcd8cfcd8cfd7cd8cfcd7cfcd8cfcfcd7cfcd7cfcd7cfcbd8cfcfcd7d8cfcbd7d0c8 79556c2d2698 & ws_ab_test = searchweb0_0, searchweb201602_8, searchweb201603_52
Любой вклад приветствуется.
Аппарат для точечной сварки батарейс СВЧ трансформатором | DIY
Введение
Пока мы работаем над некоторыми проектами, в которых задействовано много литий-ионных аккумуляторов 18650.Для этого нам понадобится аккумуляторная точечная сварка. Это дорого, но не очень сложно построить, поэтому в этом уроке мы увидим, как сделать самодельный точечный сварочный аппарат для батарей, который является отличным инструментом при работе над проектами.
Заявление об ограничении ответственности: попробуйте этот проект на свой страх и риск. Если вы понятия не имеете о проводке сети, не пытайтесь повторить этот проект!
Шаг 1: Управление трансформатором
Во-первых, нам нужно контролировать время, в течение которого трансформатор будет включен.Таким образом, мы можем использовать высокий ток в течение доли секунды для плавления двух металлических поверхностей для достижения сварки. Для этого можно использовать таймер IC555. Поскольку напряжение переменного тока и его значение очень высокое, мы не можем использовать IC555. Вместо этого мы можем использовать реле, которые действуют как переключатели переменного тока.
Иллюстрация того, как работает схемаЗагрузите файлы схемы и Gerber печатной платы отсюда,
Примечание. Из принципиальной схемы видно, что при нажатии переключателя реле 1 включается. Когда конденсатор разряжается, реле 2 будет включено.Поскольку конденсатор может удерживать заряд очень короткое время, реле 2 будет включено на очень короткое время. А по времени, в течение которого реле 2 включено, мы можем определить время прохождения тока через сварочные рычаги.
Шаг 2: Сборка схемы
После получения печатных плат мы можем припаять компоненты на их место. Реле и винтовые клеммы можно паять. Мы используем винтовые клеммы для упрощения изменения емкости конденсатора при необходимости.
Шаг 3: Изготовить и вооружить для точечной сварки
Затем мы удлиняем выходные провода трансформатора, используя 35 кв.мм провода. После этого мы вынимаем оболочку провода примерно на дюйм, куда мы помещаем медный провод 2,5 кв. Мм и фиксируем его на месте с помощью изоленты и зажима для шланга.
Используя стяжки по всей длине проволоки, мы можем сделать руку для точечной сварки.
Шаг 4: Размещение и тестирование
Поместите трансформатор, схему, аккумуляторную батарею с помощью горячего клея. Затем мы можем протестировать сборку, добавив переключатель, подключив источник питания и подключив параллельно конденсаторы 47 и 100 мкФ.И этот проект будет успешно завершен.
Базовый переключатель: причины контактной сварки | FAQ | Австралия
Основное содержание
Вопрос
Что вызывает контактную сварку и что с этим делать?
Причины:
Перегрузка, не соответствующая коммутационной способности контактов
Пусковой ток больше номинального
Ток отключения больше номинального
Частота коммутации выше допустимой рабочей частоты
Использование в местах, подверженных постоянной вибрации
Контрмеры:
Переключите нагрузку с помощью реле или контактора.
Защитная цепь необходима для правильного использования таких нагрузок, как реле, двигатели, лампы накаливания и соленоиды.
Причина:
Перегрузка, не соответствующая коммутационной способности контактов
Контрмеры:
Переключите нагрузку с помощью реле или контактора.
Вставьте цепь защиты контактов.
Типичные примеры схем защиты контакта (ограничители перенапряжения)
Не применяйте схему защиты контактов, как показано ниже.
Эта схема эффективно подавляет дугу, когда контакты выключены. Однако емкость будет заряжаться, когда контакты выключены. Следовательно, когда контакты снова включены, ток короткого замыкания от емкости может вызвать контактную сварку. | |
Эта схема эффективно подавляет дугу, когда контакты выключены. Однако, когда контакты снова включены, зарядный ток течет к конденсатору, что может привести к сварке контактов. |
12 В 18650 батарея точечный сварочный аппарат печатная плата DIY ручка для точечной сварки для радиоуправляемых автомобилей точечные сварочные аппараты бизнес и промышленность 32baar.com
- Дом
- Бизнес и промышленность
- ЧПУ, Металлообработка и производство
- Сварочное и паяльное оборудование
- Сварочное оборудование и аксессуары
- Сварщики, резаки и горелки
- Точечные сварочные аппараты
- 12V 18650 Батарея Точечная сварочная плата PCB Ручка для точечной сварки для радиоуправляемой машины
12 В 18650 батарея для точечной сварки печатная плата DIY ручка для точечной сварки для радиоуправляемой машины
12 В 18650 батарея для точечной сварки печатная плата DIY ручка для точечной сварки для радиоуправляемого автомобиля
12V 18650 Аккумулятор для точечной сварки PCB Печатная плата DIY Ручка для точечной сварки для радиоуправляемого автомобиля.
12 В 18650 батарея для точечной сварки печатная плата DIY ручка для точечной сварки для радиоуправляемой машины
1.2V Механический зуммер Возьмите на себя инициативу Вибрация зуммера Мини-электронная сигнализация, диск сцепления NOS для Ford / New Holland 83964288.9 «x 0,05» 18 TPI Биметаллические сабельные пильные диски Morse Master Cobalt 25 Pack, Lightspeed Technologies NXT REDCAT Audio System RC Инфракрасный приемник-усилитель, конденсатор 27Pf SMD 04025A270jATN-LF 20 ЭЛЕМЕНТОВ. Запасные части для швейных машин Узел натяжения нити 91-266415-71 для Pfaff 591. ЛОТКА ИЗ 10 NVIDIA G84-602-A2 BGA GPU ВИДЕО ЧИПСЕТ MACBOOK, 10x 6 мм ON-OFF-ON 3-контактный 3-позиционный мини-тумблер с защелкой 6A / 125V 3A / 250VAC, 5шт. Красный свет ON-OFF 3-контактный прямоугольный кулисный переключатель. 3/8 дюйма, 1000 футов, шнур для амортизаторов Bungee, черный, для тяжелых условий эксплуатации, для тяжелых условий эксплуатации.Фиксатор стойки коромысла заменяет BMW Mini-Cooper 07-14-6-962-771.Регулируемые аксессуары для пчеловодства с пряжкой Beehive, утюг, удлиненный, 3/8 дюйма, внутренняя резьба NPT до 12 мм, прямой вставной фитинг, соединитель нейлоновой трубки, пневматический. 50PCS SR3200 SB3200 3A / 200V DIP диоды Шоттки. 6 цветов оптом 50 шт. 10×13 «полиэтиленовые конверты для почтовых отправлений Пакеты для транспортировки Самоуплотняющиеся, IH International Farmall № 23 Каталог запчастей для шоссейных газонокосилок среднего крепления, сервопривод Mitsubishi MR-JE-40A New *.