Чем алюминий отличается от свинца: Как отличить алюминий от других металлов

Содержание

Как отличить алюминий от других металлов

Один из самых «бородатых» анекдотов студентов – химиков: «Алюминий – это такое железо, только легкое». Ну а если серьезно, элемент периодический системы №13 – самый легкий металл, который может существовать в чистом виде в воздушной атмосфере. Относительную химическую инертность обеспечивает тончайшая пленка, состоящая из оксида и гидроксида, которая пассивирует поверхность и предотвращает дальнейшую реакцию с атмосферным кислородом или слабыми растворами щелочей и кислот.

Где можно найти алюминиевый лом?

Знакомые с детства алюминиевые кастрюли столовые приборы, и даже фольга от шоколадки – далеко не полный перечень изделий, которые изготавливаются из алюминия. Во времена СССР цена алюминиевых изделий никак не соответствовала его реальной стоимости, что формировало ошибочное мнение о дешевизне этого материала. В любом гараже или сарае найдутся десятки алюминиевых предметов: оконная фурнитура, старые алюминиевые радиаторы, детали велосипедов, походные чайники и котелки, остатки кабеля – перечислять можно долго. Из-за бесхозяйственности 80-90-х годов на промышленных свалках можно найти даже целые чушки товарного алюминия.

Для народного хозяйства этот металл имеет стратегическое значение. Промышленное получение осуществляется методом электролиза расплава, что связано с огромными энергозатратами. Переработка вторичного сырья гораздо дешевле (экономия электроэнергии до 75%, сокращение вредных выбросов в атмосферу – до 90%), кроме того, этот металл можно переплавлять многократно без ухудшения физических свойств. Алюминиевый лом без ограничений покупается почти во всех пунктах приема металлолома и стоит намного дороже, чем лом черных металлов. После приема производится дальнейшая сортировка, после которой вторичное сырье подвергается классификации с присвоением класса, группы и сорта. Общее количество разновидностей алюминиевого вторичного сырья превышает 20 наименований.

Физика и химия вещества

Из школьного курса химии известно, то алюминий – металл серебристо-белого цвета

, обладающий низкой плотностью, высокой тепло- и электропроводностью. На воздухе покрывается защитной пленкой, которая легко растворяется в горячих растворах щелочей и кислот, некоторые его соединения обладают амфотерными свойствами. Даже на основе таких поверхностных сведений можно предложить несколько способов, как отличить алюминий от других металлов.

Главное отличие от нержавейки, железа, олова, свинца и других металлов, наиболее часто сдаваемых в металлолом, – низкая плотность, определить которую можно и в домашних условиях. Для этого понадобится мерный цилиндр и кухонные весы с точностью взвешивания до 1 грамма. Методика проста и не требует специальных знаний: предварительно взвешенную деталь из исследуемого материала опускаем в мерный цилинр, заполненный водой, и отмечаем изменение положения мениска жидкости. Далее делим массу детали на ее объем, равный разности уровня воды в цилиндре, и получаем плотность. Если получилось значение, близкое к 2,7 г/мл, то с высокой долей вероятности деталь сделана из алюминия.

В классической химии качественной реакцией на алюминий является проба с соляной кислотой и гидроксидом аммония. Если растворить алюминиевый образец в 10%-ом растворе соляной кислоты, а затем добавить обычный нашатырный спирт, то выпадет осадок Al(OH)3↓.

Внимание: реакция сопровождается бурным газообразованием (выделение водорода), поэтому необходимо соблюдать технику безопасности (защитные очки, перчатки, фартук).

Простейший способ, как отличить алюминий от железа – магнитная проба: алюминиевые детали не будут притягиваться к магниту. Однако, этот эффект является необходимым, но не достаточным подтверждением того, что исследуемый образец изготовлен из алюминия, поскольку парамагнитными свойствами обладают как алюминиевые сплавы, так и некоторые цветные металлы. Далее показан опыт с магнитом на маятнике и листом алюминия (в случае отсутствия магнетизма маятник бы не остановился по-середине и, по энерции, продолжил колебаться).

Отличие от дюраля

Несведущему человеку с первого взгляда достаточно сложно идентифицировать эти материалы, максимально точный результат можно получить лишь в химлаборатории. Предварительное заключение можно сделать, воспользовавшись советами, которыми делятся специалисты на профессиональных форумах. В паре алюминий/дюраль первый будет издавать высокий звон при ударе, не ломается при сгибании, а после снятия стружки поверхность блестит, как у серебра (кстати, спутать эти металлы практически невозможно, так как серебро отличается гораздо большим удельным весом). На изломе алюминий дает мелкозернистую структуру; при сверлении стружка отходит легко, не липнет на сверло.

Определить различия можно и химическими методами. Если исследуемый образец поместить в раствор азотной кислоты, а через некоторое время (2-3 часа) нейтрализовать его раствором щелочи (подойдет и обычная питьевая сода), то в случае чистого алюминия выпадет полупрозрачный белый осадок, а медь в дюрале придаст осадку голубоватый оттенок.

Отличие от ЦАМ

Сложности при идентификации этих материалов возникают довольно часто, так как ЦАМ – сплавы из трех металлов (цинк, алюминий, медь) внешне очень похожи на чистый металл. Достоверный способ определения — с помощью перекиси водорода, 20%-ого раствора сульфида натрия или 10%-го раствора медного купороса: при нанесении нескольких капель любого их вышеперечисленных реагентов на заточенную поверхность (свежий срез) алюминий останется серебристо-белым, а ЦАМ потемнеет.

Отличие от нержавейки

Отличить эти материалы можно в домашних условиях всего за несколько минут. В первую очередь стоит обратить внимание на внешние различия: алюминиевая поверхность на ощупь более шершавая и матовая, нержавейка всегда хорошо блестит, даже если образец не отполирован. Нержавеющая сталь тоже не притягивается магнитом, но изделия из нее существенно тяжелее алюминиевых (плотность выше минимум в три раза). Далее делаем пробу «на нож» — на поверхности алюминия останется след, а нержавейка из-за высокой твердости останется неповрежденной. Можно также провести деталью по белой бумаге: алюминиевый образец оставит серый след, в то время как след от нержавеющей стали останется бесцветным. Специалисты по металлообработке предлагают еще один простой способ – распилить образец болгаркой. Нержавеющая сталь даст много искр, от алюминия искры не летят.

Отличие от других цветных металлов

Несмотря на то, что свойства металлов в основном идентичны, у каждого элемента есть свои отличительные особенности, по которым можно легко отличить металл от алюминия. Так, медь обладает ярким красноватым оттенком, золото – желтым цветом, свинец – очень высокой плотностью и хрупкостью, олово – высокой пластичностью, серебро – ярким блеском, железо и его сплавы – магнитными свойствами. При необходимости достоверную информацию можно найти в специальной справочной литературе или на профессиональных тематических форумах.

Стоит отметить, что все вышеперечисленные методы являются лишь оценочными и приблизительными: точный химический состав металлолома определят специалисты аккредитованной лаборатории. На все вопросы по теме алюминиевого лома ответят специалисты пунктов приема металлов.

Как отличить алюминий от свинца

Какими способами можно определить какой металл?

Железо – без цвета, магнититься и ржавеет.
Алюминий – белёсого цвета, не магнититься, окисляется белым налётом.
Медь – красноватого оттенка, при окислении темнеет и покрывается зелёным налётом. Не магнититься. При горении пламя зеленоватое.
Бронза – желтоватого цвета, почти не окисляется, не могнититься.
Нержавейка – без цвета (или сероватая), не магнититься или может.
Магний – серебристо-белого оттенка, не магнититься, на запах немного сладковатый, при горении пламя ярко-белого цвета (горюч).
Титан – сероватый оттенок, не магнититься..

Можно как-то определять по цвету пламени при сжигании. Но какой цвет кому принадлежит?
Стали как-то определяют на наждаке по форме и цвету искр..

Как определить, что перед нами сплав а не чистый (относительно) материал?

У кого есть информация по определению – Поделитесь.

Какими способами можно определить какой металл?

Железо – без цвета, магнититься и ржавеет.
Алюминий – белёсого цвета, не магнититься, окисляется белым налётом.
Медь – красноватого оттенка, при окислении темнеет и покрывается зелёным налётом. Не магнититься. При горении пламя зеленоватое.
Бронза – желтоватого цвета, почти не окисляется, не могнититься.
Нержавейка – без цвета (или сероватая), не магнититься или может.
Магний – серебристо-белого оттенка, не магнититься, на запах немного сладковатый, при горении пламя ярко-белого цвета (горюч).
Титан – сероватый оттенок, не магнититься..

Можно как-то определять по цвету пламени при сжигании. Но какой цвет кому принадлежит?
Стали как-то определяют на наждаке по форме и цвету искр..
Как определить, что перед нами сплав а не чистый (относительно) материал?

У кого есть информация по определению – Поделитесь.

Чистые металлы не применяются в машиностроении, разве нет? Если только серебро, золото или палладий в покрытии контактов, а все конструкционные материалы — сплавы. Даже медь в проводниках.

Кипящие стали можно определить по искрам на круге — редкие длинные, оранжевые линии. Высокоуглеродистые дадут богатый пучок светлых искр со *звёздочками* на конце. Чем больше в стали углерода, тем цвет искр светлее, а *звёздочек* больше. Инструментальные стали дадут короткие, ломаные пучки искр со *звёздочками*.

Один из самых «бородатых» анекдотов студентов – химиков: «Алюминий – это такое железо, только легкое». Ну а если серьезно, элемент периодический системы №13 – самый легкий металл, который может существовать в чистом виде в воздушной атмосфере. Относительную химическую инертность обеспечивает тончайшая пленка, состоящая из оксида и гидроксида, которая пассивирует поверхность и предотвращает дальнейшую реакцию с атмосферным кислородом или слабыми растворами щелочей и кислот.

Где можно найти алюминиевый лом?

Знакомые с детства алюминиевые кастрюли столовые приборы, и даже фольга от шоколадки – далеко не полный перечень изделий, которые изготавливаются из алюминия. Во времена СССР цена алюминиевых изделий никак не соответствовала его реальной стоимости, что формировало ошибочное мнение о дешевизне этого материала. В любом гараже или сарае найдутся десятки алюминиевых предметов: оконная фурнитура, старые алюминиевые радиаторы, детали велосипедов, походные чайники и котелки, остатки кабеля – перечислять можно долго. Из-за бесхозяйственности 80-90-х годов на промышленных свалках можно найти даже целые чушки товарного алюминия.

Для народного хозяйства этот металл имеет стратегическое значение. Промышленное получение осуществляется методом электролиза расплава, что связано с огромными энергозатратами. Переработка вторичного сырья гораздо дешевле (экономия электроэнергии до 75%, сокращение вредных выбросов в атмосферу – до 90%), кроме того, этот металл можно переплавлять многократно без ухудшения физических свойств. Алюминиевый лом без ограничений покупается почти во всех пунктах приема металлолома и стоит намного дороже, чем лом черных металлов. После приема производится дальнейшая сортировка, после которой вторичное сырье подвергается классификации с присвоением класса, группы и сорта. Общее количество разновидностей алюминиевого вторичного сырья превышает 20 наименований.

Физика и химия вещества

Из школьного курса химии известно, то алюминий – металл серебристо-белого цвета, обладающий низкой плотностью, высокой тепло- и электропроводностью. На воздухе покрывается защитной пленкой, которая легко растворяется в горячих растворах щелочей и кислот, некоторые его соединения обладают амфотерными свойствами. Даже на основе таких поверхностных сведений можно предложить несколько способов, как отличить алюминий от других металлов.

Главное отличие от нержавейки, железа, олова, свинца и других металлов, наиболее часто сдаваемых в металлолом, – низкая плотность, определить которую можно и в домашних условиях. Для этого понадобится мерный цилиндр и кухонные весы с точностью взвешивания до 1 грамма. Методика проста и не требует специальных знаний: предварительно взвешенную деталь из исследуемого материала опускаем в мерный цилинр, заполненный водой, и отмечаем изменение положения мениска жидкости. Далее делим массу детали на ее объем, равный разности уровня воды в цилиндре, и получаем плотность. Если получилось значение, близкое к 2,7 г/мл, то с высокой долей вероятности деталь сделана из алюминия.

В классической химии качественной реакцией на алюминий является проба с соляной кислотой и гидроксидом аммония. Если растворить алюминиевый образец в 10%-ом растворе соляной кислоты, а затем добавить обычный нашатырный спирт, то выпадет осадок Al(OH)3↓.

Внимание: реакция сопровождается бурным газообразованием (выделение водорода), поэтому необходимо соблюдать технику безопасности (защитные очки, перчатки, фартук).

Простейший способ, как отличить алюминий от железа – магнитная проба: алюминиевые детали не будут притягиваться к магниту. Однако, этот эффект является необходимым, но не достаточным подтверждением того, что исследуемый образец изготовлен из алюминия, поскольку парамагнитными свойствами обладают как алюминиевые сплавы, так и некоторые цветные металлы. Далее показан опыт с магнитом на маятнике и листом алюминия (в случае отсутствия магнетизма маятник бы не остановился по-середине и, по энерции, продолжил колебаться).

Отличие от дюраля

Несведущему человеку с первого взгляда достаточно сложно идентифицировать эти материалы, максимально точный результат можно получить лишь в химлаборатории. Предварительное заключение можно сделать, воспользовавшись советами, которыми делятся специалисты на профессиональных форумах. В паре алюминий/дюраль первый будет издавать высокий звон при ударе, не ломается при сгибании, а после снятия стружки поверхность блестит, как у серебра (кстати, спутать эти металлы практически невозможно, так как серебро отличается гораздо большим удельным весом). На изломе алюминий дает мелкозернистую структуру; при сверлении стружка отходит легко, не липнет на сверло.

Определить различия можно и химическими методами. Если исследуемый образец поместить в раствор азотной кислоты, а через некоторое время (2-3 часа) нейтрализовать его раствором щелочи (подойдет и обычная питьевая сода), то в случае чистого алюминия выпадет полупрозрачный белый осадок, а медь в дюрале придаст осадку голубоватый оттенок.

Отличие от ЦАМ

Сложности при идентификации этих материалов возникают довольно часто, так как ЦАМ – сплавы из трех металлов (цинк, алюминий, медь) внешне очень похожи на чистый металл. Достоверный способ определения – с помощью перекиси водорода, 20%-ого раствора сульфида натрия или 10%-го раствора медного купороса: при нанесении нескольких капель любого их вышеперечисленных реагентов на заточенную поверхность (свежий срез) алюминий останется серебристо-белым, а ЦАМ потемнеет.

Отличие от нержавейки

Отличить эти материалы можно в домашних условиях всего за несколько минут. В первую очередь стоит обратить внимание на внешние различия: алюминиевая поверхность на ощупь более шершавая и матовая, нержавейка всегда хорошо блестит, даже если образец не отполирован. Нержавеющая сталь тоже не притягивается магнитом, но изделия из нее существенно тяжелее алюминиевых (плотность выше минимум в три раза). Далее делаем пробу «на нож» – на поверхности алюминия останется след, а нержавейка из-за высокой твердости останется неповрежденной. Можно также провести деталью по белой бумаге: алюминиевый образец оставит серый след, в то время как след от нержавеющей стали останется бесцветным. Специалисты по металлообработке предлагают еще один простой способ – распилить образец болгаркой. Нержавеющая сталь даст много искр, от алюминия искры не летят.

Отличие от других цветных металлов

Несмотря на то, что свойства металлов в основном идентичны, у каждого элемента есть свои отличительные особенности, по которым можно легко отличить металл от алюминия. Так, медь обладает ярким красноватым оттенком, золото – желтым цветом, свинец – очень высокой плотностью и хрупкостью, олово – высокой пластичностью, серебро – ярким блеском, железо и его сплавы – магнитными свойствами. При необходимости достоверную информацию можно найти в специальной справочной литературе или на профессиональных тематических форумах.

Стоит отметить, что все вышеперечисленные методы являются лишь оценочными и приблизительными: точный химический состав металлолома определят специалисты аккредитованной лаборатории. На все вопросы по теме алюминиевого лома ответят специалисты пунктов приема металлов.

Читальный зал

О.Ольгин. Опыты без взрывов

Металлы не очень удобны для опытов: эксперименты с ними требуют, как правило, сложного оборудования. Но некоторые опыты можно поставить и в домашней лаборатории.

Начнем с олова. В хозяйственных магазинах бывают иногда палочки металлического олова для пайки. С таким маленьким слитком можно проделать эксперимент: взять оловянную палочку двумя руками и согнуть – раздастся отчетливый хруст.

У металлического олова такая кристаллическая структура, что при изгибе кристаллики металла как бы трутся друг о друга, возникает хрустящий звук. Кстати, по этому признаку можно отличить чистое олово от оловянных сплавов – палочка из сплава при сгибании никаких звуков не издает.

А сейчас попробуем добыть олово из пустых консервных банок, из тех самых, которые лучше не выбрасывать, а сдавать в утиль. Большинство банок изнутри луженые, т. е. они покрыты слоем олова, который защищает железо от окисления, а пищевые продукты – от порчи. Это олово можно извлечь и использовать повторно.

Прежде всего пустую банку надо как следует очистить. Обычного мытья недостаточно, поэтому налейте в банку концентрированный раствор стиральной соды и поставьте ее на полчаса на огонь, чтобы моющий раствор прокипел как следует. Слейте раствор и промойте банку два-три раза водой. Теперь можно считать ее чистой.

Нам понадобятся две-три батарейки для карманного фонаря, соединенные последовательно; можно, как говорилось выше, взять выпрямитель с трансформатором или аккумулятор на 9-12 В. Каким бы ни был источник тока, к положительному его полюсу присоедините консервную банку (внимательно следите, чтобы был хороший контакт – можно пробить в верхней части банки небольшое отверстие и вдеть в него провод).

Отрицательный полюс соедините с каким-либо куском железа, например, с большим очищенным до блеска гвоздем. Опустите железный электрод в банку так, чтобы он не касался дна и стенок. Как его подвесить – придумайте сами, это нехитрая штука. Налейте в банку раствор щелочи – едкого натра ( обращаться крайне осторожно! ) или стиральной соды; первый, вариант лучше, но требует предельной аккуратности в работе.

Так как раствор щелочи еще не раз будет нужен для опытов, расскажем здесь, как его приготовить. Добавьте стиральную соду Na2CO3 к раствору гашеной извести Са(ОН)2 и прокипятите смесь. В результате реакции образуется едкий натр NaOH и карбонат кальция, т. е. мел, практически нерастворимый в воде. Значит, в растворе, который после охлаждения надо профильтровать, останется только щелочь. Но вернемся к опыту с консервной банкой. Вскоре на железном электроде начнут выделяться пузырьки газа, а олово с консервной банки станет понемногу переходить в раствор.

Ну а если надо получить не раствор, содержащий олово, а сам металл? Что ж, и это возможно. Выньте из раствора железный электрод и замените его угольным. Тут вам вновь поможет старая, отслужившая свое батарейка, в цинковом стаканчике которой сеть угольный стержень. Извлеките его и соедините проводом с отрицательным полюсом вашего источника тока. На стержне при электролизе будет оседать губчатое олово, причем если напряжение подобрано правильно, то произойдет это довольно быстро.

Правда, может случиться так, что олова с одной банки окажется маловато. Тогда возьмите еще одну банку, аккуратно нарежьте ее на кусочки специальными ножницами для металла и положите внутрь той банки, в которую налит электролит. Будьте внимательны: обрезки не должны касаться угольного стержня!

Собранное на электроде олово можно переплавить. Отключите ток, достаньте угольный стержень с губчатым оловом, положите его в фарфоровую чашку или в чистую металлическую банку и подержите на огне. Вскоре олово сплавится в плотный слиток. Не дотрагивайтесь до него и до банки, пока они не остынут!

Часть губчатого олова можно не переплавлять, а оставить для других опытов. Если растворить его в соляной кислоте – небольшими кусочками и при умеренном нагревании, – то получится раствор хлорида олова. Приготовьте такой раствор концентрацией примерно 7% и добавьте, помешивая, раствор щелочи чуть большей концентрации, около 10%. Сначала выпадет белый осадок, но вскоре он растворится в избытке щелочи. Вы получили раствор гидроксостанната натрия – тот самый, который образовался у вас вначале, когда вы начали растворять олово из банки.

Но если так, то первую часть опыта – перевод металла из банки в раствор – можно уже не повторять, а приступить сразу ко второй его части, когда на электроде оседает металл. Это сэкономит вам немало времени, если вы захотите получить побольше олова из консервных банок.

Свинец плавится еще легче, чем олово. В маленький тигель или в металлическую банку из-под гуталина поместите несколько дробинок и нагрейте на пламени. Когда свинец расплавится, осторожно снимите банку с огня, взяв ее за бортик большим надежным пинцетом или плоскогубцами. Расплав свинца вылейте в гипсовую или металлическую форму либо просто в песчаную лунку – так вы получите самодельное свинцовое литье. Если же и дальше прокаливать расплавленный свинец на воздухе, то через несколько часов на поверхности металла образуется красный налет – двойной оксид свинца; под названием «свинцовый сурик» его часто использовали прежде для приготовления красок.

Свинец, как и многие другие металлы, взаимодействует с кислотами, вытесняя из них водород. Но попробуйте положить свинец в концентрированную соляную кислоту – он в ней не растворится. Возьмите другую, заведомо более слабую кислоту – уксусную. В ней свинец хоть и медленно, но растворяется!

Этот парадокс объясняется тем, что при взаимодействии с соляной кислотой образуется плохо растворимый хлорид свинца PbCl2. Покрывая поверхность металла, он мешает дальнейшему его взаимодействию с кислотой. А вот ацетат свинца Pb(СН3СОО)2, который получается при реакции с уксусной кислотой, растворяется хорошо и не препятствует взаимодействию кислоты и металла.

С алюминием мы поставим сначала два простых опыта, для которых вполне годится сломанная алюминиевая ложка. Поместите кусочек металла в пробирку с любой кислотой, хотя бы с соляной. Алюминий сразу же начнет растворяться, энергично вытесняя водород из кислоты – образуется соль алюминия А1С13. Другой кусочек алюминия опустите в концентрированный раствор щелочи, например, каустической соды ( осторожно! ). И снова металл начнет растворяться с выделением водорода. Только на этот раз образуется другая соль, а именно: алюминат натрия.

Оксид и гидроксид алюминия проявляют одновременно и основные, и кислотные свойства, т. е. они вступают в реакцию как с кислотами, так и со щелочами. Их называют амфотерными. Соединения олова, кстати, тоже амфотерны; проверьте это сами, если, конечно, вы уже извлекли олово из консервной банки.

Существует правило: чем металл активнее, тем он скорее окисляется, подвергается коррозии. Натрий, например, вообще нельзя оставлять на воздухе, его хранят под керосином. Но известен и такой факт: алюминий гораздо активнее, чем, например, железо, однако железо быстро ржавеет, а алюминий, сколько его ни держи на воздухе и в воде, практически не изменяется. Что это – исключение из правила?

Поставим опыт. Закрепите кусочек алюминиевой проволоки в наклонном положении над пламенем газовой горелки или спиртовки так, чтобы нагревалась нижняя часть проволоки. При 660 о С этот металл плавится; казалось бы, можно ожидать, что алюминий начнет капать на горелку. Но вместо того чтобы плавиться, нагретый конец проволоки вдруг резко провисает. Вглядитесь получше, и вы увидите тонкий чехол, внутри которого находится расплавленный металл. Этот «чехол» – из оксида алюминия Аl2О3, вещества прочного и очень жаростойкого.

Оксид тонким и плотным слоем покрывает поверхность алюминия и не дает ему дальше окисляться. Это его свойство используют на практике. Например, для плакирования металлов; на металлическую поверхность наносят тонкий алюминиевый слой, алюминий сразу же покрывается оксидом, который надежно предохраняет металл от коррозии.

И еще два металла, с которыми мы поставим опыт,- хром и никель. В таблице Менделеева они стоят далеко друг от друга, но есть причина, чтобы рассматривать их вместе: и хромом и никелем покрывают металлические изделия, чтобы они блестели, не ржавели. Так, спинки металлических кроватей покрывают обычно никелем, автомобильные бамперы – хромом.

А можно ли точно узнать, из какого металла сделано покрытие? Попробуем провести анализ. Отколите кусочек покрытия от старой детали и оставьте его на воздухе на несколько дней, чтобы он успел покрыться пленкой оксида, а затем поместите в пробирку с концентрированной соляной кислотой ( обращаться с осторожностью! Кислота не должна попадать на руки и одежду! ).

Если это был никель, то он сразу начнет растворяться в кислоте, образуя соль NiCl2; при этом будет выделяться водород. Если же блестящее покрытие из хрома, то первое время никаких изменений не будет и лишь потом металл начнет растворяться в кислоте с образованием хлорида хрома СгСl3. Вынув этот кусочек покрытия из кислоты пинцетом, ополоснув его водой и высушив на воздухе, через два-три дня можно будет снова наблюдать тот же эффект.

Объяснение: на поверхности хрома образуется тончайшая пленка оксида, которая препятствует взаимодействию кислоты с металлом. Однако и она растворяется в кислоте, правда, медленно. На воздухе хром вновь покрывается оксидной пленкой. А вот у никеля такой защитной пленки нет.

Но в таком случае зачем же мы держали металлы на воздухе перед первым опытом? Ведь хром был уже покрыт слоем оксида! А затем, что покрыта была лишь наружная сторона, а внутренняя, обращенная к изделию, с кислородом воздуха в контакт не вступала.

С медью можно поставить несколько любопытных опытов, поэтому посвятим ей особую главу.

Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту, то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl2.

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет, скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет. Значит, это диоксид углерода. В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь, оксид меди.

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: Сu2СО3(ОН)2 (дигидроксид-карбонат меди). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной. Такая же соль встречается и в природе – это не что иное, как знаменитый минерал малахит.

Обратим внимание на почерневшую медную проволоку. Нельзя ли вернуть ей первоначальный блеск без помощи кислоты? Налейте в пробирку аптечного нашатырного спирта, раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь, вода и азот. Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет . Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования – образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт. Насыпьте в пробирку немного нашатыряхлорида аммония NH4Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом, который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым – это улетучиваются частицы нашатыря. А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl2.

Именно из-за этой способности – восстанавливать металлическую медь из оксида – нашатырь и применяют при паянии. Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его «жало» окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря – и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше – чистого спирта) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция: медь восстановилась, а этиловый спирт, содержащийся в одеколоне, окислился до уксусного альдегида. Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.

свинца сплавов алюминия — Справочник химика 21

    Цветные металлы и сплавы. Цветные металлы — свинец, медь, алюминий, никель — и их силавы применяют для изготовления сварной, паяной и литой аппаратуры, работающей в условиях средней и повышенной агрессивности. [c.64]

    Влияние соединений меди на окисление очищенных крекинг-бензинов исследовано Даунингом [84]. Вальтере [82] показал, что каталитическая активность медных сплавов пропорциональна содержанию в них меди. Педерсен [85].изучал влияние концентрации меди на химическую стабильность бензинов термического крекинга после сернокислотной очистки. Опубликованы результаты исследования влияния таких металлов, как сталь, медь, латунь, свинец, олово, алюминий и цинк, на бензины, различающиеся по химической стабильности [86, 87]. [c.243]


    Для измерения толщины лакокрасочных покрытий на немагнитных металлах и сплавах (алюминий, свинец, медь и др.) приходится прибегать к мето-дал разрушающего контроля, снятию пленок с подложки. В научных лабораториях применяют более сложный и точный оптический метод с помощью двойного микроскопа МИС-11. [c.117]

    Для работы в щелочных средах непригодны медь, медные сплавы, алюминий, цинк, свинец и олово, на которых образуются гидраты окислов, хорошо растворяющиеся в щелочах. [c.79]

    Анодные процессы при электролизе расплавов. Процессы электролиза расплавленных сред осуществляются с растворимыми и нерастворимыми анодами. Растворимые аноды применяют при электролитическом рафинировании и получении чистых металлов (алюминий, магний, титан). При электрорафинировании алюминия и магния в качестве анодов используют металл-сырец, к которому добавляют утяжелитель. Это делается для того, чтобы в ванне можно было создать три слоя в соответствии с плотностями нижний— жидкий анод (сплав алюминия и меди), средний — электролит и верхний — катод (чистый алюминий). При электрорафинировании магния в качестве утяжелителя магниевого анода применяют цинк, медь или свинец. При электрорафинировании титана берут твердый растворимый титановый анод. [c.215]

    Цветные металлы и сплавы (алюминий и его сплавы, медь и ее сплавы, никель и его сплавы, свинец и др.) нашли широкое применение в химическом аппаратостроении, преимущественно для сварной, паяной и литой аппаратуры, работающей со средами средней и повышенной [c.48]

    Латунь — сплав меди с цинком (35—40%). В состав латуни некоторых марок входят свинец, олово, алюминий, марганец и железо. Температура плавления латуни 900—960° С. [c.36]

    Сталь, чугун, цинк и его сплавы, медь и ее сплавы, алюминий и его сплавы, свинец [c.579]

    Технологические трубопроводы изготовляют из материалов, наиболее стойких против агрессивного воздействия транспортируемых продуктов. При изготовлении труб и фасонных деталей к ним используют сталь углеродистую, низколегированную и высоколегированную кислотостойкий чугун медь и медные сплавы алюминий и сплавы на основе алюминия свинец и сплавы на основе свинца. Все шире применяются трубы из титана. [c.57]


    Действие на металлы. При обычных температурах химически чистые фреоны не действуют на железо и его сплавы, алюминий, олово, медь, бронзу, латунь и сталь. С фреоном-113 не рекомендуется применять цинк. В присутствии незначительного количества влаги фторированные углеводороды действуют на магний, его сплавы и сплавы алюминия с 2% магния. Не рекомендуется применять свинец, если препарат содержит масла и фреон-11. [c.60]

    Цветные металлы и сплавы (алюминий и его сплавы, медь и ее сплавы, никель и его сплавы, титан и его сплавы, свинец и др.) нашли широкое применение в химическом аппаратостроении, преимущественно для сварной, паяной и литой аппаратуры, предназначенной для работы в средах средней и повышенной агрессивности. Алюминий и его сплавы, медь и латунь являются также основными конструкционными материалами для емкостной, колонной и теплообменной аппаратуры газоразделительных уста- [c.133]

    Материалом для трубопроводов, используемых в химической промыщленности, служат чугун, углеродистые и легированные стали, медь и ее сплавы, свинец, титан, алюминий, фосфор, стекло, резина, пластические массы, углеграфитовые и другие материалы. [c.192]

    Все металлы можно разделить на две основные группы черные (составляющие 95% всей металлической продукции)—это сплавы железа с другими элементами и цветные (5% всех технических металлов)—это медь, олово, свинец, цинк, алюминий и другие металлы и их сплавы. [c.268]

    Выполнение анализа. Испытанию подвергаются латуни, в которых не были обнаружены свинец и алюминий. На очищенный участок поверхности исследуемого объекта (сплав) наносят каплю азотной кислоты, через 5 мин. полученный раствор переносят капилляром в пробирку или стакан, разбавляют водой до 10 мл, прибавляют 10 капель раствора азотнокислого серебра, несколько крупинок надсернокислого аммония и взбалтывают. В случае марганцовых или марганцово-никелевых латуней появляется фиолетово-розовое окрашивание. [c.190]

    Многие сплавы имеют самое широкое применение. Так, сплав меди с оловом — бронза идет для отливки статуй, машинных частей и для чеканки монет, сплав меди с цинком — латунь, или желтая медь, служит для изготовления различных изделий. Сплав алюминия (около 95%) с магнием, медью и другими металлами — дуралюмин широко применяется вследствие своей прочности и легкости в авиационной промышленности. Олово со свинцом образует припой, а свинец с сурьмой и небольшим количеством олова — типографский металл, или гарт, который служит для отливки типографских шрифтов. Наконец, сталь и чугун, столь ши- [c.277]

    Материалом для металлических покрытий могут служить как чистые металлы (свинец, цинк, алюминий, никель, хром, медь й др.), так и их сплавы 18]. [c.16]

    Для удаления неомыляемых жировых пленок широко применяют органические растворители бензин, керосин, спирт, уайт-спирит, трихлорэтан, четыреххлористый углерод и др. Органическими растворителями обезжириваются также узлы сложной конфигурации, имеющие зазоры, каналы и щели, в которых может задерживаться вода в случае обезжиривания водными растворами. Такими растворителями обезжиривают всевозможные пары трения, а также оборудование из черных металлов с фосфатными и оксидными пл

Чем отличаются алюминий, дюралюминий и пищевой алюминий

Алюминий — металл светло-серебристого цвета. Он легкий, относительно мягкий, плавится при температуре — 660,4°С. Al легко растворяется в сильных щелочах, устойчив к воздействию кислот, так как на его поверхности образуется защитная пленка. Мелко раздробленный металл при нагреве горит на воздухе. Чем мельче его частицы, тем меньшая температура нагрева нужна для возгорания.

Алюминий отличается высокой тепло- и электропроводностью. Этот металл очень пластичен. Это свойство позволяет прокатывать его в очень тонкую фольгу. Также он имеет невысокую прочность: чистый алюминий можно легко порезать ножом. Этот металл очень стоек к коррозии — на поверхности Al образуется тончайшая пленка, защищающая его от разрушений.

В зависимости от количества примесей — чистоты металла — в соответствии с ГОСТ, алюминию присваивается определенная марка.

Дюралюминий – алюминиевый сплав

Дюралюминий был получен в 1909 году в городе Дюрене, в Германии. Новый химический сплав, который назвали в честь города, быстро обрел популярность на всей планете. Приблизительный состав дюралюминия: 94% алюминия, 4% меди, по 0,5% марганца, магния, железа и кремния. Сплав нагревают до 500°С, после этого закаливают в воде и подвергают естественному или искусственному старению.

Самый распространенный сплав алюминия на сегодняшний день – это дюралюминий.

Дюралюминий после закаливания приобретает особую твердость и становится примерно в семь раз прочнее, чем чистый алюминий. Он, однако, остается легким — почти в три раза легче, чем железо. Сплав стал намного прочнее, однако потерял одно из важнейших свойств — стойкость к коррозии. Опять пришлось использовать алюминий для борьбы с коррозией. Предметы, выполненные из дюраля, начали плакировать, т.е. покрывать тончайшим слоем чистого алюминия.

Алюминий в быту

В быту используется так называемый пищевой алюминий. По ГОСТу пищевой алюминий должен содержать очень маленькое количество примесей свинца, цинка и бериллия. Он также стоек к коррозии, так как на его поверхности образуется плотная окисная пленка. Алюминий в бытовых целях используется очень широко. Из него изготавливают ложки, вилки, кастрюли, тазики и иную посуду. В тюбиках выпускают зубную пасту, соусы, приправы, консервы.

Почему же пищевой алюминий так часто используется для пищевой промышленности? Этот металл не склонен к коррозии, поэтому посуда и кухонные приборы выдерживают долгое взаимодействие с водой. При хранении продуктов в контакте с этим металлом, запахи и вкусы не претерпевают изменений, а витамины в процессе готовки не разрушаются. Алюминий очень хорошо проводит тепло, тем самым ускоряет процесс приготовления пищи. Этот металл обладает достаточной жесткостью — он не деформируется в процессе готовки. Кроме того, его можно использовать в духовках и микроволновых печах. Алюминий пищевой – абсолютно безвредный для здоровья материал.

Пищевая фольга также нашла очень широкое применение. А ведь фольга — это тонко раскатанный алюминий толщиной от 0,009 до 0,2 мм. Это отличный упаковочный материал. В кондитерской промышленности в нее заворачивают печенье, конфеты и мороженое. Обертки из фольги используются для упаковки масла и маргарина.

Благодаря имеющемуся свойству сберегать тепло, фольга применяется для хранения и перевозки продуктов. Причем в процессе сгибания и складывания целостность фольги не нарушается.

Полученная пищевая упаковка стала популярной не только по причине своей прочности и гибкости. Алюминиевая фольга является очень стойкой к внешним воздействиям: посторонним запахам, повышенной влажности. Она не взаимодействует ни с самой пищей, ни с ее запахом, то есть не изменяет их.

Как отличить алюминий от нержавейки: 10 способов Статьи про металлолом

31.10.2017 16:13

В рассматриваемом материале представлены десять способов, как отличить алюминий от нержавейки. Некоторые из них очень легко применить в домашних условиях, не имея абсолютно никаких инструментов, приспособлений и химических реактивов. Это позволит быстро, и максимально точно определить ценность того или иного предмета (изделия), изготовленного из алюминия или нержавеющей стали.

1. Магнит

К сожалению, гарантированно отличить эти два металла друг от друга при помощи магнита не всегда получится. Дело в том, что любая марка алюминия, так или иначе, не пристает к магниту. Но нержавейка тоже далеко не всякая обладает таким же свойством.

Если же изучаемое изделие магнитится, то это точно не алюминий. Образец может относиться к нержавеющим сталям, в которых содержится достаточное количество никеля. Если же в нержавейке преобладает медь или хром, то на магнит он никак не отреагирует.

2. Маркировка

Как правило, на некоторых изделиях из нержавеющей стали имеется соответствующая маркировка, позволяющая точно идентифицировать исследуемый предмет. В таком случае все достаточно просто. Надписи типа «НЕРЖ» и другие подобные – явный признак того, что перед нами точно не алюминий.

3. Обычная бумага

Один из самых простых способов определения отличия между алюминием и нержавейкой. Для эксперимента понадобится лист обычной бумаги. Это обязательно должна быть бумага белого цвета. Подойдет та, которая используется для принтерной печати. Чем плотнее она будет, тем лучше для дела.

Суть эксперимента в следующем. Для начала необходимо очистить кромку исследуемого изделия от грязи, жира, масел и прочих налетов. Далее этим местом нужно поводить по листу белой бумаги. Усилие нажатия при этом должно быть как можно более сильным. Выводы сделать очень просто. Нержавейка на белом листе не оставит никаких следов, тогда как от алюминия проявятся тонкие полосы серого цвета.

4. Цвет металла

Еще один критерий, который более или менее наглядно отличает нержавейку от алюминия – это оттенок рассматриваемого изделия. Если перед нами нержавеющая сталь, то ее поверхность, как правило, имеет блестящий бесцветный оттенок. При этом, со временем это состояние сохраняется.

Если же мы рассматриваем алюминиевое изделие, то цвет его поверхности обычно матовый (этот металл трудно отполировать до глянцевого блеска), серого или белесого цвета. После обработки наждачной бумагой отшлифованный участок быстро покроется оксидной пленкой, и приобретет матовость.

5. Механические нагрузки

Тоже достаточно простой способ, доступный для выполнения в домашних условиях. Суть его заключается в том, что исследуемое изделие необходимо ударить о твердый металлический предмет. Для получения более точного и наглядного результата делать это нужно в темноте.

Если изделие из нержавеющих марок стали, то мы увидим при ударе достаточно выраженное искрение. Его можно рассмотреть даже при тусклом освещении. В случае же с алюминием никакого искрения не будет, даже если очень внимательно рассматривать в полном мраке.

6. Теплопроводность и плавление

В случае с различными емкостями определить металл можно при помощи нагрева. Так, в алюминиевой посуде обычная вода доводится до кипения достаточно быстро. При одинаковых условиях (объем воды, нагревание) в емкости из нержавейки этот процесс занимает намного больше времени. Это связано с тем, что теплопроводность алюминия в разы лучше, чем у сталей.

Температура плавления алюминия около 660°C, тогда как у нержавейки этот показатель находится за отметкой 1800°C. При использовании обычной газовой горелки, которые применяются в качестве походного инвентаря, достичь температуры в 700°C достаточно просто. Это означает, что расплавить небольшой алюминиевый предмет на таком огне тоже возможно. Нержавейку же в обычных условиях (без наддува и подачи кислорода) расплавить не получится никак.

7. Медный купорос

Отличным и вполне доступным вариантом для определения алюминия или нержавейки является воздействие на металл раствором медного купороса. Он продается в сельскохозяйственных магазинах по невысокой цене. При обработке этим материалом на алюминии непременно останутся мутные следы и разводы. На нержавейку купорос не оказывает никакого видимого действия.

8. Щелочь

Щелочные растворы тоже являются сегодня достаточно доступными, и помогают легко отличить эти два металла. Это может быть натриевая или калиевая гидроокись. Как и в случае с купоросом – алюминий реагирует на обработку щелочью, в результате которой остаются бурые пятна. Если исследуемое изделие из нержавейки – никаких визуально видимых следов мы не обнаружим.

9. Кислота

Для удачного эксперимента будет достаточно раствора лимонной кислоты или сока лимона. Более выраженный результат получится при воздействии на металл более агрессивными кислотами. Суть определения такая же, как и с купоросом и щелочью. При наружной обработке на алюминиевой поверхности будут оставаться пятна. Нержавейка с кислотами в реакцию не вступает.

10. Плотность

Самый долгий и сложный способ отличить рассматриваемые два металла – определение их удельной плотности. Это применимо только для небольших изделий, а также для тех, которые имеют правильную геометрическую форму. Суть заключается в том, что сначала нужно вычислить объем исследуемого образца, а затем, с помощью простой формулы узнать его удельный вес.

Полученный результат в итоге сравнивается с фиксированными значениями плотности. Для алюминия этот показатель составляет около 2,6 г/см3, тогда как нержавейка плотнее почти в три раза – от 7,6 до 8,1 г/см3.

Какие сплавы можно получить из алюминия со свинцом 🚩 Естественные науки

Зачастую дополнительными компонентами к мягкому и пластичному алюминию становятся более устойчивые металлы, но также это может быть неметаллические составляющие: бор, сера и уголь.

Сплавы с содержанием алюминия

Одним из известных сплавов, где можно встретить алюминий – алюминиевое соединение с медью. Полученный металл имеет простую формулу и крепкие связи, благодаря чему сплав можно применять в военной и ракетной технике, а также в космических кораблях. Использование в составе меди способствует улучшению показателей по сопротивлению к коррозии.

Если же вместе с алюминием встретится марганец, то его наличие сможет в несколько раз укрепить сплав со значительным улучшением параметров затвердевания. Именно такая композиция будет оставаться твердой даже при очень высоких температурах. Марганец и алюминий используют при создании кухонных принадлежностей, отопительных радиаторов, водопроводных систем и кондиционеров.

Когда в составе алюминиевого сплава встречается кремний, то устойчивость к плавлению состава сильно снижается. Зачастую такой состав применяется для изготовления отливок, наполнителей для сварки или же пайки алюминия.

Известные сплавы со свинцом

Свинец стал использоваться людьми очень давно, так как этот металл известен своими отменными свойствами: плавкостью, твердостью и гибкостью. Поэтому его достаточно легко соединить в сплаве с другими металлами.

Если к свинцу добавить сурьму, то этот сплав станет намного тверже. Такая композиция представлена в листах, листовых и специальных прессованных формах. Зачастую такой сплав может заменяться соединением со свинцом и кальцием. Стоит также заметить, что для стабилизатора добавляется алюминий.

Для создания пуль к свинцу добавляется олово. Из такого состава делают также украшения, блюда и кухонную утварь. К слову, это один из немногих гипоаллергенных сплавов, который практически не окисляется от агрессивного действия воды и солей. Помимо этого, данный сплав имеет сурьму, серебро, медь и висмут. Благодаря олову можно получить более прочный сплав, намного тверже, а кроме того, свинец будет довольно легко соединяться с медью и сталью.

Несмотря на всю распространенность, алюминий попал в список опасных, с точки зрения ученых, элементов. Они доказали, что алюминий имеет свойство накапливаться в организме, приводя к старческому слабоумию и склерозу.

Как видно, сплавы со свинцом и алюминием вместе с другими металлами получают отменные физические показатели, которые, безусловно, способствует улучшению качества полученного металла и расширению сферы его применения.

Разница между стальной и алюминиевой системой

Предисловие…

Начну, пожалуй, с того, что чистый алюминий в автомобилестроении встречается крайне редко, чаще всего это сплавы с добавлением различных добавок, позволяющих улучшить свойства этого металла. Например, алюминиевый кузов автомобиля или отдельные его части производят из алюминия, в который добавлен магний, кремний или марганец. Такие добавки позволяют получить более прочный, но при этом такой же легкий и пластичный металл.

Алюминиевые детали производятся различными способами, в зависимости от ее назначения. Наиболее распространенные способы производства: ковка, литье, штамповка, а также экструзия. Самый популярный вид изготовления алюминиевых деталей — это конечно же, литье. При помощи этого метода отливают детали двигателя, различные корпусы, а также некоторые детали подвески.

Первопроходцем в «алюминиевом направлении» стала компания «Ауди», которая в 1994 году запустила серийное производство Audi A8, у которого кузов был полностью изготовлен из алюминия. В те времена это решение было революционным и хорошенько всколыхнуло мир автомобилестроения. Вес алюминиевого A8 составлял всего 231 кг. Впечатляет, не так ли?

Что дороже алюминий или нержавейка Справочник металлиста

Вот и закончился с горем пополам отопительный сезон, после которого вопрос о смене батарей встал на первый план. Прохудившиеся древние чугунные радиаторы пора отправлять на заслуженный отдых, поставив вместо них что-нибудь более современное.

Частные застройщики, при монтаже отопления, тоже зачастую не могут определиться с видом радиаторов.  Наслушавшись продавцов в магазинах, расхваливающих самые популярные модели, несведущий покупатель бывает в растерянности.

И какие радиаторы лучше — алюминиевые или биметаллические, он так и не представляет. Быть может, взглянем на этот вопрос объективно?

Ребра, расположенные с внутренней стороны, позволяют значительно увеличить площадь отдачи тепла до 0,5 метров квадратных. Изготавливают радиаторы двумя методами.

Экструзионный метод дает дешевые и легкие изделия не самого высокого качества (в Европе таким методом не пользуются). Дороже, но долговечнее будут радиаторы, сделанные методом литья.

Один из видов алюминиевых радиаторов.

2. Биметаллические радиаторы делаются из двух различных металлов. Корпус, оснащенный ребрами, изготавливается из алюминиевого сплава. Внутри этого корпуса имеется сердечник из труб, по которым протекает теплоноситель (горячая вода из системы отопления). Эти трубы производятся либо из стали, либо из меди (причем последние у нас практически не встречаются). Диаметр их меньше, чем у алюминиевых моделей, поэтому больше вероятность засорения. 

Внешний вид биметаллического радиатора весьма эстетичен, а дизайн удовлетворяет самые изысканные запросы. Все стальные его компоненты спрятаны внутри.

Алюминий и алюминиевые сплавы

К алюминиевой продукции относят изделия и полуфабрикаты из нелегированного алюминия и алюминиевых сплавов, деформируемых и литейных,  а также исходные материалы для их производства – первичный и вторичный алюминий в виде жидкого алюминия, слитков, заготовок и т. п.

Нелегированный алюминий – алюминий без легирующих элементов, в котором содержание алюминия составляет не менее 99,00 %.

Алюминиевый сплав – алюминий, который содержит легирующие элементы, причем содержание алюминия больше по массе любого из других элементов в сплаве, а содержание алюминия составляет не менее 99,00 %.

Легирующий элемент – металлический или неметаллический элемент, который контролируется внутри верхнего и нижнего пределов с целью придания алюминиевому сплаву некоторых специальных свойств.

Примесь – присутствующий в металле металлический или неметаллический элемент, минимальное содержание которого не контролируется.

Лучшие ответы

Dm:

Технология. Алюминий в чистом виде в природе не встречается. Только в минералах. Выделяют с помощью электролиза. «Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.Для производства 1 т алюминия требуется 1,9 т глинозёма и 18 тыс. кВт·ч электроэнергии. «Раньше алюминий в чистом виде считался драгоценным металлом.

Алексей Олегович Павленко:

На него спрос больше.Цветной метал, однако!

Анна Киселёва:

может потому что плавится все же лучше, температура плавнения не такая большая, да и удобный он и легче все же

Romа:

железо это черный метал а алюминий цветной метал

Старик Моченкин дед Иван:

Потому что в чистом виде не встречается.

молот гаврилов:

электро-проводимость

Роман Карпин:

Аллюминий относится к цветным металам, поэтому и дороже. Еще он легче плавиться, и более мягкий

александр радченко:

Технология добычи очень трудоемкая. Получение алюминия из глинозема просесс гораздо сложнее чем плавка стали из руды.

Валёк Тёмный:

Помимо более высоких энерго- и ресурсозатрат на получение алюминия, он еще обладает очень востребованными свойствами во всех отраслях — легкость, устойчивость к коррозии, пластичность, тепло и электропроводность, экологичность и пр.Когда он был открыт применялся в ювелирном деле и оценивался дороже золота.

Кирилл Грибков:

почему бензин самое дорогое топливо?ответ как раз подходит для тебя

Рома )))Elektrik((( Циркунов:

Затраты на выплавку тонны алюминия больше, чем железа!

Среди плюсов алюминиевого кузова можно выделить следующие моменты

1. Прекрасное соотношение массы и прочности. Алюминий на 60% легче стали при равных размерах и объемах. Благодаря этому, кузовные детали получаются более легкие, отсюда меньшая масса и существенная экономия топлива, ну и естественно меньше вредных выбросов в атмосферу.

2. Алюминий не подвержен коррозии. Это свойство очень положительно сказывается на длительности «жизни» кузова и самого автомобиля. Однако не стоит полагать, что алюминий вовсе не стареет и не гниет, при определенных обстоятельствах и условиях алюминий также способен окисляться и разрушаться.

3. Алюминиевые детали прекрасно поддаются вторичной переработке. Легкость переплавки делает этот металл очень выгодным для автопроизводителей, поскольку позволяет использовать его по нескольку раз, а сам производственный процесс существенно упрощается.

4. Энергопоглощение. По сравнению со сталью, алюминий намного лучше поглощает и гасит вибрации, это также касается сильных ударов, которые алюминиевые детали поглощают на 50% лучше, не позволяя ей распространяться дальше. Этот фактор весьма важен для тех, кто ценит собственную безопасность, а также безопасность своих пассажиров.

5. Прочность и сопротивление торсионным нагрузкам. Алюминиевый кузов, как бы странно это не звучало, получается более жестким в плане скручивания, это придает автомобилю устойчивости, а также позволяет выполнять более «острые» маневры.

6. Низкая нагрузка на ходовую часть и неподрессоренные массы. Как не крути, а разница в весе положительно сказывается на износе шин, деталей ходовой части, а также придает автомобилю плавности во время движения.

7. Расход топлива. Как я уже говорил, меньшая масса предмета — это всегда меньше усилия для того, чтобы сдвинуть его с места. Поэтому алюминиевый кузов может стать причиной аномально низкого расхода топлива.

Казалось бы, «плюсов» столько ,что «минусов» просто нет… А — нет, как говорится, у медали всегда две стороны.

Вторичный алюминий

Новый (технологический) и старый (бывший в употреблении) алюминиевый лом является исходной шихтой для производства вторичного алюминия. Так называемые «вторичные плавильщики» смешивают старый лом или технологический алюминиевый лом и получают так называемые вторичные алюминиевые сплавы. Эти сплавы поставляются на литейные предприятия в виде слитков для переплавки или как жидкий металл. Эти литейные предприятия производят алюминиевую продукцию в виде отливок, которые находят широкое применение, например, в автомобилестроении. Вторичный алюминий идет также на изготовление чушек, прутков и гранул для раскисления стали.

Отсортированный алюминиевый лом, который состоит из деформируемых сплавов, снова можно применять на предприятиях по производству “полуготовой” алюминиевой продукции – полуфабрикатов. Примером этого является алюминиевые банки для пива и прохладительных напитков, которые очень широко перерабатываются во всем мире.

Лом алюминиевых банок

Алюминированная сталь ru.knowledgr.com

Алюминированная сталь — сталь, которая была горячим падением, покрытым с обеих сторон кремниевым алюминием сплавом. Этот процесс гарантирует, что трудная металлургическая связь между стальным листом и его алюминиевым покрытием, производя материал с уникальной комбинацией свойств не обладала ни сталью, ни одним только алюминием.

Алюминированная сталь показывает лучшее поведение против коррозии и держит свойства основной материальной стали для температуры ниже, чем.

Например, это обычно используется для теплообменников в жилых печах, коммерческая крыша единицы HVAC, автомобильные кашне, духовки, кухонные диапазоны, водонагреватели, камины, горелки барбекю и формы для пирога.

Особенности определены точными металлами, используемыми, а также используемый процесс.

Типы

Тип 1: горячее падение, покрытое тонким слоем алюминия / кремниевый сплав, содержащий 5% к 11%-му кремнию, чтобы продвинуть лучшую приверженность. Это предназначено преимущественно для тепловых приложений сопротивления и также для использования, где устойчивость к коррозии и высокая температура включены.

Возможное использование конца — кашне, печи, духовки, диапазоны, нагреватели, водонагреватели, камины и формы для пирога. Алюминированная сталь не может противостоять с почти никаким изменением в основном материале. Но из-за кремниевого содержания это развивает гиблое место.

Алюминированная сталь медленно начинала преобразовывать подносы пекарни, которые были ранее сделаны гальванизированной или galvalume сталью, поскольку это не содержит свинца, который ядовит. Тип 1 также обычно находится в промышленных изделиях.

Тип 2: горячее падение покрыто коммерчески чистым алюминием. Это предназначено преимущественно для заявлений, требующих атмосферной устойчивости к коррозии. Тип 2 может в конечном счете быть произведен в рифленую кровлю и запасной путь, мусорные ведра зерна, суша духовки и конденсатор кондиционера housings.

Свойства

Базовая структура алюминированной стали — тонкий алюминиевый слой окиси снаружи, затем межметаллический слой, который является соединением алюминия, кремния, и стали, и наконец стального ядра.

И Тип 1 и Тип 2 показывают превосходные высокие reflectivity особенности. При температурах до алюминированная сталь отражает до 80% высокой температуры, спроектированной на него. У алюминированной стали есть способность поддержать ее силу при температурах до. Хотя нержавеющая сталь — более сильные из этих двух, алюминированная сталь имеет большую электростатическую поверхность и может поэтому отразить высокую температуру лучше.

Алюминированная сталь очень стойкая к коррозии из-за тонких слоев алюминия и кремния, которые препятствуют основной стали окисляться.

Однако несмотря на хорошую устойчивость к коррозии алюминированной стали, если алюминиевый слой разрушен и сталь выставлена, то сталь может окислиться, и коррозия может произойти.

Потребление

В Северной Америке почти 700 000 тонн алюминированной стали ежегодно потребляются. Некоторые общие продукты, сделанные из алюминированной стали, включают водонагреватели, диапазоны, печи, отопительные приборы и грили.

Обработка

Алюминированная сталь может быть сделана, используя множество процессов, оболочки, горячего погружения, гальванического покрытия, металлизирования и алитирования, но самый эффективный процесс — горячее погружение. Процесс горячих запусков погружения, чистя сталь, затем помещая сталь в ванну Аль-11%си при температуре 988K и встряхиваемый, затем вытащенный и воздух высох.

Алюминий распространяется в сталь, создавая межметаллический слой выше стального базового слоя, но ниже внешнего алюминиевого покрытия. Алюминиевое покрытие окислено, чтобы помочь защитить внутреннюю сталь от коррозии и дальнейшего алюминиевого распространения. Кремний добавлен к алюминиевой ванне, чтобы создать более тонкий слой алюминия на стали.

Горячий процесс погружения более дешевый и более эффективный, чтобы произвести алюминированную сталь, чем какой-либо другой процесс.

Использование

Алюминированная сталь была развита для обеспечения большей структурной длительности и силы высокой выработки в очень коррозийной окружающей среде.

Алюминированная сталь поддерживает силу высокой легированной стали, но в доле расходов.

Алюминированная сталь более дешевая, чтобы произвести, чем высокие легированные стали и таким образом является предпочтительным материалом для производственных систем выхлопного газа автомобиля и мотоцикла.

Из минусов можно выделить следующее

1. Сложность производства. Алюминиевые детали требуют технологически сложных способов крепления (клепка, лазерная сварка, болтовые соединения), кроме того все они предусматривают наличие дорогостоящего оборудования и материалов.

2. Дорогостоящий и проблематичный ремонт. Сварка алюминиевых деталей предусматривает наличие либо лазера, либо аргонной сварки. Сам сварщик должен обладать огромным опытом сварки, поскольку именно от этого зависит исход всего ремонта и возможности или невозможности дальнейшего использования алюминиевой детали. Кроме прочих неприятностей, такие работы будут стоить в разы дороже по сравнению с аналогичными работами, но с использованием обычной сварки и стали.

3. Цена. Высокая стоимость алюминия по сравнению с обычной сталью так или иначе сказывается на конечной стоимости изделия. Авто с полностью алюминиевым кузовом может стоить в полтора-два раза дороже, чем аналогичное авто с полностью металлическим каркасом.

4. Конфигурация и формы деталей. Изготовление полностью алюминиевого кузова накладывает на производителя определенные обязанности. Например, для придания деталям прочности их приходится усиливать дополнительными ребрами жесткости или делать более объемными, в итоге конструкция может получиться не такой компактной и привлекательной как этого хотелось бы

В качестве примера и доказательства предлагаю обратить внимание на два велосипеда — полностью алюминиевый и полностью стальной. Рамы будут отличаться не только весом, но и диаметром трубок, использованных в их производстве

5. Хорошая проводимость шума. В данном случае слово «хорошая» является недостатком, я думаю вы понимаете о чем я? Чем лучше металл проводит шум, тем больше его будет в салоне алюминиевого авто, думаю так понятнее? Такая особенность требует дополнительных слоев шумоизоляции, которая увеличивает вес автомобиля, а также стоит немалых денег. В итоге, такой автомобиль либо на конвейере получит хорошую «шумку» и вместе с тем получится более дорогим, либо будет поставляться «как есть», а все затраты на шумоизоляцию лягут на ваши плечи, и признаться потянут не мало денежных средств.

6. Ремонтопригодность. Алюминиевый кузов сложно ремонтировать, а желающих или проще сказать способных его выполнить не так уж и много, причина — алюминиевый кузов сложно ремонтировать! После удара или деформации алюминиевые детали и конструкции очень сложно восстановить, поскольку происходит нарушение структуры металла. По этой причине ремонт таких деталей или конструкций нередко просто невозможен или просто нерентабелен, и заканчивается полной заменой.

Как видите, такой, на первый взгляд, идеальный и безупречный материал имеет немало недостатков, о которых простые обыватели даже не подозревают. Наверное, именно по этой причине большинство из них так рьяно отстаивают свою точку зрения, доказывая, что алюминиевый кузов — это сущее добро и сплошной «плюс». Ну что ж, как говорится, каждому свое, надеюсь вы после прочтения данного материала не будете одним из таких «знатоков» и перед тем как купить автомобиль с алюминиевым кузовом, взвесите все положительные и отрицательные стороны этого непростого материала.

Текст: АвтоПульсар.

Как выбрать автомобильный глушитель

Автомобильным глушителем называют либо всю выхлопную систему в целом, либо только заднюю ее часть. Эта статья посвящена именно задней детали выхлопной системы. Конечно, есть автомобили, где основной глушитель находится в центре выпускного тракта, но эти случаи мы оговорим отдельно.

Глушитель – часть выпускной системы автомобиля поглощающей автомобильные шумы. Чем качественней эта деталь, тем ниже звук. Сразу возникает вопрос, какой глушитель качественнее, а какой нет? Хотите узнать ответ – читайте дальше.

В чем отличие глушителей для автомобиля

На российском рынке автозапчастей представлены десятки видов глушителей. Европейские, Российские, Китайские, Турецкие – как потребителю выбрать автомобильный глушитель высокого качества. Одни дороже, другие дешевле. Одни окрашенные, другие нет. Марка одних известна всем, а название других ни о чем не говорит. Мы не собираемся рекламировать определенный бренд, мы просто поможем вам сделать правильный выбор.

Главный критерий качества выпускной системы – это металл, из которого она изготовлена.

Автомобильные глушители производятся из следующих материалов:

— обычная сталь;

— нержавеющая сталь;

— алюминизированная сталь.

Большая часть глушителей для иномарок сделана из алюминизированной стали. Этот материал более стойкий к коррозии, чем обычная сталь, хотя стоимость алюминизированного глушителя не намного выше стального. Именно по этой причине Европа полостью прекратила выпуск обычных стальных глушителей. В России глушители из черной стали выпускаются по сей день.

Детали из обычной стали служат не более года, тогда как качественные алюминизированные глушители могут эксплуатироваться от 4 до 6 лет. Заметьте именно «качественные». К сожалению, есть и не качественные. Срок их службы не превышает одного года.

Проблема в том, что оценить качество алюминизированного глушителя на глаз невозможно. А вот от глушителя из «черной» стали можно отличить без труда. Детали из черной стали обычно окрашивают серебристой краской, а неокрашенные имеют черный цвет. Красят глушители лишь для того, чтобы они не заржавели до продажи. На этом полезные свойства покраски заканчиваются.

Детали выхлопной системы из нержавеющей стали в свободной продаже встречаются редко. Как правило, это оригинальные запчасти известных производителей.

Связано это с тем, что цена нержавейки существенно выше, и автолюбители не хотят платить эту разницу в деньгах. Некоторые автовладельцы не планируют ездить на своем авто более 2-3 лет, другие предпочтут заменить глушитель через те же 3 года.

Именно по этим причинам глушители из нержавейки не выпускается в больших количествах.

Еще одним важным аспектом качества глушителя является его внутренняя начинка. Это только на вид глушители разных производителей внешне похожи. Поглощение звука выхлопа зависит от нескольких факторов:

— наличие двухслойного корпуса;

— качество внутренних перфорированных труб;

— объема внутренней полости глушителя;

— термостойкость звукопоглощающей набивки и ее устойчивость к выдуванию.

Стоимость глушителя прямо пропорциональна его объемам. Один из вариантов снижения цены – упрощение конструкции. Многие недобросовестные производители выбирают этот путь, что отрицательно сказывается на способностях глушителя перерабатывать поток выхлопных газов.

Уменьшение объема банки и упрощение внутреннего устройства, приводит к более громкому звуку выхлопа. А использование низкокачественного акустического наполнителя, ведет к быстрой потере его звукопоглощающих свойств. Как следствие, появляется эффект «барабана».

Как и почему добавляются легирующие элементы в алюминий

Q Мне сообщили, что чистый алюминий обычно не используется в конструкционных целях и что для производства алюминия, обладающего достаточной прочностью для изготовления конструкционных компонентов, необходимо необходимо добавить к алюминию другие элементы. Какие элементы добавляют в эти алюминиевые сплавы? Как они влияют на характеристики материала? И в каких приложениях используются эти сплавы?

A — Полученная вами информация в основном верна.Было бы очень необычно найти чистый алюминий (серия сплавов 1ххх), выбранный для изготовления конструкций из-за его прочностных характеристик. Хотя серия 1xxx представляет собой почти чистый алюминий, они будут реагировать на деформационное упрочнение, особенно если они содержат значительное количество примесей, таких как железо и кремний. Однако даже в состоянии деформационного упрочнения сплавы серии 1ххх имеют очень низкую прочность по сравнению с другими сериями алюминиевых сплавов. Когда сплавы серии 1xxx выбираются для применения в конструкции, их чаще всего выбирают из-за их превосходной коррозионной стойкости и / или их высокой электропроводности.Чаще всего сплавы серии 1xxx применяются в алюминиевой фольге, шинах электрических шин, металлизации проволоки, резервуарах для химикатов и системах трубопроводов.

Добавление легирующих элементов в алюминий является основным методом, используемым для производства ряда различных материалов, которые можно использовать в широком спектре конструкционных приложений.

Если мы рассмотрим семь обозначенных серий алюминиевых сплавов, используемых для деформируемых сплавов, мы сразу сможем определить основные легирующие элементы, используемые для производства каждой из серий сплавов.Затем мы можем пойти дальше и изучить влияние каждого из этих элементов на алюминий. Я также добавил некоторые другие часто используемые элементы и их влияние на алюминий.

Серия Первичный легирующий элемент

1xxx Алюминий — 99,00% или больше

2xxx Медь

3xxx Марганец

4xxx Кремний

5xxx Магний

6xxx Магний и кремний

7xxx Цинк

Основные эффекты легирующих элементов в алюминии следующие:

Медь (Cu) 2xxx — Алюминиево-медные сплавы обычно содержат от 2 до 10% меди с небольшими добавками других элементов.Медь обеспечивает значительное увеличение прочности и способствует дисперсионному твердению. Введение меди в алюминий также может снизить пластичность и коррозионную стойкость. Повышена склонность к растрескиванию при затвердевании алюминиево-медных сплавов; следовательно, некоторые из этих сплавов могут быть наиболее сложными для сварки алюминиевыми сплавами. Эти сплавы включают одни из самых прочных, термически обрабатываемых алюминиевых сплавов. Чаще всего сплавы серии 2xxx применяются в аэрокосмической, военной технике и ракетных плавниках.

Марганец (Mn) 3xxx — Добавление марганца к алюминию несколько увеличивает прочность за счет упрочнения раствора и улучшает деформационное упрочнение, не снижая заметно пластичность или коррозионную стойкость. Это материалы средней прочности, не поддающиеся термической обработке, которые сохраняют прочность при повышенных температурах и редко используются в основных конструкционных приложениях. Чаще всего сплавы серии 3ххх применяются в кухонной утвари, радиаторах, конденсаторах кондиционирования воздуха, испарителях, теплообменниках и связанных с ними системах трубопроводов.

Кремний (Si) 4xxx — Добавление кремния к алюминию снижает температуру плавления и улучшает текучесть. Сам по себе кремний в алюминии дает сплав, не поддающийся термической обработке; однако в сочетании с магнием он дает дисперсионно-твердеющий термообработанный сплав. Следовательно, в серии 4xxx есть как термически обрабатываемые, так и не подлежащие термической обработке сплавы. Добавки кремния к алюминию обычно используются для изготовления отливок. Чаще всего сплавы серии 4xxx применяются для присадочной проволоки для сварки плавлением и пайки алюминия.

Магний (Mg) 5xxx — Добавление магния к алюминию увеличивает прочность за счет упрочнения твердого раствора и улучшает их способность к деформационному упрочнению. Эти сплавы являются самыми прочными алюминиевыми сплавами, не поддающимися термической обработке, и поэтому широко используются в конструкциях. Сплавы серии 5ххх производятся в основном в виде листов и пластин и лишь иногда в виде прессованных изделий. Причина этого в том, что эти сплавы быстро затвердевают при деформации и, следовательно, их трудно и дорого подвергать экструзии.Некоторые распространенные области применения сплавов серии 5xxx — кузова грузовиков и поездов, здания, бронетранспортеры, кораблестроение, танкеры-химовозы, сосуды под давлением и криогенные резервуары.

Магний и кремний (Mg 2 Si) 6xxx — Добавление магния и кремния к алюминию дает соединение силицид магния (Mg 2 Si). Образование этого соединения обеспечивает серию 6ххх их термообрабатываемость. Сплавы серии 6xxx легко и экономично экструдируются, и по этой причине их чаще всего можно найти в широком ассортименте экструдированных форм.Эти сплавы образуют важную дополнительную систему со сплавом серии 5ххх. Сплав серии 5ххх, используемый в форме пластины, и сплав 6ххх часто присоединяются к пластине в экструдированной форме. Некоторые из распространенных применений сплавов серии 6xxx — поручни, приводные валы, секции автомобильных рам, велосипедные рамы, трубчатая мебель для газонов, строительные леса, ребра жесткости и распорки, используемые на грузовиках, лодках и многих других конструкционных изделиях.

Цинк (Zn) 7xxx — Добавление цинка к алюминию (в сочетании с некоторыми другими элементами, в первую очередь, магнием и / или медью) позволяет получать термически обрабатываемые алюминиевые сплавы высочайшей прочности.Цинк значительно увеличивает прочность и способствует дисперсионному твердению. Некоторые из этих сплавов могут быть подвержены коррозионному растрескиванию под напряжением и по этой причине обычно не свариваются плавлением. Другие сплавы этой серии часто свариваются плавлением с отличными результатами. Некоторые из обычных применений сплавов серии 7xxx — аэрокосмическая промышленность, бронетехника, бейсбольные биты и велосипедные рамы.

Железо (Fe) — Железо является наиболее распространенной примесью алюминия и специально добавляется в некоторые чистые сплавы (серия 1ххх), чтобы обеспечить небольшое увеличение прочности.

Хром (Cr) — Хром добавляется в алюминий для контроля структуры зерна, предотвращения роста зерна в алюминиево-магниевых сплавах и для предотвращения перекристаллизации в сплавах алюминий-магний-кремний или алюминий-магний-цинк во время термообработки. Хром также снижает подверженность коррозии под напряжением и повышает ударную вязкость.

Никель (Ni) — Никель добавляют в сплавы алюминия с медью и алюминий с кремнием для повышения твердости и прочности при повышенных температурах и для снижения коэффициента расширения.

Титан (Ti) — Титан добавляется в алюминий в основном в качестве измельчителя зерна. Эффект измельчения зерна титана усиливается, если бор присутствует в расплаве или если он добавляется в виде лигатуры, содержащей бор, в значительной степени объединенный в TiB 2 . Титан часто добавляют в присадочную проволоку из алюминия, поскольку он улучшает структуру сварного шва и помогает предотвратить растрескивание сварного шва.

Цирконий (Zr) — Цирконий добавляется к алюминию для образования мелкодисперсного осадка интерматаллических частиц, препятствующих перекристаллизации.

Литий (Li) — Добавление лития к алюминию может значительно повысить прочность и, модуль Юнга, обеспечить дисперсионное твердение и снизить плотность.

Свинец (Pb) и висмут (Bi) — Свинец и висмут добавляются в алюминий для облегчения стружкообразования и улучшения обрабатываемости. Эти легко обрабатываемые сплавы часто не поддаются сварке, поскольку свинец и висмут образуют легкоплавкие компоненты и могут давать плохие механические свойства и / или высокую чувствительность к образованию трещин при затвердевании.

Резюме:

Сегодня в промышленности используется множество алюминиевых сплавов — более 400 деформируемых сплавов и более 200 литейных сплавов в настоящее время зарегистрированы в Алюминиевой ассоциации. Безусловно, одним из наиболее важных факторов, которые необходимо учитывать при сварке алюминия, является определение типа свариваемого сплава на основе алюминия. Если тип основного материала свариваемого компонента недоступен из надежного источника, выбор подходящей процедуры сварки может оказаться затруднительным.Есть несколько общих рекомендаций относительно наиболее вероятного типа алюминия, используемого в различных областях, таких как упомянутые выше. Однако очень важно знать, что неверные предположения относительно химического состава алюминиевого сплава могут привести к очень серьезным последствиям для характеристик сварного шва. Настоятельно рекомендуется произвести точную идентификацию типа алюминия, а также разработать и протестировать процедуры сварки для проверки характеристик сварки.


.

Знаете ли вы, как вести сзади?

Leadership concept using red paper ship among white В мире, полном лидеров, Нельсон Мандела выделяется как один из самых эффективных и достойных восхищения людей в истории. Несомненно, мы можем извлечь много уроков из его примера, и один из них — как вести себя сзади.

В своей автобиографии «Долгий путь к свободе» Мандела писал: «Лучше вести сзади, а других ставить впереди, особенно когда вы празднуете победу, когда происходят хорошие вещи. Вы выходите на передовую, когда есть опасность.Он сравнил такое руководство с пастырством, описывая, как великий лидер «остается позади стада, позволяя самому проворному выйти вперед, а остальные следуют за ним, не осознавая все время, что ими руководят сзади». Руководя сзади, вы даете возможность всем членам вашей команды участвовать в движении организации вперед, максимизируя инновации. Так как же на самом деле выглядит ведение сзади?

Задайте цели и параметры. Идет сзади по-прежнему активное лидерство.Это означает формирование культуры вашей организации и стимулирование изменений. Чтобы вести сзади, вам нужно построить сильное сообщество, объединенное общими ценностями и целями. Как руководитель, вы должны четко обозначить цель группы, будь то разработка нового продукта или решение проблемы, с которой сталкивается ваша организация. Убедитесь, что все стремятся к одним и тем же целям, но оставьте место для разных решений. Вы также хотите продвигать набор основных ценностей, которые объединят вашу команду и помогут реализовать идеи.Ваша организация ценит устойчивость? Разнообразие? Экспериментирование? Эти ценности должны стать строительными блоками вашей команды, и вы как руководитель должны их определять.

Развивайте инновации. Наш традиционный взгляд на лидерство в деловом мире — лидер в центре внимания. Мы часто считаем, что главный лидер должен выдвигать, а затем воплощать в жизнь все лучшие идеи. Однако лидерство сзади часто отводит лидерам второстепенную роль. Это может показаться нелогичным и потребовать от вас немного гордости, но это может быть наиболее эффективным способом создания широко распространенных инноваций.Цель — дать возможность членам вашей команды самим стать новаторами и лидерами. Ведя сзади, вы должны оказывать поддержку и вдохновение. Создавайте возможности для обучения и роста, такие как семинары и совместную рабочую среду, и поощряйте новые идеи. Позволяя всем членам команды руководить изнутри, вы максимизируете инновации и хорошую работу, которую может произвести ваша команда. Вы также поощряете всех членов команды вкладывать средства в ваш успех. Это рецепт великих вещей.

Шаг вперед в ключевые моменты. Помните, в своей автобиографии Нельсон Мандела отметил, что пастырь «выйдет на передовую, когда возникнет опасность». Хотя вести сзади часто означает играть вспомогательную роль, бывают моменты, когда необходимо сделать шаг вперед. Это особенно актуально, если вы заметили, что ваша команда сбивается с пути. Хотя вы хотите доверять идеям своей команды, вам следует опираться на собственный опыт и знания, чтобы при необходимости внести исправления.Во время кризиса вы также можете захотеть взять бразды правления в свои руки. Например, если вам нужно немедленное решение внезапной проблемы, подход прямого руководства может быть более подходящим, чем руководство сзади.

Помните, что руководство сзади — это лишь одна из множества эффективных стратегий лидерства. Как правило, он лучше всего работает в несрочных условиях, где есть время и место для постепенного развития новых идей. Вам также нужна команда людей, которые готовы использовать возможности для инноваций.В глобальной среде лидерства с другими развивающимися лидерами руководство сзади может быть отличным способом раскрыть потенциал каждого.

Моника П. Хокинс — генеральный директор Professional Pipeline Development Group. Чтобы оставить комментарий, отправьте электронное письмо [email protected] .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *