Что такое pb в химии: Оксид свинца II

Содержание

Свинец химический элемент — свойства и применение

Свинец — это один из редких самородных металлов, имеющий бело-серебристый цвет. Он мягкий, легкоплавкий, пластичный.

Этот металл был известен уже в древние времена. В данной статье мы поговорим об использовании, производстве, физических и химических свойствах плюмбума Pb — химического элемента таблицы Менделеева.

Что такое свинец

Это элемент в химической таблице под атомным номером 82, он же Pb (Plumbum).

В классическом виде он обычно имеет серебряный цвет. Удельный вес — 11,35 г/см3. 

История открытия химического элемента Pb

На ближнем Востоке свинец стал известен ещё с 3 тысячелетия до нашей эры, где он участвовал в создании кирпичей, статуй и разных бытовых предметов. Его сопоставляли Сатурну.

Археологические раскопки, которые проводились на территории Древнего царства Египта, помогли найти свинцовые изделия. Подобные открытия сделаны и на территории бывшей Месопотамии и Армении.

Его использовали не только в качестве самостоятельного металла для изделия, но также для очищения серебра и золота. Затем металлу нашли новую задачу – им обшивали корпуса кораблей и применяли в медицинских целях.

В конце 17 века появилось хрустальное стекло за счет добавления в стекло свинца. После, из него стали изготавливать пули.

Характеристика свинца

Если вас интересует, какого цвета свинец, то ответ следующий — плюмбум имеет голубовато-серый оттенок. Он плотный и тяжелый. Достаточно несложно добывается.

Как и любой из существующих металлов, свинец отличается своими физическими и химическими особенностями, которые и отличают его от других металлов.

Физические свойства

Металл не отличает высокая твердость. Это довольно мягкий металл, легко режущийся лезвием. Плавится при невысокой температуре плавления (327 градусов).

Температура кристаллизации — 327 градусов, а температура кипения — 2022 К. Плюмбум подлежит достаточно быстрому окислению на открытом воздухе.

Полезно знать: неприятным критерием свинца является его токсичность: в хроническом течении он собирается во внутренних органах и костной ткани, чем вызывает нарушения в организме живых существ.

Теплопроводность в два раза меньше железа.

Молярная масса 207,2 а. е. м. ± 0,1 а. е. м.

Формула простых оксидов — оксид свинца (II) PbO и оксид свинца (IV) PbO2 и смешанный Pb3O4 (свинцовый сурик).

Химические свойства

Является металлом малоактивным, стоящим в электрохимическом ряду перед водородом, что делает его легко вытесняемым иными металлами из растворов его солей. Степень окисления +2.

Заметно растворим в лимонной, уксусной и винной кислотах. Бесцветные ядовитые жидкости — производные свинца. Его пары ядовиты.

Некоторые школьники и студенты спрашивают — свинец магнитится или нет? Нет, такие качества отсутствуют.

Помимо токсичности, хочется знать, свинец радиоактивен или нет? Искусственные изотопы металла радиоактивны.

Основные соединения свинца

Галогениды образуются, взаимодействуя с фтором, хлором, бромом, йодом, и астатом. Халькогениды — с кислородом, серой, селеном, теллуром, и полонием. Пниктиды — с азотом и фосфором.

Области применения

Элемент получил широкое применение:

  1. В электротехнической системе, благодаря своей сопротивляемости коррозии, применяется в целях защиты кабелей, сверхпроводников, применяются свинцовые аккумуляторы.
  2. В военной промышленности — делают пули и снаряды, взрывчатки и детонаторы.
  3. В медицине — является защитником от радиации (пример: обследование рентгеном).
  4. В производстве — свинец входит в состав цемента, используется для защитных барьеров керамики и стекла.

Люди, боящиеся отравления свинцом, спрашивают — где можно найти свинец? В домашних условиях его можно обнаружить в аккумуляторах, в кабелях.

Производство свинца

Около половины металла производится из руд. Годовая добыча составляет 5 млн. тонн. Переработка крайне выгодна в плане экономии.

Приемы получения свинца это:

  • пирометаллургический;
  • гидрометаллургический.

В пирометаллургическом способе имеющиеся компоненты переплавляются, а во втором — наблюдается разложение существующих концентратов.

Наибольшими объёмами добычи свинцовой руды могут быть отмечены такие страны, как:

  • Китай;
  • Мексика;
  • Австралия;
  • США;
  • Перу.

Добыча свинца в России

Седьмое место по производству этого металла занимает Россия. Доля РФ в запасах этого метала чуть более 2% из-за его низкой концентрации в местных месторождениях. Причем свинец отправляется на экспорт.

Было высчитано, что на территории России находится около 70 месторождений свинца, производящих 93% процента этого металла в таких регионах, как: Красноярский край, Республика Бурятия, Читинская область, Алтайский край и Приморский край.

Можно это выявить в процентном соотношении:

  • Сибирь – приблизительно 75%;
  • Урал – около 15%;
  • Дальний Восток – немногим меньше 10%.

Нахождение в природе

Обычно металл перемешан с каким-либо другим металлом, например, с оловом, а не встречается в чистом виде.

Галенит

Свинец – является стадией распада урана, поэтому может находиться в урановых рудах. Свинец получается из такого сырья, как галенит.

Заключение

Свинец — это металл, который уже известен людям многие тысячи лет. Такая наука, как химия, сейчас помогает разобраться в его свойствах, чтобы правильно и экономно употребить. Его месторождения располагаются во многих частях Земли.

На мировом рынке его цена достаточно стабильна. Благодаря уникальности своих физико-химических свойств, Pb применяется во многих сферах и отраслях, подлежит импорту и экспорту.

Фтор

Фтор
Атомный номер 9
Внешний вид простого вещества Фтор в сосуде Бледно-жёлтый газ,
чрезвычайно химически активен.
Очень ядовит.
Свойства атома
Атомная масса
(молярная масса)
18,998403 а. е. м. (г/моль)
Радиус атома 71 пм
Энергия ионизации
(первый электрон)
1680,0 (17,41) кДж/моль (эВ)
Электронная конфигурация [He] 2s2 2p5
Химические свойства
Ковалентный радиус 72 пм
Радиус иона (-1e)133 пм
Электроотрицательность
(по Полингу)
3,98
Электродный потенциал 0
Степени окисления −1
Термодинамические свойства простого вещества
Плотность (при −189 °C)1,108 г/см³
Молярная теплоёмкость 31,34 Дж/(K·моль)
Теплопроводность 0,028 Вт/(м·K)
Температура плавления 53,53 K
Теплота плавления (F-F) 0,51 кДж/моль
Температура кипения 85,01 K
Теплота испарения 6,54 (F-F) кДж/моль
Молярный объём 17,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки моноклинная
Параметры решётки 5,50 b=3,28 c=7,28 β=90.0 Å
Отношение c/a
Температура Дебая n/a K
F 9
18,9984
[He]2s22p5
Фтор

Фтор — элемент главной подгруппы седьмой группы, второго периода периодической системы химических элементов Менделеева, с атомным номером 9. Обозначается символом F Fluorum. Фтор — чрезвычайно химически активный неметалл и самый сильный окислитель, является самым лёгким элементом из группы галогенов. Простое вещество

фтор (CAS-номер: 7782-41-4) при нормальных условиях — двухатомный газ бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор (формула F2). Очень ядовит.

История

Схема атома фтора

Первое соединение фтора — флюорит (плавиковый шпат) CaF2 — описано в конце XV века под названием «флюор». В 1771 году Карл Шееле получил плавиковую кислоту.

Как один из атомов плавиковой кислоты, элемент фтор был предсказан в 1810 году, а выделен в свободном виде лишь семьдесят шест лет спустя Анри Муассаном в 1886 году электролизом жидкого безводного фтористого водорода, содержащего примесь кислого фторида калия KHF2.

Происхождение названия

Название «фтор» (φθόρος — разрушение), предложенное Андре Ампером в 1810 году, употребляется в русском и некоторых других языках; во многих странах приняты названия, производные от латинского «Fluorum» (которое происходит, в свою очередь, от

fluere — «течь», по свойству соединения фтора, флюорита (CaF2), понижать температуру плавления руды и увеличивать текучесть расплава).

Распространение в природе

Содержание фтора в атомных процентах в природе показано в таблице:

Объект Содержание
Почва 0,02
Воды рек 0,00002
Воды океана 0,0001
Зубы человека 0,01

В природе значимые скопления фтора содержатся разве что только в минерале флюорите.

В некоторой степени относительно богаты фтором растения чечевица и лук

Содержанием в почве фтор обязан вулканическим газам, за счет того, что в их состав обычно входит большое количество фтороводорода.

Изотопный состав

Фтор является моноизотопным элементом, так как в природе существует только один стабильный изотоп фтора 19F. Известны еще 17 радиоактивных изотопов фтора с массовым числом от 14 до 31, и один ядерный изомер — 18Fm. Самым долгоживущим из радиоактивных изотопов фтора является 18F с периодом полураспада 109,771 минуты, важный источник позитронов, использующийся в позитрон-эмиссионной томографии.

Ядерные свойства изотопов фтора

Изотоп Относительная масса, а.е.м. Период полураспада Тип распада Ядерный спин Ядерный магнитный момент
17F 17,0020952 64,5 c β+-распад в 17O 5/2 4.722
18F 18,000938 1,83 часа β+-распад в 18O 1  
19F 18,99840322 Стабилен 1/2 2.629
20F 19,9999813 11 c β-распад в 20Ne 2 2.094
21F 20,999949 4,2 c β-распад в 21Ne 5/2  
22F 22,00300 4,23 c β-распад в 22Ne 4  
23F 23,00357 2,2 c β-распад в 23Ne 5/2  

Магнитные свойства ядер

Ядра изотопа 19F имеют полуцелый спин, поэтому возможно применение этих ядер для ЯМР-исследований молекул. Спектры ЯМР-19F являются достаточно характеристичными для фторорганических соединений.

Электронное строение

Применение метода МО для молекулы F2

Электронная конфигурация атома фтора следующая: 1s22s22p5. Атомы фтора в соединениях могут проявлять степень окисления равную −1. Положительные степени окисления в соединениях не реализуются, так как фтор является самым электроотрицательным элементом.

Квантовохимический терм атома фтора — ²P3/2

Строение молекулы

С точки зрения теории молекулярных орбиталей, строение двухатомной молекулы фтора можно охарактеризовать следующей диаграммой. В молекуле присутствует 4 связывающих орбители и 3 разрыхляющих. Очевидно, что порядок связи в молекуле равен 1.

Кристаллическая решётка

Кристаллическая структура α-фтора (стабильная при атмосферном давлении)

Кристаллическая решётка фтора в твёрдом состоянии является моноклиной гранецентрированной со следующими параметрами решётки:

Параметр и значение
a 550 пм
b 328 пм
c 728 пм
α=β=γ 90°

Получение

Лабораторный метод получения фтора

Источником для производства фтора служит фтористый водород HF, получающийся в основном либо при действии серной кислоты H2SO4 на флюорит CaF2, либо при переработке апатитов и фосфоритов.

Лабораторный метод

Лабораторные условия — фтор можно получать с помощью химических установок. В медный сосуд 1, заполненный расплавом KF·3HF помещают медный сосуд 2, имеющий отверстия в дне. В сосуд 2 помещают толстый никелевый анод. Катод помещается в сосуд 1. Таким образом, в процессе электролиза газообразный фтор выделяется из трубки 3, а водород из трубки 4. Важным требованием является обеспечение герметичности системы, для этого используют пробки из фторида кальция со смазкой из оксида свинца (II) и глицерина.

В 1986 году, во время подготовки к конференции по поводу празднования 100-летия открытия фтора, Карл Кристе открыл способ чисто химического получения фтора с использованием реакции во фтороводородном растворе K2MnF6 и SbF5 при 150 °C:

K2MnF6 + 2SbF5 → 2KSbF6 + MnF3 + ½F2
2K2MnF6 + 4SbF5 → 4KSbF6 + 2MnF3 + F2
Хотя этот метод не имеет практического применения, он демонстрирует, что электролиз необязателен.

Промышленный метод

Промышленное производство фтора осуществляется электролизом расплава кислого фторида калия KF·3HF (часто с добавлениями фторида лития), который образуется при насыщении расплава KF фтористым водородом до содержания 40—41 % HF. Процесс электролиза проводят при температурах около 100 °C в стальных электролизёрах со стальным катодом и угольным анодом.

Физические свойства

Слабо светло-оранжевый газ, в малых концентрациях запах напоминает одновременно озон и хлор, очень агрессивен и ядовит.

Химические свойства

Самый активный неметалл, бурно взаимодействует почти со всеми веществами (редкие исключения — фторопласты), и с большинством из них — с горением и взрывом. Контакт фтора с водородом приводит к воспламенению и взрыву даже при очень низких температурах (до −252°C). В атмосфере фтора горят даже вода и платина:

2F2 + 2H2O → 4HF + O2

К реакциям, в которых фтор формально является восстановителем, относятся реакции разложения высших фторидов, например:

XeF8 → XeF6 + F2
MnF4 → MnF3 + 1/2 F2

Фтор также способен окислять кислород, образуя фторид кислорода OF2.

Хранение

Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жидким азотом) в аппаратах из никеля и сплавов на его основе (монель-металл), из меди, алюминия и его сплавов, латуни, нержавеющей стали.

Применение в химической деятельности (химической промышленноси)

Газообразный фтор используется для получения:
гексафторида урана UF6 из UF4, применяемого для разделения изотопов урана для ядерной промышленности.
трёхфтористого хлора ClF3 — фторирующий агент и мощный окислитель ракетного топлива
шестифтористой серы SF6 — газообразный изолятор в электротехнической промышленности
фторидов металлов (например, W и V), которые обладают некоторыми полезными свойствами
фреонов — хороших хладагентов
тефлонов — химически инертных полимеров
гексафтороалюмината натрия — для последующего получения алюминия электролизом
различных соединений фтора

 

Ракетная техника

Соединения фтора широко применяются в ракетной технике как окислитель ракетного топлива.

Применение в медицине

Соединения фтора широко применяются в медицине как кровезаменители.

Биологическая и физиологическая роль

Фтор является жизненно необходимым для организма элементом. В организме человека фтор, в основном, содержится в эмали зубов в составе фторапатита — Ca5F(PO4)3. При недостаточном (менее 0,5 мг/литр питьевой воды) или избыточном (более 1 мг/литр) потреблении фтора организмом могут развиваться заболевания зубов: кариеса и флюорозу (крапчатости эмали) и остеосаркомы, соответственно.

Малое содержание фтора разрушает эмаль за счет вымывания фтора из фторапатита с образованием гидроксоапатита, и наоборот.

Для профилактики кариеса рекомендуется использовать зубные пасты с добавками фтора или употреблять фторированную воду (до концентрации 1 мг/л), или применять местные аппликации 1-2 % раствором фторида натрия или фторида олова. Такие действия могут сократить вероятность появления кариеса на 30-50 %.

Предельно допустимая концентрация связанного фторав воздухе промышленных помещениях равен 0,0005 мг/литр.

Дополнительная информация

Фториды
Соединения фтора в ракетной технике
Соединения фтора в медицине
Категория:Соединения фтора

Фтор, Fluorum, F(9)
Фтор (Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (СаР,) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни — флюссе (Fliisse от лат. fluere — течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня — плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).

По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название «Шведская кислота».

Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 r. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч.- разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое — флюорин (Fluorine) по аналогии с тогдашним названием хлора — хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.

Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористо- водородной кислоты при 55°С (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор — один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский,1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.

Электронная конфигурация атома — Электронный учебник K-tree

Электронная конфигурация атома — это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов — 16й элемент периодической системы. Золото имеет 79 протонов — 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин «орбиталь», орбиталь — это волновая функция электрона, грубо — это область, в которой электрон проводит 90% времени.
N — уровень
L — оболочка
Ml — номер орбитали
Ms — первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число — это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) — два электрона
На p-оболочке три орбитали (L=1) — шесть электронов
На d-оболочке пять орбиталей (L=2) — десять электронов
На f-оболочке семь орбиталей (L=3) — четырнадцать электронов

Магнитное квантовое число ml

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали «-1», «0» и «1». Магнитное квантовое число обозначается буквой ml.

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения Ml=-2,Ml=-1,Ml=0, Ml=1,Ml=2.

Спиновое квантовое число ms

Спин — это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается ms

Главное квантовое число n

Главное квантовое число — это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,…7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона

Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, Ml=0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Энергетические уровни с подуровнями для наглядности изображены ниже, сверху вниз расположены уровни и цветом разделены подуровни:

Здесь, сверху-вниз показаны энергетические уровни (1-7), слева-направо разделены по группам электронные подуровни (s,p,d,f), в каждой ячейке располагаются по два электрона в противоположных направлениях. Общий принцип распределения электронов такой, что энергетические подуровни заполняются в порядке суммы главного и орбитального квантовых чисел, то есть: 1S, 2S, 2P, 3S, 3P, 4S, 3D и так далее, если сумма одинакова, то сначала заполняется уровень с меньшим главным квантовым числом N.

У некоторых элементов имеются отклонения в формировании электронной конфигурации, а именно у 24Cr, 29Cu, 41Nb, 42Mo, 44Ru, 45Rh, 46Pd, 47Ag, 78Pt, 79Au

You need to enable JavaScript to run this app.

Проверьте себя, составьте электронную конфигурацию для элементов #7, #12 и #21, затем проверьте себя по таблице ниже.

ЭлементНазваниеЭлектронная конфигурацияЭнергетических уровней
1Hводород1s 11
2Heгелий1s 21
3Liлитий1s 22s 12
4Beбериллий1s 22s 22
5Bбор1s 22s 22p 12
6Cуглерод1s 22s 22p 22
7Nазот1s 22s 22p 32
8Oкислород1s 22s 22p 42
9Fфтор1s 22s 22p 52
10Neнеон1s 22s 22p 62
11Naнатрий1s 22s 22p 63s 13
12Mgмагний1s 22s 22p 63s 23
13Alалюминий1s 22s 22p 63s 23p13
14Siкремний1s 22s 22p 63s 23p23
15Pфосфор1s 22s 22p 63s 23p33
16Sсера1s 22s 22p 63s 23p43
17Clхлор1s 22s 22p 63s 23p53
18Arаргон1s 22s 22p 63s 23p63
19Kкалий1s 22s 22p 63s 23p64s 14
20Caкальций1s 22s 22p 63s 23p64s 24
21Scскандий1s 22s 22p 63s 23p64s 23d14
22Tiтитан1s 22s 22p 63s 23p64s 23d24
23Vванадий1s 22s 22p 63s 23p64s 23d34
24Crхром1s 22s 22p 63s 23p64s 13d54
25Mnмарганец1s 22s 22p 63s 23p64s 23d54
26Feжелезо1s 22s 22p 63s 23p64s 23d64
27Coкобальт1s 22s 22p 63s 23p64s 23d74
28Niникель1s 22s 22p 63s 23p64s 23d84
29Cuмедь1s 22s 22p 63s 23p64s 13d104
30Znцинк1s 22s 22p 63s 23p64s 23d104
31Gaгаллий1s 22s 22p 63s 23p64s 23d104p14
32Geгерманий1s 22s 22p 63s 23p64s 23d104p24
33Asмышьяк1s 22s 22p 63s 23p64s 23d104p34
34Seселен1s 22s 22p 63s 23p64s 23d104p44
35Brбром1s 22s 22p 63s 23p64s 23d104p54
36Krкриптон1s 22s 22p 63s 23p64s 23d104p64
37Rbрубидий1s 22s 22p 63s 23p64s 23d104p65s15
38Srстронций1s 22s 22p 63s 23p64s 23d104p65s25
39Yиттрий1s 22s 22p 63s 23p64s 23d104p65s24d15
40Zrцирконий1s 22s 22p 63s 23p64s 23d104p65s24d25
41Nbниобий1s 22s 22p 63s 23p64s 23d104p65s14d45
42Moмолибден1s 22s 22p 63s 23p64s 23d104p65s14d55
43Tcтехнеций1s 22s 22p 63s 23p64s 23d104p65s24d55
44Ruрутений1s 22s 22p 63s 23p64s 23d104p65s14d75
45Rhродий1s 22s 22p 63s 23p64s 23d104p65s14d85
46Pdпалладий1s 22s 22p 63s 23p64s 23d104p64d105
47Agсеребро1s 22s 22p 63s 23p64s 23d104p65s14d105
48Cdкадмий1s 22s 22p 63s 23p64s 23d104p65s24d105
49Inиндий1s 22s 22p 63s 23p64s 23d104p65s24d105p15
50Snолово1s 22s 22p 63s 23p64s 23d104p65s24d105p25
51Sbсурьма1s 22s 22p 63s 23p64s 23d104p65s24d105p35
52Teтеллур1s 22s 22p 63s 23p64s 23d104p65s24d105p45
53Iйод1s 22s 22p 63s 23p64s 23d104p65s24d105p55
54Xeксенон1s 22s 22p 63s 23p64s 23d104p65s24d105p65
55Csцезий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s16
56Baбарий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s26
57Laлантан1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d16
58Ceцерий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f26
59Prпразеодим1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f36
60Ndнеодим1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f46
61Pmпрометий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f56
62Smсамарий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f66
63Euевропий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f76
64Gdгадолиний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d16
65Tbтербий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f96
66Dyдиспрозий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f106
67Hoгольмий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f116
68Erэрбий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f126
68Tmтулий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f136
70Ybиттербий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f146
71Luлютеций1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d16
72Hfгафний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d26
73Taтантал1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d36
74Wвольфрам1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d46
75Reрений1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d56
76Osосмий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d66
77Irиридий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d76
78Ptплатина1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d96
79Auзолото1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d106
80Hgртуть1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106
81Tlталлий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p16
82Pbсвинец1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p26
83Biвисмут1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p36
84Poполоний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p46
85Atастат1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p56
86Rnрадон1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p66
87Frфранций1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s17
88Raрадий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s27
89Acактиний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d17
90Thторий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f07
91Paпротактиний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d17
92Uуран1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d17
93Npнептуний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d17
94Puплутоний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d17
95Amамериций1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f77
96Cmкюрий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d17
97Bkберклий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d17
98Cfкалифорний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f107
99Esэйнштейний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f117
100Fmфермий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f127
101Mdменделеевий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f137
102Noнобелий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f147
103Lrлоуренсий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d17
104Rfрезерфордий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d27
105Dbдубний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d37
106Sgсиборгий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d47
107Bhборий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d57
108Hsхассий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d67
109Mtмейтнерий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d77
110Dsдармштадтий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d87
111Rgрентгений1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d97
112Cnкоперниций1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107
113Nhнихоний1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p17
114Flфлеровий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p27
115Mcмосковий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p37
116Lvливерморий1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p47
117Tsтеннесcин1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p57
118Ogоганесон1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p67
Таблица 2. Электронная конфигурация атомов

Если Вы хотите узнать, как составить электронную конфигурацию, обратитесь к статье «как написать электронную конфигурацию»

Квантовые числа электронов в атомах

степень окисления, химические свойства, формула, применение

Свинец (Pb) – мягкий серебристо-белый или сероватый металл 14-й (IVa) группы периодической таблицы с атомным номером 82. Это очень податливое, пластичное и плотное вещество, которое плохо проводит электричество. Электронная формула свинца – [Хе] 4f14 5d10 6s2 6p2. Известный в древности и считавшийся алхимиками старейшим из металлов, он очень долговечен и устойчив к коррозии, о чем свидетельствует продолжающаяся эксплуатация водопроводных труб, установленных древними римлянами. Символ Pb в химической формуле свинца является аббревиатурой латинского слова plumbum.

Распространенность в природе

Свинец часто упоминается в ранних библейских текстах. Вавилоняне использовали металл для изготовления пластин для письма. Римляне делали из него водопроводные трубы, монеты и даже кухонные принадлежности. Результатом последнего стало отравление населения свинцом в эпоху императора Августа Цезаря. Соединение, известное как белый свинец, использовалось в качестве декоративного пигмента еще в 200 г. до н. э.

В весовом отношении содержание свинца в земной коре соответствует олову. В космосе на 106 атомов кремния приходится 0,47 атома свинца. Это сопоставимо с содержанием цезия, празеодима, гафния и вольфрама, каждый из которых рассматривается как достаточно дефицитный элемент.

Добыча

Хотя свинца не так много, процессы естественной концентрации привели к значительным залежам коммерческого значения, особенно в Соединенных Штатах, Канаде, Австралии, Испании, Германии, Африке и Южной Америке. Редко встречающийся в чистом виде свинец присутствует в нескольких минералах, но все они имеют второстепенное значение, за исключением сульфида PbS (галенита), который является основным источником промышленного производства данного химического элемента во всем мире. Металл также содержится в англезите (PbSO4) и церуссите (PbCO3). К началу XXI в. ведущими мировыми производителями концентрата свинца являлись такие страны, как Китай, Австралия, США, Перу, Мексика и Индия.

Свинец может быть извлечен путем обжига руды с последующей плавкой в доменной печи или методом прямой плавки. Примеси удаляются в ходе дополнительной очистки. Почти половина всего очищенного свинца извлекается из переработанного лома.

Химические свойства

Элементарный свинец может быть окислен до иона Pb2+ ионами водорода, но нерастворимость его большинства солей делает этот химический элемент устойчивым к воздействию многих кислот. Окисление в щелочной среде происходит легче и благоприятствует образованию растворимых соединений при степени окисления свинца +2. Оксид PbO2 с ионом Pb4+ является одним из наиболее сильных окислителей в кислом растворе, но он сравнительно слабый в щелочном растворе. Окисление свинца облегчается путем образования комплексов. Электроосаждение лучше всего проводить из водных растворов, содержащих гексафторсиликат свинца и гексафторсиликатную кислоту.

На воздухе металл быстро окисляется, образуя тусклое серое покрытие, ранее считавшееся субоксидом Pb2O. Теперь общепризнано, что это смесь Pb и оксида PbO, который защищает металл от дальнейшей коррозии. Хотя свинец растворяется в разбавленной азотной кислоте, он лишь поверхностно подвергается воздействию соляной или серной кислот, потому что образующиеся нерастворимые хлориды (PbCl2) или сульфаты (PbSO4) предотвращают продолжение реакции. Химические свойства свинца, обуславливающие его общую стойкость, позволяют использовать металл для изготовления кровельных материалов, оболочки электрических кабелей, размещенных в грунте или под водой, и в качестве прокладки для водопроводных труб и конструкций, служащих для транспортировки и переработки коррозионных веществ.

Применение свинца

Известна только одна кристаллическая модификация данного химического элемента с плотно упакованной металлической решеткой. В свободном состоянии проявляется нулевая степень окисления свинца (как и любого другого вещества). Широкое применение элементарной формы элемента обусловлено ее пластичностью, легкостью сварки, низкой температурой плавления, высокой плотностью и способностью поглощать гамма- и рентгеновское излучение. Расплавленный свинец является отличным растворителем и позволяет концентрировать свободное серебро и золото. Конструкционное применение свинца ограничено его низкой прочностью на растяжение, усталостью и текучестью даже при малой нагрузке.

Элемент находит применение в производстве аккумуляторных батарей, в боеприпасах (выстрелах и пулях), в составе припоя, типографском, подшипниковых, легких сплавах и сплавах с оловом. В тяжелом и промышленном оборудовании для снижения шума и вибрации могут использоваться детали из соединений свинца. Поскольку металл эффективно поглощает коротковолновое электромагнитное излучение, он применяется для защитного экранирования ядерных реакторов, ускорителей частиц, рентгеновского оборудования и контейнеров для транспортировки и хранения радиоактивных материалов. В составе оксида (PbO2) и сплава с сурьмой или кальцием элемент используется в обычных аккумуляторных батареях.

Действие на организм

Химический элемент свинец и его соединения токсичны и накапливаются в организме в течение длительного периода времени (данное явление известно как кумулятивное отравление) до достижения смертельной дозы. Токсичность возрастает по мере увеличения растворимости соединений. У детей накопление свинца может привести к когнитивным расстройствам. У взрослых оно вызывает прогрессирующую болезнь почек. К симптомам отравления относятся боль в животе и диарея, за которыми следуют запоры, тошнота, рвота, головокружение, головная боль и общая слабость. Устранение контакта с источником свинца обычно является достаточным для лечения. Устранение химического элемента из инсектицидов и пигментных красок, а также использование респираторов и других защитных устройств в местах воздействия значительно уменьшили число случаев отравления свинцом. Признание того, что тетраэтилсвинец Pb (C2H5)4 в виде антидетонационной присадки к бензину загрязняет воздух и воду, привело к прекращению его применения в 1980-х годах.

Биологическая роль

Свинец не играет никакой биологической роли в организме. Токсичность этого химического элемента вызвана его способностью имитировать такие металлы, как кальций, железо и цинк. Взаимодействие свинца с теми же молекулами белка, что и эти металлы, приводит к прекращению их нормального функционирования.

Ядерные свойства

Химический элемент свинец образуется как в результате нейтронно-абсорбционных процессов, так и при распаде радионуклидов более тяжелых элементов. Существуют 4 стабильных изотопа. Относительная распространенность 204Pb составляет 1,48 %, 206Pb – 23,6 %, 207Pb – 22,6 % и 208Pb – 52,3 %. Стабильные нуклиды являются конечными продуктами естественного радиоактивного распада урана (до 206Pb), тория (до 208Pb) и актиния (до 207Pb). Известно более 30 радиоактивных изотопа свинца. Из них в процессах естественного распада участвуют 212Pb (ряд тория), 214Pb и 210Pb (серия урана) и 211Pb (ряд актиния). Атомный вес естественного свинца варьируется от источника к источнику в зависимости от его происхождения.

Монооксиды

В соединениях степени окисления свинца в основном равны +2 и +4. В число наиболее важных из них входят оксиды. Это PbO, в котором химический элемент находится в состоянии +2, диоксид PbO2, в котором проявляется высшая степень окисления свинца (+4), и тетраоксид, Pb3O4.

Монооксид существует в двух модификациях – литарга и глета. Литарг (альфа-оксид свинца) представляет собой красное или красновато-желтое твердое вещество с тетрагональной кристаллической структурой, стабильная форма которого существует при температурах ниже 488 °С. Глет (бета-монооксид свинца) является желтым твердым веществом и имеет орторомбическую кристаллическую структуру. Его стабильная форма существует при температурах, превышающих 488 °C.

Обе формы нерастворимы в воде, но растворяются в кислотах с образованием солей, содержащих ион Pb2+ или в щелочах с образованием плюмбитов, которые имеют PbO22--ион. Литарг, который образуется при реакции свинца с кислородом воздуха, является самым важным коммерческим соединением этого химического элемента. Вещество используется в больших количествах непосредственно и как исходный материал для получения других соединений свинца.

Значительное количество PbO расходуется при изготовлении пластин свинцово-кислотных аккумуляторных батарей. Высококачественная стеклянная посуда (хрусталь) содержит до 30 % литарга. Это увеличивает показатель преломления стекла и делает его блестящим, прочным и звонким. Литарг также служит осушителем в лаках и применяется в производстве свинцовокислого натрия, который используется для удаления из бензина неприятно пахнущих тиолов (органических соединений, содержащих серу).

Диоксид

В природе PbO2 существует в виде коричнево-черного минерала платтнерита, который коммерчески производится из тетраоксида триалада окислением хлором. Он разлагается при нагревании и дает кислород и оксиды с более низкой степенью окисления свинца. PbO2 используется в качестве окислителя при производстве красителей, химикатов, пиротехники и спиртов и как отвердитель для полисульфидных каучуков.

Тетраоксид трисвинца Pb3O4 (известный как свинцовый сурик или миниум) получают путем дальнейшего окисления PbO. Это пигмент от оранжево-красного до кирпично-красного цвета, который входит в состав коррозионностойких красок, применяемых для защиты подверженных воздействию окружающей среды железа и стали. Он также реагирует с оксидом железа с образованием феррита, используемого при изготовлении постоянных магнитов.

Ацетат

Также экономически значимым соединением свинца степени окисления +2 является ацетат Pb(C2H3O2)2. Это водорастворимая соль, получаемая путем растворения глета в концентрированной уксусной кислоте. Общая форма, тригидрат, Pb(C2H3O2)2 · 3H2O, называемый сахаром свинца, используется в качестве закрепителя при окрашивании тканей и как сиккатив в некоторых красках. Кроме того, он применяется в производстве других соединений свинца и в установках для цианирования золота, где он в виде PbS служит для осаждения из раствора растворимых сульфидов.

Другие соли

Основные карбонат, сульфат и силикат свинца когда-то широко применялись в качестве пигментов для белых красок наружного применения. Однако с середины ХХ в. использование т. н. белых свинцовых пигментов значительно уменьшилось из-за беспокойства по поводу их токсичности и сопутствующей опасности для здоровья человека. По той же причине практически прекратилось применение арсената свинца в инсектицидах.

Помимо основных состояний окисления (+4 и +2) свинец может иметь отрицательные степени -4, -2, -1 в фазах Цинтля (например, BaPb, Na8Ba8Pb6), а +1 и +3 – в свинецорганических соединениях, таких как гексаметилдиплюмбан Pb2(CH3)6.

ХиМиК.ru — § 5. Подгруппа германия

Содержание элементов этой подгруппы в земной коре по ряду германий (2·10–4 %) – олово (6·10–4 %) – свинец (1·10–4 %) изменяется лишь незначительно. Германий принадлежит к весьма рассеянным элементам. Основной формой природного нахождения олова является минерал касситерит (SnO2 ), а свинца – галенит (PbS).

Германий обычно получают как побочный продукт при переработке некоторых цинковых руд. Выплавка олова ведется путем восстановления касситерита углем. Обычным способом переработки галенита является перевод его путем накаливания на. воздухе в РbО, после чего полученная окись свинца восстанавливается до металла углем:

2PbS + ЗО2 = 2SO2 + 2PbO

и

РbО + С = СО + Рb

По физическим свойствам Ge, Sn и Рb являются типичными металлами. Некоторые их константы сопоставлены ниже:

Твердость и хрупкость рассматриваемых элементов быстро уменьшаются по ряду Ge–Sn–Pb: в то время как германий довольно тверд и очень хрупок, свинец царапается ногтем и прокатывается в тонкие листы. Олово занимает промежуточное положение. Все элементы подгруппы германия дают сплавы между собой и со многими другими металлами. В некоторых случаях при сплавлении образуются химические соединения (например, типа Mg2 Э).

1) Металлический германий находит важное, но ограниченное по объему применение в радиотехнике. Олово используется главным образом для лужения железа с целью предохранения его от ржавления («белая жесть» консерзной промышленности). Свинец применяется для изготовления аккумуляторных пластин, обкладок электрических кабелей, пуль и дроби, для защиты от рентгеновского излучения и гамма–лучей, а также как коррозионностойкий материал в химической промышленности (трубопроводы и т. д.). Очень большие количества олова и свинца расходуются на изготовление ряда технически важных сплавов. Ежегодная мировая добыча олова составляет около 200 тыс. т, а свинца – около 2 млн. т.

2) Кроме обычного олова (плотность 7,3), известны еще две аллотропические кодификации этого элемента. Ниже +13°С устойчива серая порошкообразная Форма с плотностью 5,8. Скорость перехода в нее обычного олоза очень мала.

Поэтому такой переход, сопровождающийся превращением оловянного предмета в серый порошок, при охлаждении олова обычно не присходит. Однако он наблюдается на некоторых старинных сосудах и медалях из олова.

Выше 161 °С олово переходит (при 200 °С уже довольно быстро) в модификацию с плотностью 6,6, характеризующуюся большой хрупкостью. Поэтому н гретое выше 200 °С олово можно легко растереть в мелкий порошок.

Под действием кислорода воздуха германий и олово не изменяются, а свинец окисляется. Поэтому свинцовые предметы не имеют блестящего металлического вида. Пленка окисла в обычных условиях хорошо предохраняет металл от дальнейшего окисления, но при нагревании оно идет дальше и свинец постепенно окисляется нацело. При нагревании на воздухе начинает окисляться и олово. Германий взаимодействует с кислородом лишь выше 700 °С. Все три элемента способны соединяться с галоидами и серой.

Вода не действует на германий и олово. Со свинца она постепенно снимает окисную пленку и тем способствует его дальнейшему окислению. В ряду напряжений Ge располагается между медью и серебром, a Sn и Pb перед водородом. Лучшим растворителем свинца является разбавленная азотная кислота, герхмания и олова – царская водка. Взаимодействие с ней обоих элементов идет по схеме:

ЗЭ + 4HNO3 + 12НСl = ЗЭСl4 + 4NO + 8Н2 О

Все производные свинца сильно ядовиты.

3) Отношение элементов подгруппы германия к отдельным кислотам существенно различно. Соляная кислота не действует на германий. Олово лишь очень медленно растворяется в разбавленной НСl, тогда как с концентрированной легко (особенно при нагревании) идет реакция по уравнению:

Sn + 2HCl = SnCl2 + H2

Свинец при взаимодействии с НСl покрывается слоем труднорастворимого PbСl2 , препятствующим дальнейшему растворению металла. Аналогично идет взаимодействие свинца и с серной кислотой, однако лишь до тех пор, пока концентрация ее не превышает 80%. При более высоких концентрациях H2 SO4 образуется растворимая кислая соль Pb(HSO4)2 уже не защищающая свинец от дальнейшего действия кислоты. На германий разбавленная серная кислота не действует, на Sn – почти не действует. В горячей концентрированной H2 SO4 оба элемента растворяются по схеме:

Э + 4H2 SO4 = Э(SО4 )2 + 2SO3 + 4Н2 О

При действии на Ge азотной кислоты образуется осадок гидрата двуокиси – хGеО2 ·Н2 О. Аналогично–по схеме Sn+ 4HNO3 = SnO2 + 4NO2 +2H2 O действует концентрированная азотная кислота и на олово. Напротив, в сильно разбавленной холодной HNO3 олово медленно растворяется с образованием Sn(NО3 )2 . Водород при этом не выделяется, а идет на восстановление азотной кислоты. При действии HNO3 на свинец, по реакции 3Pb + 8HNO3 = 3Pb(NO3 )2 + 2NO + 4H2 O образуется Pb(NО3 )2 . Соль эта нерастворима в концентрированной НNО3 и предохраняет металл от дальнейшего действия кислоты. Напротив, в воде она хорошо растворима, и поэтому в разбавленной азотной кислоте свинец легко растворяется.

Растворы щелочей на германий почти не действуют. Олово и свинец медленно растворяются в сильных щелочах по схеме Э + 2NaOH = Na2 ЭO2 + H2 . Растворимостью олова в щелочах пользуются для снятия его со старых консервных банок, после чего металл выделяют из раствора электролитически. Ввиду высокой стоимости олова его регенерация (обратное получение) имеет большое экономическое значение.

Характерные для германия и его аналогов положительные валентности 4 и 2. Поэтому известны два ряда производных рассмагриваемых элементов, Для германия гораздо более типичны соединения, в которых он четырехвалентен. У олова различие Появляется менее резко, хотя при обычных условиях производные четырехвалентного Sn более устойчивы. Напротив, для свинца значительно более типичны соединения, в которых он двухвалентен. В связи с этим производные двухвалентных Ge и Sn являются восстановителями (притом очень сильными), а соединения четырехвалентного Pb – окислителями (также очень сильными). Но переход от более низкой к более высокой положительной валентности, как правило, легче идёт в щелочной среде, а обратный переход – в кислой. Поэтому восстановительные свойства двухвалентных Ge и Sn в щелочной среде выражены сильнее, чем в кислой, а четырехвалентный Pb, будучи очень сильным окислителем в кислой среде, в щелочной таковым не является.

Для элементов подгруппы германия известны окислы типов ЭО и ЭО2 . Первые называют обычно окисями, вторые – двуокисями. При накаливании на воздухе Ge и Sn образуются их в ы с–шие окислы, а при накаливании Pb – низший. Остальные могут быть получены лишь косвенным путем. Например, PbO2 обычно получают взаимодействием уксуснокислого свинца с хлорной известью по уравнению:

Pb(СН3 СОО)2 + Са(Сl)ОСl + Н2 О = PbО2 + СаСl2 + 2СН3 СООН

Все рассматриваемые окислы представляют собой твердые вещества, причем GeO и SnO характеризуются черной окраской, PbO – желтовато–красной, GeO2 и SnO2 –белой, PbО2 –темно–коричневой.

Так как с водой эти окислы почти не соединяются, отвечающие им гидроокиси обычно получают действием сильных щелочей на растворы соответсвующих солей, например:

SnCl4 + 4NaOH = 4NaCl + Sn(OH)4

Pb(NO3)2 + 2NaOH = 2NaNO3 + Pb(OH)2

Они выделяются в виде осадков белого – Sn(OH)4 , коричневого – Ge(OH)2 и бурого – Pb(OH)2 цветов.

По химическим свойствам все рассматриваемые гидроксиды представляют собой амфотерные соещинения.

Характерность того или иного направления диссоциации отдельных представителей видна из следующего сопоставления:

Наиболее отчетливо кислотные свойства выражены у гидрата двуокиси германия, который все же является очень слабой кислотой. Основные свойства наиболее отчетливо выражены у Pb(ОН)2 , который сообщает воде заметную щелочную реакцию.

Ввиду своего амфотерного характера рассматриваемые гидроокиси растворяются и в сильных щелочах и в кислотах. При действии на них щелочей образуются соли кислот типа Н2 ЭО3 или Н2 ЭО2 , содержащие Ge, Sn или Pb в составе аниона, а при действии кислот – соли этих элементов с катионами Э2+ или Э4+.

От гидрата PbОг, как кислоты, и Pb(ОН)2, как основания, производятся два смешанных окисла свинца – Pb2 Оз (т. н, закись–окись) оранжевого цвета и Pb3 О4 (т. н. сурик) ярко–красного цвета. Первый является свинцовой солью м ет асвинцовой (Н2 PbО3 ), второй – ортосвинцовой кислоты (Н4 PbО4 ). Таким образом, оба окисла – PbPbО3 и Pb2 PbО4 –содержат в своем составе атомы свинца различной валентности. В воде они практически нерастворимы.

Ввиду слабости основных свойств гидратов двуокисей Ge, Sn и Pb их производные с катионами Э4+ подвергаются в растворах сильному гидролизу. Наибольшее значение имеют галоге–ниды типа ЭГ4 , которые известны для всех рассматриваемых элементов и галоидов кроме PbВr4 и PbJ4 ).

По физическим свойствам они (кроме SnF4 и PbF4 ) напоминают скорее не типичные соли, а аналогичные соединения Si и С. Например, SnCl4 является бесцветной жидкостью (т. пл. –32 °С, т. кип. 114°С).

Самым характерным химическим свойством галогенидов ЭГ4 является их склонность к реакциям присоединения. Так, SnCl4 образует комплексы с Н2 О, NH3 , окислами азота, РСl5 и т. д., равно как со многими органическими веществами. Весьма устойчивы комплексы большинства галогенидов ЭГ4 с галоидоводородными кислотами (главным образом типа H2 [ЭГ6 ]) и производные от подобных комплексных кислот соли. Например, раствор (NH4 )2 [SnCl6 ] показывает нейтральную реакцию на лакмус.

Соли кислородных кислот для двухвалентного олова (и германия) малохарактерны. Из них SnSO4 используется при электролитическом лужении (т. е. покрытии других металлов оловом). Подобно остальным производным Sn2+, соль эта ядовита.

В противоположность аналогичным соединениям олова соли двухвалентного свинца восстановителями не являются. Большинство их бесцветно и труднорастворимо в воде. Из часто встречающихся в практике хорошо растворяются ‘только азотнокислая [Pb(NO3 )2 ] и уксуснокислая [Pb(СН3 СОО)2 ].

Отвечающие типам 3S и 3S2сульфиды рассматриваемых элементов могут быть получены (кроме PbS2 ) как сухим путем (исходя из элементов), так и действием сероводорода на содержащие ионы Э2+или Э4+растворы соответствующих солей. В последнем случае образуются осадки следующих цветов:

GeS2 – белый

SnS2 – желтый

GeS – буро–красный

SnS – бурый

PbS – черный

В воде и разбавленных кислотах рассматриваемые сульфиды практически нерастворимы. Исключение представляет GeS2 , слегка растворимый в воде и гидролитически разлагающийся ею. Сульфиды типов ЭS и ЭS2 существенно отличаются друг от друга по своему отношению к сернистому ахммонию. В то время как на первые он не действует, вторые переводятся им в раствор с образованием аммонийных солей тиогерманиевой (H2 GeS3 ) и тиооловянной (H2 SnS3 ) кислот по схеме:

(NH4 )2 S + 3S2 = (NH4 )2 ЭS3

Эти тиокислоты в свободном состоянии неустойчивы. Поэтому при подкислении растворов их солей происходит отщепление H2 S и осаждение сульфида ЭS2 :

(NH4 )2 ЭS3 + 2НСl – 2NH4 Cl + H2 S + ЭS2

Несколько особняком в химии Ge, Sn и Pb стоят их водородные соединения. Для двухвалентных элементов они не характерны. Для четырехвалентных устойчивость их в ряду Ge–Sn–Pb Уменьшается настолько быстро, что существование PbH4 могло быть только доказано (по летучести свинца при его соприкосновении с атомарным водородом), но в индивидуальном состоянии он не получен. Гидриды германия и олова образуются как незначительные примеси к водороду при разложении кислотами сплавов этих элементов с магнием. От водорода они могут быть отделены охлаждением смеси газов жидким воздухом.

По физическим свойствам GeH4 и SnH4 похожи на аналогичные соединения Si и С. Они также представляют собой бесцветные газы с низкими температурами плавления и кипения, как это видно из приводимого ниже сопоставления.

При хранении гидриды германия и олова постепенно разлагаются на элементы. Оба они чрезвычайно ядовиты.

Отравление свинцом

Определение

· Свинец это мягкий и тяжелый металл, который является элементом и принадлежит к группе IV b периодической таблицы.

· Свинец (Pb) не метаболизируется, но может накапливаться и вызывать повреждение органов.

· Острое отравление свинцом (сатурнизм) – это наиболее распространенный вид интоксикации тяжелыми металлами, который приводит к повреждению костного мозга, нервной системы, печени, почек, фертильности и эндокринных органов.

· Источники воздействия тяжелых металлов обнаруживаются дома, на рабочем месте и в окружающей среде, но сатурнизм, тем не менее, является редким заболеванием.

· Явное отравление Pb можно лечить с хорошим эффектом.

Источники свинца

· Ежегодно в атмосферу попадает почти один миллиард тонн свинца из промышленности.

· Сжигание бензина (особенно тетраалкильных соединений) было наиболее важным источником с 1920-х годов.

· По статистике переход на неэтилированный бензин способствовал снижению содержания тяжелых металлов в плазме крови у американцев на 60-80%.

· Дорожная пыль ранее содержала большое количество Pb, на данный момент этот показатель снизился во многих странах.

· Воздействие веществ с возможностью отравления встречается как в промышленности (профессиональное), так и дома (бытовое).

Профессиональное отравление

Его можно получить на работе, связанной со следующей деятельностью:

· Производство аккумуляторов.

· Лакокрасочная и химическая промышленность.

· Производство трубопроводов ПВХ.

· Сортировка лома и отходов.

· Изготовление гончарных изделий.

· Противопожарная служба.

· Полиграфия.

· Бензиновая промышленность.

· Мероприятия по очистке.

· Добыча Pb (свинцовые рудники).

· Стекольные компании.

· Производство ювелирных изделий.

· Сварка, плавка, пайка.

Также существует вероятность получить отравление из загрязненных воздуха и воды, свинцовых игрушек, косметики, дорожной пыли, старой краски, боеприпасов.

Риск отравления свинцом

Поглощение организмом и возможность отравления зависит от нескольких факторов, таких как:

  1. Фактический источник воздействия (содержание и тип свинца).
  2. Абсорбционный путь (желудочно-кишечный тракт, легкие или кожа).
  3. Поведение человека (индивидуальное использование средств защиты).

Риск отравления повышен у:

  • маленьких детей, которые исследуют окрестности и тянут все в рот.
  • работников опасных производств, пренебрегающих техникой безопасности.

Поглощение и распределение Pb

Тяжелый металл поступает в организм человека 3 путями – посредством вдыхания, через кожу или систему пищеварения.

Ингаляция

· При воздействии свинца наиболее опасным является вдыхание через легкие.

· Поглощение Pb при вдыхании составляет 30-90%.

· Абсорбция зависит от типа соединения свинца (органического или неорганического), концентрации, размера частиц и дыхательного объема человека.

Из пищеварительного тракта

· У взрослых около 10%, а у детей — 30-50% Pb поступает с пищей или питьем.

· Абсорбция зависит от таких факторов, как количество, тип соединения и концентрация, и увеличивается при голодании и приеме соединений Pb с высокой растворимостью в желудочной кислоте.

· Недостаток железа, кальция и цинка увеличивает усвоение свинца.

Через кожу

Впитывание через кожу происходит, но редко является причиной отравления.

Распределение в органах

При динамическом равновесии показано такое распределение Pb в органах:

  1. 1% в крови, где 90% в эритроцитах и 10% в плазме.
  2. Менее 10% в мягких тканях — почки, нервная система, печень, селезенка, костный мозг.
  3. Более 90% отложено в скелете.

Воздействие, метаболизм и экскреция

· Метаболизм: Pb не метаболизируется в организме человека.

· Экскреция: почечная экскреция зависит от концентрации в плазме. Свинец в плазме и мягких тканях легче секретировать (T1 / 2 составляет 35 и 40 дней соответственно), чем Pb в скелете (T1 / 2 составляет 20-30 лет).

· Кроветворение: свинец блокирует ферменты в синтезе гема в предшественниках эритроцитов, таких как синтетаза d-амино-левулиновой кислоты (ALA-S), дегидрогеназа d-амино-левулиновой кислоты (ALA-DH) и феррокелатаза, которая является последней стадией синтеза гема. Это приводит к накоплению нескольких метаболитов, включая амино-лейколевую кислоту (АЛК), протопорфирины и копропорфирины. Пациент получает нормо- или микроцитарную анемию с базофильной пункцией эритроцитов за счет агрегатов рибосом. Было показано, что ингибирование синтеза грыжи начинается уже на уровне 0,5-1 ммоль / л в плазме и проявляется при значениях выше 3,5 ммоль / л.

· Периферическая нервная система. Pb вызывает сегментарную демиелинизацию и аксональную дегенерацию моторных нейронов периферических нервов с расслабленным парезом. Как правило, из-за этого опускают руки ( Radialis) и опускают ноги ( Peroneus), оба из которых уже были описаны во времена Гиппократа. Снижение скорости нервной проводимости регистрируется при уровнях в плазме 1,5-2 ммоль / л.

· Центральная нервная система. На нее также влияет Pb, который приводит к нейропсихологической токсичности с пониженной концентрацией, реактивностью, интеллектом и успеваемостью в школе. Поражение центральной нервной системы встречается чаще всего и более выражено у детей, чем у взрослых.

· Почки. Клетки в проксимальных канальцах почек уязвимы для действия свинца. Свинцово-белковые комплексы могут быть обнаружены в качестве основных ядер включения с помощью микроскопии. Почечная функция постепенно уменьшается. Кислотный ревматизм может возникать до разрушения канальцев с сопутствующим фиброзом и приводит к необратимой почечной недостаточности.

· Другие условия. Сатурнизм приводит к систолической гипертонии и снижению фертильности, как у женщин, так и у мужчин. Также известно, что Pb проходит через плаценту и накапливается у плода.

Диагностические критерии

Диагноз трудно установить, если не подозревать отравление свинцом. Диагностическими критериями при различных стадиях сатурнизма выступают:

Острое отравление:

· Симптомы и клинические признаки возникают в течение нескольких дней или недель.

· Основным симптомом является брюшная колика.

· У детей тяжелая энцефалопатия, судороги, кома и смерть.

· Реже встречаются выраженная слабость, снижение способности к концентрации внимания, потеря слуха, головная боль, запоры, периферическая невропатия и анемия.

Хроническое отравление:

· При медленном и низком уровне поглощения, накопление свинца происходит постепенно.

· Симптомы и результаты развиваются коварно, и часто начальная фаза является субклинической.

· Симптомы и результаты отравления значительно варьируются от неопределенных до летального состояния.

· Основным признаком является летаргия из-за анемии, обесцвечивание десен и кожи.

Симптомы отравления

Три наиболее часто поражаемые системы органов при отравлении свинцом — это кроветворная система, нервная система и почки. Ухудшение состояния проявляется в виде следующих симптомов:

· Расстройства центральной нервной системы.

· Пониженный IQ.

· Проблемы с речью.

· Когнитивная недостаточность.

· Снижение мелкой моторики.

· Апатия.

· Нарушение проводимости периферических нервов.

· Периферическая полинейропатия.

· Уменьшенное время реакции.

· У мужчин репродуктивная недостаточность: уменьшение либидо, снижение количества сперматозоидов (морфология и подвижность), понижение уровня тестостерона.

· У женщин: бесплодие, самопроизвольный аборт, преэклампсия, порок развития плода.

· Почечные расстройства.

· Гипертония.

· Трубчатая дисфункция.

· Клубочковая дисфункция.

· Почечная недостаточность.

· Потеря зрения.

· Нормо- или микроцитарная анемия с базофильной пункцией эритроцитов.

Диагностика

· Микроскопия костного мозга часто обнаруживает ризидробласты и дисплазию эритроцитов, а также пункцию базофилов.

· Симптомы со стороны почек и мочевыводящих путей — почечная недостаточность (повышенный креатинин и мочевина).

· Измерение уровня Pb в крови. На ранней стадии воздействия уровень свинца в плазме отражает количественные изменения в воздействии и поглощении и менее выражен по общему содержанию свинца в организме. Определение содержания Pb в цельной крови обычно приводит к значениям > 2 мкмоль / л из-за повышенной экспозиции и абсорбции.

· Измерение уровня свинца в моче. Тесты для определения ALA, PBG и порфиринов в моче, порфиринов в фекалиях и порфиринов в эритроцитах (порфирин-деаминазы) и свинца в крови при подозрении на порфирию.

Последствия отравления

Уровень свинца в крови и наблюдаемые биологические эффекты.

Дети:

· 7,5 мкмоль / л – смерть.

· 5 мкмоль / л – энцефалопатия, нефропатия, анемия, колика.

· 1,5 мкмоль / л — уменьшается метаболизм Витамин D.

· 1,0 мкмоль / л — скорость нервной проводимости уменьшается, увеличивается, содержание эри-протопорфирина, умственное развитие снижается, IQ уменьшается.

· 0,5 мкмоль / л — потеря слуха, снижение роста.

Взрослые:

· 5 мкмоль / л – энцефалопатия, тяжелая анемия, ожидаемая продолжительность жизни уменьшается.

· 2,5 мкмоль / л — уменьшается синтез гемоглобина, периферическая невропатия.

· 2,0 мкмоль / л — бесплодие (мужчины), нефропатия.

· 1,5 мкмоль / л — повышается кровяное давление, слух ослаблен, увеличивается содержание эри-протопорфирина.

· 1,0 мкмоль / л — содержание Ery-protoporphyrin увеличено (женщины).

· 0,5 мкмоль / л – гипертония.

Терапия

Цели лечения — предотвращение травм и смерти органов. Для этого проводятся следующие процедуры и мероприятия:

· Желудочное опорожнение от острого отравления.

· Атропин при коликах.

· Диазепам от судорог.

· Устранение источника свинца при хронических отравлениях.

· Хелаторное лечение.

Показания к лечению хелаторами

Хелаторное лечение зависит от уровня свинца в крови.

1. На уровне Pb ниже 2 микромолей / л достаточно общего наблюдения, контроля содержания элемента в крови и устранения текущих источников отравления. В случае появления симптомов следует рассмотреть хелаторное лечение, особенно у детей и беременных женщин. Тем не менее, исследование показало, что лечение детей с умеренно повышенными показателями содержания свинца не имело клинического эффекта.

2. На уровне Pb 2-3 мг / л. следует рассматривать хелаторную терапию в зависимости от тяжести состояния и проявления симптоматики.

3. При уровне Pb выше 3 мг / л лечение хелаторами обязательно.

Схема хелаторного лечения

Хелаторное лечение проводится такими препаратами, как димеркапторная кислота, Ca-EDTA, пеницилламин.

Димеркапторная кислота

· При лечении хелаторами мезо — 2,3-димеркапторная кислота (DMSA / Succimerum) вводится 30 мг / кг / сут перорально в трех дозах (как для взрослых, так и для детей).

· Доступны капсулы по 100 мг и 200 мг, но также можно использовать раствор для инъекций (35 мг / мл) для парентерального применения.

· Лечение проводится в сроки от 5 до 21 дня. Продолжительность зависит от тяжести, контроля образца крови и клинических условий.

· Сообщалось о незначительных и легких побочных эффектах, в основном, о желудочно-кишечных симптомах и крапивнице.

Ca-EDTA

· Ca-EDTA (Edetat) может быть альтернативой, когда DMSA не доступен, или в дополнение к энцефалопатии.

· Обычно 15-50 мг / кг / сут делят на 3-4 дозы, каждая в течение 1-2 часов в 500 мл глюкозы 5% или NaCl 0,9% внутривенно (альтернативно, добавляется доза лидокаина внутримышечно) в течение пяти дней, после чего следует перерыв лечения 1-2 недели.

· Максимальная суточная доза составляет 4 г для взрослых.

· Рекомендуется максимум четыре процедуры.

· При появлении признаков нового повреждения почек (белок / гематурия) или поражения печени (увеличение трансаминаз) лечение прекращают.

Пеницилламин

· Пеницилламин не одобрен для отравления свинцом, однако он упоминается в международной литературе как альтернатива вышеуказанному лечению.

· Рекомендуемое количество для взрослых установлено в дозе 250 мг x 4 перорально ежедневно в течение 4 дней, а для детей 30 мг / кг / день, разделенная на 4 дозы ежедневно в течение 4 дней и перерывом на 1 неделю между каждым периодом лечения.

· Капсулы выпускаются по 125 и 250 мг.

· Лечение прекращается при наличии признаков почечной травмы (белок / гематурия).

· Сообщалось о гематологических побочных эффектах и кожной сыпи.

Прогноз на выздоровление

Лечение прекращают, когда уровень свинца в крови ниже 2 микромолей / л. Для мониторинга эффективности и возможных побочных эффектов рекомендуется проводить измерение содержания свинца в крови и моче, тесты функции почек и печени и образцы мочи 24 часа в сутки и непосредственно перед каждым лечением.

Осложнения — сатурнизм повреждает костный мозг, нервную систему, печень, почки и эндокринные органы.

Прогноз — без лечения и в больших дозах отравление Pb может привести к летальному исходу.

Явное отравление свинцом лечится с хорошим эффектом.

О других видах отравлений

Узнайте больше о передозировке:

1. Ацетилсалициловой кислотой.

2. Бензодиазепиновыми препаратами.

3. Бензодиазепиноподобными снотворными средствами.

4. Бета-блокаторами.

свинец | Определение, использование, свойства и факты

Свинец (Pb) , мягкий серебристо-белый или сероватый металл группы 14 (IVa) периодической таблицы Менделеева. Свинец очень податлив, пластичен, плотен и плохо проводит электричество. Известный в древности и считающийся алхимиками старейшим из металлов, свинец обладает высокой прочностью и устойчивостью к коррозии, о чем свидетельствует продолжающееся использование свинцовых водопроводных труб, установленных древними римлянами. Символ Pb для обозначения свинца является сокращением латинского слова, обозначающего свинец, plumbum .

Encyclopædia Britannica, Inc.

Британская викторина

118 Названия и символы из таблицы Менделеева

Периодическая таблица Менделеева состоит из 118 элементов. Насколько хорошо вы знаете их символы? В этом тесте вам будут показаны все 118 химических символов, и вам нужно будет выбрать название химического элемента, который представляет каждый из них.

Свойства элемента
атомный номер 82
атомный вес 207,19
точка плавления 327,5 ° C (621,5 ° F)
точка кипения 1,744 ° C ( 3171,2 ° F)
плотность 11,29 грамм / см 3 при 20 ° C (68 ° F)
степени окисления +2, +4
электронная конфигурация [Xe ] 4 f 14 5 d 10 6 с 2 6 p 2 или 1 с 2 2 с 2 2 p 6 3 с 2 3 p 6 3 d 10 4 с 2 4 p 6 4 d 10 4 f 14 5 с 2 5 p 6 5 d 10 6 s 2 6 p 2

Возникновение и распространение

Свинец часто упоминается в ранних библейских источниках.Вавилоняне использовали металл в качестве пластин для записи надписей. Римляне использовали его для изготовления табличек, кальянов, монет и даже кухонной утвари; действительно, в результате последнего применения отравление свинцом было признано во времена Августа Цезаря. Соединение, известное как белый свинец, по-видимому, было приготовлено как декоративный пигмент по крайней мере еще в 200 г. до н. Э. Современные разработки относятся к разработке в конце 1700-х годов месторождений в районе Миссури-Канзас-Оклахома в Соединенных Штатах.

По весу содержание свинца в земной коре почти такое же, как и содержание олова.Космически на 10 6 атомов кремния приходится 0,47 атома свинца. Космическое содержание сравнимо с содержанием цезия, празеодима, гафния и вольфрама, каждый из которых считается достаточно дефицитным элементом.

Несмотря на то, что свинца не так много, естественные процессы концентрации привели к появлению значительных залежей, имеющих коммерческое значение, особенно в Соединенных Штатах, но также в Канаде, Австралии, Испании, Германии, Африке и Южной Америке. Значительные месторождения находятся в США, в западных штатах и ​​в долине Миссисипи.Свинец, редко встречающийся в свободном виде в природе, присутствует в нескольких минералах, но все они имеют второстепенное значение, за исключением сульфида PbS (галенита или свинца), который является основным источником производства свинца во всем мире. Свинец также содержится в англезите (PbSO 4 ) и церуссите (PbCO 3 ). К началу 21 века Китай, Австралия, США, Перу, Мексика и Индия были крупнейшими производителями свинца в концентрате.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской.Подпишитесь сегодня

Свинец можно извлечь путем обжига руды с последующей плавкой в ​​доменной печи или путем прямой плавки без обжига. Дополнительная очистка удаляет примеси, присутствующие в слитках свинца, полученных любым способом. Почти половина всего очищенного свинца извлекается из вторичного лома. (Для коммерческого производства см. обработка свинца.)

Использование металла

Известна только монокристаллическая модификация с плотноупакованной металлической решеткой.Свойства, которые определяют множество применений элементарного свинца, включают его пластичность, легкость сварки, низкую температуру плавления, высокую плотность и способность поглощать гамма-излучение и рентгеновское излучение. Расплавленный свинец — отличный растворитель и собиратель элементарного серебра и золота. Применение свинца в конструкции ограничено его низкой прочностью на растяжение и усталость, а также его тенденцией течь даже при небольшой нагрузке.

Свинец после резки быстро окисляется, образуя тускло-серый налет, который ранее считался недооксидом свинца, Pb 2 O, но теперь признан смесью свинца и монооксида свинца, PbO, который защищает металл от дальнейшей коррозии.Точно так же, хотя свинец растворим в разбавленной азотной кислоте, соляной или серной кислотами он подвергается воздействию только поверхностно, поскольку образующиеся нерастворимые хлоридные (PbCl 2 ) или сульфатные (PbSO 4 ) покрытия препятствуют продолжению реакции. Из-за этой общей химической стойкости значительные количества свинца используются в кровлях, в качестве покрытий для электрических кабелей, прокладываемых в земле или под водой, и в качестве футеровок для водопроводных труб, трубопроводов и конструкций для транспортировки и обработки коррозионных веществ.

Элементный свинец также может быть окислен до иона Pb 2+ ионами водорода, но нерастворимость большинства солей Pb 2+ делает свинец устойчивым к воздействию многих кислот. Окисление в щелочных условиях осуществить легче, и ему способствует образование растворимых частиц свинца в степени окисления +2. Оксид свинца (PbO 2 , со свинцом в качестве иона Pb 4+ ) является одним из наиболее сильных окислителей в кислотном растворе, но он сравнительно слаб в щелочном растворе.Легкость окисления свинца увеличивается за счет образования комплексов. Электроосаждение свинца лучше всего проводить из водных растворов, содержащих гексафторсиликат свинца и гексафторкремниевую кислоту.

Свинец имеет много других применений, самое крупное из которых — производство аккумуляторных батарей. Он используется в боеприпасах (дроби и пули), а также в составе припоя, металлического сплава, подшипниковых сплавов, легкоплавких сплавов и олова. В тяжелом и промышленном оборудовании листы и другие детали, изготовленные из соединений свинца, могут использоваться для гашения шума и вибрации.Поскольку свинец эффективно поглощает коротковолновое электромагнитное излучение, он используется в качестве защитного экрана вокруг ядерных реакторов, ускорителей частиц, рентгеновского оборудования и контейнеров, используемых для транспортировки и хранения радиоактивных материалов. Вместе с составным оксидом свинца (PbO 2 ) и сплавами свинца-сурьмы или свинца-кальция он используется в обычных аккумуляторных батареях.

химия | Определение, темы и история

Химия , наука, изучающая свойства, состав и структуру веществ (определяемых как элементы и соединения), превращения, которым они подвергаются, и энергию, которая выделяется или поглощается во время этих процессов.Каждое вещество, будь то природное или искусственно созданное, состоит из одного или нескольких из ста с лишним видов атомов, которые были идентифицированы как элементы. Хотя эти атомы, в свою очередь, состоят из более элементарных частиц, они являются основными строительными блоками химических веществ; нет кислорода, ртути или золота, например, меньше, чем атом этого вещества. Поэтому химия занимается не субатомной областью, а свойствами атомов и законами, управляющими их комбинациями, и тем, как знание этих свойств может быть использовано для достижения определенных целей.

Популярные вопросы

Что такое химия?

Химия — это отрасль науки, которая изучает свойства, состав и структуру элементов и соединений, то, как они могут изменяться, и энергию, которая выделяется или поглощается при изменении.

Как связаны химия и биология?

Химия изучает вещества, то есть элементы и соединения, а биология изучает живые существа. Однако эти две области науки встречаются в дисциплине биохимии, которая изучает вещества в живых существах и то, как они изменяются в организме.

Большой проблемой в химии является разработка последовательного объяснения сложного поведения материалов, того, почему они выглядят такими, как они есть, что придает им долговечные свойства и как взаимодействия между различными веществами могут приводить к образованию новых веществ и разрушение старых. С самых первых попыток понять материальный мир в рациональных терминах химики изо всех сил пытались разработать теории материи, которые удовлетворительно объясняли бы как постоянство, так и изменение.Упорядоченная сборка неразрушимых атомов в маленькие и большие молекулы или протяженные сети перемешанных атомов обычно считается основой постоянства, в то время как реорганизация атомов или молекул в различные структуры лежит в основе теорий изменений. Таким образом, химия включает изучение атомного состава и структурной архитектуры веществ, а также различных взаимодействий между веществами, которые могут привести к внезапным, часто бурным реакциям.

Химия занимается также использованием природных веществ и созданием искусственных.Кулинария, ферментация, производство стекла и металлургия — все это химические процессы, восходящие к истокам цивилизации. Сегодня винил, тефлон, жидкие кристаллы, полупроводники и сверхпроводники представляют собой плоды химической технологии. В 20-м веке произошел значительный прогресс в понимании удивительной и сложной химии живых организмов, и молекулярная интерпретация здоровья и болезней открывает большие перспективы. Современная химия, опираясь на все более сложные инструменты, изучает материалы размером с отдельные атомы и такие большие и сложные, как ДНК (дезоксирибонуклеиновая кислота), которая содержит миллионы атомов.Можно даже разработать новые вещества, которые обладают желаемыми характеристиками, а затем синтезировать. Скорость, с которой продолжают накапливаться химические знания, впечатляет. С течением времени было охарактеризовано и произведено более 8 000 000 различных химических веществ, как природных, так и искусственных. В 1965 году их было меньше 500 000.

С интеллектуальными проблемами химии тесно связаны проблемы, связанные с промышленностью. В середине XIX века немецкий химик Юстус фон Либих заметил, что богатство нации можно измерить по количеству производимой серной кислоты.Эта кислота, необходимая для многих производственных процессов, остается сегодня ведущим химическим продуктом промышленно развитых стран. Как признал Либих, страна, производящая большое количество серной кислоты, — это страна с сильной химической промышленностью и сильной экономикой в ​​целом. Производство, распространение и использование широкого спектра химических продуктов характерно для всех высокоразвитых стран. Фактически, можно сказать, что «железный век» цивилизации сменяется «полимерным веком», поскольку в некоторых странах общий объем производимых полимеров превышает объем железа.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Область химии

Давно прошли те дни, когда один человек мог надеяться получить подробные знания во всех областях химии. Те, кто преследует свои интересы в определенных областях химии, общаются с другими, разделяющими те же интересы. Со временем группа химиков со специализированными исследовательскими интересами становится членами-основателями области специализации. Области специализации, возникшие в начале истории химии, такие как органическая, неорганическая, физическая, аналитическая и промышленная химия, а также биохимия, по-прежнему представляют наибольший общий интерес.Однако в XX веке произошел значительный рост в областях полимерной, экологической и медицинской химии. Более того, продолжают появляться новые специальности, например, пестициды, судебная медицина, компьютерная химия.

10 примеров химии в повседневной жизни — StudiousGuy

Если я спрошу вас, что приходит вам в голову, когда вы слышите слово ХИМИЯ, я почти уверен, что вы представите себя стоящим в химической лаборатории и держащим в руках различные лабораторные инструменты.Это не? Но если присмотреться к окружающему миру, в любую секунду происходят бесконечные химические реакции. Таким образом, можно справедливо сказать, что химия составляет большую часть вашей повседневной жизни. Химия и химические реакции не ограничиваются только лабораториями, но и миром вокруг вас. Элемент углерод образует основную единицу органических, неорганических и металлоорганических соединений. Прямо в тот момент, когда вы ложитесь спать, пока не проснетесь, в каждой клетке вашего тела происходят бесконечные химические процессы.Даже процессы происходят, когда вы просыпаетесь, все ваши повседневные действия, такие как питьевая вода, принятие душа, приготовление пищи, мытье машины, смех или плач, регулируются различными химическими процессами. Давайте обсудим несколько примеров химии, которые происходят вокруг нас:

1. Состав тела

Ваше тело — завораживающее место. Углерод и кислород — два самых важных элемента тела. Другие элементы, которые присутствуют в вашем теле, — это азот, фосфор, водород, кислород, кальций, калий, сера, магний и т. Д.

2. Химия эмоций

Когда вы чувствуете себя счастливым, грустным, экстатическим, расслабленным или напряженным, в вашем теле происходит множество химических реакций. Именно из-за химических посредников, называемых нейротрансмиттерами, высвобождаемых в мозгу, вы можете влюбиться и плакать реками из-за горя.

3. Химия в производстве пищевых продуктов

Растения производят пищу для себя посредством фотосинтеза; что само по себе является сложной химической реакцией.Химическая реакция, происходящая при фотосинтезе, является наиболее распространенной и жизненно важной химической реакцией. Животные также выделяют энергию для выполнения повседневной деятельности посредством аналогичных респираторных химических реакций.

6 CO 2 + 6 H 2 O + светлый → C 6 H 12 O 6 + 6 O 2

4. Химия в гигиене

Непосредственно перед тем, как съесть пищу, вы должны мыть руки с мылом.Не правда ли? Очищающее действие мыла основано на его способности действовать как эмульгирующий агент. Мыла представляют собой соли жирных кислот натрия или калия; образуется в результате химической реакции, называемой омылением. Мыло взаимодействует с молекулой жира или масла, что, в свою очередь, приводит к более чистой поверхности.

ЭКОЛОГИЧЕСКАЯ ХИМИЯ

Химия окружающей среды — это научное исследование химических и биохимических явлений, происходящих в естественных местах. Его не следует путать с зеленой химией , которая направлена ​​на снижение потенциального загрязнения в его источнике.Его можно определить как изучение источников, реакций, переноса, эффектов и судьбы химических веществ в воздухе, почве и водной среде; и влияние человеческой деятельности и биологической активности на них. Химия окружающей среды — это междисциплинарная наука, которая включает химию атмосферы, воды и почвы, а также в значительной степени опирается на аналитическую химию и связана с экологическими и другими областями науки. Химия окружающей среды включает в себя сначала понимание того, как работает незагрязненная среда, какие химические вещества в каких концентрациях присутствуют в природе и с какими эффектами.Без этого было бы невозможно точно изучить влияние человека на окружающую среду в результате выброса химикатов. Химики-экологи используют ряд концепций из химии и различных наук об окружающей среде, чтобы помочь в изучении того, что происходит с химическими веществами в окружающей среде. Важные общие концепции химии включают понимание химических реакций и уравнений, растворов, единиц измерения, отбора проб и аналитических методов.

Загрязнение. Загрязнитель — это вещество, присутствующее в природе на уровне, превышающем обычные уровни, или которого иначе не было бы. Это может быть связано с деятельностью человека. Термин «загрязнитель» часто используется взаимозаменяемо с загрязняющим веществом , которое является веществом, оказывающим пагубное воздействие на окружающую среду. Хотя загрязнитель иногда определяется как вещество, присутствующее в окружающей среде в результате деятельности человека, но не имеющее вредных последствий, иногда бывает так, что токсические или вредные эффекты от загрязнения становятся очевидными только позднее.«Среда» (например, почва) или организм (например, рыба), на который воздействует загрязнитель или загрязнитель, называется рецептором , тогда как приемник представляет собой химическую среду или виды, которые удерживают загрязнитель и взаимодействуют с ним.

Экологические показатели. Химические показатели качества воды включают растворенный кислород (DO), химическую потребность в кислороде (COD), биохимическую потребность в кислороде (BOD), общее количество растворенных твердых веществ (TDS), pH, питательные вещества (нитраты и фосфор), тяжелые металлы (включая медь, цинк). , кадмий, свинец и ртуть) и пестициды.

Приложения. Основные области применения химии окружающей среды указаны ниже.

Оценка риска или опасности воздействия на окружающую среду . Фактор риска химикатов определен для безопасности окружающей среды. Это обнаруживается различными методами.

Управление окружающей средой . Химия окружающей среды изучает появление новых химических продуктов и их поведение в атмосфере.Полный жизненный цикл химиката используется для правильного обращения и методов хранения химикатов, которые помогают обнаружить неблагоприятное воздействие на окружающую среду.

Охрана подземных вод . Грунтовые воды загрязнены загрязненной почвой и сточными водами. Таким образом, идентификация загрязняющих веществ осуществляется в химии окружающей среды, зная концентрацию, распределение и судьбу опасных химических веществ.

Защита поверхностных вод. Влияние загрязняющих веществ в фазе воды и отложений измеряется для проверки качества поверхностных вод.Это осуществляется процессами седиментации, бактериологическими процессами, радиационными процессами и т. Д.

Защита почвы . Качество почвы проверяется путем измерения воздействия на нее загрязняющих веществ. Это анализируется различными химическими и экотоксикологическими показателями.

Более чистое производство и управление отходами . Это включает управление отходами и их повторное использование, а также восстановление территории. Повторное использование и восстановление территории производятся путем анализа загрязняющих веществ в пробах окружающей среды и знания об их природе.Повторное использование отходов предполагает инновационное использование отходов.

:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *