Лекция № 18 Напряжения и деформации при сварке (понятия, виды, классификация, причины их возникновения, способы борьбы).
Деформацией называется изменение формы и размеров твердого тела под действием усилия. Если форма тела восстанавливается после прекращения действия силы, то деформация является упругой. Если тело не принимает первоначальной формы, то оно получило остаточную, или пластическую деформацию.
Напряжением называется сила, отнесенная к единице поверхности или к единице площади поперечного сечения тела. В зависимости от направления действующих усилий могут возникать напряжения растяжения, сжатия, изгиба, среза и кручения. Напряжение, при котором происходит разрушение, называется пределом усталости. Главной причиной пониженной усталостной прочности сварных соединений является сосредоточение напряжений. Причинами концентрации напряжений являются:
1.Дефекты швов – острый надрез, непровар, трещина и другие, расположенные поперек действия растягивающих напряжений.
2.Неправильные очертания сварного шва, например, швы с большой выпуклостью и неплавным переходом от наплавленного металла к основному.
3.Нерациональная конструкция сварных соединений
Меры борьбы с деформациями
Мероприятия, выполняемые до сварки
Рациональное конструирование сварных изделий. В процессе конструирования необходимо: ограничивать количество наплавленного металла уменьшением катетов швов или угла скоса кромок; не допускать пересечения большого количества швов; не располагать сварные швы там, где действуют максимальные напряжения от внешних нагрузок, и размещать их симметрично; применять преимущественно стыковые швы и т. п.
Правильная сборка деталей с учетом возможных деформаций.
При этом наиболее часто применяют метод обратных деформаций (рис.29). Зная, что шов после охлаждения всегда сокращается в размерах, можно заранее предугадать характер возможных напряжений и деформаций и произвести предварительный выгиб свариваемых деталей и противоположную сторону. Величина обратного выгиба определяется расчетным или опытным путем
При сборке деталей следует избегать прихваток, которые создают жесткое закрепление деталей и способствуют возникновению значительных остаточных напряжений. Лучше, применять сборочные приспособления, допускающие некоторое перемещение деталей при усадке металла.
Рис. 29Обратные деформации и положения элементов изделия после сварки
А – стыковое соединение двух пластин, б- тавровая балка, в – полка таврового соединения
Мероприятия, выполняемые в процессе сварки
Рациональная последовательность наложения сварных швов
Сварные конструкции следует изготовлять так, чтобы замыкающие
При сварке полотнищ из отдельных листов (рис.30а) в первую очередь нужно выполнять поперечные швы отдельных поясов, чтобы обеспечить их свободную усадку, а затем сваривать пояса между собой продольными швами. В противном случае возможно образование трещин в местах пересечения поперечных и продольных швов.
При сварке двутавровых балок (рис.30 б) в первую очередь выполняют стыковые соединения стенок и полок, а затем — угловые поясные швы.
При сварке цилиндрических сосудов из нескольких обечаек (рис.30в) сначала выполняют продольные швы обечаек, а затем обечайки сваривают между собой кольцевыми швами. При ручной и механизированной сварке швы большой протяженности рекомендуется накладывать в обратноступенчатом порядке.
Рис. 30 Последовательность наложения швов (1 -8) при сварке:
А – полотнище из отдельных листов, б – двутавровой балки,
В – цилиндрического сосуда
Уравновешивание деформаций. В этом случае (рис.31) швы выполняют в такой последовательности, при которой последующий шов вызывает деформации обратного направления по сравнению с деформациями от предыдущего шва. Этот способ может быть использован при симметричном расположении швов.
Рис.31 Уравновешивание деформации:
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Деформации и напряжения, возникающие в процессе сварки | Строительный справочник | материалы — конструкции
Термические воздействия, которым подвергаются свариваемые соединения, приводят к образованию напряжений в узлах кристаллической решетки и даже к определенным деформациям. Напряжения и деформации могут быть как собственными, существующими в кристаллической решетке без приложения внешних сил, так и внешними, возникающими под действием приложенных нагрузок.
Собственные напряжения и деформации
Собственные напряжения и деформации могут быть временными, то есть существовать только в процессе термического воздействия, и остаточными, устойчиво сохраняющимися после прекращения сварки. Если деформация после прекращения сварки исчезает, то ее называют упругой. Деформация, полностью или частично оставшаяся после прекращения прикладывания сил, называется пластической. Некоторые виды сварочных деформаций приведены на рис. 1.
Рис.1. Сварочные деформации: А — деформация пластины; Б — деформация углового соединения; В — деформация стыкового соединения |
Если деформации меняют размеры изделия или искажают его геометрию, то их называют общими. Общие деформации обычно проявляются в небольших по размерам деталях, когда термическое воздействие охватывает значительную часть их объема. В крупногабаритных деталях, когда термическое влияние сварочного процесса распространяется на относительно небольшие зоны, могут возникать местные деформации, проявляющиеся в виде выпучин, хлопунов и других местных искажений.
Различают деформации в плоскости, когда размеры детали меняются и вне плоскости и проявляются в виде серповидности, грибовидности и т.д.
Причинами образования собственных напряжений и деформаций сварных соединений является неравномерное распределение температурных воздействий и охлаждения. Кроме того, деформации могут вызываться механическим вмешательством в процессе правки сварных узлов, сборки и монтажа конструкций.
Механизм возникновения деформаций в сварочном шве
Рис. 2. Деформации при различных условиях закрепления при нагреве: 1 — сжатие; 2 — сжатие; 3 — растяжение |
Если такой стержень (А) жестко закрепить с одной стороны и подвергнуть термическому воздействию, то его линейный размер увеличится на некоторую длину ДL, величина которой зависит от коэффициента линейного расширения и температуры нагрева. После прекращения термического влияния стержень охладится, и его длина вернется к исходному значению, поскольку этому ничто не препятствует. Если же на пути удлинения стержня (Б) установить жесткую преграду (например, стену), то при нагреве стержень начнет удлиняться и давить с одинаковой силой на преграды, расположенные с его обоих концов.
Так как по законам физики всякому действию соответствует равное ему и противоположно направленное противодействие, то преграды начнут давить на стержень с обоих концов, сжимая его к центру. По мере роста температуры силы, действующие на стержень, возрастают, вызывая напряжения в кристаллической решетке металла. При небольшом удлинении ДL стержня в кристаллической решетке металла возникают упругие напряжения, и после прекращения термического воздействия стержень охладится без остаточных напряжений и деформаций.
Если же удлинение стержня превысит критическое значение, при котором силы сжатия вызовут пластическую деформацию в кристаллической решетке металла, то после остывания длина стержня (В) станет меньше первоначального значения. Это значит, что в стержне проявилась остаточная деформация, вызванная сжатием кристаллической решетки.
Если же стержень (Г) жестко закрепить с обоих концов, то при незначительном нагреве (для стали это температура (100°С), будет проявляться только упругая деформация, не вызывая остаточных явлений. При высоких температурах стержень расширяется настолько, что силы, действующие вдоль оси и направленные к центру, вызовут изменение его длины. Но так как препятствия, расположенные с обоих концов стержня, не позволяют ему увеличить свою длину, то возникнут изменения в кристаллической решетке. При охлаждении стержня до нормальной температуры происходит обратный процесс. Жесткое закрепление обоих концов будет препятствовать нормализации кристаллической решетки металла и появятся остаточные напряжения (стержень Д).
Этим примером полностью объясняется механизм возникновения напряжений и деформаций в сварочном шве, так как его можно представить как нагревающийся стержень, закрепленный с обоих концов холодным металлом. Остаточные сварочные деформации изменяют геометрию деталей, что сказывается на их качестве.
Методы снижения сварочных деформаций и напряжений
Снижение сварочных напряжений и деформаций выполняют несколькими методами. Различают термические, механические и термомеханические методы снижения сварочных деформаций.
К термическим методам относят отпуск после сварки и предварительный нагрев в процессе сварки. Подогрев металла перед сваркой (или в процессе сварки) снижает предел его текучести, тем самым уменьшает величину остаточных напряжений и деформаций. И хотя этот метод не полностью исключает появление сварочных деформаций, при достаточно сильном нагреве (250°С и более) можно добиться положения, когда их величина будет находиться в допустимых пределах.
Отпуск металла после сварки более эффективен и позволяет снизить величину остаточных напряжений и деформаций на 85 — 90%. Кроме того, отпуск способствует улучшению пластических свойств сварочного шва. Отпуск может быть общим и местным.
При общем отпуске сваренную деталь нагревают до температуры 650°С и медленно охлаждают. При местном отпуске нагреву подлежит только часть конструкции в области сварочного шва.
Под механическими методами понимают обработку (проковку, прокатку, вибрацию, приложение местных нагрузок, ультразвуковое воздействие и т.д.) сваренных деталей, позволяющую снизить остаточные напряжения в кристаллической решетке.
Самым эффективным методом является прокатка металла, но для этого требуется специальное оборудование. Поэтому прокатку выполняют только в условиях крупных производственных подразделений. Наиболее доступным и простым методом является проковка. Для этого горячий шов подвергают ударной обработке, снимая остаточные напряжения. Под приложением местных нагрузок понимают изгиб, кручение и т.д. в направлении, противоположном остаточным деформациям. Вызванные местными нагрузками деформации сварочного соединения накладываются на остаточные деформации, полученные при сварке, снижая их величину.
Термомеханические методы предусматривают одновременно термическую и механическую обработку свариваемых конструкций и позволяют добиться максимального эффекта.
Этими методами не ограничиваются возможности борьбы с остаточными напряжениями и деформациями. Снизить вероятность появления этих вредных явлений помогают рациональные приемы проведения сварочных работ, суть которых заключается в правильном проектировании и конструировании сварного изделия, уменьшении количества наплавленного металла, снижении вносимого в зону шва тепла за счет уменьшения сварных швов и сечений.
Именно для этого следует избегать скоплений и перекрещиваний сварочных швов, симметричного их расположения и т. д. Препятствуют деформациям свариваемых деталей ребра жесткости, накладки, косынки и прочие приспособления, о которых мы расскажем в соответствующих разделах данной книги.
Деформации и напряжения при сварке
Деформации и напряжения при сварке
Категория:
Сварка металлов
Деформации и напряжения при сварке
Классификация деформаций и напряжений. Помимо напряжений и деформаций, возникающих в деталях под действием приложенных нагрузок, в них могут быть так называемые собственные напряжения и деформации, которые существуют в телах даже при отсутствии каких-либо внешних сил.
В зависимости от продолжительности существования собственные напряжения и деформации при сварке разделяют на временные, т. е. существующие период выполнения свари или сопутствующих технологических операций, и на остаточные, т. е. устойчиво сохраняющиеся в теченидц длительного времени сварки.
Различают собственные напряжения I рода, которые уравновешиваются в макрообъемах тела, II рода—в пределах зерен, III рода в пределах кристаллической решетки.
В зависимости от характера напряженного состояния собстве ные напряжения могут быть одноосными — линейными, двухо ными — плоскостными и трехосными — объемными.
Различают деформации в плоскости, проявляющи еся в изменении формы и размеров детали или конструкции в пло кости, например, в виде продольных и поперечных деформаци деформации вне плоскости, например в виде угловых деформаци грибовидности, серповидности и т. д.
Деформации, которые изменяют размеры всего изделия, иска; жают его геометрические оси, называются общими. Деформации относящиеся к отдельным элементам изделия в виде выпучин, хло-
32 пуНов, волнистости и других местных искажений, называются устными.
Следует различать деформации непосредственно в зоне сварных соединений и деформации элементов конструкции в целом. Последние являются следствием деформаций и напряжений в сварном соединении.
Образование сварочных деформаций и напряжений. Основными причинами образования собственных напряжений и деформаций в сварных соединениях и конструкциях являются неравномерный нагрев и охлаждение металла при сварке, структурные и фазовые превращения, механическое (упругое и пластическое) деформирование при сборке, монтаже и правке сварных узлов и конструкций.
Представление о причинах возникновения тепловых сварочных деформаций и напряжений дает последовательное ознакомление с элементарным процессом нагрева и охлаждения стержня при разных условиях его заделки (закрепления).
Если точно на расстоянии поставить жесткую преграду, препятствующую удлинению стержня, и вновь нагревать его, то при расширении стержень будет давить на левую и правую преграды, со стороны которых возникают противодействующие силы реакции на давление стержня R, которые по отношению к стержню являются внешними сжимающими силами. В стержне возникнут напряжения о- сжатия, которые будут расти по мере роста температуры Т в соответствии с выражением а—аЕТ, где произведение аТ Равно относительному удлинению, а Е — модуль упругости. Если нагревать стержень до температур, вызывающих только упругое Деформирование, то при его охлаждении до исходной температуры Е нем не возникнет никаких напряжений и остаточных деформаций, его длина останется неизменной.
Рис. 1. Схема деформации стержня с различными условиями закрепления при нагреве
При нагреве стального стержня выше 100 °С в нем возможно появление пластических деформаций.
Рассмотрим, наконец, случай, когда стержень закреплен жестко с обоих концов, закрепление препятствует как его удлинению, так и укорочению.
После нагрева до температур, не вызывающих пластического деформирования , и последующего охлаждения в стержне не останется никаких напряжений, так как при нагреве
стержень деформировался (сжимался) только упруго. На стадии нагрева в нем воз-i никали сжимающие напряжения.
Нагрев до температур, превышающих температуру достижения от (>100 °С), приводит к пластическому обжатию стержня и возникновению напряжений сжатия аг. При остывании стержень будет стремиться укоротиться на величину обжатия А/Пл. Однако жесткое закрепление будет препятствовать сокращению. Реакция закрепления вызовет появление в стержне растягивающих напряжений. Эти остаточные напряжения растяжения не появились бы, если бы стержень при нагреве не претерпел пластического обжатия.
Нагрев стержня из низкоуглеродистой стали при жестком его закреплении до температур >200° С приводит к появлению в нем после остывания растягивающих напряжений, равных пределу текучести и даже к пластическим деформациям растяжения.
Процессами, происходящими при нагреве и охлаждении защемленного стержня, объясняется образование временных и остаточ ных напряжений.и деформаций, действующих в сварном шве и при легающей зоне, где металл подвергается упругопластическому де формированию при нагреве и охлаждении в процессе сварки. Зон нагрева при сварке ведет себя как защемленный нагреваемый стержень, а холодные участки металла как защемление.
Обязательным условием возникновения остаточных деформация и напряжений является наличие пластической деформации при нагреве. Чем выше нагрев и больше его неравномерность, тем более вероятно появление при нагреве пластических деформаций, а cледовательно, и остаточных напряжений и деформаций.
Величина остаточных напряжений для углеродистых сталей достигает предела текучести, для сталей высоколегированных может превышать условный предел текучести, для титана, алюминия, меди, и тугоплавких металлов, как правило, меньше предела текучести.
При сварке закаливающихся сталей наряду с тепловыми деформациями и напряжениями возникают структурные напряжения связи с образованием закалочной, мартенситной структуры, так как образование мартенсита сопровождается увеличением объема по сравнению с объемом феррита и перлита.
—
Основные понятия. Изменение формы и размеров твердого тела под влиянием внешней или внутренней силы называется деформацией. Если форма и размеры восстанавливаются после прекращения действия силы, то такая деформация будет упругой. Если тело не принимает первоначальной формы, оно получило остаточную, или пластическую, деформацию. Размеры деформации определяются величиной приложенного усилия. Чем больше усилие, тем больше вызываемая им деформация. О величине усилия судят по напряжению, вызываемому данным усилием в теле. Напряжением называется внутренняя сила, приходящаяся на единицу площади поперечного сечения тела. Таким образом, между напряжением и вызываемой им деформацией существует прямая зависимость.
Напряжения и деформации, возникающие от неравномерного нагревания и охлаждения материала, называются тепловыми или термическими. Величина расширения металла зависит от температуры его нагрева и коэффициента линейного расширения — величины в миллиметрах, на которую удлиняется металлический стержень длиной 1 м при нагревании его на 1 °С. Чем больше коэффициент термического линейного расширения и выше температура нагрева, тем большую деформацию будет испытывать металл при нагревании и охлаждении.
Если закрепить концы стержня так, что он не сможет свободно удлиняться или укорачиваться, то термические деформации стержня вызовут в нем термические напряжения, соответствующие этим деформациям. Чем большую нагрузку будет испытывать закрепленный стержень, тем больше будет его деформация и тем выше будут возникающие в нем напряжения.
На величину деформаций при сварке влияет теплопроводность металла. Чем выше теплопроводность свариваемого металла, тем равномернее распределяется по его сечению тепловой поток и деформация будет меньше. Так, например, при сварке нержавеющих сталей, обладающих меньшей теплопроводностью и большим коэффициентом термического линейного расширения, чем малоуглеродистая сталь, деформации получаются больше, чем при сварке малоуглеродистой стали. Наоборот, алюминий, обладающий более высоким коэффициентом термического линейного расширения, но значительно лучше проводящий теплоту, чем низкоуглеродистая сталь, дает при сварке меньшие деформации по сравнению с малоуглеродистой сталью.
Термические напряжения могут возникать в металле и без действия внешних усилий. Такие напряжения называются собственными. Из собственных термических напряжений наибольшее значение имеют те, которые возникают во время охлаждения изделия. Если они действуют только вдоль шва, это не сказывается на прочности сварного соединения. Более опасны напряжения, действующие перпендикулярно оси шва (поперечные), так как они могут вызвать появление трещин в шве и околошовной зоне.
Причины возникновения деформаций. Внутренние напряжения возникают только в том случае, если свободному расширению и сокращению детали что-либо препятствует. Таким препятствием являются соседние участки металла, оставшиеся более холодными вследствие неравномерного нагрева и потому менее расширившиеся. Наличие сосредоточенного источника теплоты (электрическая дуга), перемещающегося вдоль шва с определенной скоростью и вызывающего неравномерное нагревание металла при сварке, является основной причиной возникновения внутренних напряжений и деформаций в сварных изделиях.
Усадка наплавленного металла возникает в следующих случаях. При переходе наплавленного металла из жидкого состояния в твердое объем его уменьшается, происходит усадка. Явление усадки объясняется тем, что при затвердевании металла он становится более плотным, вследствие чего объем его сокращается. В результате усадки возникают растягивающие напряжения в соседних частях детали, которые вызывают соответствующие им напряжения и деформации. Различные металлы имеют разную усадку. Она обычно измеряется в процентах от первоначального линейного размера. Так, усадка алюминия 1,7…1,8; бронзы — 1,45…1.6; латуни — 2,06; меди — 2,1; малоуглеродистой стали — 2.
Напряжения, вызванные усадкой, возрастают до тех пор, пока металл не начнет вытягиваться”. Если он недостаточно пластичен, деталь может дать трещину в наиболее слабом месте. Этим местом часто бывает околошовная зона термического влияния. Вследствие усадки или сокращения объема металла образуются трещины в процессе сварки, называемые горячими трещинами. При сварке происходит продольная и поперечная усадка.
Продольная усадка вызывает сокращение длины листов при сварке продольных швов. Если центр тяжести поперечного сечения шва не совпадает с центром тяжести сечения свариваемого элемента, то от продольной усадки неизбежно возникает коробление этих элементов в продольном направлении. Поперечная усадка дает коробление листов. Усадка всегда больше там, где больше объем наплавленного металла. Поэтому при поперечной усадке листы будут коробиться вверх, в сторону усиления шва. Если деталь закрепить, не давая ей деформироваться от усадки, то это вызовет напряжения в закрепленных участках изделия.
Величина деформаций и связанных с ней напряжений зависит от величины зоны нагрева при сварке. Чем больший объем металла разогревается при сварке, тем сильнее будут деформации и коробление. Поэтому различные способы сварки дают различную величину деформаций.
Рис. 1. Деформации от поперечной усадки наплавленного металла: а — соединение до сварки, б — после сварки
Рис. 2. Продольная усадка и вызываемые ею деформации: а — при симметричном б, в, г — при несимметричном расположении швов относительно центра тяжести сечения элемента;
Размеры и положения швов влияют на величину деформации при сварке. Наибольшие деформации возникают в длинных швах, расположенных несимметрично относительно сечения свариваемого профиля. Чем сложнее форма детали, чем больше в ней различных швов, тем больше она может деформироваться.
Искусственное охлаждение детали в процессе сварки уменьшает величину деформации.
Способы снижения напряжений и деформаций. Для снижения сварочных напряжений и деформаций при разработке черте;;;ей металлических конструкций учитывают следующее. Сварные соединения конструируют таким образом, чтобы объем наплавленного металла был минимальным. С этой целью прерывистые швы заменяют сплошными меньшего сечения. Стыковые швы проектируют с минимальным углом раскрытия шва и минимальным зазором. Избегают резких переходов сечений, а также применяют преимущественно стыковые соединения. Не допускают концентрации и пересечений сварных швов.
Порядок сборки под сварку, способ сварки, режимы сварки и последовательность наложения шва по его длине и сечению оказывают влияние на величину деформаций и напряжений при сварке.
Чтобы уменьшить остаточные деформации и напряжения конструкций и изделий при сборке, по возможности не допускают скрепления деталей прихватками, которые создают жесткие закрепления. Для обеспечения подвижного состояния закрепленных деталей используют клиновые, центровочные и другие сборочные приспособления.
На образование остаточных деформаций и напряжений значительное влияние оказывает способ сварки. На величину и характер сварочных напряжений и остаточных деформаций влияют энергия и режим сварки. Увеличение сечения шва, как правило, способствует росту деформаций. Величина остаточных деформаций и напряжений зависит и от порядка наложения швов по длине и сечению. Например, при сварке листовых конструкций вначале выполняют поперечные швы отдельных поясов, а затем сваривают пояса между собой.
Для того чтобы предотвратить деформации в процессе сварки, применяют следующие способы.
Уравновешивание деформаций заключается в том, что устанавливают определенную последовательность наложения швов, при которой деформации от предыдущих швов снижаются при выполнении последующих швов. Этот способ широко применяют при сварке конструкций симметричного сечения.
Обратные деформации выполняют так. Перед сваркой конструкций или элемента для уменьшения остаточной деформации искусственно создают деформацию, обратную по отношению к той, которая может возникнуть при сварке. На рис. 3 показаны примеры использования обратной деформации.
Жесткое закрепление деталей перед сваркой обеспечивает уменьшение сварочных деформаций.
Проковка швов и околошовной зоны легкими ударами молотка способствует снижению напряжений и деформаций. При выполнении проковки необходимо соблюдать следующие условия. При многослойной сварке проковку выполняют послойно, а первый и последний швы не проковывают; шов проковывают участками длиной 150…200 мм сразу после сварки или подогрева его до 150…200 °С; при сварке металла толщиной более 16 мм проковывают и металл околошовной зоны.
Рис. 3. Использование обратных деформаций при сварке: а — клиновидный зазор, равный 10 … 20 мм на 1 м шва, б, в —предварительный выгиб (/, II — положения до и после сварки)
Общий отжиг сварных конструкций делают тогда, когда они изготовлены из сталей, имеющих склонность к образованию закаленных зон вблизи сварного шва (особенно при большой толщине свариваемого металла), а также в том случае, когда конструкции работают в сооружении при знакопеременных нагрузках.
Механическую правку конструкций производят приложением ударной или статической нагрузки при холодном или нагретом состоянии металла.
Термическую правку конструкций выполняют наплавкой валиков с обратной стороны шва или местным нагревом.
Для получения сварных конструкций заданных проектных размеров необходимо давать припуски на усадку сварных швов. На один поперечный стыковой шов проката листов толщиной 8… 16 мм припуск должен составлять около 1 мм.
Реклама:
Читать далее:
Способы уменьшения сварочных деформаций м напряжений
Статьи по теме:
Способы устранения сварочных деформаций и перемещений — Справочная информация
Вначале о чертежах.
ОБОЗНАЧЕНИЕ СВАРНЫХ ШВОВ НА ЧЕРТЕЖАХ ПО ГОСТУ
25.01.2020
Общепринятые сокращения и аббревиатуры не относятся к числу популярных терминов. Это можно сказать и о ГОСТе – не самое любимое слово. Разве что среди читателей есть сварщик, который претендует получить статус профессионала. В таком случае даже при всей своей нелюбви к официозу он должен, как минимум, относиться к аббревиатуре ГОСТ уважительно.
Честно говоря, этого недостаточно. Нужно не просто уважать, но и хорошо разбираться в тонкостях государственных стандартов, которые имеют отношение к сварочной индустрии. С чем связано такое утверждение? С тем, что если приходиться сваривать металлы вне пределов своей дачи, а, скажем, на производстве, то почти гарантированно придется иметь дело с рабочими чертежами. И без знания специфической топологии прочитать их будет невозможно.
Без знания спецификации и условных обозначений понять эти документы будут не проще, чем письмена племен Майя. Ведь современные сварочные технологии включают множество различных методов, которые отличаются техническими нюансами и требованиями. Все они нашли свое отображение в государственном стандарте.
Обозначения на технологических чертежах на первый взгляд могут показаться устрашающими. Однако, если внимательно изучить три главные ГОСТы по сварочным технологиям, то все обозначения превратятся в понятный и важные источник информации. Правильное чтение и понимание чертежа значительно упрощают выполнение поставленной задачи.
Виды сварочных швов
Прежде всего нужно дать определение еще одной важной аббревиатуре – ЕСДК. Это – Единая Система Конструкторской Документации, в которую входит полный комплекс самых разных стандартов. Они регламентируют порядок выполнения технических чертежей, включая и документацию по сварочным работам.
В систему входят и интересующие нас стандарты:
- ГОСТ 2.312-72. Прописаны условные варианты отображения и обозначение сварочных швов на чертежах.
- ГОСТ 5264-80. Изложена исчерпывающая информация обо всех видах сварных соединений и швов, выполненных дуговой ручной сваркой.
- ГОСТ 14771-76. Детальная информация о сварке в инертной среде; типах швов и соединений, получаемых в таких условиях.
Прежде чем детально изучить примеры обозначения на чертежах, нужно проработать информацию об их видах. Лучше всего это сделать на практике. Пусть на чертеж будет выведено следующее изображение:
Нагромождение цифр и непонятных символов никак не добавляет оптимизма. Но на самом деле не все так печально. На самом деле в столь длинной строке зашита логическая цепочка, в которой совсем несложно разобраться. Сначала нужно выражение разбить на составляющие блоки:
Настало время рассмотреть все составные элементы, разбитые по квадратам:
- вспомогательный символ, который информирует специалиста о виде стыка: замкнутая линия или монтажное соединение;
- номер стандарта, соответственно которому здесь приводятся условные обозначения;
- буквенное или номерное обозначение типа соединения со всеми конструктивными элементами;
- метод выполнения сварочных работ соответственно стандарту;
- тип конструктивного элемента и его размеры;
- длина непрерывного участка;
- символ, характеризующий тип соединения;
- описание соединения при помощи вспомогательных знаков.
Далее рассмотрим каждый из элементов условного обозначения отдельно. в первом квадрате изображен овал, который символизирует круговое соединение. Его альтернативой является флажок, который информирует о монтажном типе соединения стыка. Односторонняя стрелка информирует о шовной линии. С ней связана специфическая особенность, которая выражается в наличии полки. Нередко на графических чертежах встречается такой знак:
Визуально он похож на символ корня квадратного из области математики. Видимая на рисунке полка является полем для размещения разных условных обозначений о характеристиках шовной линии.
Если информация расположена под так называемой «полкой», то это говорит о том, что сварной шов расположен с обратной стороны и является невидимым с лицевой части. Как определить, какая из сторон считается лицевой, а какая – изнаночной? При одностороннем соединении сделать это несложно. Лицевой будет считаться та сторона, с которой нужно работать. А вот при двухстороннем соединении с неодинаковыми кромками лицевой считается та сторона, на которой размещено основное сварочное соединение. При одинаковых кромках лицевой или изнаночной может быть любая из сторон.
Ниже представлена таблица с наиболее часто используемыми в чертежах символами и их значениями:
Читайте также: Виды сварных соединений
- С1 – С40 стыковые;
- У1 – У10 угловые;
- Н1 – Н2 нахлесточные;
- Т1 – Т9 тавровые.
Выполнение сварочных работ в инертной среде по ГОСТу 14771-76:
- У1 – У10 угловые;
- С1 – С27 стыковые;
- Н1 – Н4 нахлесточные;
- Т1 – Т10 тавровые.
В приведенном примере есть рассмотренные только что цифры. Во втором квадрате размещена информация по использованному стандарту – 14771-76. В третьем квадрате изложен способ соединения – тавровый двусторонний без скоса кромок.
Способы сварки (квадрат 4)
В требованиях по стандартизации описаны и способы сварки. Самыми распространенными из них являются:
- А – автоматическая. Проводится с использования флюса, но без прокладок и подушек;
- Аф – тоже автоматическая. Но в этом случае на подушке;
- ИН – выполняется в инертной среде с применением вольфрамового электрода без присадок;
- ИНп – такой же самый способ, как и предыдущий с той лишь разницей, что присадки применяются;
- ИП – соединение металлом проводится в инертной среде с использованием плавящегося электрода;
- УП – все то же самое, что и ИП, только вместо инертной среды применяется углекислая.
В данном случае в четвертом квадрате стоят символы УП. Это значит, что сваривание выполнялось в углекислой среде плавящимися электродами.
Размеры шва (пятый квадрат)
В приведенном примере было удобнее всего обозначить длину катета, поскольку рассматривается тавровое соединение с размещением заготовок под углом в 90 градусов. Определяется катет в зависимости от значения текучести. Необходимо обратить внимание на то, что если чертежом указывается соединение стандартных размеров, то указывать катет не нужно. В приведенном примере катет будет равен 6 мм.
Виды дополнительных соединений:
- SS – односторонне. Дуга или электрод в таком случае передвигается с одной стороны;
- BS – двухстороннее. В таком случае источник плавления передвигается с обеих сторон.
Согласно ГОСТу 2.312-72 швы делятся на видимые (на чертеже отображаются сплошной линией) и невидимые (пунктир).
Самое время вернутся к рассматриваемому примеру и подать информация простым понятным языком. Речь идет о тавровом двустороннем шве, который выполнен методом ручной дуговой сварки в углекислой среде (газ). Кромки стыков не имеют скосов. Шов прерывистый, нанесен шахматным способом. Размер катета шва составляет 6мм, длина проваренного участка – 50 мм. Шаг составляет 100 мм. Поверхность стыка необходимо выровнять по завершению сварочн
Способы устранения сварочных деформаций и перемещений
Существует много приемов, позволяющих уменьшить или устранить сварочные деформации. Способы борьбы с деформациями могут быть классифицированы и по другому признаку в зависимости от того, применяются ли они до сварки, в процессе сварки или после сварки.
Способы, используемые до сварки
1. Рациональное конструирование предполагает уменьшение количества наплавленного металла в конструкции; назначение видов сварки с малой погонной энергией, например контактной; симметричное относительно центра тяжести сечения расположение швов; расположение швов на жестких элементах с целью уменьшения деформаций потери устойчивости; применение прерывистых швов.
2. Назначение начальных размеров и формы заготовок, их взаимное расположение с учетом последующей усадки (рис. 135, а).
3. Создание деформаций, обратных сварочным, путем закрепления изделий в приспособлениях. Закрепления снимают только после завершения сварки (рис. 135, б).
Деформация укорочения тонколистовых полотнищ может быть существенно уменьшена, если листы упруго собрать на приспособлении, имеющем цилиндрическую форму с выступающим пояском в зоне стыка (рис. 135, в). Зона шва, расположенная на большем диаметре, имеет перед сваркой увеличенную длину. После сварки она сокращается, напряжения при этом снимаются, а коробление листов заметно уменьшается. Данный способ используют сравнительно редко.
4. Создание деформаций, обратных сварочным, когда изделия сваривают без фиксации в приспособлении, например раскатка края обечайки перед выполнением кольцевого шва. Способ применяют редко.
5. Использование поля напряжения, мало изменяющегося в результате сварки, например сварка по кромке, отрезанной газом.
Способы, используемые в процессе сварки
1. Снижение погонной энергии сварки за счет более экономичных режимов. Способ используют относительно часто.
2. Уменьшение площади зоны пластических деформаций путем охлаждения водой, например, при контактной или газоэлектрической сварке.
3. Закрепление в приспособлении. Широко используется в производстве. Положительный эффект достигается за счет жесткости приспособления. Полного устранения деформаций при этом не достигается.
4. Рациональная последовательность выполнения сборочно-сварочных операций (рис. 135, г). В некоторых случаях это единственный способ избежать значительных остаточных деформаций.
5. Нагружение сварного соединения растягивающими усилиями (рис. 135, д). В производстве почти не применяется.
Способы, используемые после сварки
Сварочные деформации чаще устраняют после сварки, чем предупреждают их перед сваркой или в процессе сварки. Это, по-видимому, объясняется не только тем, что возможности способов, применяемых до сварки или в процессе сварки, ограничены, но также и организационно-техническими причинами, так как организовать правку после завершения сварки, когда деформации уже известны, значительно проще. Способы, используемые после сварки, следующие:
1. Создание путем пластической деформации перемещений, обратных сварочным (изгиб, растяжение, проковка, прокатка роликами).
2. Создание пластических деформаций укорочения путем местного нагрева. Этот прием широко используется в производстве и довольно эффективен .
3. Устранение деформаций путем высокого отпуска деталей в зажимных приспособлениях.
https://www.autoweld…henij/7-1-0-235
Регулирование и устранение сварочных напряжений
Все известные методы борьбы со сварочными деформациями в той или иной мере изменяют напряженное состояние.
Если основным требованием является устранение деформаций, то перераспределением напряжений обычно не интересуются. И наоборот, устраняя остаточные напряжения, не придают особого значения деформациям (перемещениям) сварной конструкции, хотя последние при этом могут изменяться. Разделение методов борьбы со сварочными напряжениями и деформациями на две группы является условным и зависит от основного назначения того или иного метода.
Предварительный и сопутствующий подогрев при сварке снижает тепловложение при сварке для образования сварного соединения. При этом уменьшаются размеры зон, нагреваемых сварочным источником тепла, что может привести соответственно к уменьшению объема металла, где протекали пластические деформации и образовались растягивающие напряжения. Помимо уменьшения объема пластически деформированного металла, при подогреве может снизиться максимальный уровень остаточных растягивающих напряжений.
Данные различных авторов о степени снижения напряжений заметно расходятся. По данным Купца, снижение растягивающих продольных напряжений в шве при подогреве до 200° С достигает даже 50%. Однако не следует переоценивать возможности низкотемпературного подогрева как средства снижения остаточных напряжений. Существенное влияние подогрев может оказать на образование остаточных напряжений от структурных превращений. Изменяя условия охлаждения, подогрев изменяет дилатограмму металла при новом термическом цикле, что отражается на распределении остаточных напряжений.
Проковку металла можно производить непосредственно после сварки по горячему металлу или после остывания. При проковке благодаря осадке металла в направлении удара происходит расширение его в двух других направлениях. Растягивающие напряжения снижаются, а при интенсивной проковке даже переходят в сжимающие. Эффект проковки распространяется обычно на относительно небольшую глубину, в пределах до 10 мм и менее. Такая операция может уменьшить вероятность появления холодных трещин. Остаточные напряжения сжатия являются надежным средством повышения прочности сварных соединений и конструкций, работающих при переменных нагрузках.
Наряду с положительным влиянием проковки пластичных металлов известны случаи резко отрицательного влияния этой операции на прочность тонкостенных сосудов давления из малопластичных металлов. Проковка, производимая при комнатной температуре, уменьшает пластичность металла в зоне ударов молотка, что приводит к преждевременному разрушению сосуда, испытываемого внутренним давлением.
Прокатка зоны сварного соединения роликами в основном рекомендуется для устранения деформаций листовых конструкции. Одновременно происходит значительное понижение растягивающих напряжений и переход их в сжимающие. Этот метод отличается весьма равномерной пластической деформацией и в этом отношении выгодно отличается от проковки как средства снижения растягивающих напряжений.
Приложение нагрузки к сварным соединениям можно применять как в процессе сварки, так и после нее. Снижение остаточных напряжений может оказаться весьма значительным. Несмотря па эффективность такого приема, применение его в большинстве случаев сопряжено с трудностями практического использования.
Разновидностью метода приложения нагрузки к сварному соединению является термомеханический метод снятия остаточных напряжений (метод Линде). Метод состоит в том, что участки основного металла, находящиеся по обе стороны от зоны пластических деформаций, нагреваются движущейся горелкой или индуктором до температуры 150—200° С и непосредственно после нагрева охлаждаются водой. Создаются два движущихся нагретых пятна металла, которые расширяются и растягивают дополнительно зону пластических деформаций. После остывания максимальные растягивающие напряжения оказываются сниженными.
Частным случаем приложения нагрузки является вибрация сварных соединений и конструкций. Заметное снижение остаточных напряжений происходит при напряжениях, превышающих предел выносливости металла. Способ рекомендуется при необходимости несколько понизить максимальные остаточные напряжения.
Как средство перераспределения остаточных напряжений используют местный нагрев. Вблизи зоны местного нагрева, сопровождавшегося пластической деформацией, после остывания образуются напряжения сжатия. Местный нагрев с целью создания благоприятного поля напряжений рекомендован как средство повышения вибрационной прочности деталей.
Высокий отпуск сварных конструкций получил наибольшее распространение в промышленности. Основное преимущество его в том, что снятие напряжений происходит во всей сварной конструкции, независимо от ее сложности и конфигурации.
Степень снятия напряжений в случае необходимости может достигать 85—90% от исходного уровня. Высокий отпуск — практически единственный способ, когда одновременно с напряжениями первого рода снимается наклеп и напряжения второго и третьего родов. Высокий отпуск сварных конструкций по объему применения в машиностроении далеко превосходит все остальные способы борьбы с остаточными напряжениями вместе взятые. Средства, затрачиваемые на его осуществление, весьма значительны. Поэтому всестороннее изучение этого процесса представляет не только научн
Основные мероприятия по уменьшению деформаций и напряжений при сварке
Основные мероприятия по уменьшению деформаций и напряжений при сварке
Категория:
Деформации при сварке
Основные мероприятия по уменьшению деформаций и напряжений при сварке
При сварке изделий невозможно полностью избежать остаточных деформаций. При всестороннем защемлении свариваемого изделия можно лишь свести деформации изделия к концу охлаждения к минимальной величине.
Рис. 1. Деформации в плоскости сварных соединений: 1 — форма соединения до сварки, 2 — после сварки
Всестороннее защемление при сварке изделия практически осуществить трудно, поэтому такой способ борьбы со сварочными деформациями почти не применяют. Используются только такие способы, которые позволяют получать сварные изделия с минимальными остаточными деформациями. Некоторые способы борьбы с деформациями изделия приводят к возрастанию внутренних напряжений, например, закрепление свариваемых деталей перед сваркой.
Для борьбы со сварочными деформациями применяются конструктивные и технологические способы. К конструктивным способам относятся:
1. Уменьшение количества сварных швов и их сечения, что снижает количество вводимого при сварке тепла.
Рис. 2. Деформации вне плоскости сварных!соединений:
Рис. 3. Влияние симметричных швов на деформации: 1, 2, 3, 4 — порядок наложения швов
Поэтому минимальная деформация конструкции будет при наименьших протяженности и сечении швов, например резервуары изготовляют в настоящее время нз больших листов или из предварительно собранных в заводских условиях полос и карт.
2. Симметричное расположение швов для уравновешивания деформаций.
3. Симметричное расположение ребер жесткости.
4. Минимальное использование накладок и косынок.
5. Применение стыковых соединений.
К технологическим способам относятся:
1. Рациональная технология сборки и сварки, которая включает правильный выбор вида и режима сварки, а также правильную последовательность наложения швов. Например, при ручной сварке деформация вдвое больше, чем при автоматической.
Соединения без скоса кромок дают меньшие деформации, чем соединения с разделкой кромок. Соединения с двусторонним скосом кромок образуют меньшие деформации, чем соединения с односторонним скосом.
Рис. 4. Сборка на прихватках: а — жесткие прихватки, б, в — эластичные прихватки
Величина деформации зависит от способа сборки и прихватки Детали собираются с жестким креплением, не допускающим какого-либо смещения одной детали относительно другой или с эластичным, допускающим смещение деталей. Жесткое крепление деталей осуществляется сварочными прихватками в отдельных местах шва (рис. 4, а) или жесткими сборочно-сварочными приспособлениями. Сборка с эластичным креплением производится специальными пластинами, временно прихватываемыми к деталям на некотором расстоянии от оси шва (рис. 4, б, в). Жесткая сборка приводит к меньшей конечной деформации по сравнению с эластичной.
На величину конечных деформаций влияет последовательность наложения швов. Например, наименьшая стрела прогиба узла, показанного на рис. 5, будет при такой последовательности выполнения швов: сначала — поперечный шов, затем — продольный и после него — поперечный вертикальный.
2. Жесткие закрепления деталей. Собранное изделие полностью сваривается, если закреплено на фундаменте, плите или приспособлении, которые имеют жесткость, в несколько раз большую по сравнению с сварным изделием. После сварки и полного охлаждения изделия зажимы удаляются. После освобождения изделия деформация будет меньше, чем при сварке в свободном состоянии. Закреплением можно снизить сварочные деформации на Ю—30% в зависимости от ряда условий. Этот способ дает наибольший эффект при сварке балок малой высоты и наименьший — при сварке высоких балок (1000 мм и более).
Закрепление рекомендуется при сварке плоских листов для предотвращения угловых деформаций. Листы можно прижимать вблизи шва, например, электромагнитными прижимами. Чем тоньше свариваемые листы, тем целесообразнее их закрепление, с тем чтобы избежать также и выпучивания.
Рис. 5. Правильная последовательность сварки узла: 1 — продольный шов. 2, 3 — поперечные швы
Рис. 6. Обратный выгиб элемента тавра: а — сборка тавра с обратным выгибом, б — форма тавра после сварки
Полностью устранить деформации закреплением невозможно, так как при освобождении от зажима сварное изделие продолжает деформироваться за счет силы, сконцентрированной на участке металла с пластической деформацией.
3. Обратный выгиб деталей. Свариваемые детали предварительно изгибают перед сваркой на определенную величину f в обратную сторону (рис. 6) по сравнению с изгибом, вызываемым сваркой. Этот прием используется при сварке узлов таврового сечения. Величина изгиба устанавливается опытным или расчетным путем. Обратный изгиб перед сваркой выполняют с приложением усилия в пределах упругого, упруго-пластического и пластического состояния. Сварка изделия с упругим изгибом производится в особых силовых приспособлениях. Изделие с пластическим изгибом сваривается в свободном состоянии. Однако для получения пластического изгиба требуется мощное оборудование; поэтому такой способ редко применяется в сварочном производстве. Пользуясь обратным изгибом, можно полностью устранить конечные деформации сварных изделий.
4. Правильный тепловой режим. Для уменьшения деформации изделий, особенно из малопластичных металлов, например чугуна или закаливающихся сталей, можно применять предварительный подогрев зоны сварки шириной 40—50 мм с каждой стороны шва. При этом снижается перепад температур между участками сварного соединения, подвергающимися сильному нагреву при наложении шва, и, следовательно, уменьшаются напряжения и конечные деформации. Температура предварительного подогрева устанавливается в зависимости от химического состава металла, его толщины и жесткости конструкции, например: для стали — 400— 600 °С, для чугуна — 500—800 °С, для алюминиевых сплавов — 200—270 °С, для бронзы — 300—400 °С. При сварке особо ответственных конструкций из низкоуглеродистых сталей толщиной более 40 мм устанавливают температуру подогрева 100—200 °С, при сварке низколегированных сталей толщиной более 30 мм — 150-200 °С.
Предварительный подогрев выполняют газовыми горелками, электрическими или индукционными нагревателями. Можно применять также сопутствующий подогрев.
5. Многослойные и обратноступенчатые швы. Последовательное введение меньших количеств тепла применением многослойных швов вместо одновременного при однослойном шве способствует выравниванию нагрева сварного соединения и уменьшает сварочные напряжения и деформации.
Обратноступенчатый способ заключается в том, что всю длину шва разбивают на отдельные ступени и сварка каждой ступени производится в направлении, обратном общему направлению сварки. Этот способ обеспечивает более равномерный нагрев металла шва по всей его длине и минимальные сварочные деформации и напряжения (рис. 7). Длина ступени при обратноступен-чатой сварке зависит от толщины металла, формы, жесткости свариваемого изделия. Она выбирается в широких пределах (100— 400 мм). Чем тоньше свариваемый металл, тем меньше длина ступени. Часто длину свариваемой ступени рассчитывают по длине шва, получающейся от одного или двух электродов.
6. Принудительное охлаждение в процессе сварки. Уменьшая зону нагрева при сварке созданием быстрого и интенсивного отвода тепла, можно значительно уменьшить остаточные деформации. Отвод тепла осуществляют, погружая изделие в воду и оставляя на воздухе только участок сварки. Этот способ пригоден для незакаливающихся низкоуглеродистых сталей. В других случаях можно применять массивные подкладки под швом из меди или медных сплавов, обл а дающих высокой теплопроводностью. Эти подкладки можно дополнительно охлаждать циркулирующей внутри водой. Медные подкладки дают хорошие результаты при сварке, например, нержавеющих сталей небольшой толщины.
Рис. 7. Схемы заполнения швов по длине: а г напроход, б — от середины к краям, я-г обратноступенчатый; I, II, iii, iv — ступени, Л—общее направление шва
7. Применение внешней растягивающей силы. Внешняя растягивающая сила, приложенная к концам свариваемого изделия, например двутавровой балки, позволяет свести к нулю укорочение нагретого металла обжатием (осадкой). Этим устраняется конечная сварочная деформация по направлению действия силы. Сила усадки при сварке изделия способствует укорочению, а внешняя растягивающая сила — удлинению волокон металла. Если волокна металла будут деформироваться в направлении растягивающей силы, то при правильно подобранной величине этой силы можно добиться полного устранения конечных деформаций сварного изделия.
Этот способ борьбы с деформациями вполне целесообразен, однако редко используется из-за отсутствия соответствующего силового оборудования.
8. Местная силовая обработка сварных швов и околошовной зоны. Снижение сварочных деформаций и напряжений в сварных соединениях достигается ковкой (ударной силой), обкаткой (статической силой), вибрационным давлением (пульсирующей силой) и другими силовыми воздействиями. Все виды силовой обработки металла шва и околошовной зоны создают местную пластическую деформацию удлинения, обратную деформации укорочения от сварки. В результате этого сварное изделие приобретает первоначальную форму и размеры.
Ковка производится ручным или механическим молотком массой 0,5—1,5 кг; холодная ковка выполняется при температуре 20—200°С, горячая — при температуре 450—1000°С (для стали). Ковка стали в температурном интервале 200^-450° С не рекомендуется ввиду ее низкой вязкости и возможности образования трещин.
При ручной сварке штучными электродами и при горячей ковке следует выполнять швы длиной 150—200 мм и Сразу же после сварки проковывать их. При многопроходной или многослойной сварке проковка производится после каждого прохода или наложения слоя, за исключением первого и последнего (декоративного). Первый, корневой шов проковывать нельзя, так как он имеет малое сечение, и при ударе в нем возникнут трещины. Верхний, тонкий декоративный слой вызывает весьма незначительные деформации; кроме того, ковка ухудшит внешний вид шва. При ручной сварке с последующей холодной проковкой следует выполнять швы заданной длины и проковку вести при температурах не выше 200 °С молотком массой 0,5—1,5 кг.
При изготовлении сварных конструкций время ковки превышает время сварки в 1-2 раза, поэтому ковка применяется редко.
Широко применяется ковка в ремонтных сварочных работах. Она улучшает структуру металла, уплотняет его и этим увеличивает коррозионную стойкость и повышает механические свойства сварного соединения.
Металлы, имеющие малую пластичность при высоких температурах, должны коваться в холодном состоянии. Ковка закаливающихся при сварке сталей не рекомендуется из-за возможности появления трещин.
Сварное изделие исправляется от конечных деформаций (коробления) механической или термической правкой. Сущность правки заключается в придании изделию новых деформаций, уничтожающих первоначальные, возникшие от сварки. Механическая правка изделия выполняется вручную тяжелым молотком или на станках и прессах, а термическая — местным нагревом изделия газовым пламенем.
Местный нагрев расширяет металл, а соседний холодный металл оказывает расширению горячего металла сопротивление, в результате чего в горячем металле возникают пластические напряжения сжатия.
После охлаждения нагретого участка его размеры уменьшаются во всех направлениях, что приводит к уменьшению или полному исчезновению деформации. Для получения максимального эффекта можно производить нагрев с одновременным охлаждением соседних участков водой.
Термическая правка выполняется рабочими, имеющими специальные навыки.
Реклама:
Читать далее:
Виды сварных соединений
Статьи по теме:
Влияние остаточных напряжений на эволюцию деформации при сварке тонкостенных труб
[1] М. Саттон, У. Уолтерс, У. Петерс, У. Рэнсон и С. Макнил, Вычисления изображений и зрения, Vol.1 (1983), с.133–139.
[2] Т. Чу, В. Рэнсон, М. Саттон и В.Питерс. Экспериментальная механика. 25-3 (1985), с.232–244.
[3] М.Саттон, Дж. Орте и Х. Шрайер: корреляция изображений для измерений формы, движения и деформации. Спрингер (2009).
DOI: 10.1007 / 978-0-387-78747-3
[4] М.Де Страйкер, Л. Шуреманс, В. Ван Пэпегем и Д. Дебрюйн, Оптика и лазеры в технике, Vol. 48 (2010), pp.978-986.
[5] М.Де Страйкер, П. Лава, В. Ван Пэпегем, Л. Шуреманс и Д. Дебрюйн, Измерение сварочных деформаций с помощью метода корреляции цифровых изображений., Представленный в Welding Journal.
[6] ABAQUS Inc.ABAQUS версия 6. 9 Руководство пользователя по анализу (2009 г.).
[7] М.Де Страйкер, Д. Дебрюйн, В. Ван Пэпегем и Л. Шуреманс, Сварка холоднокатаных стальных труб: чувствительность входных параметров fea, материалы Complas X, Барселона (2009).
[8] Л.Гарднер и К. Нг. Журнал пожарной безопасности, Том. 41 (2006), стр 185-203.
[9] К.W. Mahin, W. Winters, T.M. Холден, Р.Р. Хосбонс и С.Р. MacEwen, Welding Journal, Vol. 70 (1991), стр. 245с-260с.
[10] Л.Гарднер и Н. Baddoo. Журнал исследований конструкционной стали, Vol. 62 (2006), стр. 532-543.
[11] Л.Э. Линдгрен, Журнал термических напряжений, Vol. 24 (2001), стр 195-231.
[12] Дж.А. Гольдак и М. Ахлаги. Вычислительная механика сварки. Спрингер (2005).
.Основные напряжения и деформации — Большая Химическая Энциклопедия
Основные скорости деформации являются собственными значениями тензора (матрицы) скоростей деформации. Как более подробно описано в разделе A.21, направляющие косинусы, которые описывают ориентацию основных скоростей деформации, являются собственными векторами, связанными с собственными значениями. При решении практических задач с жидкостями редко возникает необходимость в определении основных скоростей деформации или их ориентации. Скорее, эти понятия используются теоретически с постулатами Стокса для формирования общих соотношений между тензорами скорости деформации и напряжений.Возможно, стоит отметить, что в механике твердого тела основные напряжения и деформации имеют практическую ценность для понимания поведения материалов и конструкций. [Pg.37]Из выражения для упругой энергии изотропного твердого тела в терминах главных напряжений и деформаций покажите, что критерий текучести фон Мизеса получается, когда дилатационная часть удаляется, оставляя энергию упругой деформации сдвига. [Стр.190]
На рисунке 13 показан датчик крутящего момента, состоящий из круглого вала, установленного с четырьмя тензодатчиками на двух спиралях под 45 °, диаметрально противоположных друг другу. Датчики 1 и 3, установленные на правой спирали, измеряют положительную деформацию. , а датчики 2 и 4, установленные на левой спирали, воспринимают отрицательную деформацию.Две спирали определяют основные направления напряжения и деформации, когда круглый вал подвергается чистому скручиванию. [Pg.1102]
Рис. 9.17. Эластомерный куб, (а) непенетрированный и (б) деформированный состояния, демонстрирующий основные напряжения и деформации. |
Трещина в каждом слое элемента оболочки ориентирована перпендикулярно направлению основных напряжений. Вектор напряжения и деформации мембраны зависит от направления главного напряжения и деформации в каждом слое … [Pg.2282]
Основные напряжения и деформации для плоских напряжений и условий плоской деформации … [Pg.89]
Чтобы применить подход к зарождению трещин, механическое состояние материала должно быть количественно определено в каждой точке с помощью подходящего параметра.Традиционные параметры включают, например, максимальное главное напряжение или деформацию или плотность энергии деформации. Максимальная основная деформация и напряжение отражают то, что трещины в резине часто возникают в плоскости, перпендикулярной направлению нагрузки. Плотность энергии деформации иногда применялась в качестве параметра для зарождения трещины из-за ее связи с механикой разрушения в случае полос с трещинами по краям при простом растягивающем нагружении. … [Pg.674]
В недавней попытке применить инженерный подход к многоосному разрушению твердого топлива Сирон и Дюрр (92) протестировали два составных состава с двойной основой в девяти различных состояниях напряжения.Испытания включали трехосный покерный чип, двухосную полосу, одноосное растяжение, сдвиг, диаметральное сжатие, одноосное сжатие и одноосное растяжение под давлением при нескольких температурах и скоростях деформации. Данные были сокращены с точки зрения эмпирически определенного ограничивающего параметра, который варьировался от -1,0 (гидростатическое сжатие) до +1,0 (гидростатическое растяжение). Параметр (>) определяется в терминах главных напряжений и указывает на растягивающий или сжимающий характер поля напряжений в любой точке конструкции — i.e., … [Pg.234]
Основные координаты обеспечивают чрезвычайно полезную концептуальную основу для разработки фундаментальных взаимосвязей между напряжением и скоростью деформации. Однако для практического применения важно, чтобы для всех точек потока использовалась общая система координат. Система координат обычно выбирается так, чтобы максимально точно соответствовать естественным границам конкретной проблемы. Таким образом, важно, чтобы отношения напряжение-скорость деформации могли быть переведены из настройки главных координат (которые, как правило, ориентированы по-разному во всех точках потока) в конкретную систему координат или интересующую ориентацию контрольного объема.Достижение этой цели требует разработки общего преобразования для вращения между главными осями и любым другим набором осей. [Стр.52]
В главных координатах, конечно, есть только три ненулевые компоненты тензоров напряжений и скоростей деформации. При вращении необходимо определить все девять (шесть независимых) компонент тензора. Девять компонент тензора состоят из трех компонент вектора на каждой из трех ортогональных плоскостей, проходящих через общую точку.Учтите, что элемент, представленный на рис. 2.16, был уменьшен до бесконечно малых размеров и что напряженное состояние должно быть представлено в некоторой произвольной ориентации (z, r, 6), а не в направлении, выровненном с направлением главных координат (Z, R , 0). Мы стремимся найти компоненты тензора, разложенные на координатные направления (z, r, 6). [Pg.53]
Цель этой главы — напомнить читателю об основах теории упругости, очертить некоторые из ее основных результатов и обсудить, в какой степени классическая теория может быть применена к полимерным системам.Мы начнем с обзора определений напряжений и деформаций, а также матриц податливости и жесткости для линейных упругих тел при малых деформациях. Затем мы сформулируем несколько важных точных решений этих уравнений для идеализированных условий нагружения и кратко обсудим изменения, внесенные при рассмотрении реальных условий нагружения. Затем мы перейдем к обсуждению вязкоупругости и ее применения к реальным материалам. [Стр.71]
Для металлов были проведены обширные теоретические исследования, посвященные расчету остаточных напряжений.Основная тема данной работы — предположение, что остаточные напряжения и деформации являются результатом различий между чисто упругими и упругопластическими деформациями при фиксированной нагрузке.127 128 Один и тот же механизм, т. Е. Появление зон пластической деформации, ответственен за остаточную деформацию. напряжения, возникающие при кристаллизации металлов, возникающей при закалке из расплава или охлаждении после сварки. [Стр.83]
По симметрии два основных направления напряжения (и деформации) находятся в меридиональном направлении, Tin, и в окружном направлении 7133.Третье главное напряжение равно нулю. Покажите, что если пренебречь телесными и ускоряющими силами, то для тонких мембран получаются следующие уравнения равновесия … [Pg.863]
Можно попытаться избежать проблемы, используя верхнеконвективную производную, которая обеспечивает совпадение главных осей напряжений и деформаций. Но при этом оказывается, что любая кинетика, основанная на амплитуде напряжения, является неправильной, поскольку материалы, которые демонстрируют поведение утолщения при удлинении, наоборот, утоняются при сдвиге.Следовательно, нельзя ожидать однозначной зависимости для этих двух кинематик. В таком случае определение единого набора параметров в различных потоках обязательно будет компромиссом. [Стр.192]
Предположим, что ось z соответствует главной оси стержня. В этом случае единственный ненулевой компонент тензора деформации — это когда коэффициенты Ламе выражаются через модуль растяжения и коэффициент Пуассона [см. (4.102)] связь между тензорами напряжений и деформаций определяется выражением… [Pg.760]
Рассмотрим теперь часть поверхности напряженного тела (рис. 16-5). Главные напряжения и 02 параллельны поверхности, а 03 равно нулю. Однако деформация 63, нормальная к поверхности, не равна нулю. Оно имеет конечное значение, определяемое сужениями Пуассона из-за 0j и 02 … [Pg.454]
Используя идентичные методы, можно записать уравнение напряжения-деформации для ортотропного линейного упругого твердого тела в терминах главных значений напряжение и деформация как … [Pg.242]
На рисунках с 6 по 8 показаны результаты экспериментов с тензодатчиками для трех различных формовочных смесей A, B и C.На каждом из этих рисунков указаны главные напряжения и максимальное напряжение сдвига Tmax, измеренное в центре и на углу матрицы. Эти результаты были получены после усреднения измерений не менее чем на 10 отдельных штампах. Результаты представлены в зависимости от количества циклов тестирования THSK. За исключением измерения после 300 циклов, уровни напряжения во всех положениях после любого количества циклов меньше для материала C, чем для материала B. Напряжения для материала B сравнимы с напряжениями для материала A.Девиантное поведение после 300 циклов, наблюдаемое с материалом A, показывает значительное снижение напряжения, что указывает на потерю адгезии. Однако увеличение, наблюдаемое после 500 циклов, нельзя объяснить, если действительно была нарушена целостность интерфейса. |
Значение E зависит от значений элементов в тензорах напряжений и деформаций. В условиях плоского напряжения одно из главных напряжений матрицы равно нулю, а E равно модулю Юнга E. Однако в условиях плоской деформации деформация в одной из главных осей равна нулю и E = E / (l — v) где v — коэффициент Пуассона. Для большинства полимеров 0,3 плоского напряжения.Для целей как сравнения ударной вязкости, так и проектирования компонентов предпочтительны значения деформации в плоскости матрицы Gic и Kic, поскольку th являются минимальными значениями fm для любого данного материала. Для достижения условий плоской деформации должны быть выполнены следующие критерии … [Pg.750]
.