Галоген что это такое: Галогены — Википедия – Галогены — это… Что такое Галогены?

Содержание

Галогены — это… Что такое Галогены?

Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 декабря 2011.
Группа →17 (VIIA)
↓ Период
2
3
4
5
6
85

Астат

4f145d106s26p5
7
117

Унунсептий

5f146d107s27p5

Галоге́ны (от греч. ἁλός — соль и γένος — рождение, происхождение; иногда употребляется устаревшее название гало́иды) — химические элементы 17-й группы периодической таблицы химических элементов Д.И. Менделеева (по устаревшей классификации — элементы главной подгруппы VII группы)[1].

Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F, Cl, Br, I, At уменьшается.

К галогенам относятся фтор F, хлор Cl, бром Br, иод I, астат At, а также (формально) искусственный элемент унунсептий Uus.

Фтор FХлор ClБром BrИод I
Chlorine2.jpgBromine vial in acrylic cube.jpgIod kristall.jpg

Все галогены — неметаллы. На внешнем энергетическом уровне 7 электронов, являются сильными окислителями. При взаимодействии с металлами возникает ионная связь, и образуются соли. Галогены, (кроме F) при взаимодействии с более электроотрицательными элементами, могут проявлять и восстановительные свойства вплоть до высшей степени окисления +7.

Распространённость элементов и получение простых веществ

Как уже было сказано выше, галогены имеют высокую реакционную способность, поэтому встречаются в природе обычно в виде соединений.

Их распространённость в земной коре уменьшается при увеличении атомного радиуса от фтора к иоду. Количество астата в земной коре измеряется граммами, а унунсептий в природе отсутствует. Фтор, хлор, бром и иод производятся в промышленных масштабах, причем хлор производится в гораздо больших количествах.

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2).

Основным способом получения простых веществ является окисление галогенидов. Высокие положительные стандартные электродные потенциалы Eo(F2/F

) = +2,87 В и Eo(Cl2/Cl) = +1,36 В показывают, что окислить ионы F и Cl можно только сильными окислителями. В промышленности применяется только электролитическое окисление. При получении фтора нельзя использовать водный раствор, поскольку вода окисляется при значительно более низком потенциале (+1,32 В) и образующийся фтор стал бы быстро реагировать с водой. Впервые фтор был получен в 1886 г. французским химиком Анри Муассаном при электролизе раствора гидрофторида калия KHF2 в безводной плавиковой кислоте.

В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. При этом протекают следующие реакции:

полуреакция на аноде:
полуреакция на катоде:

Окисление воды на аноде подавляется использованием такого материала электрода, который имеет более высокое перенапряжение по отношению к O2, чем к Cl2 (таким материалом оказался катодное и анодное пространства разделены полимерной ионообменной мембраной. Мембрана позволяет катионам Na

+ переходить из анодного пространства в катодное. Переход катионов поддерживает электронейтральность в обеих частях электролизёра, так как в течение электролиза отрицательные ионы удаляются от анода (превращение 2Cl в Cl2) и накапливаются у катода (образование OH). Перемещение OH в противоположную сторону могло бы тоже поддерживать электронейтральность, но ион OH реагировал бы с Cl2 и сводил на нет весь результат.

Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха.

Физические свойства галогенов

Фтор является трудносжижаемым, а хлор легкосжижаемым газом с удушливым резким запахом. Энергия связи галогенов сверху вниз по ряду изменяется не равномерно. Фтор имеет аномально низкую энергию связи (151 кДж/моль), это объясняется тем, что фтор не имеет d-подуровня и не способен образовывать полуторные связи, в отличие от остальных галогенов (Cl2 243, Br2 199, I2 150,7, At2117 кДж/моль). От хлора к астату энергия связи постепенно ослабевает, что связано с увеличением атомного радиуса. Аналогичные аномалии имеют и температуры кипения (плавления):

Простое веществоТемпература плавления, °CТемпература кипения, °C
F2−220−188
Cl2−101−34
Br2−758
I2113,5184,885
At2244309[2]

Химические свойства галогенов

Все галогены проявляют высокую окислительную активность, которая уменьшается при переходе от фтора к астату. Фтор — самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты, например:

2Al + 3F2 = 2AlF3 + 2989 кДж,
2Fe + 3F2 = 2FeF3 + 1974 кДж.

Без нагревания фтор реагирует и со многими неметаллами (H2, S, С, Si, Р) — все реакции при этом сильно экзотермические, например:

Н2 + F2 = 2HF + 547 кДж,
Si + 2F2 = SiF4(г) + 1615 кДж.

При нагревании фтор окисляет все другие галогены по схеме

Hal2 + F2 = 2НalF

где Hal = Cl, Br, I, At, причем в соединениях HalF степени окисления хлора, брома, иода и астата равны +1.

Наконец, при облучении фтор реагирует даже с инертными (благородными) газами:

Хе + F2 = XeF2 + 152 кДж.

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

3F2 + ЗН2О = OF2↑ + 4HF + Н2О2.

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Для сравнения приведем уравнения реакций хлора с теми же простыми веществами, что и для фтора:

2Al + 3Cl2 = 2AlCl3(кр) + 1405 кДж,
2Fe + ЗCl2 = 2FeCl3(кр) + 804 кДж,
Si + 2Cl2 = SiCl4(Ж) + 662 кДж,
Н2 + Cl2 = 2HCl(г)+185кДж.

Особый интерес представляет реакция с водородом. Так, при комнатной температуре, без освещения хлор практически не реагирует с водородом, тогда как при нагревании или при освещении (например, на прямом солнечном свету) эта реакция протекает со взрывом по приведенному ниже цепному механизму:

Cl2 + hν → 2Cl,
Cl + Н2 → HCl + Н,
Н + Cl2 → HCl + Cl,
Cl + Н2 → HCl + Н и т. д.

Возбуждение этой реакции происходит под действием фотонов (hν), которые вызывают диссоциацию молекул Cl2 на атомы — при этом возникает цепь последовательных реакций, в каждой из которых появляется частица, инициирующая начало последующей стадии.

Реакция между Н2 и Cl2 послужила одним из первых объектов исследования цепных фотохимических реакций. Наибольший вклад в развитие представлений о цепных реакциях внёс русский учёный, лауреат Нобелевской премии (1956 год) Н. Н. Семёнов.

Хлор вступает в реакцию со многими сложными веществами, например замещения и присоединения с углеводородами:

СН3-СН3 + Cl2 → СН3-СН2Cl + HCl,
СН2=СН2 + Cl2 → СН2Cl — СН2Cl.

Хлор способен при нагревании вытеснять бром или иод из их соединений с водородом или металлами:

Cl2 + 2HBr = 2HCl + Br2,
Cl2 + 2HI = 2HCl + I2,
Cl2 + 2KBr = 2KCl + Br2,

а также обратимо реагирует с водой:

Cl2 + Н2О = HCl + HClO — 25 кДж.

Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.

Заметим также, что хлор в левой части последнего уравнения имеет степень окисления 0. В результате реакции у одних атомов хлора степень окисления стала −1 (в HCl), у других +1 (в хлорноватистой кислоте HOCl). Такая реакция — пример реакции самоокисления-самовосстановления, или диспропорционирования.

Хлор может таким же образом реагировать (диспропорционировать) со щелочами:

Cl2 + 2NaOH = NaCl + NaClO + Н2О (на холоде),
3Cl2 + 6КОН = 5KCl + KClO3 + 3Н2О (при нагревании).

Химическая активность брома меньше, чем у фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно ис­пользуют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора.

Для примера приведем реакции взаимодействия брома с кремнием и водородом:

Si + 2Br2 = SiBr4(ж) + 433 кДж,
Н2 + Br2 = 2HBr(г) + 73 кДж.

Являясь более «мягким» реагентом, бром находит широкое применение в органической химии.

Отметим, что бром, так же, как и хлор, растворяется в воде, и, частично реагируя с ней, образует так называемую «бромную воду», тогда как иод практически в воде не растворим и не способен её окислять даже при нагревании; по этой причине не существует «иодной воды». Но иод способен растворяться в растворах иодидов с образованием комплексных анионов:

I2 + I → I3.

Образующийся раствор называется раствором Люголя.

Иод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие же иода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н2 + I2 = 2HI — 53 кДж.

Таким образом, химическая активность галогенов последовательно уменьшается от фтора к астату. Каждый галоген в ряду F — At может вытеснять после­дующий из его соединений с водородом или металлами, то есть каждый галоген в виде простого вещества способен окислять галогенид-ион любого из последующих галогенов. Астат ещё менее реакционноспособен, чем иод. Но и он реагирует с металлами (например с литием):

2Li + At2 = 2LiAt — астатид лития.

А при диссоциации образуются не только протоны, но и ионы At+:HAt диссоц. на:2HAt=H++At+H+At+.

Примечания

  1. Таблица Менделеева на сайте ИЮПАК
  2. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 211. — 623 с. — 100 000 экз.

Общая характеристика галогенов — урок. Химия, 8–9 класс.

Общая характеристика элементов

Галогены — элементы \(VIIA\) группы периодической системы: фтор F, хлор Cl, бром Br, иод I  и астат At.

 

Астат является радиоактивным элементом и встречается в природе редко.

 

Все галогены относятся к неметаллам.

 

В атомах галогенов на внешнем энергетическом уровне находится по \(7\) электронов:

 

F   +9)2)7

 

Cl  +17)2)8)7

 

Br  +35)2)8)18)7

 

I     +53)2)8)18)18)7

 

Валентные электроны галогенов образуют три электронные пары, а один электрон внешнего энергетического уровня остаётся неспаренным.

 

С возрастанием порядкового номера от фтора к иоду увеличиваются радиусы атомов, снижается их электроотрицательность. Значит, неметаллические свойства галогенов по группе сверху вниз ослабевают.

 

До завершения внешнего электронного слоя атомам галогенов не хватает только одного электрона, поэтому им наиболее характерна степень окисления \(–1\).

 

У фтора электроотрицательность больше, чем у остальных элементов, и поэтому степень окисления \(–1\) — его единственная возможная степень окисления в соединениях.

 

Атомы других галогенов способны также и отдавать валентные электроны, проявляя при этом положительные степени окисления \(+1\), \(+3\), \(+5\), \(+7\). Так, положительные степени окисления атомы хлора проявляют в соединениях с более электроотрицательными фтором, кислородом и азотом.

 

Галогены образуют с металлами соединения с ионной связью, а с другими неметаллами — соединения с ковалентной полярной связью.

Общая характеристика простых веществ

Атомы галогенов соединяются попарно и образуют двухатомные молекулы: F2, Cl2, Br2, I2. 

 

Связь в молекулах ковалентная неполярная, одинарная. Кристаллическая решётка — молекулярная. Поэтому у галогенов невысокие температуры кипения и плавления.

 

При обычных условиях фтор представляет собой светло-жёлтый газ, хлор — жёлто-зелёный газ, бром — красно-коричневую жидкость, иод — тёмно-фиолетовые кристаллы.

 

Фтор

  

ch09_18_03.jpg

Хлор

  

Bromine-ampoule.jpg

Бром

 

Иод

 

Твёрдый иод при нагревании легко возгоняется (переходит в газообразное состояние и обратно в твёрдое, не превращаясь в жидкость).

 

Возгонка иода

  

У всех галогенов — резкий неприятный запах, и они очень токсичны.

 

В ряду галогенов с увеличением относительной молекулярной массы возрастают температуры кипения и плавления, увеличивается плотность, более интенсивной становится окраска.

 

В воде галогены растворяются слабо.

Фтор с водой вступает в химическую реакцию и вытесняет из неё кислород:

 

2F2+2h3O=4HF+O2↑.

Галогены — Википедия

Материал из Википедии — свободной энциклопедии

(Перенаправлено с Галоген) Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 августа 2011; проверки требуют 2 правки.
Группа →17 (VIIA)
↓ Период
2
3
4
5
6
85

Астат

4f145d106s26p5
7
117

Унунсептий

5f146d107s27p5

Галоге́ны (от греч. ἁλός — соль и γένος — рождение, происхождение; иногда употребляется неправильное название гало́иды) — химические элементы 17-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы VII группы)[1].

Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F, Cl, Br, I уменьшается.

К галогенам относятся фтор F, хлор Cl, бром Br, иод I, астат At. Полученный в Объединённом институте ядерных исследований в Дубне, Россия в 2009—2010 годах 117-й элемент, унунсептий Uus, также находится формально в группе галогенов, однако по химическим свойствам может существенно отличаться от них, как и астат. Представляют собой:

Фтор — зеленовато-жёлтый газ, очень ядовит и реакционноспособен, попытка получить в свободном виде в больших количествах чревата последствиями.

Хлор — зеленоватый газ. Тяжёлый, также очень ядовитый, имеет характерный неприятный запах (запах хлорки).

Бром — красно-бурая жидкость. Ядовита. Поражает обонятельный нерв. Очень летуч, поэтому содержится в запаянных ампулах.

Иод — фиолетово-чёрные кристаллы. Очень легко возгоняется (пары фиолетового цвета). Ядовит.

Астат — сине-чёрные кристаллы. Очень радиоактивен, поэтому о нём сравнительно мало известно. Период полураспада астата-211 равен 8,1 часов.

Фтор FХлор ClБром BrИод I

Неметаллы. На внешнем энергетическом уровне 7 электронов, являются сильными окислителями. При взаимодействии с металлами возникает ионная связь, и образуются соли. Могут быть и восстановителями (кроме F) при взаимодействии с более электроотрицательными элементами.

[править] Распространённость элементов и получение простых веществ

Как уже было сказано выше, галогены имеют высокую реакционную способность, поэтому встречаются в природе обычно в виде соединений.

Их распространённость в земной коре уменьшается при увеличении атомного радиуса от фтора к иоду. Количество астата в земной коре измеряется граммами, а унунсептий в природе отсутствует. Фтор, хлор, бром и иод производятся в промышленных масштабах, причем хлор производится в гораздо больших количествах.

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2).

Основным способом получения простых веществ является окисление галогенидов. Высокие положительные стандартные электродные потенциалы Eo(F2/F) = +2,87 В и Eo(Cl2/Cl) = +1,36 В показывают, что окислить ионы F и Cl можно только сильными окислителями. В промышленности применяется только электролитическое окисление. При получении фтора нельзя использовать водный раствор, поскольку вода окисляется при значительно более низком потенциале (+1,32 В) и образующийся фтор стал бы быстро реагировать с водой. Впервые фтор был получен в 1886 г. французским химиком Анри Муассаном при электролизе раствора гидрофторида калия KHF2 и безводной плавиковой кислоты.

В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. При этом протекают следующие реакции:

полуреакция на аноде:
полуреакция на катоде:

Окисление воды на аноде подавляется использованием такого материала электрода, который имеет более высокое перенапряжение по отношению к O2, чем к Cl2 (таким материалом оказался RuO2).

В современных электролизёрах катодное и анодное пространства разделены полимерной ионообменной мембраной. Мембрана позволяет катионам Na+ переходить из анодного пространства в катодное. Переход катионов поддерживает электронейтральность в обеих частях электролизёра, так как в течение электролиза отрицательные ионы удаляются от анода (превращение 2Cl в Cl2) и накапливаются у катода (образование OH). Перемещение OH в противоположную сторону могло бы тоже поддерживать электронейтральность, но ион OH реагировал бы с Cl2 и сводил на нет весь результат.

Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха.

[править] Физические свойства галогенов

Энергия связи галогенов сверху вниз по ряду изменяется не равномерно. Фтор имеет аномально низкую энергию связи(151 кДж/моль), это объясняется тем, что фтор не имеет d-подуровня и не способен образовывать полуторные связи, в отличие от остальных галогенов(Cl2 243, Br2 199, I2 150.7, At2 117 кДж/моль). От хлора к иоду энергия связи постепенно ослабевает, что связанно с увеличением атомного радиуса. Аналогичные аномалии имеет и температуры кипения (плавления).
(F2 −223(-187), Cl2 −100.98(-34.15), Br2 −7.2(58.75), I2 311.5(184.5), At2 411(299) Co)

[править] Химические свойства галогенов

Все галогены проявляют высокую окислительную активность, которая уменьшается при переходе от фтора к иоду. Фтор — самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты, например:

2Al + 3F2 = 2AlF3 + 2989 кДж,

2Fe + 3F2 = 2FeF3 + 1974 кДж.

Без нагревания фтор реагирует и со многими неметаллами (h3, S, С, Si, Р) — все реакции при этом сильно экзотермические, например:

Н2 + F2 = 2HF + 547 кДж, 
Si + 2F2 = SiF4(г) + 1615 кДж.

При нагревании фтор окисляет все другие галогены по схеме

Hal2 + F2 = 2НalF

где Hal = Cl, Br, I, причем в соединениях HalF степени окисления хлора, брома и иода равны +1.

Наконец, при облучении фтор реагирует даже с инертными (благородными) газами:

Хе + F2 = XeF2 + 152 кДж.

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

3F2 + ЗН2О = OF2↑ + 4HF + Н2О2.

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Для сравнения приведем уравнения реакций хлора с теми же простыми веществами, что и для фтора:

2Al + 3Cl2 = 2AlCl3(кр) + 1405 кДж,

2Fe + ЗCl2 = 2FeCl3(кр) + 804 кДж,

Si + 2Cl2 = SiCl4(Ж) + 662 кДж,

Н2 + Cl2 = 2HCl(г)+185кДж. 

Особый интерес представляет реакция с водородом. Так, при комнатной температуре, без освещения хлор практически не реагирует с водородом, тогда как при нагревании или при освещении (например, на прямом солнечном свету) эта реакция протекает со взрывом по приведенному ниже цепному механизму:

Cl2 + hν → 2Cl,

Cl + Н2 → HCl + Н,

Н + Cl2 → HCl + Cl,

Cl + Н2 → HCl + Н и т. д.

Возбуждение этой реакции происходит под действием фотонов (hv), которые вызывают диссоциацию молекул Cl2 на атомы — при этом возникает цепь последовательных реакций, в каждой из которых появляется частица, инициирующая начало последующей стадии.

Реакция между Н2 и Cl2 послужила одним из первых объектов исследования цепных фотохимических реакций. Наибольший вклад в развитие представлений о цепных реакциях внёс русский учёный, лауреат Нобелевской премии (1956 год) Н. Н. Семёнов.

Хлор вступает в реакцию со многими сложными веществами, например замещения и присоединения с углеводородами:

СН3-СН3 + Cl2 → СН3-СН2Cl + HCl,

СН2=СН2 + Cl2 → СН2Cl — СН2Cl.

Хлор способен при нагревании вытеснять бром или иод из их соединений с водородом или металлами:

Cl2 + 2HBr = 2HCl + Br2,

Cl2 + 2HI = 2HCl + I2,

Cl2 + 2KBr = 2KCl + Br2,

а также обратимо реагирует с водой:

Cl2 + Н2О = HCl + HClO — 25 кДж.

Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.

Заметим также, что хлор в левой части последнего уравнения имеет степень окисления 0. В результате реакции у одних атомов хлора степень окисления стала −1 (в HCl), у других +1 (в хлорноватистой кислоте HOCl). Такая реакция — пример реакции самоокисления-самовосстановления, или диспропорционирования.

Хлор может таким же образом реагировать (диспропорционировать) со щелочами:

Cl2 + 2NaOH = NaCl + NaClO + Н2О (на холоде),

ЗCl2 + 6КОН = 5KCl + KClO3 + ЗН2О (при нагревании).

Химическая активность брома меньше, чем у фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно ис­пользуют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора.

Для примера приведем реакции взаимодействия брома с кремнием и водородом:

Si +2Br2 = SiBr4(ж) + 433 кДж,

Н2 + Br2 = 2HBr(г) + 73 кДж.

Являясь более «мягким» реагентом, бром находит широкое применение в органической химии.

Отметим, что бром, так же, как и хлор, растворяется в воде, и, частично реагируя с ней, образует так называемую «бромную воду», тогда как иод практически в воде не растворим и не способен ее окислять даже при нагревании; по этой причине не существует «иодной воды». Но иод способен растворяться в растворах иодидов с образованием комплексных анионов:

Образующийся раствор называется раствором Люголя.

Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие же иода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н2 + I2 = 2HI — 53 кДж.

Таким образом, химическая активность галогенов последовательно уменьшается от фтора к иоду. Каждый галоген в ряду F — At может вытеснять после­дующий из его соединений с водородом или металлами, то есть каждый галоген в виде простого вещества способен окислять галогенид-ион любого из последующих галогенов. Астат реагирует с металлами(например с литием):

2Li+At2 = 2LiAt — астатид лития

С водородом,образуя астатоводород:

H2+At2 = 2HAt.

Астат диссоциирует не только на ионы, но и на протоны, чего нет у других галогеноводородных кислот. Межгалогенные соединения:At2+I2=2AtI-иодид астата. При электролизе водного раствора астатид лития астат выделяется на аноде: LiAt катод Li++e=Li0 анод 2At-2e=At2 LiOH катод Li++e=Li0 4OH-4e=2H2O+O2.

ГАЛОГЕНЫ — это… Что такое ГАЛОГЕНЫ?

Хорошим хлорирующим агентом является CCl4, например для превращения BeO в BeCl2. Для фторирования хлоридов часто применяют SbF3 (см. выше SO2ClF).

Галогены реагируют со многими галогенидами металлов с образованием полигалогенидов соединений, содержащих крупные анионные частицы Xn1. Например:


Первая реакция дает удобный метод получения высококонцентрированного раствора I2 путем добавления иода к концентрированному раствору KI. Полииодиды сохраняют свойства I2. Возможно также получение смешанных полигалогенидов: RbI + Br2 -> RbIBr2 RbIСl2 + Cl2 -> RbICl4
Растворимость. Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8h3O) могут быть выделены из раствора при охлаждении.
Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Раствор иода в CCl4 или других бескислородных растворителях имеет фиолетовую окраску. Можно полагать, что в таком растворителе молекулы иода ведут себя подобно их состоянию в газовой фазе, которая имеет такую же окраску. В кислородсодержащих растворителях происходит оттягивание электронной пары кислорода на валентные орбитали иода.
Оксиды. Галогены образуют оксиды. Никакой систематической закономерности или периодичности в свойствах этих оксидов не наблюдается. Сходство и различия, а также основные способы получения оксидов галогенов указаны в табл. 8б.
Оксокислоты галогенов. При образовании оксокислот более четко проявляется систематичность галогенов. Галогены образуют галогеноватистые кислоты HOX, галогенистые кислоты HOXO, галогеноватые кислоты HOXO2 и галогеновые кислоты HOXO3, где X галоген. Но только хлор образует кислоты всех указанных составов, а фтор вообще не образует оксокислот, бром не образует HBrO4. Составы кислот и основные способы их получения указаны в табл. 8в.

Все кислоты галогенов неустойчивы, однако чистая HOClO3 наиболее стабильна (в отсутствие любых восстановителей). Все оксокислоты являются сильными окислителями, но скорость окисления необязательно зависит от степени окисления галогена. Так, HOCl (ClI) быстрый и эффективный окислитель, а разбавленная HOClO3 (ClVII) нет. В целом, чем выше степень окисления галогена в оксокислоте, тем сильнее кислота, поэтому HClO4 (ClVII) наиболее сильная из известных оксокислот в водном растворе. Ион ClO4, образующийся при диссоциации кислоты в воде, наиболее слабый из отрицательных ионов донор электронной пары. Гипохлориты Na и Ca находят промышленное применение при отбеливании и водоочистке. Межгалогенные соединения соединения различных галогенов друг с другом. Галоген с большим радиусом всегда имеет в таком соединении положительную степень окисления (подвергается окислению), а с меньшим радиусом более отрицательную (подвергается восстановлению). Этот факт вытекает из общей тенденции изменения активности в ряду галогенов. В табл. 8г приведены составы известных межгалогенных соединений (А галоген с более положительной степенью окисления).
Межгалогенные соединения образуются прямым синтезом из элементов. Необычная для иода степень окисления 7 реализуется в соединении IF7, а другие галогены не могут координировать 7 атомов фтора. Прикладное значение имеют BrF3 и ClF3 жидкие вещества, химически аналогичные фтору, но более удобные при фторировании. При этом более эффективен BrF3. Поскольку трифториды сильные окислители и находятся в жидком состоянии, их используют как окислители ракетного топлива.
Водородные соединения. Галогены реагируют с водородом, образуя HX, причем со фтором и хлором реакция протекает со взрывом при небольшой активации ее. Медленнее идет взаимодействие c Br2 и I2. Для протекания реакции с водородом достаточно активировать небольшую долю реагентов с помощью освещения или нагревания. Активированные частицы взаимодействуют с неактивированными, образуя HX и новые активированные частицы, которые продолжают процесс, а реакция двух активированных частиц по главной реакции заканчивается образованием продукта. Например, образование HCl из h3 и Cl2:


Более удобные методы получения галоиодоводородов, чем прямой синтез, дают, например, следующие реакции:

В газообразном состоянии HX являются ковалентными соединениями, однако в водном растворе они (за исключением HF) становятся сильными кислотами. Объясняется это тем, что молекулы воды эффективно оттягивают водород от галогена. Все кислоты хорошо растворимы в воде благодаря гидратации: HX + h3O -> h4O+ + X
HF более склонен к комплексообразованию, чем другие галогеноводороды. Заряды на H и F так велики, а эти атомы так малы, что происходит образование HX-ассоциатов типа полимеров состава (HF)x, где x і 3. В таком растворе диссоциация под действием молекулы воды идет не более чем на несколько процентов от общего количества ионов водорода. В отличие от других галогеноводородов фтороводород активно реагирует с SiO2 и силикатами, выделяя газообразный SiF4. Поэтому водный раствор HF (плавиковая кислота) используют в травлении стекла и хранят не в стеклянной, а в парафиновой или полиэтиленовой посуде. Чистый HF кипит чуть ниже комнатной температуры (19,52° С), поэтому его хранят в виде жидкости в стальных цилиндрах. Водный раствор HCl называют соляной кислотой. Насыщенный раствор, содержащий 36% (масс.) HCl, широко используют в химической промышленности и лабораториях (см. также ВОДОРОД).
Астат. Этот химический элемент семейства галогенов имеет символ At и атомный номер 85, он существует только в следовых количествах в некоторых минералах. Еще в 1869 Д.И.Менделеев предсказал его существование и возможность открытия в будущем. Астат был открыт Д.Корсоном, К.Маккензи и Э.Сегре в 1940. Известно более 20 изотопов, из которых наиболее долгоживущие 210At и 211At. По некоторым данным, при бомбардировке 20983Bi ядрами гелия образуется изотоп астат-211; сообщалось, что астат растворим в ковалентных растворителях, может образовывать At, как и другие галогены, и, вероятно, возможно получение иона AtO4. (Эти данные удалось получить на растворах с концентрацией 1010 моль/л.)

Энциклопедия Кольера. — Открытое общество. 2000.

  • ХАЛЬКОГЕНЫ
  • ПЕРЕХОДНЫЕ ЭЛЕМЕНТЫ

Смотреть что такое «ГАЛОГЕНЫ» в других словарях:

  • ГАЛОГЕНЫ — ГАЛОГЕНЫ, химические элементы VII группы периодической системы: фтор F, хлор Cl, бром Br, иод I и астат At. Фтор и хлор газы, бром жидкость, остальные кристаллы. Все галогены, кроме At, широко распространены в природе входят в состав многих… …   Современная энциклопедия

  • ГАЛОГЕНЫ — ГАЛОГЕНЫ, элементы (ФТОР, ХЛОР, БРОМ, ЙОД и АСТАТ), принадлежащие к VII группе периодической таблицы. Они реагируют с большинством других элементов и органическими соединениями. Химическая активность падает от начала к концу группы. Галогены… …   Научно-технический энциклопедический словарь

  • ГАЛОГЕНЫ — (устар. выражение галоиды) химические элементы фтор F, хлор Cl, бром Br, иод I и астат At, составляющие главную подгруппу VII группы периодической системы Менделеева. Названы от греческих hals соль и genes рождающий (при соединении с металлами… …   Большой Энциклопедический словарь

  • Галогены — фтор, хлор, бром, йод; входят в VII группу периодической системы. Все члены группы образуют соединения с водородом, причем связь их повышается с уменьшением атомной массы; температура образования различных солей уменьшается с увеличением атомной… …   Российская энциклопедия по охране труда

  • ГАЛОГЕНЫ — общее название пяти хим. элементов, составляющих VII подгруппу Периодической системы элементов Д. И. Менделеева, фтора, хлора, брома, йода и астата. Все Г. неметаллы, их молекулы двухатомны; Г. реагируют со всеми простыми веществами, являются… …   Большая политехническая энциклопедия

  • Галогены — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • ГАЛОГЕНЫ — ГАЛОИДЫ ИЛИ ГАЛОГЕНЫ химические элементы: хлор, иод, бром, фтор, образующие с металлами соли без кислорода, напр. хлористый натрий (повар. соль). Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. ГАЛОИДЫ или ГАЛОГЕНЫ …   Словарь иностранных слов русского языка

  • галогены — ов; мн. (ед. галоген, а; м.). [от греч. hals соль и genesis род, происхождение]. Группа химических элементов (фтор, хлор, бром, йод и др.), образующих соли при соединении с металлами. ◁ Галогенный, ая, ое. Г ые соединения. Г ая лампа (лампа… …   Энциклопедический словарь

  • галогены — halogenai statusas T sritis chemija apibrėžtis F, Cl, Br, I, (At). atitikmenys: angl. halogens; haloid elements; haloids rus. галогены …   Chemijos terminų aiškinamasis žodynas

  • Галогены — (от греч. hals соль и… genes рождающий, рожденный)         химические элементы Фтор F, Хлор Cl, Бром Br, Иод I и Астат At, составляющие главную подгруппу VII группы периодической системы Д. И. Менделеева. Названы Г. по свойству давать соли при… …   Большая советская энциклопедия


Галогены и галогенный газ: химические особенности галогенов

Элементы 17 группы таблицы Д.И. Менделеева – галогены. Классические неметаллы, в чистом виде в природе не встречающиеся. Галоген – это активный окислитель, он находится только в качестве соединений. За исключением отдельных неметаллов, с галогенами реагируют все обычные вещества.

Некоторые характеристики хлора

Некоторые характеристики хлора

О галогенах

Из галогенов лишь йод способен обладать признаками свойств, характеризующих металлы. Другие вещества (бром, хлор, астат и фтор) лишены даже косвенных признаков металлов. Когда в 1811 году И. Швейггер, немецкий химик, предложил так называть новое выделенное вещество – хлор, название не прижилось. С 1841 года галогенами стали называть всю группу «солеродов». Так переводится с греческого языка слово галогены.

Можно лучше понять, что такое галоген, если охарактеризовать каждый из элементов, входящих в этот ряд:

  • Фтор (F) – содержится в солях горных пород. Преимущественно им насыщены криолит, шпат плавиковый и минералы флюорита;
  • Хлор (Cl) – популярный из галогенов, в мире имеется в хлориде натрия, являющегося главным сырьём для хлористых соединений;
  • Бром (Br) – элемент, встречающийся в морских водах и солёных водоёмах в качестве соли калия и натрия в сочетании с сульфатами хлора;
  • Йод (I) – встречается повсеместно, больше всего йода в морской капусте и водорослях;
  • Астат (At) – искусственное вещество в природе не встречается, получают в результате оседания частиц при облучении висмута или тория.

К сведению. Хлорид натрия (NaCl) – один из источников хлора. В быту называется поваренной солью. Присутствует в водной жидкости моря, в естественном состоянии находится как серый минерал – галит.

Кристаллы каменной соли

Кристаллы каменной соли

Строение атомов и степени окисления

Электронная формула наружной орбиты атомов солеродов – ns2np5. При расположении по порядку:

  • F — 2s22p5;
  • Cl — 3s23p5;
  • Br — 4s24p5;
  • I — 5s25p5;
  • At — 6s26p5.

Атомы галогенов успешно добавляют к 7 своим электронам, имеющимся на крайней оболочке, один чужой недостающий. Потому при взаимодействии обнаруживают степень (-1) окисления. В союзах, где присутствуют элементы, имеющие электроотрицательность выше, только фтор не меняет степени (-1).

Остальные изменяют её на положительную степень: Cl (+1), Br (+3), I (+5), At (+7).

Графическая картинка электронного строения атома бора Br

Графическая картинка электронного строения атома бора Br

Распространённость элементов и получение простых веществ

Чем больше величина атомного радиуса, тем меньше наличие солеродов в теле планеты. Величина r – радиуса атома фтора, по сравнению с радиусом атома иода, говорит о том, что фтор более распространён, нежели йод. Астата в коре планеты всего лишь граммы.

Промышленность производит галоиды (устаревшее название) в больших объёмах. При этом по количеству изготовленной продукции лидирует хлор.

Простые вещества получают при помощи галогенидов, окисляя их. Для этого используется электролитическое окисление. Причём из-за того, что положительные потенциалы у фтора и хлора достаточно высокие, приходится применять сильные окислители.

Важно! Электролиз фтора осложнён невозможностью использования водных растворов. Его потенциал окисления выше, и он может вступать в реакцию с водой, поэтому используют плавиковую кислоту.

Электролиз NaCl с применением анодов из графита позволяет добывать хлор. Катоды при этом могут быть:

  • железные;
  • жидкие ртутные;
  • стальные.

Уравнение, описывающее эту реакцию, имеет вид:

2Cl- —› Cl2 (г.) + 2е-.

Выполняя химическое окисление бромида-иона из морской воды, получают бром.

Так же добывают и йод, используя насыщенные им рассолы. Оба процесса проводят, применяя хлор в виде окислителя. Воздушным потоком, проходящим через раствор, удаляются I2 и Br2.

Производство галогенов, формулы окисления

Производство галогенов, формулы окисления

Физические свойства галогенов

Это характеристики, описывающие цвет, запах, температуры изменения свойств, а также агрегатное пребывание в нормальных условиях.

Физические свойства простых двухатомных веществ

Физические свойства простых двухатомных веществ

Внимание! Такие токсичные вещества, как галогены, образовывают взаимные соединения: BrCl, ICl, IBr и иные. Три состояния (твёрдое, жидкое и газообразное) присущи солеродам при комнатной температуре.

Химические свойства галогенов

Способность вступать в реакцию с разными веществами под воздействием сторонних факторов индивидуальна для каждого из рассматриваемых элементов.

Химические особенности солеродов

Химические особенности солеродов

При вступлении галогенов в связь с медью (малоактивный металл) получаются галогениды с формулой:

CuHal2, где Hal2 – солероды Br, Cl, F.

Когда галогениды вступают в реакцию с галогенами, то тот солерод, который активнее, вытесняет малоактивный из его же раствора. Хлор, являясь окислителем, вступает во взаимодействие в смесях солей йода и брома. Бром не реагирует на хлориды, но может из иодидов выдавить йод.

При воздействии на органические соединения при хлорировании воды или йодировании соли происходит галогенирование. При этом атом галогена вводится в соединение. Галогенирование может осуществляться замещением, расщеплением или присоединением атома солерода к атомной структуре органических соединений.

Интересно. Йод, имея низкие окислительные способности, не выдавливает из солей галогены. С фтором реакции водных сульфитов вообще не получаются, он вступает в содействие с Н2О.

Особенности добычи и использования галогенов

Приём электролизного окисления с участием окислителей применяется при добывании галогенов, исходя из того, что в натуральных условиях они – анионы. Например, гидролиз смеси поваренной соли необходим для выработки хлора. В основном, сначала добываются галогениды, из них электрохимическим путём изымаются солероды.

Применение галогенов и их соединений

Использование солеродов находит широкое применение в жизни человека. Быт, медицина, химическая промышленность, военное производство – далеко не все области использования солеродов.

По каждому элементу можно рассмотреть следующие моменты:

  1. F – значимая часть состава фторополимеров, имеющих высокую химическую, коррозионную и термическую стойкости. Фторсодержащие хлорфторуглероды раньше использовались в хладагентах и в аэрозолях.
  2. Cl – в натуральном виде газ жёлто-зелёного цвета. Хлор употребляется для обеззараживания скважин, воды для питья и искусственных водоёмов. Наиболее частое применение хлора в быту – отбеливание вещей и очищение загрязнённых поверхностей сантехники. Соляная (муриевая) кислота также содержит хлор.
  3. Br – негорючее вещество, применяется для тушения огня в огнетушителях. Применим бром и в медицине, в качестве успокоительных препаратов и мегалитических средств. В военных целях входит в состав химии отравляющих веществ.
  4. I – применяется в виде антисептика, является необходимым элементом в организме человека для работы щитовидной железы.
  5. At – применения не находит ввиду своей сильной радиоактивности.
Спектр применения галогенов

Спектр применения галогенов

Добавленный в баллон лампы накаливания газ галоген позволяет повысить температуру встраиваемой нити и качество отдачи света. Пары брома или йода, закачанные в колбу, послужили созданию галогенных ламп и светильников.

Важно! У таких источников света реже сгорают спирали, лампы имеют компактные размеры и могут питаться как переменным, так и постоянным напряжением.

Галогеновый свет используется в лампах автомобильных фар, причём конструкция позволяет выполнять установку, как галогенных ламп накаливания в фару, так и обычных. В соревнованиях светодиодного источника в фаре или галогенового пока лидирует последний.

Галогенные соединения и их роль в организме человека

В человеческом организме в разных процентных содержаниях присутствуют соединения солеродов. Превышение концентраций, как и их уменьшение, существенно влияет на состояние организма.

Биологическая миссия галогенов

Биологическая миссия галогенов

Токсичность галогенов

Галогены в опасной концентрации и соединениях действуют на человека следующим образом:

  1. Хлор имеет 2 класс опасности. Концентрация в атмосфере от 1*10-4% уже вызывает раздражение слизистой, доза 0,01% приводит к острому отравлению и остановке дыхания. Это сильный канцероген, вызывающий туберкулёз и способствующий образованию злокачественных опухолей;
  2. Фтор в соединении фторида натрия – приводит к смерти, попадая внутрь через органы дыхания или пищеварения. Смертельная концентрация – 4-9 г. Первичные симптомы – слюнотечение, рвотные позывы. Вторичные признаки отравления – поражения нервной и сердечно-сосудистой систем.
  3. Бром вызывает спазмы и удушье при дыхании уже при концентрации 1*10-3 в объёме воздуха. Токсичная доза – 3 г., смертельная – от 34 г., при попадании внутрь человека.
  4. Йод, при случайном попадании в организм в количестве 3 г. и более, поражает почки и сердечно-сосудистую систему, блокирует рецепторы щитовидной железы.

Применение галогенов и галогенидов в промышленности и в быту приносит больше пользы, чем вреда. Знание допустимых значений концентрации и правил пользования продуктами, в которых применяются солероды, позволяет пользоваться только их положительными качествами.

Видео

Галогены ⚗️ электронная конфигурация элементов, общая характеристика, химические и физические свойства, способы получения и применения, взаимодействие с другими веществами

Не все знают, что под пугающим названием «галогены» зачастую скрываются распространенные в быту вещества. Не в чистом виде, но все-таки. Отдельными представителями «семейства» ежедневно пользуется каждый человек.

Приведём примеры:

  1. На упаковке любой зубной пасты имеется словосочетание со словом «фтор». Полезен для зубной эмали.

  2. Хлор знаком любой домохозяйке и сотруднику клининговой компании. А уж его запах знают все, кто посещал бассейн или лечебные учреждения России. Не пустой звук для советских школьников. Даже не из курса химии, а из уроков химзащиты в рамках начальной военной подготовки (НВП).

  3. Про «бром» ходили легенды среди военнослужащих СССР. Насколько сведения достоверны – неизвестно.

  4. Темно-коричневая бутылочка с «йодом» – постоянный спутник любителя поиграть с котенком и непоседливого ребенка. Распространенный антисептик.

Что такое галогены

Определяют, как элементы 17-ой группы таблицы Менделеева. Сторонники «старой школы» выразились бы: «главной подгруппы VII группы».

Галогены в периодической системе

Название представляет собой компиляцию греческих слов. Означает приблизительно «солерождающий». Такое определение было дано в XIX веке британским ученым Гэмфри Дэви.

Перечень и общая характеристика галогенов

Галогены

С первыми четырьмя элементами из списка некоторое знакомство имеется. Надо заметить, что вещества хоть и достаточно распространенные, но в чистом виде в природе не встречаются. Только в составе соединений.

Галогены

Астат – элемент не просто редкий, а самый редкий из всех встречающихся на планете. Его «запасы» оцениваются в 1 г. Свойства доподлинно не известны. Так как из-за радиоактивности и мизерной «продолжительности жизни» в достаточных количествах выделить не получилось.

Теннессин существует скорее теоретически. На Земле, по крайней мере, не нашли. Рекордное зафиксированное (и признанное) в лаборатории количество – 6 ядер. Включая изотоп.

Зато точно известен общий принцип построения наружного энергетического уровня: ns2np5. Под «n» понимается период расположения элемента.

Легко заметить, что до «идеальных» инертов не хватает всего-то электрончика. А так хочется. Не удивительно, что так агрессивны.

Физические свойства

Физические свойства галогенов

Галогены – ярко выраженные неметаллы. Летучи, с характерно едким «ароматом». Причем для йода (I2) жидкое агрегатное состояние вообще не характерно. При разогреве просто испаряется фиолетовым дымком.

Хлор – настоящее боевое отравляющее вещество. И применялось в таком качестве. Попадая в незащищенные глаза и органы, образует кислоты. С соответствующими последствиями. Для летального исхода достаточно концентрации в воздухе 2 мг/л.

Насыщенность цветов с «утяжелением» ядер возрастает. Активность, напротив, падает.

В воде растворимость ограничена. Лучше ведёт себя с органическими растворителями. Растворы оригинально окрашены: от слабо желтого до фиолетового.

Химические свойства галогенов

Галогены (Hal) — мощные окислители, а фтор агрессивен настолько, что вступает в реакцию с собратьями. Происходит это при подогреве. Степень окисления «пострадавших» оказывается +1. 

Общее уравнение:

1

Можно сказать, что F реагирует со всеми простыми субстанциями, кроме отдельных благородных газов. А так (с облучением):

2

Остальные элементы ряда не взаимодействуют с:

С неметаллами

Водород окисляет фтор при любых условиях, со взрывом. Cl с подсветкой УФ или подогревом. Но тоже громко. Остальные только с нагреванием. Но уравнение едино:

3

С фосфором взаимодействуют совершенно по-разному:

∗ F до получения пентафторида. Единственный, без нагревания:

4

∗ хлор и бром, в зависимости от концентрации:

5

∗ йод – недостаточно мощный окислитель:

6

∗ с серой также не все очевидно. Но только не с фтором. Окисление максимально, но с нагревом:

7

∗ бром и хлор реагируют нетипично и «неохотно»:

8

С металлами

Перед фтором ничто не устоит. Даже благородный класс, хоть и с нагревом:

9

Остальные металлы прочим галогенам по силам. Не без подогрева:

10

Реакции замещения

Агрессивные вытесняют «тяжелых» соседей по группе:

11

И с неметаллами не церемонятся:

12

Хлор, как более активный, ведет себя несколько по-другому:

14

С водой

Фтор в своем репертуаре. Вода будет пылать синим пламенем и норовить плюнуть плавиковой кислотой:

15

Хлор с бромом гораздо спокойнее. Да и процессы нестабильны, обратимы:

16

Йод с водой в видимые взаимодействия не вступает.

С растворами щелочей

И в этом случае фтор проявляется как резкий окислитель:

17

Остальные ведут себя, как с водой. Но процесс при разных температурах проходит по разным сценариям:

18

Йод реагирует только по второму варианту. 

Получение

Выделить вещество настолько активное, что норовит прореагировать со всем окружающим, не так просто.

Фтор

Обычно получают из сложных солей. При интенсивном нагреве (термолиз) провоцируется распад на более простые и нужный газ.

Получение фтора

Или электролизом KF*3HF. Аналогичный метод применяется в промышленности.

Хлор

Из соляной кислоты. Неприятно и опасно даже в условиях лаборатории:

19

Индустриально добывают из распространенной поваренной соли при помощи электролиза:

20

Бром и йод

«На коленке» – из солей. Окислителями, в кислом же окружении:

21

Химзаводам за сырьем ходить не надо. Морская вода, скважные жидкости. Остатки сожженных океанских/морских водорослей – настоящая йодная руда.

Применение галогенов

Как уже упоминалось, фтор применяется в лечебных и профилактических средствах. Соединения необходимы для изготовления алюминия.

Применение галогенов

Основная часть производимого хлора используется для синтеза соляной кислоты. Необходим в химической индустрии. Для сельскохозяйственных, бытовых ядохимикатов, чистящих средств, отбеливателей. Для очистителей воды.

Бром и йод применяются для медикаментов и в химической отрасли.


Заключение

О свойствах галогенов можно писать бесконечно. В данной статье не затрагивались темы взаимодействий с органическими веществами, например.

А ведь без них невозможен, скажем, фотосинтез. Одна из основ жизни. Без соляной кислоты невозможно пищеварение высших животных. Об этом мы расскажем в следующих публикациях.


Галогены — это… Что такое Галогены?

  • ГАЛОГЕНЫ — ГАЛОГЕНЫ, химические элементы VII группы периодической системы: фтор F, хлор Cl, бром Br, иод I и астат At. Фтор и хлор газы, бром жидкость, остальные кристаллы. Все галогены, кроме At, широко распространены в природе входят в состав многих… …   Современная энциклопедия

  • ГАЛОГЕНЫ — ГАЛОГЕНЫ, элементы (ФТОР, ХЛОР, БРОМ, ЙОД и АСТАТ), принадлежащие к VII группе периодической таблицы. Они реагируют с большинством других элементов и органическими соединениями. Химическая активность падает от начала к концу группы. Галогены… …   Научно-технический энциклопедический словарь

  • ГАЛОГЕНЫ — (устар. выражение галоиды) химические элементы фтор F, хлор Cl, бром Br, иод I и астат At, составляющие главную подгруппу VII группы периодической системы Менделеева. Названы от греческих hals соль и genes рождающий (при соединении с металлами… …   Большой Энциклопедический словарь

  • Галогены — фтор, хлор, бром, йод; входят в VII группу периодической системы. Все члены группы образуют соединения с водородом, причем связь их повышается с уменьшением атомной массы; температура образования различных солей уменьшается с увеличением атомной… …   Российская энциклопедия по охране труда

  • ГАЛОГЕНЫ — общее название пяти хим. элементов, составляющих VII подгруппу Периодической системы элементов Д. И. Менделеева, фтора, хлора, брома, йода и астата. Все Г. неметаллы, их молекулы двухатомны; Г. реагируют со всеми простыми веществами, являются… …   Большая политехническая энциклопедия

  • ГАЛОГЕНЫ — ПОДГРУППА VIIA. ГАЛОГЕНЫ ФТОР, ХЛОР, БРОМ, ИОД, АСТАТ Галогены и особенно фтор, хлор и бром имеют большое значение для промышленности и лабораторной практики как в свободном состоянии, так и в виде различных органических и неорганических… …   Энциклопедия Кольера

  • Галогены — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • ГАЛОГЕНЫ — ГАЛОИДЫ ИЛИ ГАЛОГЕНЫ химические элементы: хлор, иод, бром, фтор, образующие с металлами соли без кислорода, напр. хлористый натрий (повар. соль). Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. ГАЛОИДЫ или ГАЛОГЕНЫ …   Словарь иностранных слов русского языка

  • галогены — ов; мн. (ед. галоген, а; м.). [от греч. hals соль и genesis род, происхождение]. Группа химических элементов (фтор, хлор, бром, йод и др.), образующих соли при соединении с металлами. ◁ Галогенный, ая, ое. Г ые соединения. Г ая лампа (лампа… …   Энциклопедический словарь

  • галогены — halogenai statusas T sritis chemija apibrėžtis F, Cl, Br, I, (At). atitikmenys: angl. halogens; haloid elements; haloids rus. галогены …   Chemijos terminų aiškinamasis žodynas

  • Галогены — (от греч. hals соль и… genes рождающий, рожденный)         химические элементы Фтор F, Хлор Cl, Бром Br, Иод I и Астат At, составляющие главную подгруппу VII группы периодической системы Д. И. Менделеева. Названы Г. по свойству давать соли при… …   Большая советская энциклопедия

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *