Как запаять дюраль в домашних условиях: подбираем припой, флюс, канифоль, паяльник или горелку

Содержание

Пайка дюралюминия в домашних условиях

Алюминий относится к металлам, плохо поддающимся пайке. Это обусловлено его склонностью к образованию на поверхности изделий прочной плёнки окисла, препятствующей смачиванию детали расплавленным припоем.

Одна только механическая зачистка поверхности не помогает, так как новый окисел образуется мгновенно после снятия старого. По этой причине, для пайки алюминия применяют специальные флюсы и соблюдают особую технологию.

Соединение проводов

Обычно пайка алюминия применяется в тех случаях, когда соединяемые детали достаточно малы и применение аргоновой сварки невозможно, либо она отсутствует. Один из примеров применения пайки – соединение электрических проводов из разных материалов.

Нередко на практике приходится производить соединение медных и алюминиевых проводов. Выполнять такие соединения скруткой нельзя, так как эта пара металлов образует очаг электрохимической коррозии. В этом случае, отличным вариантом соединения может служить пайка алюминия с медью.

Такую операцию можно выполнить обыкновенным мягким свинцово-оловянным припоем, но при этом следует использовать специальный флюс для пайки алюминия. Процедура должна выполняться в следующей последовательности:

  • сначала необходимо зачистить медный провод и залудить его с применением канифоли;
  • для лужения алюминиевого провода следует, после механической зачистки от окисной плёнки, покрыть его слоем флюса для пайки алюминия;
  • для лучшей механической прочности соединения залуженные провода можно скрутить;
  • нагревая паяльником соединение с добавлением флюса добиться расплавления припоя и образования спайки.

Полученное таким образом соединение можно смело заделывать в стену, прослужит оно очень долго.

Снятие оксидной пленки

Обычно при наличии хорошего флюса, специально предназначенного для пайки алюминия, применение каких-либо особых ухищрений не требуется, достаточно произвести механическую зачистку и смочить паяемую поверхность флюсом.

Также возможно применение кислоты для пайки алюминия. Используют соляную кислоту, в которой растворен цинк (паяльная кислота), применяют также флюсы на основе ортофосфорной кислоты.

Но если такой флюс отсутствует или в силу плохого качества не обеспечивает пайку, можно пойти другим путём. Есть несколько способов удаления окисной плёнки для успешного лужения заготовки.

В канифоли

Алюминиевый провод или другую деталь можно освободить от окисной плёнки, погрузив её в жидкую канифоль. Для этого можно либо расплавить её, либо приготовить спиртовой раствор.

Погрузив деталь в канифоль, острым ножом нужно соскоблить плёнку окисла. Слой канифоли препятствует доступу воздуха и образованию нового окисла. После этого деталь можно залудить, используя разогретый паяльник с припоем.

Абразивным порошком

При отсутствии флюса и канифоли пайку алюминия можно произвести следующим образом. Готовится паста, состоящая из порошка абразива и трансформаторного масла.

В качестве абразива можно также использовать мелкие металлические опилки. Заготовка покрывается данным составом, после чего натирается горячим паяльником с припоем.

В результате этого зёрна абразива или металлической стружки снимают плёнку, а поверхность тут же, без доступа воздуха смачивается припоем. После лужения изделие можно легко запаять.

Химический способ очистки

По сути, этот способ является не чем иным, как обмеднением алюминиевой поверхности. Выполняется он следующим образом.

Ту часть алюминиевой заготовки, которую предстоит покрыть слоем меди, смачивают раствором медного купороса. Затем берут источник постоянного тока, напряжением 4,5 вольта.

Это может быть батарейка или аккумулятор. Алюминиевую деталь соединяют с минусовым выводом источника питания. К плюсовой клемме присоединяют медный провод, конец которого запутывают в щетине зубной щётки.

Далее щётку смачивают раствором медного купороса. Провод, находящийся в щетине, должен быть хорошо увлажнён. После этого щёткой натирают место детали, предварительно смоченное раствором.

В результате гальванической реакции поверхность алюминия покрывается тонким слоем меди, что позволяет её паять, как если бы это была медная деталь.

Разогрев детали

При пайке достаточно массивных деталей, мощности обычного электрического паяльника может не хватить, чтобы нагерть заготовку до нужной температуры.

Можно воспользоваться для разогрева алюминия в домашних условиях газовой горелкой. Для этой цели лучше использовать портативную горелку, питающуюся от маленького газового баллончика. При этом работать нужно очень аккуратно. Недопустимо перегреть основной металл до состояния, когда он начнёт плавиться.

Можно также применить комбинированный метод нагрева. Например, массивную алюминиевую деталь поместить на конфорку кухонной газовой плиты и зажечь малый огонь. В месте пайки можно орудовать электрическим паяльником.

Всё сказанное о способах пайки алюминия относится к различным сплавам на основе этого металла. Несколько обособлена только тема пайки силумина. Этот материал является сплавом алюминия, содержащим кремний (грубо говоря, песок).

Пайка этого сплава доставляет особые трудности. Попытки спаять силумин часто терпят неудачи.

Даже после, казалось бы, удачной пайки, оказывается, что соединение не обладает нужной прочностью и может разрушиться. Специалисты не советуют паять этот материал. Лучший способ соединения этого сплава – аргонодуговая сварка.

Высокотемпературный процесс

Промышленные способы алюминиевой пайки отличаются применением более твёрдых припоев, содержащих алюминий. Для применения такой технологии требуется заводское оборудование и наличие специальных флюсов.

Так, нагрев и пайка заготовок производится в специальных печах туннельного типа. Процесс пайки осуществляется в среде инертных газов при температуре, достигающей 600 ℃. Эта технология применяется при изготовлении алюминиевых радиаторов и теплообменников современных автомобилей.

Нередко в радиолюбительской практике, да и просто в быту встает вопрос пайки алюминия. Электрические провода, корпуса, прохудившиеся емкости — да мало ли что. Но к сожалению, алюминий и его сплавы паяться очень не любят. Этот материал даже залудить (покрыть слоем припоя) и то проблема, не то что качественно припаять. Единственный выход, как принято считать, — сварка, причем сварка специальная, к примеру, аргонно-дуговая. Тем не менее, алюминий все же можно спаять, причем качественно, в домашних условиях и без применения особых инструментов и технологий.

Почему алюминий не паяется

«Не паяется» — не совсем правильное заявление. Скорее, плохо паяется. Дело все в том, что алюминий практически мгновенно окисляется на воздухе, покрываясь исключительно прочной оксидной пленкой, которую не покрывает ни один металл. Но если эту пленку разрушить, то паять алюминий ничуть не сложнее, чем ту же медь. Другое дело, что оксид алюминия — весьма прочное соединение. Вы наверняка слышали о резцах из корунда, а это и есть оксид алюминия.

С одной стороны, этот слой оксида надежно защищает алюминий от дальнейшего окисления и разрушения, но с другой — существенно затрудняет процесс пайки. Тем более что разрушить его обычными нейтральными флюсами — той же канифолью — невозможно. Но если все же такой флюс найти, то можно без проблем спаять алюминий в домашних условиях.

Флюсы для пайки алюминия

Как говорилось выше, пленка оксида алюминия исключительно прочна, и разрушить ее химическими методами весьма сложно. Тем не менее существует множество составов, позволяющих эту самую пленку не только разрушить, но и предотвратить появление нового оксидного слоя до того, как процесс пайки будет завершен. Выбирая тот или иной флюс, вы в первую очередь должны ориентироваться на тип пайки — паяльник или горелка. Неправильно выбранный состав или не даст желаемого результата при недогреве, или просто сгорит в пламени, к примеру, газовой горелки.

Если вы собираетесь работать легкоплавкими припоями и использовать паяльник, то имеет смысл обратить внимание на флюс Ф-59А и ему подобные (Ф61А, Ф64 и др.). Он обладает высокой активностью и отлично разрушает даже толстый слой оксидной пленки при относительно низкой температуре прогрева обычным паяльником.

Но использовать его для пайки горелкой и высокотемпературными припоями нельзя. Если тот же Ф-59А даже успеет разрушить оксид, в процессе дальнейшего нагрева он просто сгорит, а ведь в его задачу входит не только удалить корунд, но и препятствовать окислению алюминия вплоть до окончания процесса пайки.

Для работы высокотемпературными припоями придется использовать что-то другое, к примеру, флюс Ф-34А (АФ-4А, Castolin 190 Flux и пр.), способный выдерживать температуру до 610 градусов.

Высокотемпературный флюс для алюминия

Почему он не подойдет для работы паяльником? Поскольку нижний порог активности этого флюса составляет 520 градусов, паяльником вы его просто не сможете разогреть до нужной температуры, а значит, активировать.

Конечно, выбор мастера не ограничивается вышеперечисленными составами. Их существует великое множество — как отечественных, так и импортных. Так что вам есть из чего выбрать, опираясь как на стоимость, так и доступность.

Припои для алюминия

Паять алюминий можно как обычными свинцово-оловянными припоями, так и специальными, имеющими в своем составе алюминий, цинк, серебро и др. металлы и даже неметаллы (к примеру, кремний). Припои ПОС, как и специальные для алюминия, имеют различные температуры плавления, что необходимо учитывать как при работе с ними, так и при эксплуатации отремонтированного изделия.

Если вы решили паять посуду, контактирующую с пищей (канистра, фляга, трубка дистиллятора и пр.), то припои, содержащие свинец, использовать нельзя. Придется заняться высокотемпературной пайкой, используя, к примеру, припой 34A, содержащий медь, кремний и, конечно, алюминий. Подойдет ЦОП-40, содержащий цинк.

Припои 34A (слева) и ЦОП-40

Из зарубежных можно порекомендовать Aluminium-13, который, по сути, является аналогом 34А.

Припой для пайки алюминия Aluminium-13

Еще один вариант — пайка чистым оловом. Оно великолепно подходит для ремонта пищевой посуды и имеет низкую температуру плавления, а значит, работы можно производить при помощи паяльника. Но используя олово, следите за тем, чтобы место пайки сильно не нагревалось в процессе эксплуатации изделия. Вы, к примеру, можете запаять оловом донышко чайника (оно соприкасается с водой и выше 100 градусов не нагреется), а вот клювик того же чайника отвалится после первого же кипячения.

Для пайки пищевой посуды можно использовать олово

Особого внимания заслуживают так называемые офлюсованные, уже имеющие в своем составе специальный флюс (обычно в виде обмазки, но необязательно). Бытует мнение, что для работы с ними флюс вообще не нужен и, в принципе, это так. Тем не менее он очень желателен для защиты от окисления места пайки в процессе работы. Для этих целей подойдет любой пассивный флюс, который выдерживает температуру пайки. Идеальным решением здесь может быть обычное трансформаторное масло, которым пользуются электрики при пайке высоковольтных муфт.

Алюминиевый припой с обмазкой из флюса

Из недостатков флюсовых припоев можно отметить их более высокую стоимость, одноразовость (неизрасходованный припой, но уже раз подвергавшийся нагреву повторно вы не используете) и необходимость опыта работы с такими составами.

Выбор источника тепла

Здесь выбор не очень велик:

  • обычный паяльник;
  • открытый огонь.

Первый вариант подойдет в случае, если вам не нужна особая механическая прочность соединения. К примеру, нужно спаять два провода для надежного электрического контакта или какую-то деталь, не несущую большой механической нагрузки. Скажем, дырявую кружку, чтобы не текла. Второй вариант подразумевает тот или иной вид горелки и использование тугоплавкого припоя. Он гораздо сложнее первого, но позволяет получить прочное механическое соединение, что говорится, на века.

Пайка металла обычным паяльником

Как указывалось выше, паять алюминий, используя легкоплавкие припои, можно при помощи обычного и всем знакомого паяльника. Единственное условие — мощность инструмента должна быть достаточной для прогрева спаиваемых деталей до необходимой температуры.

Для пайки алюминия подойдет любой паяльник.

Если вы умеете работать паяльником, то никаких проблем с пайкой алюминия у вас не будет (ну или почти не будет). Зачищаете детали, покрываете соответствующим флюсом и спаиваете. Неплохо на место пайки, смазанное флюсом, добавить немного мелкого абразива, который поможет очистить спаиваемые поверхности от оксидной пленки.

Если в вашем распоряжении нет паяльника достаточной мощности, то спаиваемые детали можно параллельно подогревать горелкой (несильно) или даже пламенем газовой конфорки.

Некоторые электрики вообще умудряются паять алюминий «тем, что есть», причем в смысле электрической прочности качественно паять. Вы тоже можете воспользоваться этим методом при соединении, к примеру, двух алюминиевых проводов. Для этого вам понадобится:

  • любой абразивный порошок, например, мелкий песок;
  • обычное машинное масло (лучше ружейное).

Насыпаете абразив на плоскую поверхность, капаете масло, погружаете в состав зачищенный алюминиевый провод и, взяв на жало припой, «натираете» им этот самый провод. Абразив обдирает оксид, масло предотвращает появление новой пленки, а припой надежно покрывает алюминий полудой.

Единственный недостаток такого метода — низкая механическая прочность соединения, поэтому перед тем как окончательно спаять проводники, их после лужения надо скрутить. Электрическая же прочность такой паки великолепная, так что если ее не разорвет механически, то простоит она десятки лет.

Применение газовой горелки

Если вы решили использовать для пайки алюминия тугоплавкие припои, то вам не обойтись без открытого огня. В этом случае вам придется обратить внимание на следующие нюансы:

  • Пламя должно быть высокого качества — не коптить, держать постоянную температуру и размеры факела.
  • Для пайки открытым пламенем требуется немалый опыт в поддержании оптимальной температуры нагрева, поскольку «температурный коридор» качественной пайки достаточно узок. Перегрели — потерял механическую прочность или даже потек алюминий. Недогрели — не плавится тугоплавкий припой.

Для выполнения первого условия не подойдут, к примеру, костер или пламя свечи — они коптят. Конфорка газовой плиты? Она не коптит, но выдержать температуру нагрева спаиваемых деталей очень сложно даже профессионалу — малейшее движение по вертикали или горизонтали и температура «ушла».

Кроме того, газовую конфорку не возьмешь в руку, а потому в руках придется держать спаиваемые детали. Если это предмет массивный, вы просто не сможете держать его в пламени в постоянном движении для поддержания нужной температуры, одновременно пытаясь паять другой рукой. Ну и поскольку греть вы будете снизу, то для нормальной пайки вам придется перегревать деталь (паять то нужно сверху), а значит, ее можно легко расплавить. Тем не менее, худо-бедно спаять алюминий над газом можно, но только худо-бедно.

Идеальным вариантом будет газовая горелка. Она компактна (в смысле сама горелка, а не баллон к ней), не коптит, мало весит. Но к сожалению, не всегда ее можно раздобыть.

Самым простым выходом из ситуации может стать небольшая паяльная лампа. Для того чтобы она была легче, просто не заправляйте устройство бензином «под горлышко». Перед тем как начать пайку, лампу нужно как следует разогреть, чтобы она не коптила.

Алюминий можно спаять газовой или бензиновой горелкой.

Будем считать, что горелка разогрета, а спаиваемые детали зачищены и плотно прижаты друг к другу по месту будущей пайки. Нанесите соответствующий флюс на детали (если вы используете бесфлюсовый припой, то в качестве флюса используйте трансформаторное масло) и начинайте нагрев. Температуру нагрева необходимо постоянно контролировать кусочком припоя, касаясь места будущей пайки.

Как только припой начнет плавиться, старайтесь держать температуру постоянной (это придет с практикой), а кусочком припоя натирайте место пайки, полностью облуживая его. Как только лужение закончилось, этим же кусочком можете и произвести пайку, используя его как электрод для сварки. Нередко электрики при спайке муфт используют тугоплавкий припой только для лужения оболочки кабеля, а муфту после напаивают обычным легкоплавким припоем.

Дело в том, что муфта выполнена из свинца и просто не выдержит нагрева, необходимого для плавления тугоплавкого алюминиевого припоя. Но если обе детали алюминиевые, конечно, лучше паять и лудить тугоплавким припоем — место соединения деталей будет иметь высокие как электрическую, так и механическую прочность.

Как спаять силумин

Прежде всего, определимся, что силумин — это сплав алюминия с кремнием и ни с чем другим. К примеру, сплав ЦАМ (цинк, алюминий, магний) — совершенно другой материал. Если вы уверены, что держите в руках силуминовую деталь, то можете смело браться за пайку — силумин можно паять по той же технологии, что и алюминий. Другое дело, что силуминовые детали обычно работают под достаточно высокой механической нагрузкой. Материал и так, мягко говоря, плохенький в этом отношении, а если его еще и спаять…

Вы все еще хотите спаять лопнувший силуминовый кран? В принципе, это реально, но все же стоит пожалеть соседей снизу. Что касается сплава ЦАМ, который по внешнему виду очень напоминает силумин, то качественно и прочно спаять его не получится. Только «прислюнить».

Доброго времени суток.
Требуется спаять латунную и дюралевую детальки. Подсажите как ?
С уважением.

пойти в магазин типа «все для сварки» и купить флюс по алюминию. По латуни он пойдет.

А паять лучше чем ? Горелкой ?

Я, как бы, не против, но . Инет пишет про горелку в основном. Почему ?

Если детали большие, паяльник не прогреет, нужна горелка, если провод 1,5 – 100 Вт справится. Подойдет для подогрева и газовая плитка

Это не провод.
Если коротко на пальцах то:
Деталь номер раз – пластина дюралюминия шириной 2,5см толщиной 2мм
Деталь номер два – латунный «пятак» диаметром 4см толщиной 3мм
Так вот нужно к латунному пятаку припаять торцом дюралевую пластину.
ЗЫ: если рыбаки есть – квок это, чтобы понятней было.

Квок проще из дерева вырезать?
Для изготовления квока используют древесину рябины, вяза, черемухи или яблони. Идеальной наживкой для сома, может послужить либо лягушка, либо кусочек мяса или же воробей.

Во-первых – СИЛЬНО не проще.
Во-вторых – деревянные есть, хочу попробовать металл.

quote: Originally posted by Ножедел:

Причем желательно подпаленный на углях вместе с перьями!

А не проще приклеить поксиполом?

Проще тогда вообще ничего не делать )))
Нагрузки представляете при такой маленький площади склеивания ? Отвалится все через 5 минут.

quote: Originally posted by Compa:

Деталь номер раз – пластина дюралюминия шириной 2,5см толщиной 2ммДеталь номер два – латунный «пятак» диаметром 4см толщиной 3мм

паяльник ватт на 100 вполне справится, ток если паять будеш кислотой, ОБЯЗАТЕЛЬНО после пайки хорошо промой водой с чем нибудь мыльным, типа фейри итд(ибо коррозия ужасна!)
горелкой посильнее будет, ну ет если паяло не справицо

Так вот я и пытаюсь выяснить, ЧЕМ паять.
Просто сейчас нет для этого пока ничего, все покупать буду, нужно понять, что именно покупать.

ну флюс для люминия вполне должон

А таки паяло или горелка ?

quote: Вы сами-то хоть одного на ЭТО поймали ? ))

А вообще – пайка аллюминия и его сплавов, это отдльная наука, тут и флюс специальный нужен! Что может быть проще – зайти в магазин с комплектующими для радиолюбителей и объяснить проблему, наверняка и флюс и припой подберут! (по крайней мере у нас, в Кирове, я по таким вопросам не парюсь)

Попробую до Чипа и Дипа доехать, там на месте посмотрю, что предложат по этой тематике.

А пластину дюралюминия шириной 2,5см толщиной 2мм нельзя из латуни сделать? Но даже в этом случае паяное в торец соединение развалится в Вашем случае меньше чем за 5 минут. ИМХО.

quote: А пластину дюралюминия шириной 2,5см толщиной 2мм нельзя из латуни сделать? Но даже в этом случае паяное в торец соединение развалится в Вашем случае меньше чем за 5 минут. ИМХО

«А вообще – пайка аллюминия и его сплавов, это отдльная наука, тут и флюс специальный нужен!»
Алюминий не паяется обычным методом из-за МГНОВЕННО образующейся при контакте с воздухом тончайшей оксидной плёнки. Бесполезно пытаться зачистить и сразу же заканифолить: оксидная плёнка образуется прямо у вас под наждачкой!
Когда-то давно вычитал в умной книге совет по пайке алюминия. Деталь греется, канифолится и . посыпается образивным порошком. А затем обычный припой жалом паяльника втирается в деталь. То есть, зачистка происходит под слоем флюса, и алюминий-таки облуживается. Дальше- обычная пайка.
Этот метод неоднократно и успешно опробован мной и моими учениками кружков радиоэлектроики и электронной автоматики. (В перестройку средств кружкам на расходные материалы не выделяли, да и не было в продаже всяких специальных флюсов! Сейчас-проще ).

quote: «А вообще – пайка аллюминия и его сплавов, это отдльная наука, тут и флюс специальный нужен!»
Алюминий не паяется обычным методом из-за МГНОВЕННО образующейся при контакте с воздухом тончайшей оксидной плёнки. Бесполезно пытаться зачистить и сразу же заканифолить: оксидная плёнка образуется прямо у вас под наждачкой!
Когда-то давно вычитал в умной книге совет по пайке алюминия. Деталь греется, канифолится и . посыпается образивным порошком. А затем обычный припой жалом паяльника втирается в деталь. То есть, зачистка происходит под слоем флюса, и алюминий-таки облуживается. Дальше- обычная пайка.
Этот метод неоднократно и успешно опробован мной и моими учениками кружков радиоэлектроики и электронной автоматики. (В перестройку средств кружкам на расходные материалы не выделяли, да и не было в продаже всяких специальных флюсов! Сейчас-проще ).

в свое время. для паийки таких вещей использовал медный купорос разведенный с солью для омеднения поверхности.
паяетсо на ура. как писали выше или паяльником или горелкой
. будет интересно стукнись в мыло. раскажу подробнее

За прошлую неделю 3 квока сделал. Один из дюральки – пятак клепал. В пятаке сделал прорезь как в больстере вставил нож выступающий на 1мм и заклепал. Один пятак из монеты – соединил холодной сваркой.

quote: Originally posted by bac75:

За прошлую неделю 3 квока сделал. Один из дюральки – пятак клепал. В пятаке сделал прорезь как в больстере вставил нож выступающий на 1мм и заклепал. Один пятак из монеты – соединил холодной сваркой.

В качестве флюса для пайки алюминия можно использовать аспирин. Воняет он только сильно при этом.

Хммм. А почему нельзя обе детали сделать из латуни? Или из алюминия, и аргоном сварить?

Мягкие припои (оловянно-свинцовые) механической прочности не имеют, поставьте 3 заклепки, хоть из ляминевой проволоки, и можно не задумываться. Флюсы для ляминя, что продаются в радиолавках – это такая лажа, сам неоднократно пробовал. Были припои марки «АВИА», они облуживали ляминь без флюса, но рецепта у меня сейчас нет, в составе олово, кадмий, цинк, сварить – отдельная песня, литейщики пары цинка оченно не любят.

quote: Originally posted by Дрогмот:

А почему нельзя обе детали сделать из латуни? Или из алюминия, и аргоном сварить?

quote: Originally posted by Gunsmith51:

отдельная песня, литейщики пары цинка оченно не любят

Для квока такие извращения? Не проще ли склепать буквой Т два алюминиевых уголка и доработать?

Мастера! Пожалуйста, чертежи и фото квока воткните! Сома навалом, квока в глаза ни разу не видал. В нете нашёл только туманные описания.
Кстати, а серебром люминий паяется, или нет?

quote: Originally posted by dr-feld:

чертежи и фото квока воткните!

И на том спасибо, бум пробовать! Наши местные кг до 10 растут, но то же ничего рыбка.

quote: cварщик аргонщик за латунные говорит спасибо

quote: Кстати, а серебром люминий паяется, или нет?

quote: И даже облегченный чугун -«Сейлуминь» как говорят продавци сковородок.

Алюминий варится в аргоне, но сварщик должен уметь это делать. В авторизованных сервисах Ауди есть такие или в авиации.

——————
из этой жизни живым никто не выходил

Ляминь и сплавы сваривается и в углекислоте, те в любой защитной среде

quote: Уважемый -riff –
К вашему сожалению не Вы один в стране сварщик.
С уважением Валерий.

У меня есть такой опыт! Латунь великолепно паяется серебром, с помощью дуги в среде аргона!

Правда ацетиленом это делать приятнее и проще. 🙂

quote: Originally posted by Дрогмот:

Латунь великолепно паяется серебром, с помощью дуги в среде аргона!

По моему мнению, ерунда полнейшая получится. Проще сделать либо обе детали из алюминия и аргоном сварить, или из латуни и паять серебром. А вообще, квок из дерева вырезают. :-)или из пластика. И вообще, автор, а почему именно латунь с алюминием?

Пайка алюминия — флюс, припой, оборудование

Пайка алюминия — флюс, припой, оборудование

Очень часто приходится сталкиваться с необходимостью паять алюминий: потекла кастрюля, нужно соединить провода, и т. д. При этом пайка алюминия существенно отличается от пайки меди.

Во-первых, для того, чтобы паять алюминий в домашних условиях, необходима температура значительно выше. Во-вторых, приходится сталкиваться с необходимостью разрушения оксидной пленки, которая присутствует на поверхности алюминия.

Для её удаления применяются специальные флюсы для алюминия. В этой статье сайта svarkapajka.ru мы рассмотрим процесс пайки алюминия в домашних условиях, и расскажем, какие материалы для этих целей необходимо использовать.

Припой для пайки алюминия

Для пайки алюминия подходит самый обычный припой. Чаще всего это олово, но можно использовать и свинец, цинк, висмут. Наибольше всего для пайки алюминия подходит припой 34А, с высоким содержанием алюминия, меди и кремния. Не меньшей популярностью обладает и специальный припой для алюминия ЦОП-40.

Основное отличие припоев для алюминия не только в процентном содержании всех вышеперечисленных компонентов, но и в температуре разогрева. Самым плавким припоем считается припой с большим содержанием олова. А вот такой припой, как Aluminium-13 поддаётся плавлению только при очень высоких температурах, начиная от 590 градусов с плюсом.

Поэтому если пайку алюминия приходится осуществлять в домашних условиях, то лучше взять оловянный припой. Для его разогревания понадобится самый обычный электрический паяльник, мощность которого составляла бы от 60 Ватт.

Флюс для алюминия и сплавов

Вторым материалом по необходимости для пайки алюминия, является флюс. Он содержит специальные вещества, которые способны разрушить оксидную плёнку, что даст припою нормально схватиться с металлом.

Для пайки алюминия применяются следующие виды флюса: Ф-59А, Ф-61А, Ф-64А. Все они имеют в своём составе аммоний и триэтаноламин, которые способны вступать в реакцию с алюминием.

При этом стоит понимать, что если пайка алюминия осуществляется посредством газовой горелки, то для удаления оксидной пленки применяются так называемые высокотемпературные флюсы. Одним из таких флюсов, является флюс марки 34А.

Чем и как паять алюминий в домашних условиях

Для пайки алюминия и изделий из него в домашних условиях можно использовать как газовую горелку, так и паяльник. Он должен быть достаточно мощным, поскольку пайка алюминия требует высоких температур в отличие от пайки меди. Паяльник для пайки алюминия нужен не менее чем на 60 Вт.

Сам процесс пайки алюминия в домашних условиях выглядит так:

  • В начале поверхность алюминия тщательным образом обезжиривается. Для обезжиривания допускается использовать бензин, ацетон и растворители;
  • Затем производится удаление оксидной пленки с поверхности алюминия. Сначала наждачной бумагой, а затем флюсом для пайки алюминия;
  • После этого осуществляется нагрев места пайки (газовой горелкой или паяльником) и распределение припоя.

Припой подносится к месту пайки, после чего расплавляется паяльником и заполняет собой пустоты или место соединение деталей. Вся сложность здесь заключается в быстром остывании алюминия, поэтому часто флюс и припоя приходится подносить к месту пайки повторно, разогревая их паяльником или газовой горелкой.

Как паять алюминий в домашних

Существует распространенное убеждение, согласно которому невозможно паять или лудить алюминий (а также сплавы на его основе) не имея для этого спецоборудования.

В качестве аргумента приводится два фактора:

  1. при контакте с воздухом на поверхности алюминиевой детали образуется химически стойкая и тугоплавкая оксидная пленка (AL
    2
    O3), в результате чего создается препятствие для процесса лужения;
  2. процесс пайки существенно осложняется тем, что алюминий расплавляется при температуре 660°С (для сплавов это диапазон в пределах от 500 до 640°С). Помимо этого металл теряет прочность, когда в процессе нагрева его температура поднимается до 300°С (у сплавов до 250°С), что может вызвать нарушение устойчивости алюминиевых конструкций.

Учитывая приведенные выше факторы, осуществить пайку алюминия обычными средствами действительно невозможно. Решить проблему поможет применение сильнодействующих флюсов, в сочетании с использованием специальных припоев. Рассмотрим подробно эти материалы.

Припой

Обычно в качестве основы легкоплавкого припоя используются: олово (Sn), свинец (Pb), кадмий (Cd), висмут (Bi) и цинк (Zn).

Проблема в том, что алюминий в этих металлах практически не растворяется (за исключением цинка), что делает соединение ненадежным.

Применив флюс с высокой активностью и проведя должным образом обработку мест соединения, можно использовать припой на оловянно-свинцовой основе, но лучше отказаться о такого решения. Тем более, что паянное соединение на основе системы Sn-Pb обладает низкой устойчивостью к коррозии. Нанесение лакокрасочного покрытия на место пайки позволяет избавится от этого недостатка.

Для пайки алюминиевых деталей желательно использовать припой на основе кремния, меди, алюминия, серебра или цинка. Например 34A, который состоит из алюминия (66%), меди (28%) и кремния (6%), или более распространенный ЦОП-40 (Sn – 60%, Zn – 40%).

Припой отечественного производства – ЦОП-40

Заметим, что чем больше процентное содержание цинка в составе припоя, тем прочнее будет соединение и выше его устойчивость к коррозии.

Высокотемпературным считается припой, состоящий из таких металлов, как медь, кремний и алюминий. Например, как упомянутый выше отечественный припой 34A, или его зарубежный аналог «Aluminium-13» , в котором содержится 87% алюминия и 13% кремния, что позволяет осуществлять пайку при температуре от 590 до 600°С.

«Aluminium-13» производства компании Chemet

При выборе флюса необходимо учитывать, что не каждый из них может быть активным к алюминию. Мы можем порекомендовать использовать в таких целях продукцию отечественного производителя – Ф-59А, Ф-61А, Ф-64, они состоят из фторборатов аммония с добавлением триэтаноламина. Как правило, на пузырьке есть пометка – «для алюминия» или «для пайки алюминия».

Флюс отечественного производства

Для высокотемпературной пайки следует приобрести флюс, выпускаемы под маркой 34А. Он состоит из хлористого калия (50%), хлорида лития (32%), фторида натрия (10%) и хлористого цинка (8%). Такой состав наиболее оптимален, если производится высокотемпературная пайка.

Рекомендуемый флюс для паки при высокой температуре

Подготовка поверхности

Прежде чем начинать лужение, необходимо выполнить следующие действия:

  • обезжирить поверхность при помощи ацетона, бензина или любого другого растворителя;
  • удалить оксидную пленку с места, где будет производится пайка. Для зачистки используется наждачная бумага, абразивный круг или щетка с щетиной из стальной проволоки. В качестве альтернативы можно применить травление, но эта процедура не так сильно распространена в силу своей специфичности.

Следует учитывать, что полностью оксидную пленку удалить не получится, поскольку на очищенном месте моментально появляется новое образование. Поэтому зачистка производится не с целью полного удаления пленки, а для уменьшения ее толщины, чтобы упростить флюсу задачу.

Нагрев места пайки

Для пайки небольших деталей можно воспользоваться паяльником мощностью не менее 100Вт. Массивные предметы потребуют более мощного нагревательного инструмента.

Паяльник мощностью 300 Вт

Наиболее оптимальный вариант для нагрева — использование газовой горелки или паяльной лампы.

Простая газовая горелка

При использования горелки в качестве нагревательного инструмента следует учесть следующие нюансы:

  • нельзя перегревать основной металл, поскольку он может расплавиться. Поэтому в процессе необходимо регулярно контролировать температуру. Делать это можно, касаясь припоем нагреваемого элемента. Расплавление припоя даст знать, что достигнута необходимая температура;
  • не следует использовать кислород для обогащения газовой смеси, поскольку он способствует сильному окислению металлической поверхности.

Инструкция по пайке

Процесс пайки алюминиевых деталей не имеет своих отличительных особенностей, он осуществляется также как со сталью или медью.

Алгоритм действий следующий:

  • обезжиривается и зачищается место пайки;
  • производится фиксация деталей в нужном положении;
  • нагревается место соединения;
  • прикасаются стержнем припоя (содержащим активный флюс) к месту соединения. Если используется безфлюсовый припой, то для разрушения пленки оксида наносится флюс, после чего трут твердым куском припоя по месту пайки.

Для разрушения пленки оксида алюминия также используется щетка со щетиной из стальной проволоки. При помощи этого простого инструмента производят растирание расплавленного припоя по алюминиевой поверхности.

Пайка алюминия — полная видео инструкция


https://www.youtube.com/watch?v=ESFInizLE9U

Что делать при отсутствии нужных материалов?

Когда нет возможности подготовить все необходимые для пайки материалы, можно использовать альтернативный способ, при котором применяется припой на оловянной или оловянно-свинцовой основе. Что касается флюса, то он заменяется канифолью. Чтобы не образовывалась новая пленка оксида алюминия на месте старой, зачистка производится под слоем расплавленной канифоли.

Паяльник, помимо своего прямого назначения, будет использоваться как инструмент, разрушающий оксидную пленку. Для этого на его жало надевается специальный скребок. Увеличить результативность процесса можно, добавив в канифоль металлических опилок.

Процесс производится следующим образом:

  • нагретым луженым паяльником расплавляют канифоль в месте пайки;
  • когда канифоль полностью покрывает поверхность, начинают тереть об нее жалом паяльника.
    В результате этого металлические опилки и жало разрушают пленку оксида алюминия. Поскольку слой расплавленной канифоли не позволяет проникать воздуху к алюминиевой поверхности, на ней не образовывается оксидная пленка. По мере того, как производится разрушение пленки, будет происходить лужение детали;
  • когда процесс лужения завершен, детали соединяют и прогревают, пока не будет достигнута температура плавления припоя.

Необходимо предупредить, что процесс пайки алюминия без специальных материалов — довольно хлопотный процесс без гарантии успешного завершения. Поэтому лучше не тратить на такую работу свои силы и время, тем более, что качество и надежность такого соединения будут сомнительными.

Гораздо проще купить активный флюс и высокотемпературный припой, при помощи которых пайка алюминия даже в домашних условиях не вызовет затруднений.

Всем привет! Многие знают, что алюминий паяют в основном в аргоновой среде специальным сварочным аппаратом, но есть еще вариант для работы с газовой горелкой, да даже турбозажигалкой в небольших масштабах можно пользоваться.

Вообще это не первое мое знакомство с данной проволокой, но опыт покупок не очень хороший, так что поделюсь не только результатом тестирования, но и проверенными местами для покупки, чтобы не получить образец №2, но начнем по порядку.

Содержание
Характеристики

B-Zn98Al 381-400
Примерный состав (вес %): 2,4 Al – остальное Zn
Температура плавления ºС: 360
Прочность на разрыв (МПа): До 100 (Al)
Плотность (г/cм3): 7,0

Распаковка и внешний вид

Последним и самым выгодным приобретением был образец №3 из banggood.

Пришел в небольшом сером пакете

Пруток дополнительно упакован в прозрачный зип-пакет.

5 метров обошлись мне в $8 с поинтами, то есть $1.6 за метр — перейти в магазин

В центре виден белый порошковый флюс, пруток в меру жесткий, выглядит как алюминий без окисления

Сравнение

Первым был куплен крайний левый образец №1 в али. Он абсолютно идентичен по свойствам с образцом №3, но 3 метра обошлись мне в $12, то есть $4 за метр, что почти втрое дороже. проверить текущую цену

В центре образец №2. Он стоит $5 за 3 метра или $1.7 за метр, как и образец №3

Но как только берешь пакет в руку, понимаешь, что это ПОС с не очень густым флюсом внутри.

Еще два образца по $8 за 3 метра так и не были доставлены, вероятно их даже не отправили.

Тестирование

Алюминий со временем покрывается оксидной пленкой, из-за которой поверхность становится матовой, так вот, перед спаиванием поверхности обязательно нужно зачищать до блеска, иначе припой просто будет шариками скатываться по поверхности независимо от степени ее нагрева. Образец №1

Вообще правильно нагреть деталь до температуры около 400 градусов, а затем просто водить прутком, который будет плавиться и заполнять собой щели, но у меня мало опыта, поэтому чтобы не перегреть поверхность, я периодически вношу пруток в пламя горелки. Если температура низкая, припой скатится по поверхности шариком, если достаточная — залудит ее.

Проверка на излом показывает хороший результат — разрыв происходит не по шву

Образец №2. Плавится очень хорошо, выделяет много дыма, воняет горелым «аспирином». К алюминию липнет, но если перегреть, довольно быстро выгорает.

Работать неудобно из-за вони и необходимости контролировать температуру.

Образец №3. Решил спаять трубки внешними стенками

Пробуем разорвать шов. После того как трубка выскочила из тисков, я зажал ее выше, выведя из фокуса и заметил это только на стадии создания гифок

Но есть фото результата на котором видно, что шов не пострадал.

Ну и напоследок срастим алюминиевую трубку с куском «дюральки»

Тест на разрыв так же прошел успешно

Итоги

Занятная проволока — алюминий паяет отлично, заполняя собой даже мелкие щели, главное чтобы стыки не были загрязнены. К меди тоже липнет хорошо, но опытные люди говорят, что для работы с ней лучше использовать другие сплавы, хотя для экстренного полевого ремонта вполне сгодится и этот пруток.

Температура плавления алюминия около 660ºС, казалось бы, можно использовать прутки и на 450-500 градусов, но можно столкнуться с двумя проблемами:
1. Массивную деталь до 500 градусов нужно еще чем-то прогреть
2. Можно перегреть место пайки и испортить деталь

Самым оптимальным мне показался образец №3. Соответствует заявленным характеристикам и стоит дешевле остальных минимум вдвое. Так же на выбор есть лоты разной длины:
1 метр — $2.89
2 метра — $4.39
3 метра — $6.39
5 метров — $9.89

Алюминий отличается высокой прочностью, является хорошим проводником тепла и электричества. Он отличается небольшим удельным весом, удобен для обработки, безопасен с точки зрения экологии. Однако все эти положительные качества создают почти непреодолимые препятствия при решении задачи, как паять алюминий в домашних условиях паяльником. Традиционными способами это сделать нельзя, поэтому приходится пользоваться специальными методами сварки и оптимально подобранными материалами.

Технические трудности пайки изделий и деталей из алюминия

Паять алюминиевые конструкции и другие элементы всегда достаточно сложно, особенно, если это выполняется дома начинающими мастерами, не до конца изучившими процесс. В основном такая пайка выполняется промышленными способами на специальном оборудовании. Тем не менее, вполне возможно создать наиболее подходящие условия для сваривания деталей изготовленных из алюминия.

Для достижения этой цели необходимо обязательно разрешить несколько проблем технического характера:

  • Больше всего неприятностей при пайке доставляет окисление в виде пленки, возникающей на поверхности в результате контакта алюминия и воздуха. Даже если металл подготовлен, налет на нем образуется практически сразу же после этого. Подобное пленочное покрытие создает препятствия соединительному процессу и добавляет множество проблем в процессе лужения и спаивания. В данной ситуации обычные типы припоев и флюсов совершенно не годятся, поскольку они не дают гарантии качественного соединения. Пленка удаляется или физико-механическим путем, или с помощью сильнодействующих химических веществ.
  • Следует учесть и высокие показатели температуры, при которой алюминий начинает плавиться. Максимально она достигает 600 0 С. Возникает разница температур между спаиваемым металлом и его пленкой, вызывающая сложности в процессе паек.
  • Из-за температурного режима, алюминий в процессе разогрева начинает заметно терять свою прочность. Этот момент наступает уже при нагреве свариваемого материала до 250-300 градусов. Некоторые алюминиевые сплавы содержат компоненты, температура плавления которых имеет различия с основным металлом.
  • Слабое взаимодействие алюминия с традиционными видами припоев, состоящих, преимущественно, из олова, кадмия и других элементов. Это приводит к недостаточным прочностным характеристикам и надежности создаваемых швов. Проблема как спаять, решается посредством специальных припоев, содержащих цинк, который, в свою очередь, отлично контактирует с алюминием и проникает в него. Происходит сцепление, выходящее на молекулярный уровень, обеспечивая необходимую прочность соединения.

Подготовка к пайке алюминиевых деталей

Большое значение придается подготовке алюминия к предстоящей пайке.

Для этого существует несколько способов, обеспечивающих надежность соединения:

  • Участок соединения предварительно обезжиривается и обрабатывается канифолью. После того как вещество нанесено на поверхность, сюда же укладывается наждачная шкурка. Далее нужно включить мощный паяльник и плотно прижать им наждачку к поверхности.
  • После этого поверхность затирается и шлифуется, а само место соединения одновременно подвергается лужению. На подготовленную поверхность устанавливается алюминиевая деталь, которую можно припаивать уже по обычной схеме. При необходимости, канифоль может быть заменена маслом, используемым в швейных машинах.
  • Во втором варианте в канифоль добавляется металлическая стружка, после чего полученная смесь наносится на поверхность места будущего соединения. Жало паяльника нужно хорошо разогреть и залудить, а затем натирать им всю рабочую поверхность спаиваемых деталей до тех пор, пока не расплавится стружка. Одновременно сюда же добавляется припой. В этом случае происходит снятие окиси механическим путем, а припой тут же попадает на поверхность и защищает ее от повторного появления оксидной пленки.
  • Третий способ заключается в предварительной очистке поверхности. Для этой цели используется медь, посредством которой удаляется оксидная пленка. Данный метод относится к наиболее сложным, поскольку омеднение поверхности должно выполняться в специальной ванночке.

Выбор припоя и флюса для алюминия

Припои на основе олова и свинца могут использоваться для сваривания проводов, элементов и деталей из алюминия при условии их тщательной очистки. Такая пайка должна осуществляться с использованием специальных флюсовых растворов, состоящих из высокоактивных веществ. Однако, такие соединения обладают недостаточной прочностью по причине слабого взаимодействия алюминиевых изделий с оловом и свинцом, склонности к образованию коррозии. Поэтому в виде антикоррозийного покрытия поверхностей из этого металла применяются специальные составы.

К числу таких составов относятся припои с содержанием меди, цинка, алюминия и кремния. Они производятся как в нашей стране, так и за рубежом. Среди отечественных марок наибольшее распространение получил ЦОП-40, содержание которого составляет 40% цинка и 60% олова, а также соединение 34А с алюминием (66%), медью (28%) и кремнием (6%). Содержание цинка оказывает влияние не только на прочность алюминиевых контактов, но и на их устойчивость к коррозии.

Из всех известных припоев минимальной температурой, при которой они начинают плавиться, обладают составы на оловянно-свинцовой основе. Наивысшая температура плавления принадлежит соединениям с алюминиево-кремниевой структурой, а также с алюминием, медью и кремнием. Подобные виды припоев в первом случае расплавляются при достижении температуры 590-600 градусов, а во втором – при 530-550 градусов. Они выбираются для каждого конкретного случая, когда соединяются детали с крупными габаритами, с хорошим теплоотводом или тугоплавкие алюминиевые соединения.

Технологические процессы неразрывно связаны со специальными видами флюсов, применяемых для более качественного взаимодействия всех компонентов сварки.

Подбор наиболее подходящего материала считается довольно сложным мероприятием. Это особенно важно, когда в рабочем процессе используется припой на оловянно свинцовой основе. В структуру таких флюсов включены элементы, формирующие его повышенную активность при взаимодействии с алюминием. Среди них можно отметить триэтаноламин, фторборат аммония, фторборат цинка и другие аналогичные составляющие.

Одним из наиболее популярных флюсовых веществ российского производства считается вещество марки Ф64, отличающееся высокой активностью. Качество данного соединения позволяет припаять металлические детали из алюминия, не снимая тугоплавкое оксидное покрытие, расположенное на поверхности.

Спаивание компонентов из алюминия

Порядок действий и технический процесс сваривания алюминия точно такой же, как и для других видов цветных металлов.

Среди домашних мастеров чаще всего используются следующие два варианта:

  • Высокотемпературная пайка, используемая для сваривания элементов с крупными размерами. В эту категорию входят алюминиевые конструкции с толстыми стенками и увеличенной массой, для разогрева которых требуется температура 550-650 0 С.
  • Пайка при пониженных температурах, составляющих 250-300 0 С, которой вполне хватает для монтажа проводов радиоэлектронной аппаратуры и сваривания мелких предметов, используемых в повседневной жизни. В таком же режиме соединяются и алюминиевые провода в любой электросети.

Соединения в режиме высоких температур происходит с использованием специальных нагревательных элементов. Одним из них является горелка, для работы которой требуется газ в виде пропана или бутана. Если же такая горелка отсутствует, домашние мастера пользуются различными типами паяльных ламп. Сваривание при высокой температуре требует постоянного контроля над степенью нагрева поверхностей соединяемых деталей. Для этого в небольшом количестве берется один из тугоплавких припоев, и после того как он начнет плавиться, можно говорить о достижении нужной температуры. В этом случае разогрев детали прекращается, иначе она просто расплавится и разрушится.

Спаивание при пониженной температуре осуществляется электропаяльником на 100-200 Вт. Мощность паяльника зависит от величины соединяемых компонентов: чем больше деталь, тем более производительный паяльник потребуется для того, чтобы ее разогреть. Проводники легко соединяются паяльником мощностью 50 Вт.

Независимо от температурного режима, соединения выполняются одинаково, а все действия выполняются в следующем порядке:

  • Место будущего соединения деталей или кабелей обрабатывается механическим способом. Для этого используются любые чистящие средства, ослабляющие окислительный налет, обеспечивая более полное взаимодействие с флюсовым веществом.
  • Место соединения требуется обезжирить ацетоном, бензином, спиртом и другими органическими растворителями.
  • Перед тем как паять алюминий паяльником или горелкой в домашних условиях, детали прочно фиксируются в наиболее удобном положении.
  • Нанесение флюса осуществляется на подготовленную плоскость. Если вещество применяется в жидком виде, то оно наносится кисточкой.
  • Точка соединения разогревается с помощью электрического паяльника достаточной мощности или газовой горелкой. Далее сюда же наносится расплавленный припой и распределяется ровным слоем.
  • Металлические поверхности соединяются и фиксируются в нужном положении.
  • После остывания припоя и схватывания деталей, место соединения промывается проточной водой. Остатки флюса вымываются и в дальнейшем не вызывают коррозию.

Как залудить алюминий


Как паять алюминий в домашний условиях: припой для пайки, способы, особенности

Процедура пайки алюминиевых элементов в домашних условиях является весьма проблематичным процессом, который облегчается использованием специальных материалов. Работа осложняется моментальным появлением на месте зачистки тонкой оксидной пленки, мешающей спайке. Дополнительную трудность создает сам материал, имеющий низкий температурный порог плавления (+660 °С). Применяя припой для пайки алюминия, особые сильнодействующие флюсы и соблюдая технологию, можно самостоятельно паять практически любые предметы из алюминия.

Особенности и принципы пайки

Низкая температурная величина плавки металла затрудняет технологический процесс спаивания, а также ремонта изделий своими руками. Детали очень быстро теряют при нагреве прочность, а конструкции снижают устойчивость при достижении температурой 300 градусов. Легкоплавкие припои, состоящие из висмута, кадмия, индия, олова тяжело вступают в контакт с алюминием и не обеспечивают достаточную прочность. Отличная растворимость наблюдается у металла в сочетании с цинком, что придает спаянным местам высокую надежность.

Перед началом спаивания элементы из алюминия хорошо зачищаются от окислов, грязи. Для этого можно применять механическое воздействие при помощи щеток или же использовать специальные флюсы из сильнодействующего состава. Перед самой процедурой следует обязательно залудить обрабатываемые участки. Оловянное покрытие защитит деталь от возникновения окислов. Чтобы надежно припаять алюминиевые изделия необходимо правильно подобрать нагревательный инструмент, учитывая объем обрабатываемого металла. Помимо этого, надежность соединения зависит от того, какой выбран сплав, а также флюс для пайки алюминия.

Методы пайки

Спаивание алюминиевых изделий производится паяльником электрического типа, паяльной лампой или же газовой горелкой. Существую три способа спаивания разнообразных предметов из алюминия:

  • с канифолью;
  • с применением припоев;
  • электрохимический метод.
С канифолью

Этот вариант пайки алюминиевых предметов, проводов, кабелей применяется для деталей небольшого размера. Для этого зачищенный участок электропровода покрывается канифолью и помещается на кусочек шлифовальной шкурки, имеющей среднюю зернистость. Сверху провод прижимается залуженным жалом нагретого паяльника. Это действие проводится несколько раз, после чего выполняется сама процедура спаивания электропроводов. Можно применять канифольный раствор в диэтиловом эфире.

В таком случае конец паяльника не отнимается от залуживаемого конца, а сверху добавляется канифоль. Для соединения скруткой тонких алюминиевых проводов подойдет электропаяльник с мощностью порядка 50 Вт. При толщине алюминия около 1 мм необходим паяльник 100 Вт, а детали более 2 мм требуют предварительного прогрева места соединения.

С применением припоев

Данный метод наиболее распространен и применяется в электротехнике, при ремонте автомобильных деталей, а также прочих изделий. Перед тем как паять алюминий, проводится предварительное покрытие запаиваемого места сплавом и последующее соединение облуженных элементов. Детали, предварительно залуженные, соединяются между собой, а также с прочими сплавами и металлами.

Паяние элементов можно проводить с помощью легкосплавных припоев, имеющих в составе олово, цинк, а также кадмий. Помимо этого, активно используются тугоплавкие материалы на основе алюминия. Почему применяются легкосплавные составы? Потому что они позволяют спаять алюминиевое изделие при температуре до 400 градусов. Это не производит качественных изменений свойств металла и сохраняет его прочность. Составы с кадмием и оловом не создают достаточную надежность контакта, подвержены коррозионным воздействиям. Этих недостатков лишены тугоплавкие материалы с цинком, медью, а также кремнием на основе алюминия.

Электрохимический метод

Эта процедура требует наличия установки для выполнения гальванического покрытия. С ее помощью проводится омеднение поверхности изделия или провода. При ее отсутствии используется самостоятельная обработка детали. Для этого, на зачищенное шлифовальной шкуркой место, наносится несколько капель насыщенного раствора медного купороса. После этого к обрабатываемому изделию подключается отрицательный полюс независимого источника электропитания.

Им может послужить батарейка, аккумулятор или же любой электрический выпрямитель. К положительному выводу подсоединяется очищенный медный провод диаметром порядка 1 мм, расположенный в изолированной подставке. В процессе электролиза на деталь будет постепенно оседать медь, после чего проводится лужение участка, сушка при помощи электропаяльника. После этого можно легко запаять залуженное место.

Припои, материалы, флюсы

Пайка алюминия оловом выполняется при условии применения высокоактивных флюсов, а также хорошей зачистки участков деталей. Такие оловянные соединения требуют дополнительного покрытия специальными составами, так как имеют невысокую прочность и слабую защиту от коррозионных процессов.

Чем паять алюминиевые элементы? Качественные паяные соединения получаются при использовании припоев с кремнием, алюминием, цинком, а также медью. Эти материалы выпускаются как отечественными, так и многими зарубежными фирмами-производителями. Отечественные марки прутков представлены наиболее использующимися припоями ЦОП40, которые по гост имеют в составе 60 % олова и 40 % цинка, а также 34А (алюминий – 66 %, кремний – 6 %, медь – 28 %). Используемый цинк придает высокую прочность месту контакта и обеспечивает хорошую коррозионную устойчивость. К импортным низкотемпературным сплавам с отличными характеристиками относится HTS-2000, который обеспечивает максимальное удобство в применении.

Эти сплавы применяются для работы с крупногабаритными деталями (радиаторы, трубы) с высоким теплоотводом при помощи грелки или же предметов из алюминиевых сплавов, имеющих довольно высокотемпературное плавление. Начинающие ремонтники могут ознакомиться с процессом спаивания, просмотрев обучающее видео. Это поможет избежать многих неприятных нюансов в процессе работы.

Помимо припоев, алюминиевая пайка требует применения специальных флюсов, имеющих в составе фторборат аммония, цинка, а также триэтаноламин и прочие элементы. К наиболее популярным относится отечественный Ф64, имеющий повышенную химическую активность. Его можно применять даже без предварительной зачистки изделий от оксидной пленки. Кроме него, используется 34А, содержащий хлориды лития, калия и цинка, а также фторид натрия.

Подготовка изделий

Надежность, а также отменное качество соединений обеспечивается не только использованием правильной технологии, но и от подготовительных работ. К ним относится обработка запаиваемых поверхностей. Она необходима для удаления загрязнений и тонкой оксидной пленки.

Механическую обработку выполняют с помощью шлифовальной шкурки, металлической щетки, проволочной нержавеющей сетки или шлифовальной машинки. Помимо этого, используются для очистки разнообразные кислотные растворы.

Обезжиривание поверхности выполняется с использованием растворителей, а также бензина или же ацетона. На зачищенном алюминиевом участке оксидная пленка появляется практически сразу, однако ее толщина значительно ниже первоначальной, что облегчает паяльный процесс.

Нагревательные инструменты

Чем паять алюминий в домашних условиях? Для припаивания алюминиевых изделий небольшого размера дома применяются электропаяльники. Они являются универсальным инструментом, вполне удобным для припаивания проводов, ремонта маленьких трубок и прочих элементов. Для них требуется минимум рабочего пространства, а также наличие электросети. Ремонт крупногабаритных изделий и сварка выполняется газовой горелкой, которая использует аргон, бутан, пропан. Для пайки алюминиевых предметов в домашних условиях можно применять стандартную паяльную лампу.

При использовании газовых горелок необходимо постоянно следить за их пламенем, которое характеризует сбалансированную подачу кислорода и газов. При правильной газовой смеси огненный язычок имеет ярко-синий цвет. Неяркий оттенок, а также небольшое пламя свидетельствуют о переизбытке кислорода.

Технологический процесс

Технология пайки алюминиевых предметов похожа на процесс соединения деталей их прочих металлических материалов. Первым делом проводится зачистка и обезжиривание мест будущей спайки. Затем соединяемые элементы устанавливаются в рабочее положение для удобства обработки. На подготовленный участок наносится флюс, и, изначально холодное, изделие начинает нагреваться при помощи электропаяльника или же горелки. При повышении температуры начинает плавиться пруток припоя, которым требуется постоянно касаться поверхности элементов, контролируя нагревательный процесс. Пайка алюминиевых элементов в домашних условиях электрическим паяльником выполняется в комнате с хорошим проветриванием, так как при работе выделяются опасные соединения.

Использование безфлюсового припоя требует соблюдения некоторых нюансов. Чтобы оксидная пленка не мешала попаданию сплава на детали, концом прутка выполняются царапающие движения по участку спаивания элементов. Этим нарушается оксидная целостность и припой входит в контакт с обрабатываемым металлом.

Разрушение оксидного слоя при пайке можно выполнять и другим методом. Для этого обрабатываемый участок процарапывается металлической щеткой или же прутком из стали нержавеющего типа.

Для обеспечения максимальной прочности алюминиевых деталей в спаиваемом месте, обрабатываемые участки подвергаются предварительному лужению. Соблюдение технологии пайки элементов из алюминия гарантирует отличное качество соединения, а также его защиту от коррозии.

oxmetall.ru

Пайка алюминия в домашних условиях: инструкция

Существует распространенное убеждение, согласно которому невозможно паять или лудить алюминий (а также сплавы на его основе) не имея для этого спецоборудования.

В качестве аргумента приводится два фактора:

  1. при контакте с воздухом на поверхности алюминиевой детали образуется химически стойкая и тугоплавкая оксидная пленка (AL2O3), в результате чего создается препятствие для процесса лужения;
  2. процесс пайки существенно осложняется тем, что алюминий расплавляется при температуре 660°С (для сплавов это диапазон в пределах от 500 до 640°С). Помимо этого металл теряет прочность, когда в процессе нагрева его температура поднимается до 300°С (у сплавов до 250°С), что может вызвать нарушение устойчивости алюминиевых конструкций.

Учитывая приведенные выше факторы, осуществить пайку алюминия обычными средствами действительно невозможно. Решить проблему поможет применение сильнодействующих флюсов, в сочетании с использованием специальных припоев. Рассмотрим подробно эти материалы.

Припой

Обычно в качестве основы легкоплавкого припоя используются:  олово (Sn), свинец (Pb), кадмий (Cd), висмут (Bi) и цинк (Zn). Проблема в том, что алюминий в этих металлах практически не растворяется (за исключением цинка), что делает соединение ненадежным.

Применив флюс с высокой активностью и проведя должным образом обработку мест соединения, можно использовать припой на оловянно-свинцовой основе, но лучше отказаться о такого решения. Тем более, что паянное соединение на основе системы Sn-Pb обладает низкой устойчивостью к коррозии. Нанесение лакокрасочного покрытия на место пайки позволяет избавится от этого недостатка.

Для пайки алюминиевых деталей желательно использовать припой на основе кремния, меди, алюминия, серебра или цинка. Например 34A, который состоит из алюминия (66%), меди (28%) и кремния (6%), или более распространенный ЦОП-40 (Sn – 60%, Zn – 40%).

Припой отечественного производства – ЦОП-40

Заметим, что чем больше процентное содержание цинка  в составе припоя, тем прочнее будет соединение и выше его устойчивость к коррозии.

Высокотемпературным считается припой, состоящий из таких металлов, как медь, кремний и алюминий. Например, как упомянутый выше отечественный припой 34A, или его зарубежный аналог «Aluminium-13» , в котором содержится 87% алюминия и 13% кремния, что позволяет осуществлять пайку при температуре от 590 до 600°С.

«Aluminium-13» производства компании Chemet

Флюс

При выборе флюса необходимо учитывать, что не каждый из них может быть активным к алюминию. Мы можем порекомендовать использовать в таких целях продукцию отечественного производителя – Ф-59А, Ф-61А, Ф-64, они состоят из фторборатов аммония с добавлением триэтаноламина. Как правило, на пузырьке есть пометка – «для алюминия» или «для пайки алюминия».

Флюс отечественного производства

Для высокотемпературной пайки следует приобрести флюс, выпускаемы под маркой 34А. Он состоит из хлористого калия (50%), хлорида лития (32%), фторида натрия (10%) и хлористого цинка (8%). Такой состав наиболее оптимален, если производится высокотемпературная пайка.

Рекомендуемый флюс для паки при высокой температуре

Подготовка поверхности

Прежде чем начинать лужение, необходимо выполнить следующие действия:

  • обезжирить поверхность при помощи ацетона, бензина или любого другого растворителя;
  • удалить оксидную пленку с места, где будет производится пайка. Для зачистки используется наждачная бумага, абразивный круг или щетка с щетиной из стальной проволоки. В качестве альтернативы можно применить травление, но эта процедура не так сильно распространена в силу своей специфичности.

Следует учитывать, что полностью оксидную пленку удалить не получится, поскольку на очищенном месте моментально появляется новое образование. Поэтому зачистка производится не с целью полного удаления пленки, а для уменьшения ее толщины, чтобы упростить флюсу задачу.

Нагрев места пайки

Для пайки небольших деталей можно воспользоваться паяльником мощностью не менее 100Вт. Массивные предметы потребуют более мощного нагревательного инструмента.

Паяльник мощностью 300 Вт

Наиболее оптимальный вариант для нагрева – использование газовой горелки или паяльной лампы.

Простая газовая горелка

При использования горелки в качестве нагревательного инструмента следует учесть следующие нюансы:

  • нельзя перегревать основной металл, поскольку он может расплавиться. Поэтому в процессе необходимо регулярно контролировать температуру. Делать это можно, касаясь припоем нагреваемого элемента. Расплавление припоя даст знать, что достигнута необходимая температура;
  • не следует использовать кислород для обогащения газовой смеси, поскольку он способствует сильному окислению металлической поверхности.

Инструкция по пайке

Процесс пайки алюминиевых деталей не имеет  своих отличительных особенностей, он осуществляется также как со сталью или медью.

Алгоритм действий следующий:

  • обезжиривается и зачищается место пайки;
  • производится фиксация деталей в нужном положении;
  • нагревается место соединения;
  • прикасаются стержнем припоя (содержащим активный флюс) к месту соединения. Если используется безфлюсовый припой, то для разрушения пленки оксида наносится флюс, после чего трут твердым куском припоя по месту пайки.

Для разрушения пленки оксида алюминия также используется щетка со щетиной из стальной проволоки. При помощи этого простого инструмента производят растирание расплавленного припоя по алюминиевой поверхности.

Пайка алюминия – полная видео инструкция https://www.youtube.com/watch?v=ESFInizLE9U

Что делать при отсутствии нужных материалов?

Когда нет возможности подготовить все необходимые для пайки материалы, можно использовать альтернативный способ, при котором применяется припой на оловянной  или оловянно-свинцовой основе. Что касается флюса, то он заменяется канифолью. Чтобы не образовывалась новая пленка оксида алюминия на месте старой, зачистка производится под слоем расплавленной канифоли.

Паяльник, помимо своего прямого назначения, будет использоваться как инструмент, разрушающий оксидную пленку. Для этого на его жало надевается специальный скребок. Увеличить результативность процесса можно, добавив в канифоль металлических опилок.

Процесс производится следующим образом:

  • нагретым луженым паяльником расплавляют канифоль в месте пайки;
  • когда канифоль полностью покрывает поверхность, начинают тереть об нее жалом паяльника. В результате этого металлические опилки и жало разрушают пленку оксида алюминия. Поскольку слой расплавленной канифоли не позволяет проникать воздуху к алюминиевой поверхности, на ней не образовывается оксидная пленка. По мере того, как производится разрушение пленки, будет происходить лужение детали;
  • когда процесс лужения завершен, детали соединяют и прогревают, пока не будет достигнута температура плавления припоя.

Необходимо предупредить, что процесс пайки алюминия без специальных материалов – довольно хлопотный процесс без гарантии успешного завершения. Поэтому лучше не тратить на такую работу свои силы и время, тем более, что качество и надежность такого соединения будут сомнительными.

Гораздо проще купить активный флюс и высокотемпературный припой, при помощи которых пайка алюминия даже в домашних условиях не вызовет затруднений.

www.asutpp.ru

Как паять алюминий оловом своими руками

Чем паять алюминий в домашних условиях

Пайка соединений проводов с припоем считается самым надежным методом соединения проводов и жил кабелей. Хорошо, если нужно паять только медные провода, которые легко облуживаются припоем. Не зря в электронике все вывода элементов медные, луженые.

Пайка алюминия в домашних условиях

После того как цельные провода и многожильные жилы кабелей облудят, их довольно легко соединять пайкой. А как паять алюминий оловом, если припой отторгается окисью алюминия. Как известно алюминий покрыт тонким слоем окиси, которая мгновенно образуется на алюминии при контакте с кислородом. Чтобы припой хорошо держался на алюминиевом проводе нужно снять окись алюминия, а затем лудить.

Для этой цели в качестве флюса существуют: паяльная кислота, специальные флюсы для алюминия, смесь канифоли с ацетоном. Все эти плюсы разрушают или затрудняют образование пленки окиси на алюминии. После применения данного типа флюса процесс лужение алюминия упрощается.

Необходимые инструменты для пайки алюминия оловом являются: электрический паяльник, острый нож, плоскогубцы для скрутки проводов, мелкий напильник для подготовки жала паяльника. Из материалов потребуется: припой ПОС 61 или ПОС 50, флюс для пайки алюминия Ф-64 или аналогичный, губка.

Пайка алюминия оловом и флюсом Ф 64

Флюс Ф 64 предназначен для пайки алюминия. Методика пайки не сложна. В первую очередь нужно снять изоляцию с проводов на 5 см. Изоляция снимается острым ножом под углом к проводу, чтобы не надрезать его. Надрезанный алюминий легко обламывается.

Инструменты и материалы для пайки алюминиевого провода

Далее нужно хорошо зачистить провод мелкой наждачной бумагой или острым ножом. Зачистив провод, его смачивают кисточкой с плюсом и острым ножом продолжают зачищать провод, но уже под флюсом. Таким образом снимают пленку окиси алюминиевого провода, не давая вновь окисляться на воздухе. Далее разогретым паяльником с припоем начинают лужение провода с его конца.

Если начать облуживать провод около изоляции, тогда можно ее подпалить. В этом случае потеряются изоляционные свойства провода. Провод облуживают  паяльником, движениями вперед-назад, одновременно снимается окисная пленка с алюминия. Облудить провод ровно сразу не получится. Поэтому на не облуженные участки провода снова наносят флюс  и горячим паяльником с припоем и движениями вперед-назад снимают участки оставшейся окисной пленки и обслуживают.

Таким образом покрывают припоем алюминиевый провод полностью. После лужения алюминиевый провод окунают в раствор соды (5 ст. л. на 200 гр. воды) и зубной щеткой смывают остатки флюса. В состав флюса входят активные кислоты, которые не только разъедают пленку, но и сам провод. Поэтому остатки флюса нужно смыть. Смыть его полностью не получится, так как он частично остаётся под припоем и въедается в провод.

Но хоть частично его нужно смывать. Медный провод не обслуживают флюсом Ф 64, лучше использовать раствор канифоли и спирта (50% на 50%). Кисточкой наносят жидкую канифоль на медный провод (предварительно зачистив его) и горячим паяльником обслуживают провод, начиная с конца. Жало паяльника должно быть ровным и чистым. Раковины на конце жала паяльника убирают мелким напильником.

А остатки сгоревшего припоя (шлака) вытирают губкой или тряпкой. Как только алюминиевый и медный провода облуженны, их скручивают пассатижами, кисточкой наносят жидкую канифоль и спаивают соединение, начиная также с конца. Если соединить алюминий без лужения припоем, то это соединение может нарушиться со временем. Соединение алюминия с медью представляет собой гальваническую пару, и при прохождении через него тока нагревает и разрушает соединение.

Таблица температурных режимов марок припоя

В результате место скрутки сильно нагревается и обугливается, что повышает пожароопасность. Оловянный припой нейтрален к алюминию, поэтому алюминиевые провода перед соединением с медью нужно лудить. Для пайки алюминиевых проводов хорошо подходят припой ПОС 61 и ПОС 50 с низкой температурой плавления 190 — 210С.

Пайка алюминия с медью оловом и канифолью

Пайка электрических проводов с помощью паяльной кислоты запрещена в ПУЭ. Это связано с тем, что эта кислота полностью не сгорает при пайке. В результате место соединения проводов со временем разъедается кислотой, образуются окиси, которые нагреваются при прохождении тока и могут вызвать возгорание изоляции. К таким кислотно содержащим флюсам относятся специальные флюсы для пайки алюминия, в том числе и Ф 64.

Так как же паять алюминий с медью, чтобы соединение было качественным и долговечным. По сложности метод лужения алюминия оловом и канифолью даже легче, чем лужение алюминия флюсом Ф 64. Но качество и надежность при лужении в канифоли будет высоким. При лужении алюминия в канифоли нужно сделать или подобрать низкую ванночку для жидкой канифоли (канифоль 60% и спирт 40%).

Флюсы для пайки алюминия

Заполняют ванночку жидкой канифолью так, чтобы провод утопал в ней с изоляцией на 5-10 мм. Очищенный от изоляции провод кладут в канифоль и острым ножом (удобно скальпелем) снимают плёнку окиси с алюминиевого провода, не вынимая его из ванночки. То есть под канифолью защищают провод по всей его длине со всех сторон. Под канифолью пленка на очищенных местах алюминиевого провода не образуется, так как нет соприкосновении с кислородом.

Теперь берут разогретой паяльник с припоем мощностью не менее 60 Вт и опустив его на оголенный и очищенный от окиси провод, у самой поверхности канифоли, понемногу прокручивают и вытаскивают уже облуженные участки провода. Суть метода заключается в том, чтобы провод облуживался у самой поверхности жидкой канифоли. Чтобы зачищенные участки провода от окиси не могли соприкасаться с воздухом.

Паяльник может быть временами погружен на 2-3 мм в канифоль. Немного облудив провод поднимите паяльник, чтобы он вновь нагрелся. Да в начале, будет много дыма, поэтому лучше учиться паять на улице или в помещении с хорошей вентиляцией. После нескольких попыток у вас выработается своя техника лужения и появится небольшой опыт.

Вы определитесь с положением паяльника, скорость лужения провода увеличится, то есть появится навык, и уменьшится количество дыма. Зато провод будет облужен идеально. Далее, как обычно, скручивают провода и так же паяют их небольшим количеством припоя.

Остатки канифоли на пропаянной скрутке проводов смывают кисточкой со спиртом. Недостаток такого метода — это невозможность пайки в труднодоступных местах. Для таких случаев, лучше использовать другие методы безопасных соединений алюминия с медью.

electricavdome.ru

Пайка алюминия в домашних условиях: особенности процесса, разновидности флюса и припоев, как запаять трубу

Алюминий и его сплавы обладают очень хорошими характеристиками, такими как высокая тепло- и электропроводность, удобство обработки, небольшая масса, экологическая безопасность. Но у этого прекрасного металла есть один очень жирный минус, его крайне сложно паять. Помогает решить эту серьёзную проблему правильно подобранный флюс для пайки алюминия.

Проблема пайки алюминия обусловлена его химическим строением. Сам по себе этот металл химически очень активен, он вступает в реакции практически со всеми химическими веществами. Это приводит к тому, что чистый алюминий на воздухе мгновенно реагирует с кислородом. В результате на поверхности металла образуется очень тонкая и одновременно необычайно прочная плёнка оксида: Al2O3. По своим свойствам алюминий и его оксид представляют две крайние противоположности соединённые в единое целое. Например:

  • Температура плавления чистого алюминия составляет 660 градусов. Оксид алюминия или как его ещё называют, корунд, плавиться при температуре 2600 градусов. Тугоплавкий корунд применяется в промышленности в качестве огнеупорного материала.
  • Алюминий очень мягкий и пластичный металл. Корунд обладает крайне высокой механической прочностью что позволяет изготавливать из него всевозможные абразивные материалы.

Оксид алюминия превращает обычную пайку в довольно сложный процесс. Для его успешного осуществления необходимо применение специфических методов и специальных алюминиевых припоев и флюсов.

Пайка металлов

Смысл пайки любого металла состоит в том, что в пространство между спаиваемыми деталями вводится в расплавленном состоянии специальное вещество, называемое припоем. После застывания припой надёжно связывает в единое целое две металлические детали.

В случае пайки алюминия находящаяся на его поверхности оксидная плёнка препятствует расплавленному припою соединиться с металлом. Иными словами, нарушается адгезия, и поэтому припой не может растечься по поверхности металла и прилипнуть к нему. Это делает пайку алюминия практически невозможной без применения специальных средств, частично устраняющих оксид с поверхности металла и способствующих возникновению нормальной адгезии.

Удаление оксидной плёнки

Удаление оксида с поверхности алюминия — процесс сложный и никогда не приводящий к окончательному результату. То есть, оксидную пленку практически нельзя удалить, так как вместо только что удалённой мгновенно образуется новая. Можно лишь с помощью специфических средств ослабить её действие. Это можно сделать с помощью двух различных методов:

  • Химический способ. С помощью специальных алюминиевых флюсов плёнка разрушается в результате воздействия активных кислот.
  • Механический способ. Посредством применения абразивных инструментов нарушается целостность плёнки.

На практике чаще всего совмещают оба этих метода, чтобы добиться максимально возможного эффекта.

Флюсы для алюминия

Флюс применяется для удаления оксида с поверхности металла и последующего препятствования образованию новой плёнки. Необходимо помнить, что в процессе пайки флюс не должен взаимодействовать с припоем и вступать с ним в химические реакции. Флюсы могут находиться в различных состояниях:

  • Жидкость.
  • Паста.
  • Порошок.

Для алюминия чаще всего применяют жидкие флюсы на основе ортофосфорной кислоты. Существуют так называемые безотмывочные флюсы, применение которых не требует последующего промывания спаянных поверхностей под проточной водой. Однако чаще всего в состав алюминиевых флюсов входят сильно ядовитые вещества, которые небезопасны, и, с экологической точки зрения, могут сильно корродировать металл в месте пайки. Поэтому применение флюсов требует тщательного промывания места пайки под проточной водой. Промышленность выпускает больше количество алюминиевых флюсов, среди которых можно выделить следующие:

  • Ф-64. Высокоактивный флюс для алюминия и его сплавов. Считается самым лучшим флюсом для этого металла. Высокая активность определяется большим содержанием в его составе активного фтора около 40%. При нагреве фтор разрушает оксидную плёнку на поверхности алюминия. Применение этого флюса требует обязательной тщательной промывки спаеных поверхностей, после окончания процесса.
  • Ф-34А. Специальный алюминиевый флюс для тугоплавких припоев. Состав: хлорид калия 50%, хлорид лития 32%, фторид натрия 10%, хлорид цинка 8%.
  • Ф-61А. Применяется с обычными свинцово-оловянными припоями, плавящимися при температуре 150−350 градусов. Состав: фторборат цинка 10%, фторборат аммония 8%, триэтаноламин 82%. Применяется для спаивания разнородных металлов, например, алюминий и медь. Поэтому когда возникает вопрос как припаять алюминий к меди, ответом будет этот флюс.
  • НИТИ-18 (Ф-380). Подходит для тугоплавких припоев с температурой плавления 390 — 620 градусов. Особенностью этого флюса, является то что, хорошо растворяя оксидную плёнку, он практически не оказывает никакого воздействия на основной металл. После окончания пайки остатки флюса должны быть немедленно удалены. Для этого место пайки сначала промывают горячей проточной водой, затем холодной. А в заключение выдерживают в течение 15 минут в водном растворе фосфорного ангидрида.
  • А-214. Универсальный безотмывочный флюс средней активности. Температура применения 150−400 градусов. Не содержит в своём составе вредных солей анилина, фенола или карбоновых кислот, поэтому после применения не требуется тщательная промывка. Остатки легко удаляются бумажной салфеткой, смоченной в спирте.

Механическое удаление оксида

Для облегчения растворения плёнки с помощью флюса, предварительно её частично удаляют посредством механических методов. Данные приёмы позволяют лишь незначительно ослабить действие оксида, так как опытным путём было установлено, что вновь образующаяся плёнка, по своим прочностным характеристикам несколько уступает старой. Для этих целей используют следующие приспособления:

  • Наждачная бумага.
  • Напильники и рашпили.
  • Жёсткие металлические щётки.

Процесс механического удаления поверхностного оксида можно оптимизировать используя для этого кирпичную пыль. Место пайки предварительно посыпают мелкой кирпичной крошкой. Затем:

  • На кирпичные крошки высыпается большое количество сухой канифоли.
  • Предварительно разогретым жалом паяльника канифоль расплавляется и распределяется по поверхности металла ровным слоем.
  • Залуженным жалом паяльника начинают усиленно тереть место пайки. При этом кирпичная крошка сдирают оксидную плёнку, а расплавленная канифоль препятствует проникновению кислорода вместо пайки и поэтому новая оксидная плёнка не образуется.
  • В результате получаем хорошо залуженную поверхность алюминия.

В качестве абразива, с тем же эффектом, можно использовать просеянный речной песок или металлические опилки.

Пайка алюминия

Основу любой пайки составляет так называемое лужение или залуживание. При этом процессе припой равномерным слоем распределяется по поверхности металла. Для того чтобы лужение прошло хорошо необходимо два важных компонента специальный флюс и правильно подобранный припой. Флюсы мы уже рассмотрели теперь очередь настала за припоями.

Специальные припои

Обычные припои, применяемые для пайки цветных металлов, содержат в своём составе олово и свинец. Вопрос как паять алюминий оловом не является актуальным, так как для алюминия такие припои не рекомендуется применять, потому что в этих металлах он практически не растворяется. Применяют специальные припои, которые содержат в своём составе изрядное количество самого алюминия, а также кремний, медь, серебро и цинк.

  • 34-А. Специальный тугоплавкий припой для алюминия. Температура плавления 530−550 градусов. Состав: алюминий 66%, медь 28%, кремний 6%. рекомендуют применять совместно с соответствующим флюсом Ф-34А.
  • ЦОП-40. Относится к категории оловянно-цинковых припоев. Состав: цинк 63%, олово 36%. Плавление происходит в пределах 300−320 градусов.
  • HTS 2000. Специальный припой для алюминия производства США. Основные компоненты: цинк 97% и медь 3%. Температура плавления 300 градусов. Обеспечивает очень прочное соединение, сопоставимое по прочности со сварочным швом.

Присутствие в припое такого металла, как цинк обеспечивает ему высокие прочностные характеристики и хорошую сопротивляемость к коррозии. Наличие меди и алюминия повышает температуру плавления и делает припой тугоплавким.

Использование того или иного припоя определяется задачами, которые стоят перед спаиваемыми деталями. Так, для спаивания крупногабаритных и массивных алюминиевых деталей, которые в дальнейшем будут подвергаться большим нагрузкам, лучше использовать тугоплавкие припои, их температура плавления сопоставима с температурой плавления самого алюминия. Когда возникает вопрос, как запаять алюминиевую трубку, необходимо точно понимать, для чего в последующем эта трубка будет применяться. Тугоплавкие припои характеризуются высокой прочностью, а большая масса детали позволяет обеспечить в процессе пайки хороший теплоотвод, что предотвратит разрушение алюминиевой конструкции вследствие её расплавления.

Особенности процесса

Пайка алюминия ничем не отличается от пайки любого другого цветного металла.

В домашних условиях пайку алюминия условно можно разделить на два вида:

  • Высокотемпературная пайка крупногабаритных деталей. Как правило, это толстостенный алюминий большой массы. Температура разогрева деталей 550−650 градусов.
  • Низкотемпературная пайка мелких бытовых предметов и проводов при радиоэлектронном монтаже. Температура пайки 250−300 градусов.

Высокотемпературная пайка предполагает использование в качестве нагревательного элемента газовую горелку, работающую на пропане или бутане. Но когда неожиданно возникает вопрос, как спаять алюминий в домашних условиях, можно с тем же успехом использовать паяльную лампу.

В случае проведения высокотемпературной пайки необходимо проводить постоянный контроль за температурой разогрева спаиваемых поверхностей. С этой целью используют кусочек тугоплавкого припоя. Как только припой начинает плавиться это говорит о том, что необходимая температура достигнута и разогрев детали необходимо прекратить, в противном случае может произойти её расплавление и последующее разрушение всей конструкции.

Для низкотемпературной пайки используют электрический паяльник мощностью от 100 до 200 ватт, в зависимости от размеров спаиваемых деталей. Чем крупнее деталь тем более мощный паяльник придётся использовать для её разогрева. В то же время для пайки проводов вполне подойдёт и паяльник мощностью 50 ватт.

В обоих случаях и при высокотемпературной пайке, и при низкотемпературной, стадии проведении процесса примерно одинаковые и состоят из следующих последовательных этапов:

  • Механическая обработка места будущей пайки. Проводится с помощью всевозможных абразивных средств. Цель: ослабить поверхностную оксидную плёнку и сделать её более восприимчивой к воздействию флюса.
  • Обезжиривание места пайки с помощью органических растворителей, таких как спирт, ацетон, бензин.
  • Фиксация деталей в нужном положении.
  • Нанесение флюса на спаиваемые поверхности. Если используется жидкий флюс, то лучше всего его наносить с помощью кисточки.
  • Разогрев места пайки с помощью электрического паяльника или газовой горелки.
  • Нанесение расплавленного припоя на место пайки и залуживание металлических поверхностей (распределение припоя ровным слоем).
  • Соединяем металлические поверхности и фиксируем их в соответствующем положении.
  • После того. как припой остынет и детали спаяются, промываем место спайки под проточной водой, с целью вымыть остатки флюса.

220v.guru

Рабочий лист урока: Сплавы | Нагва

Q6:

Средневековые пушки и пушечные ядра содержали ряд различных металлов. Пушечные ядра были обычно делали из железа, но для строительства часто предпочитали бронзу. пушек. По сравнению с железными пушками бронзовые пушки оказались более слабыми. более продолжительный, более легкий в использовании и способный стрелять пушечными ядрами на более высоких скоростях.

Какое свойство железа делало его предпочтительнее бронзы для изготовления ядер?

  • AG Повышенная пластичность
  • B Стоимость мощности
  • CA более высокая точка плавления
  • D Слабая хрупкость
  • E Большая прочность

Какая недвижимость из бронзы бронзовые пушки служат дольше, чем железные?

  • A Повышенная коррозионная стойкость
  • B Большая твердость
  • C Трение силовое
  • D Слабая хрупкость
  • E Большая прочность

Какая недвижимость Из бронзы бронзовые пушки легче лить, чем железные?

  • AA нижняя точка плавления
  • B Плотность мощности
  • C Повышенная коррозионная стойкость
  • D Стоимость мощности
  • E Большая пластичность

Какая недвижимость бронзы позволяли бронзовым пушкам стрелять пушечными ядрами на более высоких скоростях, чем из железа?

  • A Снижение трения
  • B Сильная хрупкость
  • C Большая плотность
  • D Повышенная прочность
  • EA более высокая точка плавления

Купить дюралюминий по доступной цене у поставщика Электровек-Сталь / Эвек

Композиция

Дуралюминий — это деформируемый алюминиевый сплав, легированный медью, марганцем и магнием.Содержание меди — 4,4%, магния — 1,5%, марганца — 0,5%. Медь и магний укрепляют сплав. Благодаря марганцевой структуре порошкообразного сплава повышается прочность и устойчивость к коррозии. Также в его состав входит дюралюминий с долей процента железа и кремния, которые считаются неизбежными примесями. Поскольку железо снижает прочность и пластичность алюминия. Его вредное воздействие в какой-то степени компенсируется примесью. кремний, связывающий железо.

Имя

Название металла «дюралюминий» на современном языке относится к профессиональному жаргонному сленгу, термин является общепринятым профессиональным.Первоначальное происхождение названия неизвестно. Некоторые металлурги склоняются к тому, чтобы название произошло от латинского слова durus, что означает «твердый».

сан

Этот сплав выгодно выделяется простотой механической обработки, сборки и конструкционной прочностью, которая используется для достижения термической обработки. дюралюминий уступает алюминию по коррозионной стойкости. Чтобы устранить этот недостаток, на поверхность дюралюминия методом горячей прокатки нанесен тонкий слой чистого алюминия. Эта технология называется плакировкой, с ее помощью получают широко востребованный металл с выигрышными свойствами.плотность сплава 2,5–2,8 г / см³. Температура плавления около 650 ° С.

Виды дюралюминия

Весь применяемый сегодня дюралюминий в машиностроении, строительстве, авиации разделен на четыре группы в зависимости от компонентного состава, который также определяет цену дюралюминия:

1. Классический дюралюминий (марка Д1) в составе практически не изменился с первых партий 1908 г .;

2. дюралюминий высокопрочный (марка Д16). Показатели значительной прочности достигли более высокого содержания магния справа;

3.дюралюминий повышенной жаропрочности (марки Д19 и ВД17). Основное отличие этих марок — повышенное соотношение марганца и меди;

4. дюралюминий повышенной пластичности (марка Д18). Пластичность металла в этом случае достигается за счет пониженного содержания компонентов меди и магния.

Преимущества

1. Дуралюминиевый сплав с отличной пластичностью после отжига.

2. Способность к самоукреплению при старении.

лечение

После отжига при t ° до 500 ° C и охлаждения дюралюминий становится мягким и гибким, почти таким же, как чистый алюминий.После старения дюралюминий приобретает новые характеристики, становится жестким и твердым. Технология старения может быть естественной и искусственной. Для выполнения в первый раз потребуется около суток при рабочей температуре 20 градусов Цельсия. В процессе искусственного старения температура выше, а время выдержки — меньше. После старения дюралюминий приобретает дополнительную стойкость при высоких нагрузках. Способность дюралюминия к самоупрочнению была обнаружена случайно. Уплотнение сплава стало основной причиной его широкого использования в промышленности и авиастроении.

Деформация

По технологии производства полуфабрикаты из дюралюминия поставляются в разном состоянии, в отожженном, в закаленном и искусственно состаренном. Время выдержки и температура закалки и искусственного старения зависят от исходной толщины и свойств сплава. Дюралюминий после закалки твердеет без потери пластичности, поэтому легко деформируется. Путем штамповки или ковки свежезакаленных деталей изготавливают полуфабрикаты за одну операцию.Важно учитывать, что деформация, вызванная естественным процессом старения, снижает предел прочности на 2 кгс / мм 2 большинства сплавов. Исходя из вышеизложенного, по технологии требуется выполнять снование сплавов Д1 исключительно в свежезакаленном состоянии в течение первых 2 часов после закалки, а сплавов Д6 и Д16 в течение получаса. В зависимости от сложности процесса формирования цена дюралюминия.

Характеристики

1. Пониженная коррозионная стойкость дюралюминия к живому, устраняется покрытием;

2.Высокая чувствительность дюралюминиевого сплава к повторяющимся нагрузкам и воздействию острых порезов;

3. Тенденция дюралюминия к значительному снижению прочности при температурах выше 1400 ° C.

Приложение

Дуралюминий имеет широкий спектр применения. Помимо строительства жилых домов и производственной инфраструктуры, широко применяется в авиастроении, машиностроении, производстве скоростного транспорта. Предпочтение отдается применению дюралюминиевых сплавов из-за их более высокой твердости, чем у алюминия.

Наибольшее распространение получили сплавы Д1 и Д16, они широко применяются в авиационной промышленности и машиностроении. D1 — основной сплав для изготовления листов, профилей, труб, проволоки, поковок и штамповок. Эти полуфабрикаты, кроме поковок, изготавливаются из сплава Д16.

Сплавы с повышенной пластичностью (D18) — это очень направленные области применения. Справа D18 производит заклепки для авиастроения. Сплавы ВД17 и Д19 предназначены для производства различных деформируемых полуфабрикатов, которые в объеме работ подвергаются нагреву.

Сплав

В95 применяется в виде прессованных профилей, различных поковок, прутков.

Поставка

Купить дюралюминий по приемлемой цене сегодня не составит труда. Цена на нее формируется, исходя из компонентного состава, особенностей производственного процесса и во многом зависит от объемов поставки и выполнения дополнительных условий. В техническую документацию включены данные о процентном составе и характеристиках продукта. Мы легко закупаем оптом любые полуфабрикаты для крупных производств.Также мы работаем с розничными покупателями. Высокий уровень сервиса, соответствие ГОСТ и мировым стандартам качества, оперативность обслуживания — это лицо нашей компании.

Купить по выгодной цене

Компания «Электровек-Сталь» предлагает своим покупателям неограниченный ассортимент проката цветных металлов высочайшего качества по конкурентоспособной цене. Если вы не уверены, предлагает опытных менеджеров, которые всегда на связи и готовы проконсультировать. Сделав у нас заказ, вы в кратчайшие сроки получите сертифицированную продукцию, соответствующую российским и международным стандартам качества.Если вы цените свое время, свяжитесь сегодня с нашим ближайшим офисом в России или на Украине, или сделайте заказ в Интернете.

Глоссарий | Romac

Сплав : представляет собой смесь металлов или смесь металла и другого элемента. Сплавы характеризуются металлической связкой. [1] Сплав может быть твердым раствором металлических элементов (одна фаза) или смесью металлических фаз (два или более растворов). Интерметаллические соединения — это сплавы с определенной стехиометрией и кристаллической структурой.Фазы цинта также иногда считаются сплавами в зависимости от типа связи (см. Также: треугольник Ван Аркеля-Кетелаара для получения информации о классификации связи в бинарных соединениях). Сплавы используются в самых разных областях. В некоторых случаях сочетание металлов может снизить общую стоимость материала при сохранении важных свойств. В других случаях комбинация металлов придает синергетические свойства составляющим металлическим элементам, такие как коррозионная стойкость или механическая прочность.Примерами сплавов являются сталь, припой, латунь, олово, дюралюминий, фосфористая бронза и амальгамы. Состав сплава обычно измеряется по массе. Сплавы обычно классифицируются как сплавы замещения или сплавы внедрения, в зависимости от расположения атомов, образующих сплав. Кроме того, они могут быть классифицированы как гомогенные (состоящие из одной фазы), гетерогенные (состоящие из двух или более фаз) или интерметаллические.

Hastelloy : Hastelloy — зарегистрированная торговая марка Haynes International, Inc.Торговая марка применяется в качестве префикса названия диапазона из двадцати двух различных металлических сплавов с высокой коррозионной стойкостью, которые в металлургической промышленности свободно сгруппированы под термином «суперсплавы» или «сплавы с высокими эксплуатационными характеристиками». Преобладающим легирующим ингредиентом обычно является никель переходного металла. Другие легирующие ингредиенты добавляются к никелю в каждой из подкатегорий обозначения этого товарного знака и включают различное процентное содержание элементов молибдена, хрома, кобальта, железа, меди, марганца, титана, циркония, алюминия, углерода и вольфрама.Основная функция суперсплавов Хастеллой заключается в том, чтобы обеспечить эффективное выживание при высоких температурах и высоких нагрузках в средах с умеренной и сильной коррозией и / или подверженными эрозии средами, в которых более распространенные и менее дорогие сплавы на основе железа могут выйти из строя, в том числе сосуды высокого давления некоторых ядерных реакторов, химических реакторов, дистилляционного оборудования, а также трубопроводов и клапанов в химической промышленности. Несмотря на то, что Хастеллой является суперсплавом, он все же подвергается деградации из-за производства и обращения.Электрополировка или пассивация Hastelloy могут улучшить коррозионную стойкость. [10]

Инконель 625 : немагнитный, устойчивый к коррозии и окислению сплав на никелевой основе. Он обладает высокой прочностью и ударной вязкостью в диапазоне температур от криогенных до 2000 ° F (1093 ° C), что в значительной степени является результатом воздействия твердого раствора тугоплавких металлов, колумбия и молибдена, в никель-хромовой матрице. Сплав 625 обладает превосходной усталостной прочностью и стойкостью к коррозионному растрескиванию под действием хлорид-ионов.Типичные области применения сплава 625 включают тепловые экраны, оборудование для печей, трубопроводы газотурбинного двигателя, футеровки сгорания и распылительные стержни, оборудование для химических заводов и специальные приложения для морской воды

.

INCONEL 718 : (UNS N07718 / W.Nr. 2.4668) — это высокопрочный, коррозионно-стойкий никель-хромовый материал, используемый при температуре от -423 ° до 1300 ° F. Типичные пределы состава показаны в таблице 1. Стойкий к старению сплав можно легко изготавливать даже в виде сложных деталей. Его сварочные характеристики, особенно устойчивость к растрескиванию после сварки, превосходны.Простота и экономичность изготовления сплава 718 INCONEL в сочетании с хорошими показателями прочности на растяжение, усталость, ползучесть и разрыв привели к его использованию в широком диапазоне применений. Примерами являются компоненты ракет на жидком топливе, кольца, кожухи и различные формованные детали из листового металла для самолетов и наземных газотурбинных двигателей, а также криогенные цистерны. Он также используется для крепежа и деталей КИПиА.

INCONEL сплав X-750 : (UNS N07750 / W. Nr.2.4669) представляет собой дисперсионно-твердеющий никель-хромовый сплав, используемый благодаря своей коррозионной и окислительной стойкости, а также высокой прочности при температурах до 1300 ° F. Хотя большая часть эффекта дисперсионного твердения теряется при повышении температуры свыше 1300 ° F, термообработанный материал имеет полезную прочность до 1800 ° F. Сплав X-750 также обладает превосходными свойствами даже при криогенных температурах. Экономичность сплава INCONEL X-750 в сочетании с его доступностью во всех стандартных формах прокатного стана позволила найти применение в самых разных промышленных областях.В газовых турбинах он используется для изготовления лопастей и колес ротора, болтов и других конструктивных элементов. Сплав ИНКОНЕЛ Х-750 широко применяется в тяговых камерах ракетных двигателей. Применения в корпусе самолета включают реверсоры тяги и системы воздуховодов для горячего воздуха. Сосуды высокого давления изготовлены из сплава INCONEL X-750. Другие области применения — это приспособления для термообработки, формовочные инструменты, экструзионные матрицы и зажимы для испытательных машин. Для пружин и крепежа используется сплав INCONEL X-750 от минусовой до 1200 ° F

Инвар : Инвар, также известный как FeNi36 (64FeNi в США), представляет собой сплав никель-железо, отличающийся уникально низким коэффициентом теплового расширения

Kovar : Являясь одним из крупнейших пользователей KOVAR® в стране (KOVAR® является зарегистрированным товарным знаком CRS Holdings, Inc), Romac гордится тем, что специализируется на механической обработке и штамповке этого материала, который используется во многих уплотнениях и материалах. пайки.В то время как большинство механических мастерских и штамповочных компаний избегают этого материала, мы штампуем и обрабатываем KOVAR® уже более 40 лет. Узнать больше

Монель : Монель представляет собой группу никелевых сплавов, в основном состоящих из никеля (до 67%) и меди с небольшими количествами железа, марганца, углерода и кремния

Никель 200 : технически чистый (99,6%) деформируемый никель. Обладает хорошими механическими свойствами и отличной стойкостью ко многим агрессивным средам.Другими полезными характеристиками сплава являются его магнитные и магнитострикционные свойства, высокая теплопроводность и электрическая проводимость, низкое содержание газа и низкое давление пара. Коррозионная стойкость никеля 200 делает его особенно полезным для поддержания чистоты продукта при работе с пищевыми продуктами, синтетическими волокнами и едкими щелочами; а также в конструкциях, где устойчивость к коррозии является первоочередной задачей. Другие области применения включают бочки для перевозки химикатов, электрические и электронные детали, аэрокосмические и ракетные компоненты

Никель 201 : низкоуглеродистая версия никеля 200.Состав показан в Таблице 28. Типичными областями применения являются испарители каустической соды, лодки для сжигания, пластинчатые пластины и электронные компоненты. Никель 201 из-за его низкой твердости и более низкой скорости деформационного упрочнения особенно подходит для прядения и холодной штамповки. Никель 200 предпочтительнее для применений, связанных с воздействием температур выше 600 ° F (315 ° C).

Нержавеющая сталь : В металлургии нержавеющая сталь, также известная как нержавеющая сталь или inox от французского «inoxydable», представляет собой стальной сплав с минимальным содержанием 10.Содержание хрома 5% по массе. Нержавеющая сталь не подвержена коррозии, ржавчине и образованию пятен от воды, как обычная сталь.

Нержавеющая сталь 13-8 : дисперсионно-твердеющая мартенситная нержавеющая сталь, обладающая высокой прочностью, превосходной твердостью и превосходной вязкостью, а также хорошей стойкостью как к общей коррозии, так и к коррозионному растрескиванию под напряжением. Нержавеющая сталь 13-8, состоящая примерно из 13% хрома и 8% никеля, имеет хорошие производственные характеристики и может подвергаться старению путем однократной низкотемпературной обработки.Холодная обработка перед старением увеличивает старение, особенно при более низких температурах старения. Кроме того, нержавеющая сталь 13-8 демонстрирует хорошую пластичность и вязкость. По сравнению с другими материалами на основе черных металлов этот сплав предлагает высокий уровень полезных механических свойств в суровых условиях окружающей среды. Нержавеющая сталь 13-8 используется в таких областях применения, как детали клапанов, фитинги, холодноголовые и механически обработанные крепежные детали, валы, детали шасси, штифты, стопорные шайбы, компоненты самолетов, компоненты ядерных реакторов и нефтехимические приложения, требующие стойкости к стандарту st

.

Нержавеющая сталь PH 15-7 Mo® — это полуаустенитная дисперсионно-твердеющая нержавеющая сталь, которая обеспечивает высокую прочность и твердость, хорошую коррозионную стойкость и минимальное искажение при термообработке.Он легко формируется в отожженном состоянии и приобретает эффективный баланс свойств за счет простой термообработки. Для применений, требующих исключительно высокой прочности, холоднокатаная нержавеющая сталь PH 15-7 Mo в состоянии CH 900 особенно полезна для применений, допускающих ограниченную пластичность и обрабатываемость. Этот сплав особенно полезен для широкого спектра применений, включая стопорные кольца, пружины, диафрагмы, переборки самолетов, сварные и паяные сотовые панели и другие компоненты самолетов, требующие высокой прочности при повышенных температурах

Титан : темно-серый или серебристый, блестящий, очень твердый, легкий, коррозионно-стойкий металлический элемент, встречающийся в сочетании с различными минералами: используется в металлургии для удаления кислорода и азота из стали и для ее повышения.{c} \)

\ (a_ {b} \)

\ (\ sqrt {a} \)

\ (\ sqrt [b] {a} \)

\ (\ frac {a} { b} \)

\ (\ cfrac {a} {b} \)

\ (+ \)

\ (- \)

\ (\ times \)

\ (\ div \)

\ (\ pm \)

\ (\ cdot \)

\ (\ amalg \)

\ (\ ast \)

\ (\ barwedge \)

\ (\ bigcirc \)

\ ( \ bigodot \)

\ (\ bigoplus \)

\ (\ bigotimes \)

\ (\ bigsqcup \)

\ (\ bigstar \)

\ (\ bigtriangledown \)

\ (\ bigtriangleup \)

\ (\ blacklozenge \)

\ (\ blacksquare \)

\ (\ blacktriangle \)

\ (\ blacktriangledown \)

\ (\ bullet \)

\ (\ cap \)

\ (\ cup \)

\ (\ circ \)

\ (\ circledcirc \)

\ (\ dagger \)

\ (\ ddagger \)

\ (\ diamond \)

\ (\ dotplus \)

\ (\ lozenge \)

\ (\ mp \)

\ (\ ominus \)

\ (\ oplus \)

\ (\ oslash \)

\ (\ otimes \)

\ (\ setminus \)

\ ( \ sqcap \)

\ (\ sqcup \)

\ (\ square \)

\ (\ star \)

\ (\ треугольник \)

\ (\ triangledown \)

\ (\ треугольник слева \)

\ (\ Cap \)

\ (\ Cup \)

\ (\ uplus \)

\ (\ vee \)

\ (\ veebar \)

\ (\ wedge \)

\ (\ wr \)

\ (\ следовательно \)

\ (\ left (a \ right) \)

\ (\ left \ | a \ right \ | \)

\ (\ left [a \ right] \)

\ (\ left \ {a \ right \} \)

\ (\ left \ lceil a \ right \ rceil \)

\ (\ left \ lfloor \ right \ rfloor \)

\ (\ left (a \ right) \)

\ (\ vert a \ vert \)

\ (\ leftarrow \)

\ (\ leftharpoondown \)

\ (\ leftharpoonup \)

\ (\ leftrightarrow \)

\ (\ leftrightharpoons \)

\ (\ mapsto \)

\ (\ rightarrow \)

\ (\ rightharpoonup \)

\ (\ rightharpoonup \)

\ (\ rightleftharpoons \)

\ (\ to \)

\ (\ Leftarrow \)

\ (\ Leftrightarrow \)

\ (\ Rightarrow \ )

\ (\ overset {a} {\ leftarrow} \)

\ (\ overset {a} {\ rightarrow} \)

\ (\ приблизительно \)

\ (\ asymp \)

\ (\ cong \)

\ (\ dashv \)

\ (\ doteq \)

\ (= \)

\ (\ Equiv \)

\ (\ frown \)

9000 2 \ (\ geq \)

\ (\ geqslant \)

\ (\ gg \)

\ (\ gt \)

\ (| \)

\ (\ leq \)

\ (\ leqslant \)

\ (\ ll \)

\ (\ lt \)

\ (\ models \)

\ (\ neq \)

\ (\ ngeqslant \)

\ (\ ngtr \)

\ (\ nleqslant \)

\ (\ nless \)

\ (\ not \ Equiv \)

\ (\ overset {\ подмножество {\ mathrm {def}} {}} {=} \)

\ (\ parallel \)

\ (\ perp \)

\ (\ prec \)

\ (\ prevq \)

\ (\ sim \)

\ (\ simeq \)

\ (\ smile \)

\ (\ succ \)

\ (\ successq \)

\ (\ vdash \)

\ ( \ in \)

\ (\ ni \)

\ (\ notin \)

\ (\ nsubseteq \)

\ (\ nsupseteq \)

\ (\ sqsubset \)

\ (\ sqsubseteq \)

\ (\ sqsupset \)

\ (\ sqsupseteq \)

\ (\ subset \)

\ (\ substeq \)

\ (\ substeqq \)

\ (\ supset \)

\ (\ supsete q \)

\ (\ supseteqq \)

\ (\ emptyset \)

\ (\ mathbb {N} \)

\ (\ mathbb {Z} \)

\ (\ mathbb {Q} \)

\ (\ mathbb {R} \)

\ (\ mathbb {C} \)

\ (\ alpha \)

\ (\ beta \)

\ (\ gamma \)

\ (\ delta \)

\ (\ epsilon \)

\ (\ zeta \)

\ (\ eta \)

\ (\ theta \)

\ (\ iota \)

\ ( \ kappa \)

\ (\ lambda \)

\ (\ mu \)

\ (\ nu \)

\ (\ xi \)

\ (\ pi \)

\ (\ rho \)

\ (\ sigma \)

\ (\ tau \)

\ (\ upsilon \)

\ (\ phi \)

\ (\ chi \)

\ (\ psi \)

\ (\ omega \)

\ (\ Gamma \)

\ (\ Delta \)

\ (\ Theta \)

\ (\ Lambda \)

\ (\ Xi \)

\ (\ Pi \)

\ (\ Sigma \)

\ (\ Upsilon \)

\ (\ Phi \)

\ (\ Ps i \)

\ (\ Omega \)

\ ((a) \)

\ ([a] \)

\ (\ lbrace {a} \ rbrace \)

\ (\ frac {a + b} {c + d} \)

\ (\ vec {a} \)

\ (\ binom {a} {b} \)

\ ({a \ brack b} \)

\ ({a \ brace b} \)

\ (\ sin \)

\ (\ cos \)

\ (\ tan \)

\ (\ cot \)

\ (\ sec \)

\ (\ csc \)

\ (\ sinh \)

\ (\ cosh \)

\ (\ tanh \)

\ (\ coth \)

\ (\ bigcap {a} \)

\ (\ bigcap_ {b} ^ {} a \)

\ (\ bigcup {a} \)

\ (\ bigcup_ {b} ^ {} a \)

\ (\ coprod {a} \)

\ (\ coprod_ {b} ^ {} a \)

\ (\ prod {a} \)

\ (\ prod_ {b} ^ {} a \)

\ (\ sum_ { a = 1} ^ b \)

\ (\ sum_ {b} ^ {} a \)

\ (\ sum {a} \)

\ (\ underset {a \ to b} \ lim \)

\ (\ int {a} \)

\ (\ int_ {b} ^ {} a \)

\ (\ iint {a} \)

\ (\ iint_ {b} ^ {} a \)

\ (\ int_ {a} ^ {b} {c} \)

\ (\ iint_ {a} ^ {b} {c} \)

\ (\ iiint_ {a} ^ { b} {c} \)

\ (\ oint {a} \)

\ (\ oint_ {b} ^ {} a \)

Список важных сплавов и их применения

Сплав играет очень важную роль в нашей повседневной жизни.Ведь без сплава ни дня тоже не проходит. Кухонная утварь, автомобили, мобильные телефоны и т. Д. — это различные сплавы, которые используются и производятся людьми. Даже большинство машин, инструментов и инженерного оборудования сделаны из сплавов.

Источник: www.images.slideplayer.com

Что такое сплав?

Сплав представляет собой металлическую, тесно перемешанную твердую смесь двух или более различных элементов, по крайней мере, один из которых является металлом.В расплавленном состоянии сплавы однородны, а в твердом состоянии они могут быть однородными или гетерогенными.

Роль химии в жизни человека

Свойства сплава

Металлические сплавы обладают как физическими, так и химическими свойствами, а также механическими. Некоторые свойства включают реактивность, электропроводность, теплопроводность, хорошую прочность на разрыв, сопротивление деформации, пластичность и т. Д.

Список важных сплавов и их использования

Сплавы

Композиции

Использует

Латунь

Cu + Zn

При изготовлении посуды.

бронза

Cu + Sn

При изготовлении монет, колоколов и посуды.

Немецкое серебро

Cu + Zn + Ni

При изготовлении посуды.

Золото катаное

Cu + Al

При изготовлении дешевых украшений.

Оружейный металл

Cu + Sn + Zn + Pb

При изготовлении ружей, стволов, шестерен и подшипников.

Голландский металл

Cu + Zn

При изготовлении искусственных украшений.

Дельта металлический

Cu + Zn + Fe

При изготовлении лопастей самолетов.

Металл Munz

Cu + Zn

При изготовлении монет.

Металлический монель

Cu + Ni

Для контейнера с базой.

Розовый металл

Bi + Pb + Sn

Для изготовления автоматического предохранителя.

Дюралюминий

Al + Cu + Mg + Mn

Для изготовления посуды.

Магналий

Al + Mg

Для корпуса самолета.

Припой

Pb + Sn

Для пайки.

Тип металлический

Sn + Pb + Sb

В полиграфической промышленности.

Колокол металлический

Cu + Sn

Для литья колоколов и статуй.

Нержавеющая сталь

Fe + Cr + Ni + C

Для изготовления посуды и хирургических столовых приборов.

Никелевая сталь

Fe + Ni

Для изготовления электрических проводов, автомобильных деталей.

Здесь мы увидели некоторые важные сплавы и их применение. Но возникает вопрос, как образуются сплавы , как смешиваются металлы и т. Д. Традиционно это осуществлялось путем нагревания и плавления металла, превращения его в жидкости, смешивания их и затем охлаждения для его затвердевания.Но есть и другие методы, такие как порошковая металлургия ; В этом методе компоненты сплавов превращаются в порошки, смешиваются вместе, а затем плавятся при сочетании высокого давления и высокой температуры. Другой метод изготовления сплава — это ионная имплантация , , которая выполняется с помощью полупроводников, используемых в электронных схемах и компьютерных микросхемах.

Кроме того, сплав, в котором одним из компонентов является ртуть, известен как амальгама , и в сплавах химические свойства составляющих элементов сохраняются, но некоторые физические свойства улучшаются.

Что вы знаете о минералах и их рудах

Металлические материалы

Глава 1. Базовая обработка и советы

Металлические материалы



Материалы

Есть много различных типов материалов, из которых можно выбирать при работе проект. Для целей нашего обсуждения материалы сгруппированы примерно на две категории: «Неметаллические» и «Металлические». Что касается металлических материалов, они затем группируются в две группы — черные и цветные.У каждого из материалов есть свои собственные характеристики и требуют различных методов обработки. Осторожный необходимо уделить внимание правильному выбору материала для его заявление. (Определение: Черные металлы как содержащие железо, например, сталь — Цветные металлы. например, не содержащий железа (например, алюминий, медь) .Простой тест на черные / цветные металлы. материалы — использовать магнит, поскольку магнит будет болеть черными металлами из-за к содержанию железа.

Алюминиевый сплав

Есть много видов сплавов на выбор, но часто выбирают алюминий так как он легкий (плотность около 2700 кг / м3), он сравнительно мягкий и его технологичность хорошая.С точки зрения обработки чистый алюминий (JIS A1000) сильно отличается от сплава Al-Cu (JIS A2000).

Чистый алюминий легко гнуть, но его трудно обрабатывать. слишком мягкий и легко забивает режущие инструменты. С другой стороны, сплав Al-Cu, такие как A2011 или A2017 (называемые дюралюминием), легко обрабатывать и резать некоторые из марок имеют прочность, аналогичную прочности стали. Тем не мение, один из недостатков алюминия в том, что его сложно сваривать, паять и гнуть.

Очень трудно отличить чистый алюминий от Al-Cu. сплава и т. д. Когда они режут на станке, мы можем распознать материал.


Рис.1, Алюминиевый сплав (JIS A2017)

Нержавеющая сталь
Типичная нержавеющая сталь JIS SUS304. Преимущества нержавеющей стали в том, что он обладает высокой прочностью, отличной термостойкостью и сопротивляется окрашивание e.г ржавчины. Благодаря высокой термостойкости делает идеальный материал для механических частей, которые подвергаются нагреву, например, нагревателя двигателя Стирлинга. Кроме того, благодаря устойчивости материалов к ржавчине, он идеально подходит для использования там, где он подвергается воздействию воды. Другие примеры его используется в приводных валах, где прочность и коррозионная стойкость нужный. Нержавеющая сталь

имеет тенденцию быть немного липкой в ​​отношении резки и обработки, и, поскольку это относительно твердый материал, он имеет тенденцию сокращать срок службы используемых режущих инструментов.Такие режущие инструменты необходимо часто затачивать, особенно при длительных операциях резания. Нержавеющую сталь обычно можно определить по глянцевому серебристому цвету.


Рис.2, нержавеющая сталь (JIS SUS304)

Углеродистая сталь
Типичными материалами из углеродистой стали являются JIS S45C и JIS SS400. Они очень дешевы, обладают отличной свариваемостью и могут подвергаться различным тепловым воздействиям. лечения.Поскольку многие станки предназначены для резки материалов из низкоуглеродистой стали, очень редко возникают проблемы при обработке.

Я почти не использую низкоуглеродистую сталь, за исключением случаев, когда требуется сварка, поскольку я в основном делают экспериментальные модели, поэтому такие проблемы, как низкая производительность затраты не принимаются во внимание в той работе, которую я выполняю.

Обычно низкоуглеродистая сталь имеет черную поверхность, и эта поверхность очень твердая, по возможности эту поверхность следует оставить нетронутой, так как она дает дополнительные защита.


Рис.3, Углеродистая сталь (JIS S45C)

Латунь
Латунь — это сплав, который сделан из комбинации меди и цинка в качестве основных ингредиентов. По сравнению с углеродистой сталью или нержавеющей сталью латунь хорошо обрабатывается механической обработкой, а также обладает хорошими паяльными свойствами.

Латунь очень тяжелая из-за высокой плотности, поэтому идеально подходит для тяжелых деталей, например, маховик или балансир для модельных двигателей.

Латунь ценится за полированную поверхность, которую она может производить, однако, поскольку поверхность латуни окисляется при воздействии элементов, желательно нанести прозрачное лаковое защитное покрытие.

Латунь очень дорога по сравнению с другими материалами, поэтому ее используют очень избирательно.


Рис.4, латунь (JIS C2800)

Идентификация материала

Обычно заготовка (столбец) материала продается в единицах длины от 1 до 2 метров (или более).Эти заготовки обычно имеют идентификацию материала, написанную на конце заготовки, как показано на фотографиях справа. Поскольку заготовка обычно разрезается для получения обрабатываемой детали, позаботьтесь о том, чтобы обрезать ее с конца, противоположного маркировке, чтобы оставить маркировку для последующей идентификации.


Рис.5, обозначение материала


Общие формы

Материал обычно поставляется в виде обычных форм, и это (а) Заготовки (колонны), (б) полоса (доски), (в) Уголок (Г-образный), (г) «С» канал (С-образный) и (д) труба.Правильный подбор материалов помогает в упрощении проекта.


Рис.6, Общие формы материалов

Стандартные размеры обработки заготовок

Обычные размеры заготовок: 30 мм, 40 мм, 50 мм, 60 мм и 80 мм (сколько угодно возможен заказ других размеров). Поскольку качество обработки поверхности многих заготовок не удовлетворительны для готового проекта, их часто приходится обрабатывать, чтобы подойдет проекту. Если вам нужен готовый диаметр вышеупомянутого размеров, то необходимо начать со следующего большего размера в диапазон и обработайте его до желаемого диаметра.Исключение из этого может быть из нержавеющей стали диаметром 10 мм или меньше в качестве отделки поверхности из них довольно много и иногда подходят для выполняемой работы.


[ТОП по металлообработке] [Hirata HOME] [Дивизион Энергетики] [NMRI HOME]

Купить дюралюминиевую трубу по доступной цене у поставщика КМЗ / КМЗ

.

производитель

Трубка дюралюминиевая — полый профиль круглого, квадратного, шестиугольного сечения, изготавливаемый по ГОСТ 18475-82, 18482-79 или 23697-79.Chem. состав нормализованного ГОСТ 4784-97. Сплав легирован медью (4,4%), магнием (1,5%) и марганцем (0,5%). Медь и магний способствуют упрочнению сплава. Марганец измельчает структуру, увеличивает прочность и устойчивость к коррозии. Железо и кремний в составе алюминия — неизбежная примесь. Железо считается вредной примесью, снижает прочность и пластичность. Кремний в определенной степени сглаживает вредное действие железа. Различают по способу изготовления: дюралюминиевая труба заменяемая (без дополнительной маркировки), с нормальной гальваникой (А) и технологией (Б).Прецизионное производство — это нормально. После термической обработки, естественного старения и упрочнения сплав дополнительно маркируется буквой Т. Поверхность изделия после закалки не должна иметь следов прогорания.

сан

Труба отличается технологичностью, простотой монтажа, прочностью. По коррозионной стойкости уступает алюминию. Чтобы исправить это, поверхность трубы планируется чистым алюминием. Дюралюминиевые трубы легкие, легко режутся и свариваются точечной сваркой. Для застывания применяют термическую обработку.За счет отжига повышается пластичность. По сравнению со стальными такие трубы намного проще, дешевле, проще монтируются.

использовать

Производство легкой и прочной конструкции, изготовление рам для скоростных поездов, самолетов и спортивных автомобилей. Эти трубы можно использовать при строительстве фасадов и прокладке трубопроводов специального назначения.

Материал Марка Сборные Поперечное сечение мм Наличие кг Цена
DURAL D16 труба бесшовная 12×1 212 80
D16T « 140×25 290 90
АМГ-2М « 22×1 146 80
DURAL AMCM труба бесшовная 24×1 180 80

поставка

Ознакомиться с ассортиментом, уточнить основные особенности, преимущества, параметры использования продукции вы можете на нашем сайте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *