Как расплавить медь в домашних условиях: температура, сосуд
Медь считается одним из самых распространенных сплавов на сегодняшний день. Довольно распространенным вопросом можно назвать то, как расплавить медь в домашних условиях. Высокие литейные свойства позволяют получать качественные и точные изделия, использовать сплав в качестве покрытия. Литье меди может проводится при отсутствии специального оборудования. Процесс характеризуется большим количеством различных особенностей, которые будут рассмотрены ниже.
Как расплавить медь в домашних условияхТемпература плавления
Одним из наиболее важных параметров каждого сплава можно назвать температуру плавления. Она может зависеть от концентрации легирующих элементов в составе. Литье меди в чистом виде проводится при температуре 1080 °C, при которой кристаллическая решетка перестраивается и сплав становится жидким. Расплавлять медь можно даже в случае наличия примеси в виде олова, но при этом температура плавления может варьировать в пределе от 930 до 1140 °C.
В состав могут добавлять цинк, за счет чего получается латунь. От концентрации этого легирующего элемента плавка может проводится при 900 ⁰C.
При рассмотрении особенностей плавки меди учитывается температура кипения. Этот показатель составляет 2 560 °C. В домашних условиях достигнуть подобной температуры практически невозможно. На процесс кипения указывает появление пузырьков газа.
Нельзя доводить сплав до состояния кипения. Это связано с тем, что после выделения газов структура становится пористой. За счет этого снижаются не только декоративные, но и механические качества.
Последовательность действий
При необходимости в домашних условиях можно получить изделия декоративного характера или практического назначения. Плавка меди в домашних условиях пошаговая инструкция выглядит следующим образом:
- Сырье измельчается, после чего помещается в тигель. Стоит учитывать, что при уменьшении размеров кусочков металла существенно ускоряется процесс плавки.
- После заполнения тигеля, он помещается в печь, которая заранее разогревается.
- Расплавленный сплав нужно извлечь из печи при помощи специальных клещей. Из-за активного процесса окисления на поверхности может образовываться однородная пленка. Перед тем как проводить литье из меди ее нужно убрать.
- Металл аккуратно заливают в подготовленную емкость. Стоит учитывать, что при попадании расправленного сплава на открытые участки тела могут появится серьезные травмы. Кроме этого, некоторые материалы при контакте возгораются. Поэтому нужно соблюдать крайнюю осторожность.
При рассмотрении того, как плавить медь в домашних условиях стоит учитывать, что можно использовать не только печи. В некоторых случаях применяется газовая горелка, которой нагревается дно тигля. Процесс менее продуктивный, но при этом на подготовку уходит мало времени.
В качестве нагревательного оборудования может использоваться обычная паяльная лампа. При применении этой технологии стоит учитывать, что контакт меди с воздухом приводит к быстрому появлению окиси. В некоторых случаях для уменьшения интенсивности окисления поверхность покрывается измельченным древесным углом.
Оборудование для плавки меди
Подготовительный этап предусматривает приобретение специального оборудования. Расплавить медь в домашних условиях можно при наличии:
- Муфельной печи. Современные варианты исполнения позволяют контролировать мощность нагрева с высокой точностью, за счет чего существенно упрощается процесс плавки и можно достигнуть более качественного результата.
- Тигель, предназначенный для размещения шихты и ее плавки.
- Щипцы, при помощи которых тигель вытягивается с печи. Стоит учитывать, что поверхность будет накалятся, поэтому нужно использовать специальный механизм из жаростойкого сплава.
- Крюк и бытовой пылесос.
- Древесный уголь для покрытия поверхности.
- Форма из жаропрочного материала, по которой будет проводится литье.
- Газовая горелка или горн для повышения пластичности сплава.
Плавка газовой горелкой
Приобретают профессиональное оборудование только в том случае, когда литье меди проводится периодически. Оно характеризуется высокой стоимостью, а также эффективностью в применении.
Муфельная печь
Проще всего проводить переплавку меди в домашних условиях при установке муфельной печи. Среди ее особенностей отметим:
- Можно нагревать шихту до более высоких температур, за счет чего повышается текучесть. Это связано с высоким КПД, так как стенки конструкции отражают и аккумулируют тепло.
- Ускоряется процесс плавки.
- Высокая производительность. Равномерное распределение тепла позволяет одновременно плавить большое количеств меди.
Плавление меди в самодельной печи
Кроме этого, муфельная печь довольно проста в установке если соблюдать все правила безопасности. Проблемы по установке подобного оборудования в домашних условиях зачастую возникают по причине больших размеров конструкции.
Газовая горелка
Литье из меди в домашних условиях при применении газовой горелки часто проводится в случае, если медные изделия изготавливают крайне редко. Подобные процесс характеризуется небольшими финансовыми затратами. При выборе подобной технологии учитывается:
- Малый показатель КПД.
- На момент плавки возникают трудности с равномерным распределением тепла.
- Проводить работу следует на открытом пространстве с соблюдением правил пожарной безопасности.
Газовая горелка может разогреть тигель в течение нескольких минут. Стоит учитывать, что медь будет быстро окисляться.
Паяльная лампа
Плавление при применении паяльных ламп проводится крайне редко. Это связано с невысокой эффективностью подобного метода. Как и в предыдущем случае, при использовании паяльной лампы происходит активное окисление поверхности.
Плавка меди в самодельной печи при помощи паяльной лампы
При применении паяльной лампы учитывается тот момент, что для разогрева металла требуется довольно много времени. При этом нагрев должен проходить без перерыва, так как металл остывает быстро, после чего начинает кристаллизоваться.
Горн
В домашних условиях отливка медных заготовок может проводится в горне. Подобная печь характеризуется следующими особенностями:
- Она часто используется в кузнечном деле.
- Стоит учитывать низкий показатель КПД, за счет которого на плавку меди уходит намного больше времени.
- Различают две конструкции: открытого и закрытого типа.
- Устройство горна
- Горн для плавки меди
Температура плавки при применении горна относительно низкая. Поэтому не вся медь может плавится рассматриваемым способом.
Плавление с помощью самодельных приспособлений
Плавку можно проводить при применении самодельных конструкций. Зачастую они представлены сочетанием источника тепла и корпуса из теплоотражающего материала. Переплавить медь в домашних условиях можно при использовании подобных устройств.
Как правило, за счет создания специальной отражающей конструкции повышается КПД и ускоряется процесс нагрева шихты. Сделать отражающий корпус для тигля можно при использовании жаропрочного кирпича.
Способы плавления меди в домашних условиях
Медные изделия получили широкое распространение не только в промышленности, но и в быту. Это дает повод домашним мастерам задуматься о том, как самостоятельно изменить качество материала для дальнейшего изготовления металлических предметов. Плавка меди – особая технология, обеспечивающая ее переход из твердого состояния в жидкое под влиянием высоких температур.
Основные характеристики меди
Металл легко поддается обработке. О его уникальных свойствах знали еще наши предки, о чем свидетельствуют исторические сведения и археологические находки. В природе он встречается как в соединениях, так и в самородном варианте. Поверхность меди мягкая, желтовато-бурого оттенка. Контактируя с воздухом, она затягивается оксидной пленкой. Технические характеристики меди следующие:
Физические свойства меди
- Занимает второе место после серебра по электропроводности и теплопроводности.
- Невысокая температура плавления: для чистой меди она составляет 1083 градусов, для медных сплавов – от 930 до 1140 градусов.
- При температуре 2560 градусов материал начинает закипать.
- Медь является диамагнетиком.
- Подбирая лом для вторичной переработки, важно помнить, что электротехническая медь является самой чистой – без примесей.
- Сплавы из бронзы и латуни, из которых сделаны многие раритетные вещи, могут содержать в себе ядовитые вещества, например, мышьяк.
С такими веществами нужна особая осторожность.
Медь является красивым материалом. Изделия из него выглядят роскошно, благородно. Этим свойством продукт привлекает к себе внимание многих домашних умельцев.
Характеристика способов плавления меди
Плавка меди дома и на производстве проходит одинаково. Процесс изменения состояния осуществляется под влиянием повышения температуры. При достаточном количестве тепла металлическая структура предмета разрушается. Добиться такого эффекта можно несколькими способами.
Муфельная печь
Из чего состоит муфельная печь
Литье с использованием лабораторной муфельной печи, в которой имеется регулировка температуры нагрева. Это довольно простой метод. Сырье предварительно измельчают на части. Чем они меньше, тем быстрее будет плавление.
Подготовленный материал кладут в графитовый тигель и помещают в предварительно разогретую печь. Форма для заливки должна иметь температуру плавления больше, чем у меди. Нагревательное устройство серийного производства оборудовано специальным окном, позволяющим следить за технологическим процессом.
Когда медь достигнет жидкого состояния, тигель железными щипцами извлекают из печи. Проволочным крюком с поверхности расплавленного металла к краям тигля убирают оксидную пленку. После проделанных манипуляций жидкую консистенцию аккуратно заливают в заранее приготовленную емкость.
Газовая горелка
Также осуществляется плавка меди с применением газовой горелки. При отсутствии тигельной печи вполне подойдет ручная портативная газовая горелка. Ее нужно разместить под дном емкости с металлом и следить за тем, чтобы пламя полностью охватывало днище.
Метод позволяет быстро окислять материал, так как предполагает наличие тесного контакта с воздухом. Чтобы не образовывалась толстая оксидная пленка, расплавленную массу присыпают измельченным древесным углем.
Паяльная лампа
Литье меди на основе паяльной лампы происходит так же, как и с газовой горелкой. Способ применим для легкоплавких металлов.
Горн
Растопить медь или её сплавы можно горном. Для этого на хорошо раскаленный древесный уголь помещают тигель с измельченным металлом. Для ускорения процесса используют домашний пылесос, включенный на режиме выдувания.
Труба должна быть небольшого диаметра с железным наконечником, так как пластик расплавится под влиянием высокой температуры. Метод идеально подходит тем людям, кто регулярно занимается литьем металла и в больших объемах.
Микроволновка
Расплавить медь поможет мощная микроволновая печь с измененной конструкцией. Для этого убирают вращающуюся тарелку-поддон. Из огнеупорного кирпича делают муфельную печь, в которую помещают исходный материал. Устройство необходимо для повышения теплосберегающих свойств сырья и защиты элементов техники от перегрева.
Чистую медь трудно плавить, поскольку она в жидком виде обладает плохой текучестью. Специалисты не советуют из такого материала делать мелкие и сложные детали. Для этого подойдут многокомпонентные соединения на основе латуни, олова или цинка, которым высокие температуры не нужны.
Самостоятельная выплавка меди
Для многих людей плавка меди и изготовление из нее всевозможных изделий является увлекательным хобби. Тем, кто мечтает посвятить плавлению металла свободное время, нужно приготовить для работы такие приспособления:
- муфельная печка;
- чистое сырье;
- жаропрочный тигель;
- огнеупорная подставка;
- крюк из стальной проволоки;
- щипцы для извлечения тигля из печки;
- средства индивидуальной защиты: костюм, очки, перчатки.
Действия выполняют согласно инструкции:
- Надевают специальный костюм.
- Исходное сырье измельчают, кладут в тигель.
- Помещают в печь, устанавливают нужный температурный режим. Нельзя допускать, чтобы металл закипал.
- При достижении заданной температуры открывают дверцу, захватывают тигель щипцами, достают из печи, ставят на огнеупорную подставку.
- Стальным крюком к краям емкости сдвигают, образовавшуюся в результате плавления, окисную пленку.
- Жидкую медную массу заливают в специальную емкость, охлаждают.
- В мощных муфельных печах можно подвергать плавлению красную медь и всевозможные сплавы.
Плавление горелкой
Следует помнить, что при плавлении важна азотная среда. Под легкоплавкие медные сплавы, латунь или некоторые марки бронзы можно использовать обычную газовую горелку. Для этого понадобится:
- исходное сырье;
- специальные формы;
- щипцы для извлечения металла с раскаленной рабочей поверхности;
- горелка высокого давления, работающая на газе;
- средства защиты: костюм, очки, перчатки.
Технология плавления сплавов следующая:
- Сырье сильно измельчают. Сделать это можно при помощи напильника, превратив материал в опилки.
- Кладут в специальную форму, сделанную из термостойкого материала.
- Надевают защитный костюм, очки, толстые перчатки.
- Зажигают горелку.
- Нагревательное устройство направляют свободными движениями по корпусу емкости. Для достижения быстрого результата пламя должно касаться поверхности кончиком синего цвета. В этом месте факела – наибольшая температура.
- После того как твердое тело расплавится, тигель захватывают щипцами.
- Жидкую массу выливают в нужную форму.
Если нет газовой горелки, можно использовать обыкновенную паяльную лампу.
Выполняя литье цветных сплавов, каждый мастер должен помнить о технике безопасности:
- В помещении, где ведутся работы, должна быть хорошая вентиляция.
- Во избежание получения ожогов необходимо работать в средствах индивидуальной защиты.
Оптимальная температура воздуха, допустимая влажность воздуха, чистота рабочего места, низкая концентрация вредных веществ атмосферы, хорошая освещенность пространства – факторы, помогающие избежать травматизма.
Видео по теме: Проба плавки меди в домашних условиях
Температура плавления латуни, бронзы и основы сплавов – меди + Видео
Температура плавления латуни, бронзы и меди примерно одинаковая. Во всяком случае значения этой характеристики для всех трех данных цветных металлов находятся в одном узком диапазоне температур. Это обусловлено тем, что бронза и латунь являются сплавами меди, свойства которой в значительной степени влияют на их физические характеристики.
1 Расшифровка термина для чистых веществ и металлов
Для твердых кристаллических материалов, к коим относятся и металлы, состоящие из чистого (без примесей) вещества, температурой плавления является такой показатель их нагревания, при котором они переходят в другое состояние – жидкое. Причем при этой же температуре чистые вещества (металлы) и застывают. То есть для них такой показатель нагрева является температурой одновременно и плавления, и кристаллизации. А сами металлы, нагретые до температуры их плавления, могут находиться не только в жидком, но и твердом состоянии. Это зависит от того, продолжить подводить к ним дополнительное тепло или дать начать остывать.
Температура плавления
Вообще, по достижении температуры плавления чистое вещество сначала все еще остается твердым. Если продолжить нагрев, то оно станет жидким. Но температура вещества не будет повышаться (меняться) до тех пор, пока оно все полностью не расплавится в рассматриваемой системе (изделии, теле). А когда расплавленное вещество остывает до температуры кристаллизации (плавления), то оно сначала все еще остается жидким. И только если начать дополнительное отведение от него тепла, тогда оно станет переходить в кристаллическое твердое состояние (застывать). Но температура вещества, опять же, не будет меняться (понижаться), пока оно полностью не затвердеет.
2 Особенности расплавления смесей и марок меди
У смесей веществ (в том числе и у различных сплавов металлов) нет температуры плавления/кристаллизации. Они совершают переход из одного состояния в другое (из твердого в жидкое и обратно) в некотором определенном интервале степени своего нагрева, граничные значения диапазона которого имеют соответствующее название. Температуру, при которой смеси веществ и сплавы металлов начинают переходить в жидкую фазу (или полностью затвердевают), называют «точкой солидуса». Степень нагрева, при котором происходит полное расплавление (или начинается кристаллизация при остывании), называют «точкой ликвидуса». Но в обиходе чаще говорят: температура солидуса и ликвидуса.
Точно замерить эти температуры как для смесей веществ, так и для сплавов металлов невозможно. Их определяют по специальным расчетным методикам, в которых учитывается точное процентное соотношение в смеси каждого элемента и ряд других параметров.
То есть относительно рассматриваемых металлов можно сделать следующие выводы. Температура плавления есть только у меди. Причем, только у чистой. У всех остальных металлов (латуни, бронзы и различных марок меди) ее нет, а есть температуры солидус и ликвидус. Для латуни и бронзы это так, потому что они являются сплавами меди, в которых в зависимости от марки добавлены различные легирующие добавки (другие металлы или иные вещества) и еще есть какие-то примеси. А производимые металлургической промышленностью для различных нужд марки меди имеют такие характеристики плавления, так как они тоже производятся легированными и с примесями. Чистую медь изготавливать нецелесообразно, и она уступает по своим характеристикам, требуемым для народного и промышленного ее использования, свойствам выпускаемых из нее марок.
Температура плавления металлов
Очевидно, что величина температуры ликвидус рассматриваемых металлов будет зависеть от их химического состава. В первую очередь от процентного содержания меди, так как ее в них всегда больше 50 %. И, соответственно, точка ликвидус марок этих металлов будет тем ближе к температуре плавления самой меди, чем ее больше в сплаве. А легирующие металлы или другие вещества и примеси, в зависимости от своего процентного содержания и температуры плавления, будут вносить соответствующую корректировку в сторону понижения либо повышения точки ликвидус у марок меди, бронзы и латуни. Понижать, если своя температура плавления ниже, чем у меди, и повышать, когда выше.
Так, ознакомившись, какие виды и марки бронзы производят, можно самому догадаться, в какую сторону будет отличаться у них точка ликвидус от температуры плавления чистой меди. Сам состав бронзы подскажет его влияние на эту и другие характеристики данного сплава. А ознакомление с составом латуни даст возможность судить об отклонениях ее точки ликвидус от температуры плавления меди. С марками меди то же самое, но влияние легирующих добавок и примесей на их точку ликвидус будет рассмотрено отдельно ниже.
3 Какова температура плавления меди, латуни и бронзы?
Температура плавления чистой меди – 1084,5 °C. А выпускаемые марки меди содержат ничтожно малое по отношению к самому этому металлу количество других веществ. Такое, что даже легирующие элементы, как, например, серебро и никель, наравне с прочими «случайными» веществами, относят в составе марок меди к примесям. Самого этого металла – от 99,93 до 99,99 %. И поэтому точки солидус и ликвидус выпускаемых марок меди очень близки к температуре плавления самого этого металла. Температуры полного расплавления в зависимости от марки: меди – 1083–1084 °C, латуни – 880–1050 °C, а бронзы – 900–1140 °C.
Изделия из меди
Температурные характеристики латуни главным образом зависят от содержания меди и гораздо менее тугоплавкого цинка, являющегося в латунных сплавах основным легирующим элементом. А относительно бронзы следует отметить, что ее так называемые оловянные марки, с легированием оловом, полностью плавятся при температуре 900–950 °C, а не содержащие этот металл, безоловянные – при 950–1140 °C.
4 Можно ли в кустарных условиях расплавить и отлить металлы?
Прям совсем уж в домашних условиях плавить эти металлы, да еще потом и отливать из них какие-то заготовки, а тем более изделия, не получится. Надо будет сначала предварительно соответствующим образом подготовить подходящее помещение, обзавестись необходимым оборудованием и инструментом или смастерить самому что-то из требуемого для плавки и литья оснащения. И, разумеется, желательно поточнее выяснить характеристики сплава, с которым предполагается работать. А именно, его состав и температуру ликвидус.
Плавление в домашних условиях
А какие именно необходимо создать условия для работы, подготовить оборудование, оснащение и инструменты, а также технология плавки и литья перечислены и описаны в одной из публикаций сайта. Это статья: «температура и технология плавления в домашних условиях бронзы». Так как у этого сплава и у марок меди с латунью точки ликвидус близки по своим значениям, а другие свойства, влияющие на процессы плавки и литья, относительно сопоставимы, то и вся технология в кустарных условий для этих металлов идентична. То есть для меди и латуни можно воспользоваться инструкциями-рекомендациями по плавке бронзы из этой статьи.
Медь температура плавления — Энциклопедия по машиностроению XXL
После расплавления олово (температура плавления 232 °С) втягивается капиллярными силами в микропоры между частицами более тугоплавкой меди (температура плавления 1083°С), растекается по поверхности этих частиц и обволакивает их тонкой пленкой. В дальнейшем с повышением температуры усиливается диффузионное проникновение олова в медь, приводящее к образованию новых фаз и в конечном итоге — к образованию однородного а-твердого раствора (при содержании олова в шихте до 14 %). По другим данным, такое представление не очень отвечает действительности, так как образующаяся жидкая фаза должна немедленно обволакиваться тонким, но быстро растущим слоем твердой л-фазы (60,9 % Sn, 39,1 % Си), возникающей в результате растворения меди в олове, которая препятствует растеканию олова. Позтому сколько-нибудь длительное существование жидкой фазы при температурах выше 232 °С невозможно, так как л-фаза вскоре исчезает (еще до температуры ее плавления) и сменяется более тугоплавкими фазами е (38,4 % Sn 61,6 % Си) и 5 (31,8% Sn 68,2% Си). Последняя же разрушается с образованием а-твердого раствора при 580 -640 С, т.е. опять-таки ниже температуры плавления зтой фазы. Эти температурные границы образования и разрушения новых фаз носят условный характер, так как существенно зависят от продолжительности выдержки заготовок при заданной температуре. [c.47]Твердые припои имеют температуру плавления 850—900° С и представляют собой сплавы меди с цинком твердость и прочность паяного ими шва — повышенные. Серебряные припои состоят из серебра и меди температура плавления их 740—830° С они имеют ще большую прочность. Пайка ими медных проводов почти не меняет их электропроводность. И здесь прочность спая обеспечивается образованием твердого раствора между припоем и соединяемым металлом.
Медь — температура плавления 1083 °С, плотность 8940 кг/м обладает гранецентрированной кубической решеткой имеет высокие тепло- и электропроводность, а также пластичность коррозионно-устойчива в ряде агрессивных сред [9]. [c.131]
В конце семидесятых годов прошлого века Беккерель создал высокотемпературную термоэлектрическую батарею из сернистой меди (температура плавления более 1000° С) в паре с мельхиором, дававшую большую ТЭДС. [c.9]
К числу таких припоев относятся сплавы следующих марок СМ-2 (88% алюминия и 12% кремния) 34А (66% алюминия, 6% кремния и 28% меди) и 35А (72% алюминия, 7% кремния и 21% меди). Температура плавления припоев для паяния алюминиевых сплавов 578-—525° С. [c.246]
При введении в цинк серебра или меди температура плавления цинковых сплавов вследствие образования перитектики повышается. В настоящее время изучены и применяются в качестве припоев некоторые цинковые сплавы с алюминием, кадмием, медью, серебром, оловом, свинцом, температура расплавления которых находится в интервале 340—480° С. [c.200]
Медно-цинковый припой содержит от 36 до 54% меди. Температура плавления этих припоев не ниже 600—700°, они плавятся в горне, в пламени паяльной лампы и бензиновой горелки. [c.79]
Алюминий — металл, широко применяю-ш,ийся в промышленности. Удельный вес алюминия 2,72 г/сжз (почти в три раза меньше удельного веса железа и меди). Температура плавления 658°. Алюминий на воздухе покрывается тонкой пленкой окиси, которая предохраняет его от дальнейшего окисления. Алюминий подвергают как холодной, так и горячей прокатке. Температурный интервал горячей прокатки алюминия 350—480°. В отдельных случаях, при калибровке валков, имеющей свободное уширение в первых пропусках, прокатку профилей из алюминия можно производить в валках, предназначенных для прокатки стали. При проектировании специальной калибровки для прокатки алюминия следует учитывать, что уширение алюминия при 400—500° значительно больше, чем уширение железа при 1100— 1150°. Только при 850—1000° уширение железа приближается к уширению алюминия при пониженных температурах (100—200°).
Вычислим, пользуясь формулой А. А, Бочвара, температуру рекристаллизации железа. Температура плавления железа равна 1539°. Для того чтобы вычислить абсолютную температуру, нужно прибавить к этой температуре 273° получим 1812° умножив полученное число на 0,4, как это требуется по формуле А. А. Бочвара, получим 725 вычтем 273, чтобы получить результат не по абсолютной шкале температур, а по обычной шкале Цельсия в результате получим (с округлением) 450°. Предлагаем читателю самому вычислить по формуле А. А. Бочвара температуру рекристаллизации меди. Температура плавления меди равна 1083°. [c.57]
В качестве припоя может быть использована электролитическая медь (температура плавления 1080° С) или медно-никелевый припой (температура плавления 1220° С) следующего состава 70% меди, 30% никеля. Существуют и другие припои, составы которых приведены в книгах по инструментальному делу. [c.33]
Резцы с механическим креплением пластинок режущего сплава. Пайка пластинки быстрорежущей стали и твердых сплавов производится чаще всего красной медью. Температура плавления меди около 1000°. Нагрев же под закалку быстрорежущей стали происходит после напайки, при 1280—1300°. Нужно, таким образом, большое искусство, чтобы пластинка быстрорежущей стали при закалке не отпаялась. В силу этого иногда закалку ведут при сниженных температурах, что совершенно нежелательно, так как при этом снижаются режущие качества стали (уменьшается твердость быстрорежущей стали). [c.262]
Худшими характеристиками обладают никель и медь так для меди температура плавления 1083 °С, оксида меди — 1230 °С, теп- [c.399]
Промышленная медь содержит около 99% чистой меди. Температура плавления меди 1183° С. В связи с повышенной склонностью к окислению медь сваривать трудно. Теплопроводность меди в 6 раз превышает теплопроводность стали, поэтому значительная часть тепла расходуется на соседние участки металла, прилегающие к шву. Мощность пламени при сварке меди должна быть больше, чем для сварки других металлов. [c.68]
Напайку производят с помощью порошка меди или тонкой медной пластинки (фольги), укладываемых между державкой и пластинкой. Такой резец помещают (одним концом) в печь, нагретую до 1150—1200°, для расплавления меди (температура плавления 1084°), затем вынимают из печи, пластину -слегка прижимают к державке (для плотного сцепления) и замедленно охлаждают (в ящике с песком или мелким углем), после чего затачивают. [c.369]
Однако температура плавления не дает точного указания на предельную рабочую температуру. Для одних сплавов эта температура составляет 0,7—0,8 от абсолютной температуры плавления, для других она меньше 0,5. Так, сплавы меди оказываются не более жаропрочными, чем сплавы алюминия, не- [c.456]
Твердые припои имеют температуру плавления в интервале 800—900°С и являются сплавами меди и цинка (латуни) и меди, цинка и серебра (так называемые серебряные припои). Последние применяют при пайке электроприборов, когда электропроводность спая не должна уменьшаться по сравнению с электропроводностью основного металла. [c.624]
Технически чистая медь имеет плотность 8940 кг/м , температуру плавления 1083 С, обладает высокой пластичностью, коррозионной стойкостью, малым удельным электросопротивлением (7-10 Ом м), высокой теплопроводностью [385 Вт/(м К) 1, и поэтому ее широко используют для изготовления электропроводов, деталей электрических машин и приборов, в химическом машиностроении. Медь по чистоте подразделяют на марки МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си), М4 (99 % Си). [c.18]
При пайке паяльниками основной металл нагревают и припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника, который перед пайкой или в процессе ее подогревают. Для низкотемпературной пайки применяют паяльники с периодическим нагревом, с непрерывным нагревом и ультразвуковые. Рабочую часть паяльника выполняют из красной меди. Паяльник с периодическим нагревом в процессе работы периодически подогревают от постороннего источника теплоты. Паяльники с постоянным нагревом делают электрическими. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов легкоплавкими припоями с температурой плавления ниже 300—350 °С. [c.241]
Обычными примесями в техническом никеле являются кобальт, железо, кремний, медь. Эти примеси не оказывают вредного влияния, так как образуют с никелем твердые растворы. При содержании углерода свыше 0,4% но границам зерен выделяется графит, что вызывает снижение прочности металла. Сера является вредной примесью, образующей с никелем сульфид N 382, который дает с никелем эвтектику с температурой плавления 625°С. Кислород, присутствующий в металле в виде NiO, при малом его содержании не сказывается на свойствах металла. [c.256]
Медь — химический элемент 1 группы Периодической системы элементов, порядковый номер 29, атомная масса 63,54. Медь — металл красного, в изломе розового цвета. Температура плавления 1083 » С. Кристаллическая г. ц. к. решетка с периодом а = 0,36074 нм. Плотность меди 8,94 г/см Медь обладает наибольшей (после серебра) электропроводностью и теплопроводностью Удельное электросопротивление меди составляет 0,0178 мкОм-м. В зависимости от чистоты медь поставляют следующих марок МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си) и М4 (99,0 % uV Присутствующие в меди примеси оказывают большое влияние на ее свойства. [c.342]
Семейство d-металлов образует с азотом многочисленные соединения d-металлы, не имеющие на подуровне d парных электронов, дают очень устойчивые соединения с высокой температурой плавления и большой твердостью. Такие металлы, как железо, кобальт, никель, образуют малоустойчивые нитриды, разлагающиеся при высоких температурах, но обладающие также повышенной твердостью в кристаллическом состоянии. Относительная устойчивость нитридов d-металлов приведена на рис. 9.29. Медь не образует нитридов, и сварку меди можно проводить в атмосфере азота высокой степени чистоты. [c.344]
Различают легкоплавкие и тугоплавкие припои. К легкоплавким припоям с температурой плавления до 300 С относятся оловянно-свинцовистые сплавы. Для понижения температуры плавления в эти сплавы вводят висмут и кадмий, а для увеличения прочности добавляют сурьму. Тугоплавкие припои содержат в своем составе медь, цинк, серебро н имеют температуру плавления выше 500″ С. [c.371]
Применение индукционного нагрева обычно экономически оправдано при пайке среднеплавкими припоями (медь, латунь, ферромарганец, медно-серебряные сплавы) с температурой плавления 400—1200 °С. [c.219]
Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 С и 326 °С). [c.113]
Медь широко применяется в качестве конструкционного материала для изготовления различного рода сосудов, трубопроводов, химической аппаратуры, электрораспределительных устройств и другой аппаратуры. Медь обладает высокой тепло- и электропроводнофью, химической стойкостью и сохраняет свои механические свойства в условиях низких температур, когда почти все стали становятся хрупкими. Медь имеет температуру плавления 1083°С (1356 К), временное сопротивление в отожженном состоянии 200 МПа и плотность 8,9 г/см . Большое распространение в народном хозяйстве нашли сплавы меди — латунь и бронза. Латунь — это сплав меди с цинком. Ее применению способствует меньшая стоимость и плотность цинка по сравнению с медью. Температура плавления (800—900°С) зависит от состава — чем больше цинка, тем ниже точка плавления. Бронза представляет собой сплав меди с оло-вом, алюминием, бериллием и свинцом. Температура плавления 720—1000 °С. Чем больше в бронзе олова, тем ниже температура ее плавления. [c.17]
Сварка алюминия. Алюминий находит все большее применение в приборостроении. В ряде случаев он успешно заменяет медь и ее сплавы. Алюминий почти в три раза легче стали. Он обладает высокой электротеплопроводностью (около 62% электропроводности меди). Температура плавления алюминия 657° С, температура же плавления окисных пленок, покрывающих алюминий, составляет 2050° С, В нагретом состоянии алюминий хрупок. Стыковая сварка алюминия осуществляется на контактных машинах переменного тока методом сопротивления. Однако возможна сварка алюминия также методом оплавления. [c.11]
С материалом соединяемых деталей. Важуум-ный припой, который при пайке металлических деталей в водородной печи (в отличие от быстрой пайки паяльником или высокой частотой, см. ниже) подвергается длительному нагреванию и вследствие этого долго находится в жидком состоянии, IB контакте со спаиваемыми деталями не должен образовывать с основным металлом оплавов со значительно более низкой температурой плавления, чем температура пайки. В противном случае образующийся сплав при длительном нагревании в печи будет вытекать из места спая, оставляя iB детали поры и отверстия. Говорят, обычно, что такой припой выплавляется . Если, например, паять чистую медь чистым серебром в водородной печи примерно при 980° С, в месте контакта твердой меди с жидким серебром образуется переходный слой сплава, в котором происходит непрерывное раствярение меди -в чистом серебре. Как видно из диаграммы состояния систе.мы Ag u, приведенной яа рис. 9-3-33, с увеличением содержания меди температура плавления переходных сплавов (температура как солидуса, так и ликвидуса) очень быстро снижается и растворенная медь с образующимся сплавом вытекает из места спая. Однако условия изменяются, если применять не чистое серебро, а его сплав с медью, соответствующий по своему составу эвтектике Е (примерно 72% серебра), положение которой мож- [c.536]
Нихром — сплав никеля и хрома. Удельное сопротивление при температуре +20 С равно 1,10 оммм /м, т. е. гораздо выше, чем у манганина и константана. Нихром имеет высокую максимальную рабочую температуру, равную 1000° С. Нихром менее стабилен по температуре, чем манганин или константан его температурный коэффициент равен 0,00011, что примерно в 40 раз меньше, чем у меди. Температура плавления нихрома 1550° С. [c.284]
При сварке латуней возможно испарение цинка (температура кипения 907° С, т. е. ниже температуры плавления меди). Образующийся окисел цинка ядовит, поэтому при сварке требуется хорошая вентиляция. Испарение цинка может привести к пористости металла шва. Это осложнение удается преодолеть нредва- [c.344]
ЧЕРНЫЕ МЕТАЛЛЫ имеют темно-серый цвет, большую плотность (кроме щелочноземельных), высокую температуру плавления, относительно высокую твердость и во многих слу чаях обладают полиморфизмом (о последнем см. гл. II, п. 6) Наиболее типичным металлом этой группы является железо ЦВЕТНЫЕ МЕТАЛЛЫ чаще всего имеют характерную ок раску красную желтую, белую. Обладают большой пластич Fio Tbro, малой твердостью, относительно низкой температурой II, лл ленпя, для ннх характерно отсутствие полиморфизма. Наиболее типичным металлом этой группы является медь. [c.15]
Твердые припои имеют высокую температуру плавления пайка этими припоями затруднительна, но спай обладает высокими механическими свойствами. Например, опай сплавов на основе меди имеет свойства не хуже, чем основной металл. [c.623]
Цветные металлы и силаны также подвержены 1 азовой 1(орро-зии при повышенных температурах. В особенности быстро окисляются при высоких температурах цинк, кадмий и свипен,. Вследствие низкой температуры плавления. эти металлы нашути ограниченное применение при температурах выше 1.50 «С. Большое практическое значение имеет жаростойкость таких коиструкцион-тдх металлов, как алюминий, медь н сплавы. этих металлов, л также никель и сплавы па его основе, титан и его сплавы. [c.140]
Алюминий — элемент 111 группы Периодической системы элементов, порядковый номер 13, атомная масса 26,98 (см. табл. 1). Температура плавления 660 °С. Алюмииик имеет кристаллическую г. ц, к. решетку с периодом а 0,40412 нм. Наиболее важной особенностью алюминия является низкая плотность 2,7 г/см , против 7,8 г/см для железа и 8,9 г/см» для меди. Алюминий обладает высокой электро- [c.320]
Мягкая основа сплава а-твердый раствор сурьмы в олове (рис. 176), а твердые кристаллы — Р-фаза эта фаза представляет собой твердый раствор на основе химического соединения SnSb. Сурьма и олово различаются по плотности, поэтому сплавы этих металлов способны к значительной ликвации. Для предупреждения этого дефекта в баббиты вводят медь. Она образует с сурьмой химическое соединение ugSn. Это соединение имеет более высокую температуру плавления и кристаллизуется первым, образуя разветвленные дендриты, которые препятствуют ликвации кубических кристаллов р (SnSb). Кроме того, кристаллы [c.356]
Пайкой называют процесс соединения металлических или метал-лизованных деталей с помощью дополнительного металла или сплава, называемого припоем, путем нагрева мест соединения до температуры плавления припоя. Соединение происходит вследствие растворения и диффузии припоя и материала деталей. В качестве припоев применяют некоторые цветные металлы (серебро, медь) или сплавы цветных металлов. Припои делят на мягкие (температура плавления t° 400- 500° С), а пайку соответственно — на мягкую и твердую. [c.395]
Из-за больших искажений кристаллической решетки вокруг межузельного атома его энергия активации процесса миграции м меньше, чем для вакансии. Для меди энергия миграции вакансий составляет 1 0,5 эВ, для межузельного атома 0,16+0,10 эВ, т. е. межузельные атомы подвижнее, чем вакансии. Так как концентрация вакансий несоизмеримо выше концентрации дислоцированных атомов, то в процессах самодиффузии, т. е. диффузии атомов основного вещества, доминирующую роль играет вакансиопный механизм. Находящийся рядом с вакансией атом обладает повышенной энергией и может занять ее место. Время существования вакансии в одном узле кристаллической решетки зависит от температуры. Для кадмия при комнатной температуре это время составляет около суток, ближе к температуре плавления 4-10- с, т. е. частота диффузионных скачков вакансий 0,25- Ю с- . [c.29]
Рис, 2.2. Зависк.мость удельного сопротивления. меди от температуры скачок при температуре плавления 1083° С [c.13]
Медь относится к группе цветных металлов, наиболее широко приме-пясмь[Х в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентри-рованную кубическую решетку (ГПК) с периодом а — 3,507 А . Удельный вес меди у = 8,94 г/см», температура плавления — 1083 С. Чистая медь обладает [c.112]
Баббиты — это мягкие антифрикционные сплавы на оловянной, свинцовой, алюминиевой и цинковой основах, в которых равномерно распределены твердые кристаллы (кристаллы — фазы SnSb или кристаллы сурьмы, иглы меди). Баббиты отличаются низкой твердостью (13-23 НВ), невысокой температурой плавления (340-500°С, алюминиевые бронзы — 630-750°С), отлично прирабатываются и имеют низкий коэффициент трения со сталью, хорошо удерживают фаничную масляную пленку. Мягкая и пластичная основа баббита при трении в подшипнике изнашивается бь[стрее, чем вкрапленные в нее твердые кристаллы других фаз, в результате шейка вала при вращении скользит по этим твердым кристаллам. При этом уменьшается площадь фактического касания трущихся поверхностей, что, в свою очередь, снижает коэффициент трения и облегчает поступление смазки в зону трения. Благодаря хорошей прирабатываемости баббитов все неточности поверхностей трения вследствие механической обработки или установки деталей при сборке в процессе обкатки подшипников быстро устраняются. В табл. 1.6 приведены основные свойства и структура баббитов. [c.22]
необходимые условия процесса на производстве и дома
Уже в древности люди добывали и плавили медь. Этот металл широко применялся в быту и служил материалом для изготовления различных предметов. Бронзу научились делать примерно 3 тыс. лет назад. Из этого сплава делали хорошее оружие. Популярность бронзы быстро распространялась, так как металл отличался красивым внешним видом и прочностью. Из него делали украшения, орудия охоты и труда, посуду. Благодаря небольшой температуре плавления меди человек быстро освоил ее производство.
Нахождение в природе
Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.
В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.
- На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
- В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
- Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
- Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
- В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
- Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
- Часто месторождения имеют вид осадочных пород.
- Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.
Физические свойства
Металл пластичен и на открытом воздухе покрывается оксидной пленкой за короткое время. Благодаря этой пленке медь и имеет свой желтовато-красный оттенок, в просвете пленки цвет может быть зеленовато-голубым. По уровню уровнем тепло- и электропроводности Cuprum на втором месте после серебра.
- Плoтность — 8,94×103 кг/ м3 .
- Удельная теплоемкость при Т=20 ° C — 390 Дж/кг х К.
- Электрическoе удельное при 20−100 ° C — 1,78×10−8 Ом/м.
- Температура кипeния — 2595 ° C.
- Удельная электропрoводность при 20 ° C — 55,5−58 МСм/м.
При какой температуре плавится медь
Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .
При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.
Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.
Плавление в домашних условиях
Благодаря низкой температуре плавления древние люди могли расплавлять купрум на костре и использовать металл для изготовления различных изделий.
Для расплавки меди в домашних условиях понадобится:
- древесный уголь;
- тигель и специальные щипцы для него;
- муфельная печь;
- бытовой пылесос;
- горн;
- стальной крюк;
- форма для плавления.
Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.
При отсутствии муфельной печи расплавить медь можно автогеном. Плавление пойдет, если ест нормальный доступ воздуха. Паяльной лампой расплавляется латунь и легкоплавкая бронза. Пламя должно охватить весь тигель.
Если под рукой ничего из перечисленных средств нет, можно использовать горн, установленный на слой древесного угля. Для повышения Т можно использовать пылесос, включенный в режим выдувания, но шланг должен иметь металлический наконечник, хорошо, если с зауженным концом, так струя воздуха будет тоньше.
Температура плавления бронзы и латуни, как температура плавления меди и алюминия — невысоки.
Сегодня в промышленных условиях в чистом виде Cu не используется. В ее составе содержится много примесей: никель, железо, мышьяк, сурьма, другие элементы. Качество продукта определяется наличием содержания в процентах примесей в сплаве (не более 1%). Важные показатели — тепло- и электропроводность. Благодаря пластичности, малой Т плавления и гибкости медь широко используется во многих отраслях промышленности.
Как производится плавление меди
Одним из красивейших при декорировании материалом является медь. Однако осуществить плавление меди в мастерской довольно проблематично. Поэтому люди придумывают различные ухищрения и способы, чтоб осуществить плавление меди дома. Это связано с тем, что медь очень «благородно» смотрится, ее благородный внешний вид украсит любую поделку. Например, медные детали прекрасно украсят рукоятки ножей (охотничьих, так и бытовых), шкатулки, зажигалки, брелоки, дамские сумочки и кошельки и т.д. Однако, при изготовлении таких поделок дома, человек сталкивается с целым рядом проблем: начиная от вопроса «где достать металл?», заканчивая вопросом «как его расплавить?» и «как придать нужную форму элементу?». Где найти медь в быту, как осуществить плавление меди в бытовых условиях и как приготовить формы для заливки детали, будет рассказано ниже.
Медь: где ее достать
Все помнят из школьного курса химии то, что медь это 11 элемент таблицы Менделеева, с температурой плавления порядка 1083,5 градусов Цельсия. Но помимо всего прочего, медь не широко распространена в природе, поэтому на данный момент стоимость меди достигает 9000 долларов США за тонну (при этом исторический рекорд по цене – 12000 долларов за тонну в 2011 году). Высокая стоимость вызвана небольшим количеством месторождений. Основные месторождения меди находятся в Южной Америке (Чили и Перу), Казахстане, Китае, Австралии и США. Именно этим обоснована высокая стоимость чистого металла. Поэтому возникает вопрос: где достать медь в быту?
Общая схема выплавки меди.
Медь может находиться в электронике и электротехнических изделиях. Из меди изготавливают провода и кабели, обмотки для трансформаторов и электрических машин (электродвигателей и электрогенераторов), небольшое количество металла содержится в печатных платах.
Другие бытовые изделия – это радиаторы и нагреватели. В продаже имеются полотенцесушители, трубы, радиаторы (в том числе и автомобильные), которые выполнены из чистой меди. Их достаточно легко определить по желтому (специфическому) цвету материала и массе (медь довольно тяжела).
В продаже (на барахолках или в магазинах) можно встретить медные дверные ручки, столовые приборы, различные поделки и, естественно, монеты, гильзы от артиллерийских снарядов и от стрелкового оружия.
При этом количество металла в тех или иных элементах бывает недостаточно, поэтому многие люди смешивают металл из одного изделия с другим. Однако это неправильно, поскольку столовая медь является очищенной, а электротехническая или металл из труб токсичен, и не годиться для приготовления пищи (если конечное изделие планируется использовать на кухне).
График температуры плавления меди.
Другим вариантом получения меди является использование сплавов меди, таких как латунь или бронза. Так, латунью называют сплав меди и цинка в соотношении примерно 5 к 8 (на 5 частей меди 8 частей цинка). Из латуни изготавливают широкий спектр изделий, связанных с водопроводом: краны, вентиля, патрубки и т.д. Латунь может использоваться в смесителях. Из латуни также делают метизы (гайки, шайбы, болты), манометрические трубки и т.д. Обычно латунь имеет желтый или золотистый цвет, однако существуют сплавы и зеленого цвета. Ее температура плавления около 900 градусов Цельсия.
Бронзой называют сплав меди с оловом в соотношении 90% к 10%. Температура плавления бронзы составляет порядка 1000-1100 градусов Цельсия. В современном мире встретить изделия из бронзы довольно сложно, поскольку ее используют только для отливки украшений и элементов декора. Некоторые бронзовые сплавы применяются для изготовления смесителей.
Выплавить медь из деталей или из сплавов (латуни, бронзы) примерно одинаково по материальным затратам и по времени. Поэтому любая деталь, изготовленная из вышеперечисленных металлов годиться для плавки.
Вернуться к оглавлению
Организация рабочего места
Поскольку медь является тугоплавким металлом, то необходимо приобрести некоторое оборудование для ее плавления. Рассмотрим вариант плавки заготовки весом более 0,5 кг. Что для этого потребуется:
Цветовые характеристики сплавов меди.
- Первое, с чего следует начать – это постройка горна. Есть много способов построить горн своими руками. Его выкладывают из огнеупорных кирпичей полностью. При этом не следует гнаться за большим объемом плавильной камеры, для переплавки небольшого объема металла потребуется небольшой объем. Так объема в 0,5 кубометра хватить для переплавки 1 кг меди. Самый примитивный горн делается следующим образом: огнеупорными кирпичами (без раствора) складывается небольшая камера (для этого потребуется 25-30 кирпичей), в которую подводиться газ. При этом особое внимание стоит уделить системе подачи газа и горелке. Естественно, что такая конструкция не предназначена для большого количества плавок, однако на 2-3 плавки.
- Муфельная печь. Ею обзаводятся, если лень строить горн. Ее можно свободно приобрести у специализированных фирм. Для малого объема плавки в продаже имеются лабораторные муфельные печи. Стоит отметить, что приобрести готовую муфельную печь менее трудозатратно и не сильно дорого по сравнению с горном. Так стоимость материалов для самостоятельного строительства горна может составлять 70% от стоимости готового изделия.
- Далее следует тигель и щипцы к нему. Тиглем называют емкость из тугоплавкого материала, в которой переноситься и плавиться металл. Тигель и щипцы для него рекомендуется купить (их свободно продают для лабораторных нужд).
- Бытовой пылесос или компрессор – для нагнетания воздуха в горн и печь. Реконструкторы могут построить кузнечные меха.
- Формы для заливки изделий. Их часто изготавливают (вырезают) из дерева или камня. Форма должна быть идентична желаемой детали.
- Крюк из стали. Подбирается по диаметру тигля. Крюк должен быть немного меньше диаметра.
- Расходные материала. Сюда относится топливо: дрова, кокс и газ.
Вернуться к оглавлению
Как производится плавка
После того, как все необходимое построено, собрано и проверено на работоспособность, можно осуществить плавление меди.
Сначала внутрь тигля укладываются детали и элементы, которые идут на переплавку. После чего тигель помещается внутрь муфельной печи. Далее задается необходимая температура плавки. При этом важно постоянно контролировать металл, чтобы он не сгорел и не выгорел. Для наблюдения в печи имеется смотровое окошко. При этом стоит помнить, что на поверхности металла может образовываться пленка окиси.
Когда температура в печи достигла выставленного значения, дверь печи открывают и при помощи щипцов достают тигель.
Плавка меди в тигле.
Далее следует отодвинуть окисную пленку стальной проволокой, после чего выливают расплавленную медь внутрь стоящей рядом формы. Важно, чтобы форма находилась недалеко от печи, чтобы не дать застыть металлу в процессе переноски. После заливки металлу дают время, чтобы остыть, после чего извлекают готовое изделие. Плавки с использованием муфельной печи очень удобны, требуют минимум вмешательства человека.
В случае, если печь отсутствует, медные детали можно переплавить в горне. Здесь в качестве топлива можно использовать древесные угли, каменные угли, кокс и другие виды топлива. Перед плавкой тигель с металлом устанавливается на слой угля и обкладывается углем. К горну приставляется компрессорная установка для нагнетания воздуха внутрь. В качестве компрессора отлично подойдут бытовые пылесосы, которые работают на выдув. Далее топливо поджигается, и запускается компрессорная установка. Главное отличие плавки в горне от муфельной печи заключается в постоянном участии в процессе плавки (топливо добавить, увеличить напор воздуха и т.д.). При этом стоит постоянно контролировать плавление металла. После того, как медь расплавилась, тигель вынимают щипцами, и металл заливают в форму.
Если объем меди для переплавки небольшой, то можно воспользоваться автогеном. Для этого струю пламени направляют от днища тигля вверх. При этом необходимо защитить металл от чрезмерного окисления. Для этого поверхность металла в тигле присыпают древесным углем (растолченным в пыль). После расплавления металла его также заливают в форму.Небольшие детали из сплавов меди (латунь и бронза) могут быть расплавлены на паяльной лампе.
Вернуться к оглавлению
Заключение по теме
Если планируется регулярно осуществлять плавку меди, то настоятельно рекомендуется построить горн или купить муфельную печь.
химический элемент, температура плавления и кипения, пошаговая инструкция
Медь входит в семёрку самых древних металлов, с которыми люди познакомились на самом начальном этапе своего существования. Период с 4 по 3 тысячелетие до нашей эры так и называется медный век в истории развития человечества. Древние люди изготавливали из неё предметы быта, орудия труда и боевое оружие. Это стало возможным благодаря относительно невысокой температуре плавления меди.
Купрум: характеристика элемента
Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.
Физические свойства
Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.
- Температура плавления 1083 градуса.
- Температура кипения 2567 градусов.
- Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
- Плотность 8,92 г/см.
Нахождение в природе
В природе встречается в самородном виде и в виде соединений.
Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.
В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.
Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.
Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.
Медные сплавы
Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:
- Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
- Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец. Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
- Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
- Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия. Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
- Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.
Переплавка меди дома
Этот металл обладает целым набором полезных свойств, которые делают её весьма желанным металлом в домашнем хозяйстве. А относительно невысокая температура при плавлении и изрядное количество медного лома, которое можно обнаружить на ближайшей свалке, позволяют задавать вопрос о том, как расплавить медь в домашних условиях, не как риторический, а вполне реальный и практический.
График плавления меди
Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:
- Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
- При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
- После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.
В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.
Температура кипения
Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.
Способы плавки
Медный лом можно переплавить в домашних условиях разными способами в зависимости от технического оснащения домашней мастерской. При этом нужно иметь в виду, что придётся нагревать медь не до её температуры плавления, а чуть выше — примерно до 1100−1200 градусов.
Для этих целей годятся следующие приспособления:
- Муфельная печь. Наиболее рациональное решение проблемы расплавления меди, так как такая печь позволяет регулировать температуру во время процесса плавки, что очень удобно. Подобные лабораторные печи оснащены специальным окном из жаропрочного стекла, что позволяет постоянно осуществлять визуальный контроль всего процесса.
- Газовая горелка. Ручная газовая горелка размещается под дном ёмкости из тугоплавкого материала, в которой непосредственно будет размещаться медный лом. Этот способ предполагает наличие тесного контакта расплавляемой массы металла с воздухом, что будет способствовать усилению процесса окисления расплавляемого металла. Чтобы этому как-то противостоять, на расплавляемую массу сверху насыпают слой древесного угля.
- Паяльная лампа. Способ практически ничем не отличается от плавки с помощью газовой горелки. Но в этом случае невозможно достигнуть относительно высоких температур, поэтому он годится для переплавки сплавов меди, которые обладают меньшей температурой плавления, чем чистая медь.
- Кузнечный горн. На раскалённые древесные угли специального костра помещается тугоплавкий тигель с измельчённым металлом. Для ускорения процесса расплавления задействуют обычный бытовой пылесос, включённый в режиме выдувания. Труба пылесоса должна быть небольшого диаметра и иметь металлический наконечник, в противном случае она расплавится. Данный способ подходит для тех, кто занимается плавкой меди дома регулярно и имеет дело с большими объёмами исходного материала, который необходимо отжечь.
- Микроволновая печь. Бытовая мощная микроволновка с небольшими изменениями конструкции может легко плавить довольно большие объёмы медного лома. Для этого необходимо убрать из микроволновки вращающуюся тарелку, а вместо неё поместить соответствующих размеров тигель, который необходимо сделать из тугоплавкого материала, например, из шамотного кирпича.
Пошаговая инструкция
Процесс плавления любого металла происходит поэтапно и подчиняется определённому алгоритму, который одинаков как для промышленного производства, так и для кустарного. Для тех, кто озадачен вопросом плавки меди в домашних условиях, пошаговая инструкция будет выглядеть следующим образом:
- Необходимо взять тугоплавкий тигель. Металл в измельчённом состоянии насыпается в тигель. После этого тигель помещается в предварительно прогретую муфельную печь. С помощью специального окошка наблюдают за процессом расплавления.
- После полного расплавления всего объёма медного лома тигель с помощью специальных длинных щипцов извлекается из печи.
- На поверхности расплавленного металла образуется плёнка его оксида. Эту плёнку необходимо аккуратно сдвинуть в сторону к одной из стенок тигля. Для этих целей используют специальный крючок, изготовленный из тугоплавкого металла.
- После того как металл освобождён от оксидной плёнки, необходимо его очень быстро разлить в предварительно подготовленные формы.
Практические рекомендации
Температура плавления меди в домашних условиях зависит от того, в каком сплаве она содержится.
Техническая чистая медь содержится в проводах и кабелях, а также в обмотках трансформаторов, электродвигателей и генераторов. При этом нужно иметь в виду, что химически чистая медь содержится только в столовых приборах и в прочей кухонной утвари. Во всех остальных случаях в ней присутствуют те или иные вредные компоненты.
В чистом виде обладает повышенной вязкостью в расплавленном состоянии, поэтому отливать из неё изделия сложной конфигурации и небольших размеров очень сложно. Гораздо легче для этих целей использовать латунь.
В сплавах бронзы, изготовленных вначале и середине прошлого века, использовали в качестве компонентов мышьяк и сурьму. Поэтому следует избегать расплавления так называемой старинной бронзы, так как пары мышьяка могут привести к отравлению организма.
Оцените статью: Поделитесь с друзьями!Металлы и сплавы — температуры плавления
Точка плавления — это температура, при которой вещество переходит из твердого состояния в жидкое.
Точки плавления для некоторых металлов и сплавов:
Металл | Точка плавления ( o C) | |
---|---|---|
Admiralty Brass | 900-940 | |
Алюминий | 660||
Алюминиевый сплав | 463 — 671 | |
Алюминий бронза | 1027 — 1038 | |
Сурьма | 630 | |
Баббит | 249 | |
128519 | ||
Бериллий0 | Бериллий Медь | 865-955 |
Висмут | 271.4 | |
Латунь, красный | 1000 | |
Латунь, желтый | 930 | |
Кадмий | 321 | |
Хром | 1860 | |
Кобальт | 995 | 1084 |
Купроникель | 1170-1240 | |
Золото, 24K чистое | 1063 | |
Hastelloy C | 1320-1350 | |
Инконель | 1390-1425 | 1390–1425 |
Иридий | 2450 | |
Кованое железо | 1482–1593 | |
Железо, серое литье | 1127–1204 | |
Ковкое железо | 1149 | |
Свинец | 327.5 | |
Магний | 650 | |
Магниевый сплав | 349-649 | |
Марганец | 1244 | |
Марганцевая бронза | 865-890 | |
Ртуть | ||
Молибден | 2620 | |
Монель | 1300-1350 | |
Никель | 1453 | |
Ниобий (колумбий) | 2470 | |
Осмий | 9258240 Палладий 1555 | |
Фосфор | 44 | |
Платина | 1770 | |
Плутоний | 640 | |
Калий | 63.3 | |
Красная латунь | 990-1025 | |
Рений | 3186 | |
Родий | 1965 | |
Рутений | 2482 | |
Селен | 924 | |
Селен | 1411 | |
Серебро, монета | 879 | |
Серебро, чистое | 961 | |
Серебро, стерлинговое | 893 | |
Натрий | 97.83 | |
Припой 50-50 | 215 | |
Сталь углеродистая | 1425-1540 | |
Сталь нержавеющая | 1510 | |
Тантал | 2980 | |
Торий | 1750 | |
Олово | 232 | |
Титан | 1670 | |
Вольфрам | 3400 | |
Уран | 1132 | |
Ванадий | 1900 | |
932 | ||
Цинк | 419.5 | |
Цирконий | 1854 |
Золото, серебро и медь — давление и температура плавления
Точка плавления металлов
Знание точек плавления различных металлов важно для производителей и сварщиков. Металлы плавятся постепенно, так как металл поглощает тепло. Задолго до того, как кусок металла достигнет полной точки плавления, он может начать размягчаться и деформироваться. Для простоты мы обычно классифицируем точку плавления металла как точку, в которой он стал полностью жидким (называемый ликвидусом).
При соединении металлов с очень разными температурами плавления, таких как медь и сталь, пайка может быть лучшим выбором, чем сварка. При пайке используется кислородно-ацетиленовая горелка для нагрева присадочного металла, обычно латунного сплава, который имеет более низкую температуру плавления, чем две металлические части. По мере плавления наполнитель втягивается в шов, а затем затвердевает при охлаждении. Две соединяемые части никогда не достигают точки плавления, а это означает, что соединение непостоянно.
Сварка и пайка
Сварка — это процесс соединения двух частей металла путем нагрева обеих частей до их точки плавления, создавая ванну жидкого расплава, в которой их молекулы полностью смешиваются.В ванну расплава часто добавляют третий металлический наполнитель. Когда расплавленный металл охлаждается и затвердевает, две части полностью соединяются неразрывной связью.Знание того, какие металлы можно сваривать, и выбор лучших металлов для сварки может частично зависеть от их точек плавления — если они сильно различаются, одна из секций будет плавиться быстрее, чем другая. Это может вызвать взрыв или другие механические неисправности.
При соединении металлов с очень разными температурами плавления, таких как медь и сталь, пайка может быть лучшим выбором, чем сварка.При пайке используется кислородно-ацетиленовая горелка для нагрева присадочного металла, обычно латунного сплава, который имеет более низкую температуру плавления, чем две металлические части. По мере плавления наполнитель втягивается в шов, а затем затвердевает при охлаждении. Две соединяемые части никогда не достигают точки плавления, а это означает, что соединение непостоянно.
Следующий список температур плавления обычных металлов и их сплавов варьируется от минимальной до максимальной (обратите внимание, что температура плавления будет варьироваться в зависимости от точного состава сплава):
Свинец имеет одну из самых низких точек плавления любого металла при 621 F (327 C).
Алюминий имеет относительно низкую температуру плавления 1218 F (659 C). Когда в алюминий добавляют легирующие металлы, его температура плавления может варьироваться от примерно 848 до 1230 F (от 453 до 666 ° C). Добавление алюминия к другим металлам также снижает их температуру плавления.
Бронза : 1675 F (913 C). Подшипниковая бронза содержит в основном медь, а также свинец и цинк, что снижает ее температуру плавления до 1790 F (977 C). Кремниевая бронза — это латунный сплав с низким содержанием свинца, который обычно состоит из 96% меди и небольшого процента кремния.Его температура плавления 1880 F (1025 C).
Латунь : 1700 F (927 C) Латунь — это сплав меди.
Медь : 1981 F (1083 C)
Чугун : 2200 F (1204 C)
Сталь : 2500 F (1371 C)
Нержавеющая сталь : 2750 F (1510 C)
Никель : 2646 F (1452 C)
Кованое железо: 2700 F (1482 C)
Железо : 2800 F (1538 C)
Вольфрам имеет чрезвычайно высокую температуру плавления 6150 F (3399 C), поэтому он используется для сварки TIG электродов.
Industrial Metal Supply предлагает широкий ассортимент металлов, а также сварочное оборудование и принадлежности. Посетите одно из наших шести мест или закажите онлайн сегодня.
Точка плавления меди — Научное исследование
Понравилось? Поделиться!
Медь — это металл красновато-коричневого цвета, используемый для различных целей. Если вы ищете информацию о температуре плавления меди, прочтите следующую статью.
Свойства меди
Этот металл мягче железа, но тверже цинка.Его можно полировать для придания более яркого покрытия. Он помещен в группу 11 периодической таблицы с серебром и золотом. Он имеет очень низкую химическую активность и растворяется в горячей концентрированной соляной или серной кислоте. Он разъедает соленую воду и образует хлорид.
Древний металл, такой как медь, использовался для изготовления украшений, монет, посуды, статуй и т. Д. Он пластичен и обладает высокой теплопроводностью и электропроводностью. Обозначается символом «Cu». Он использовался более тысячи лет и был впервые добыт в Кире в римскую эпоху.Отсюда и произошло название «Киприум», которое также называют «кипрским металлом». Он был обнаружен в древние времена в естественной форме, что положило начало «медному веку» после «каменного века».
Медь и ее точка плавления
Температура плавления этого элемента составляет 1357,77 ° K, 1084,62 ° C или 1984,32 ° F. Чистая медь и сплавы с высоким содержанием меди очень трудно плавятся. Он также подвержен газообразованию. Когда медь-хром плавится, это приводит к потере «Cr». Эта проблема решается путем плавления этого соединения под плавающим флюсом, который предотвращает окисление, а также поглощает водород из атмосферы.Когда расплавленный металл достигает 1260 ° C, борид кальция или литий погружается в ванну расплава, что способствует его раскислению.
Карбонат меди
Это соединение встречается в выветрившейся латуни, меди и бронзе. Вы можете легко идентифицировать его по ярко-синему или зеленому цвету. Во влажном воздухе медь окисляется до тускло-зеленого цвета, поэтому архитекторы используют ее для создания интересных деталей на зданиях. Температура плавления карбоната меди составляет 200 ° C. При высокой температуре карбонат меди разлагается на диоксид углерода и оксид меди (II).
CuCO 3 (твердый) → CuO (твердый) + CO 2 (газ)
Медные сплавы
Они делятся на три группы в зависимости от диапазона их замораживания. Отверждение этих сплавов происходит, когда температура опускается ниже ликвидуса (температура, при которой металлы начинают замерзать), и завершается до того, как температура достигает солидуса (температуры, при которой металл полностью замерзает). Металлические зеркала и бронза — это некоторые сплавы меди и олова, температура плавления которых составляет 1900-1950 ° F.Латунь представляет собой сплав меди и цинка с температурой плавления 900–940 ° C.
Таким образом, все описанные выше свойства меди, особенно в отношении ее температуры плавления, очень важны в различных областях химии и металлургии.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Фактов о меди: Медь и металл
Медь Факт 1Медь — это минерал, незаменимый в нашей повседневной жизни.Это основной промышленный металл из-за его высокой пластичности, ковкости, теплопроводности и электропроводности, а также устойчивости к коррозии. Это важное питательное вещество в нашем ежедневном рационе. И его антимикробные свойства становятся все более важными для предотвращения инфекции. Он занимает третье место после железа и алюминия по количеству потребляемого в США.
Медь Факт 2По оценкам Геологической службы США (USGS), каждый американец, родившийся в 2008 году, будет использовать 1309 фунтов меди в течение своей жизни для удовлетворения потребностей, образа жизни и здоровья.
Медь Факт 3Известные наземные ресурсы меди оцениваются в 1,6 миллиарда метрических тонн меди (USGS, 2004). Производство меди в США в основном происходит из месторождений в Аризоне, Юте, Нью-Мексико, Неваде и Монтане. На 20 шахт приходится около 99% добычи.
Медь Факт 4Медь — элемент номер 29 в Периодической таблице элементов. Он считается полудрагоценным, цветным, ковким металлом с сотнями применений в областях электричества и электроники, водопровода, строительства и архитектуры, промышленности, транспорта, а также товаров народного потребления и здравоохранения.
Медь Факт 5Точка плавления чистой меди составляет 1 981 ° F (1083 ° C, 1356 ° K). Его наиболее важные свойства включают превосходную теплопередачу, электрическую проводимость и коррозионную стойкость.
Медь Факт 6Медь легко легируется другими металлами. В настоящее время более 570 медных сплавов зарегистрированы Американским обществом испытаний и материалов. Они обозначаются номерами, перед которыми стоит буква «C», присваиваются и рассматриваются Ассоциацией разработчиков меди для ASTM.Более 350 из них признаны противомикробными средствами Агентства по охране окружающей среды США. *
* Регистрация Агентства по охране окружающей среды США основана на независимых лабораторных испытаниях, показывающих, что при регулярной очистке медь, латунь и бронза убивают более 99,9% следующих бактерий в течение 2 часов после воздействия: метициллин-устойчивые Staphylococcus aureus (MRSA), ванкомицин -резистентные Enterococcus faecalis (VRE), Staphylococcus aureus , Enterobacter aerogenes , Pseudomonas aeruginosa и E.coli O157: H7.
Медь Факт 7Латунь и бронза, вероятно, самые известные семейства сплавов на основе меди. Латунь в основном состоит из меди и цинка. Бронзы в основном состоят из меди и легирующих элементов, таких как олово, алюминий, кремний или бериллий.
Медь Факт 8Желтая латунь с свинцом, C36000, также известная как медный сплав 360, настолько проста в обработке, что это эталонный стандарт обрабатываемости металлов.
Медь Факт 9Из-за простоты изготовления, механической обработки и коррозионной стойкости латунь стала стандартным сплавом, из которого изготавливаются все точные инструменты, такие как часы и навигационные средства.Нержавеющие латунные булавки, используемые в производстве шерсти, были ранним и очень важным продуктом, как и производство декоративных изделий золотого цвета.
Медь Факт 10Бронза тверже чистого железа и более устойчива к коррозии. Бронза также тверже чистой меди, поэтому египтяне использовали ее для изготовления оружия, доспехов, инструментов и, что самое известное, скульптур. Он особенно хорошо подходит для скульптуры, потому что он расширяется при нагревании (заполняя укромные уголки и щели формы), а затем сжимается при охлаждении, поэтому скульптуру легко вынуть из формы.
Медь Факт 11Колокольный металл, который так красиво звучит при ударе, представляет собой бронзу, содержащую около 20-25 процентов олова. Скульптурная бронза технически представляет собой латунь с содержанием олова менее 10 процентов и примесью цинка и свинца.
Медь Факт 12Другие семейства медных сплавов включают медно-никелевые и медно-никелевые цинковые сплавы, часто называемые никелевым серебром, а также многие другие специальные сплавы.
Медь — точка плавления — точка кипения
Медь — точка плавления и точка кипения
Температура плавления меди 1084.62 ° С .
Температура кипения меди составляет 2927 ° C .
Обратите внимание, что эти точки связаны со стандартным атмосферным давлением.
Точка кипения — насыщение
В термодинамике термин насыщение определяет состояние, при котором смесь пара и жидкости может существовать вместе при заданных температуре и давлении. Температура, при которой начинает происходить испарение (кипение) для данного давления, называется температурой насыщения или точкой кипения .Давление, при котором начинается испарение (кипение) для данной температуры, называется давлением насыщения. Если рассматривать температуру обратного перехода от пара к жидкости, ее называют точкой конденсации.
Точка плавления — насыщение
В термодинамике точка плавления определяет состояние, при котором твердое тело и жидкость могут находиться в равновесии. Добавление тепла превратит твердое вещество в жидкость без изменения температуры.Температура плавления вещества зависит от давления и обычно указывается при стандартном давлении. Когда рассматривается как температура обратного перехода от жидкости к твердому телу, она упоминается как точка замерзания или точка кристаллизации.