Пайка оптики: кабели и их разделка, оптический инструмент, муфты и кроссы, коннекторы и адаптеры / Habr – Сварка оптоволокна — 15 глупых ошибок. Как правильно паять оптоволоконный кабель.

Содержание

кабели и их разделка, оптический инструмент, муфты и кроссы, коннекторы и адаптеры / Habr


Волокна заряжены в сварочный аппарат

Здравствуйте, читатели Хабра! Все слышали про оптические волокна и кабели. Нет нужды рассказывать, где и для чего используется оптика. Многие из вас сталкиваются с ней по работе, кто-то разрабатывает магистральные сети, кто-то работает с оптическими мультиплексорами. Однако я не встретил рассказа про оптические кабели, муфты, кроссы, про саму технологию сращивания оптических волокон и кабелей. Я — спайщик оптических волокон, и в этом (первом своём) посте хотел бы рассказать и показать вам, как всё это происходит, а также часто буду в своём рассказе отвлекаться на прочие смежные с этим вещи. Опираться буду в основном на свой опыт, так что я вполне допускаю, что кто-то скажет «это не совсем правильно», «вот тут неканонично».
Материала получилось много, поэтому возникла необходимость разбить топик на части.
В этой первой части вы прочтёте про устройство и разделку кабеля, про оптический инструмент, про подготовку волокон к сварке. В других частях, если тема окажется вам интересной, я расскажу про методы и покажу на видео сам процесс сращивания самих оптических волокон, про основы и некоторые нюансы измерений на оптике, коснусь темы сварочных аппаратов и рефлектометров и других измерительных приборов, покажу рабочие места спайщика (крыши, подвалы, чердаки, люки и прочие поля с офисами), расскажу немного про крепёж кабелей, про схемы распайки, про размещение оборудования в телекоммуникационных стойках и ящиках. Это наверняка пригодится тем, кто собирается стать спайщиком. Всё это я сдобрил большим количеством картинок (заранее извиняюсь за paint-качество) и фотографий.

Осторожно, много картинок и текста.

Часть 2 здесь.

Вступление

Для начала пара слов обо мне и моей работе.
Я работаю спайщиком оптики. Начинал с телефониста и монтажника, затем поработал в аварийной бригаде на обслуживании магистральной оптики. Сейчас работаю в организации, которая берёт генподряды на строительство объектов и линий связи у различных компаний. Типичный объект строительства — кабельная линия, связывающая несколько контейнеров базовых станций GSM. Или, к примеру, несколько колец FTTB. Или что помельче — например, прокладка кабеля между двумя серверными на разных этажах здания и разварка на концах кабеля кроссов.
Если тендер выигран, ищутся подходящие субподрядчики, выполняющие работы (проектно-изыскательные и строительно-монтажные). В некоторых регионах это наши дочерние предприятия, в некоторых есть собственная техника и ресурсы, в некоторых нанимаются независимые компании. На наши же плечи главным образом ложится контроль, устранение косяков субподрядчиков и различных форс-мажоров, всевозможные согласования с собственниками земель и администрациями, иногда составление исполнительной документации по построенному объекту (документация — главным образом РД 45.156-2000, вот здесь есть перечень, плюс ещё добавляется раздел с разными лицензиями) и прочее. Зачастую нужна работа с оптикой: сварить или переварить где-то оптическую муфту или кросс, устранить последствия сбитой стритрейсером опоры или упавшего на кабель дерева, провести входной контроль барабана кабеля, снять рефлектограммы участка и прочее. Именно эти задачи я и выполняю. Ну и попутно, когда нет задач по оптике — прочие задачи: от погрузочно-монтажных через курьерско-доставочные до копировально-бумажных работ. 🙂
Оптический кабель, его виды и внутренности

Итак, что представляет собой оптический кабель? Кабели бывают разные.

По конструкции — от самых простых (оболочка, под ней пластиковые трубочки-модули, в них сами волокна) до супернавороченных (множество слоёв, двухуровневая броня — например, у подводных трансокеанских кабелей).

По месту использования — для наружной и внутренней прокладки (последние встречаются редко и обычно в дата-центрах высокого класса, где всё должно быть идеально правильно и красиво). По условиям прокладки — для подвеса (с кевларом или тросиком), для грунта (с бронёй из железных проволочек), для прокладки в кабельной канализации (с бронёй из гофрированного металла), подводные (сложная, сверхзащищающая многослойная конструкция), для подвеса на опорах ЛЭП (кроме передачи информации, выпоняют роль молниезащитного троса). В моей практике чаще всего встречаются кабели для подвеса на столбы (с кевларом) и для прокладки в грунт (с бронёй). Пореже попадаются с тросиком и с гофробронёй. Ещё часто встречается кабель, который по существу есть тонкий спаренный оптический патч-корд (жёлтая оболочка у одномода и оранжевая — у многомода, чуток кевлара и одно волокно; две оболочки спарены). Прочие оптические кабели (без защиты, подводные, для прокладки в помещениях) — экзотика. Почти все кабели, с которыми я работаю, имеют конструкцию, как на картинке ниже.

1 — центральный силовой элемент (проще говоря — пруток из стеклопластика, хотя может быть и тросик в полиэтиленовой оболочке). Служит для центрирования трубок-модулей, придания жёсткости всему кабелю. За него также часто закрепляют кабель в муфте/кроссе, зажимая под винт. При сильном изгибе кабеля имеет подлое свойство ломаться, ломая попутно и модули с частью волокон. Более продвинутые конструкции кабеля содержат этот пруток, одетый в полиэтиленовую оболочку: тогда его труднее сломать и разрушений в кабеле он при переломе причинит меньше. Пруток бывает и такой, как на рисунке, и совсем тонкий. Кончик такого прутка — отличный абразивный инструмент для тонких работ: например, почистить контакты реле или участок медной детали под пайку. Если его сжечь на пару сантиметров, получится хорошая мягкая кисточка. 🙂

2 — сами оптические волокна (на рисунке — в лаковой изоляции). Те самые тончайшие нити-световоды, ради которых всё затевается. В статье речь пойдёт только про стеклянные волокна, хотя где-то в природе существуют и пластиковые, но они — большая экзотика, не варятся аппаратами для сварки оптики (только механическое соединение) и пригодны только на очень малых расстояниях и я лично с ними не сталкивался. Оптические волокна бывают одномодовые и многомодовые, я встречался только с одномодом, так как многомод — менее распространённая технология, может использоваться только на короткие расстояния и во многих случаях прекрасно заменяется одномодом. Волокно состоит из стеклянной «оболочки» из стекла с определёнными примесями (на химии и кристаллографии останавливаться не стану, так как не владею темой). Без лака волокно имеет толщину 125 мкм (чуть толще волоса), а в центре его идёт сердечник диаметром 9 мкм из сверхчистого стекла с другим составом и с немного отличным от оболочки показателем преломления. Именно в сердечнике распространяется излучение (за счёт эффекта полного отражения на границе «сердечник — оболочка»). Наконец, сверху 125-микрометровый цилиндр «оболочки» покрыт другой оболочкой — из особого лака (прозрачного или цветного — для цветовой маркировки волокон), который ЕМНИП тоже двухслойный. Он предохраняет волокно от умеренных повреждений (без лака волокно хоть и гнётся, но плохо и легко сломать, волокно элементарно раскрошится от случайно положенного на него мобильника; а в лаке его можно смело обмотать вокруг карандаша и довольно сильно дёрнуть — оно выдержит). Случается, что пролёт кабеля провисает на одних волокнах: порвало (пережгло, порезало) все оболочки, кевлар, лопнул центральный пруток, а какие-то 16 или 32 125-микрометровых стеклянных волокна могут неделями держать вес пролёта кабеля и ветровые нагрузки! Тем не менее, даже в лаке волокна можно легко повредить, поэтому в работе спайщика самое главное — дотошность и аккуратность. Одним неловким движением можно испортить результаты целого дня работы или, если особо не повезёт и нет резервирования, надолго уронить магистральную связь (если, копаясь в «боевой» магистральной муфте, сломать волокно с DWDM-ом под корешок на выходе из кабеля).
Волокон бывает много сортов: обычное (SMF или просто SM), со смещённой дисперсией (DSF или просто DS), с ненулевой смещённой дисперсией (NZDSF, NZDS или NZ). Внешне различить их нельзя, разница — в химическом/кристаллическом составе и, возможно, в геометрии центрального сердечника и в плавности границы между ним и оболочкой (к сожалению, так для себя и не прояснил этот вопрос до конца). Дисперсия в оптических волокнах — суровая и сложная для понимания штука, достойная отдельной статьи, поэтому объясню проще — по волокнам со смещённой дисперсией можно передавать сигнал без искажений дальше, чем по простым. На практике спайщики знают два типа: простое и «со смещёнкой». В кабеле часто выделяют первый модуль под «смещёнку», а остальные — под простые волокна. Стыковать «смещёнку» и простое волокно можно, но нежелательно, это вызывает один интересный эффект, о котором я расскажу в другой части, про измерения.
3 — пластиковые трубочки-модули, в которых плавают в гидрофобе волокна.

Кабель, разделанный до модулей
Легко ломаются (точнее, внезапно перегибаются) при изгибе наподобие телескопических антенн у бытовых приёмников, ломая внутри себя волокна. Иногда модуль бывает всего один (в виде толстой трубки), а в нём пучок волокон, но в этом случае нужно слишком много разных цветов для маркировки волокон, поэтому обычно делают несколько модулей, в каждом из которых от 4 до 12 волокон. Единого стандарта на расцветку и количество модулей/волокон нет, каждый производитель делает по-своему, отображая всё в паспорте на кабель. Паспорт прилагается к барабану кабеля и обычно пришпиливается степлером к дереву прямо внутри барабана.
Паспорт кабеля
Типичный паспорт на кабель. Извиняюсь за качество.

Однако есть надежда, что, скажем, кабель «ДПС» у производителей «Трансвок» и «Белтелекабель» окажется всё-таки одинаковым по конфигурации. Но всё равно нужно смотреть паспорт на кабель, где всегда указана подробная расцветка и то, какого типа волокна в каких модулях лежат. Минимальная ёмкость «взрослого» кабеля, что я встречал — 8 волокон, максимальная — 96. Обычно 32, 48, 64. Бывает, что из всего кабеля занято 1 или 2 модуля, тогда вместо остальных модулей вкладывают чёрные заглушки-пустышки (чтобы габаритные параметры кабеля не изменились).

4 — плёнка, оплетающая модули. Играет второстепенные роли — демпфирующую, снижающую трение внутри кабеля, доп.защита от влаги, удерживающую гидрофоб в пространстве между модулей и, возможно, что-то ещё. Часто бывает дополнительно стянута нитками крест-накрест и с обеих сторон смочена гидрофобным гелем.
5 — тонкая внутренняя оболочка из полиэтилена. Доп.защита от влаги, защитная прослойка между кевларом/бронёй и модулями. Может отсутствовать.
6 — кевларовые нити или броня. На рисунке броня из прямоугольных прутков, но куда чаще встречается из круглых проволочек (в импортных кабелях — проволочки сталистые и трудноперекусываемые даже тросокусами, в отечественных — обычно из гвоздевого железа). Броня может быть и в виде стеклопластиковых прутков, таких же, как центральный элемент, но на практике не встречался с таким. Кевлар нужен, чтобы кабель выдерживал большое усилие на разрыв и при этом не был тяжёлым. Также часто используется вместо тросика там, где в кабеле не должно быть металла во избежание наводок (например, если кабель висит вдоль железной дороги, где рядом контактный провод с 27,5 кВ). Типичные значения допустимого растягивающего усилия для кабеля с кевларом — 6…9 килоньютонов, это позволяет выдержать большой пролёт при ветровой нагрузке. При разделке кевлар страшно тупит режущий инструмент. 🙂 Поэтому его лучше резать или специальными ножницами с керамическими лезвиями, или откусывать тросокусами, что я и делаю.
Что касается брони — она призвана защитить подземный кабель, лежащий прямо в грунте, без защиты в виде пластиковой трубы, кабельной канализации и пр. Впрочем, защитить броня может только от лопаты, экскаватор всё равно рвёт любые кабели влёт. Поэтому подземный кабель закладывается в грунт на 1м 20 см, а над ним на глубине 60 см кладётся жёлтая или оранжевая сигнальная лента с принтом «Осторожно! Не копать! Ниже кабель», а также вдоль трассы ставятся столбики, предупреждающие таблички и аншлаги. Но всё равно копают и рвут.
7 — внешняя толстая оболочка из полиэтилена. Принимает на себя первой все тяготы при прокладке и эксплуатации кабеля. Полиэтилен мягкий, так что её несложно порезать при неаккуратной затяжке кабеля. Случается, что при прокладке подземного кабеля подрядчик порвёт до брони эту оболочку на несколько метров и не заметит, в грунте в кабель попадает влага несмотря на гидрофоб, а потом на сдаче, при испытаниях внешней оболочки мегаомметром, мегаомметр показывает низкое сопротивление (большой ток утечки).

Если висящий кабель касается бетонного столба или древа, полиэтилен также может быстро протереться до волокон.
Между внешней оболочкой и бронёй может присутствовать полиэтиленовая плёнка и некоторое количество гидрофобного геля.

В России, к сожалению, оптические волокна уже не производят (тут, увы, была бы уместна шутка про полимеры). Существует российская лаборатиря, изготавливающая опытные волокна для специальных целей, как подсказал esvaf.
Их покупают у таких фирм, как Corning, OFS, Sumitomo, Fujikura и др. Но вот кабели в России и Белоруссии делают! Более того, в моей практике 95% кабелей, с которыми я работал — это кабели из России или Белоруссии. При этом в кабель закладывается импортное волокно. Навскидку из своего опыта припоминаю такие фирмы-производители кабелей, как Белтелекабель, МосКабель Фуджикура (МКФ), Еврокабель, Трансвок, Интегра-кабель, ОФС Связьстрой-1, Саранск-кабель, Инкаб. Есть и другие. Из импортных кабелей в памяти остался только Siemens. Субъективно все кабели похожи по конструкции и материалам и качеством особо не различаются.
Вот, собственно, я рассказал про устройство оптических кабелей. Идём дальше.

Разделка кабеля: необходимый инструмент и методика

Для разделки кабеля, как и для сварки, требуется ряд специфических инструментов. Типичный набор монтажника-спайщика – чемодан с инструментами «НИМ-25», в нём содержатся все нужные стрипперы, тросокусы, отвёртки, бокорезы, плоскогубцы, макетный нож и прочий инструмент, а также помпа или пузырёк для спирта, запас растворителя гидрофоба «D-Gel», нетканные безворсовые салфетки, изолента, самоклеящиеся цифры-маркеры для кабелей и модулей и прочие расходные материалы.

После доукомплектования расходными материалами (стяжки, червячные хомуты и пр) и некоторыми вспомогательными инструментами его вполне достаточно для работы с оптикой. Также существуют и другие наборы, богаче и беднее по комплектации («НИМ-Э» и «НИМ-К»). Слабое место большинства наборов – низкое качество «типа алюминиевого» кейса, который лишь выглядит красиво, но на самом деле состоит из тонкой ДВП, обклееной текстурированной/гофрированной фольгой, и алюминиевых тонких уголков на заклёпках. Он не выдерживает долго в полевых и городских условиях, и его приходится ремонтировать и усиливать. В моём случае кейс выдержал 3 года и, будучи весь подран, стянут уголками и болтами, с «колхозным» органайзером вместо родного, был сменён на обычный пластиковый ящик для инструментов. Некоторые инструменты и материалы из стандартного набора могут оказаться низкого качества. Некоторые инструменты лично мне оказались не нужны. Некоторые за 3 года работы уже были заменены. По мере расходования «фирменных» расходников некоторые заменяются «подручными» без ущерба для качества работы. Так, заводские нетканные безворсовые салфетки для протирки волокон легко заменяются туалетной бумагой типа «зевы плюс». 🙂 Главное, чтоб была неароматизированная. Вместо дорогого (около 800 р/литр) D-Gel, если работа идёт на открытом воздухе, можно использовать бензин АИ-92.

При разделке кабелей важно выдержать длины элементов кабеля в соответствии с требованием инструкции к муфте: так, в одном случае может понадобиться оставить длинный силовой элемент, чтобы закрепить его в муфте/кроссе, в другом случае он не требуется; в одном случае из кевлара кабеля плетётся косичка и зажимается под винт, в другом случае кевлар отрезается. Всё зависит от конкретной муфты и конкретного кабеля.

Рассмотрим разделку наиболее типичного кабеля:

а) Перед разделкой кабеля, долго находившегося в сырости или без гидроизолированного торца, следует отрезать ножовкой примерно метр кабеля (если позволяет запас), так как длительное воздействие влаги негативно влияет на оптическое волокно (может помутнеть) и на прочие элементы кабеля. Кевларовые нити в кабеле — это отличный капилляр, который может «насосать» в себя воду на десятки метров, что чревато последствиями, если, например, параллельно с кабелем идут провода высокого напряжения: по мокрому кевлару могут начать гулять токи, вода испаряется, раздавливает изнутри внешнюю оболочку, кабель идёт пузырями и через пузыри от дождей попадает новая влага.

б) При наличии в конструкции кабеля отдельного троса для подвески (когда кабель в поперечном сечении имеет форму цифры «8», где в нижней части кабель, в верхней тросик) он выкусывается тросокусами и срезается ножом. При срезании троса важно не повредить кабель.

в) Для снятия внешней оболочки кабеля используется соответствующий нож-стриппер. НИМ-25 обычно комплектуется ножом «Kabifix» как на фото ниже, однако можно использовать и нож-стриппер для электрических кабелей, который с длинной ручкой.

Такой нож-стриппер имеет вращающееся во все стороны лезвие, которое можно отрегулировать по длине в соответствии с толщиной внешней оболочки кабеля, и прижимной элемент для удержания на кабеле. Важно: если приходится разделывать кабели разных марок, то перед разделкой нового кабеля нужно попробовать нож на кончике и, если прорезало слишком глубоко и повредило модули, лезвие надо подкрутить покороче. Хуже некуда, когда муфта уже сварена, и вдруг при укладке волокон одно волокно вдруг «выскакивает» из кабеля, потому что при разделке нож зацепил модуль и сломал это волокно: вся работа насмарку.
Ножом-стриппером для снятия внешней оболочки кабеля делается круговой разрез на кабеле, а затем от него – два параллельных разреза с противоположных сторон кабеля в сторону конца кабеля, чтобы внешняя оболочка распалась на две половинки.

Важно правильно выставить длину лезвия ножа-стриппера, так как при слишком коротком лезвии внешняя оболочка не разделится легко на две половинки и её придётся долго сдирать плоскогубцами, а в случае длинного лезвия можно повредить модули в глубине кабеля или затупить вращающееся лезвие

обзор схем распайки муфт, обзор схем построения сети, немного о рефлектометрах и оптических тестерах / Habr


Входной контроль барабанов с оптическим кабелем

Здравствуйте, хабражители! Выкладываю третью часть своего рассказа про работу с оптоволокном. В этой части я в меру своих познаний расскажу про схемы распайки оптических муфт и работу с ними, про схемы оптических сетей с примерами, а также ознакомлю вас с приборами для оптических измерений (оптический рефлектометр и оптический тестер). Я планировал в третьей части рассказать всё про измерения, но тема измерений достаточно большая, плюс я посчитал нужным получше осветить схемы распайки муфт и построения сетей, и статья получается слишком длинная. Так что вскоре будет ещё часть про настройку рефлектометра и анализ рефлектограмм.

Первая часть здесь
Вторая часть здесь

Осторожно, трафик!

Схемы распайки

В прошлой части мы сварили оптическую муфту (или кросс), однако я не остановился подробнее на той инструкции, по которой муфта должна быть распаяна. Ведь действительно, далеко не всегда муфты паяются прямыми: часто они бывают тройниковыми (отпайными), то есть на 3 кабеля, или даже на большее количество кабелей. И по себе знаю, что сварить сложную муфту по схеме, не имея опыта, непросто.
Для ясности нужно отметить, что Т-образного соединения двух оптических волокон в общем случае не бывает, волокна всегда спаиваются попарно. А тройниковые, «четверниковые» и прочие соединения встречаются в сетях PON и в телевидении по оптоволокну, но такое разделение осуществляется специальным сплиттером, изготовленным на заводе. У него 1 вход и несколько выходов: на вход подаётся сравнительно мощный сигнал, он пассивным способом делится на выходы и эти выходы подключаются к абонентским волокнам, идущим, например, в квартиры. Но сделать такое соединение с помощью сварочного аппарата нельзя.
Каким же образом Т-образное соединение кабелей в муфте на уровне кабелей осуществляется, а на уровне волокон не осуществляется? Ниже мы это рассмотрим.

Ещё нужно заметить, что схемы распайки рисуются по-разному. Если брать стандарт, то такая схема задаётся документом «ВОЛС ПТ-6» (входит в исполнительную документацию по объекту, в книгу «Паспорт трассы»). Тем не менее, эти схемы каждый спайщик/проектировщик рисует как хочет. А так как мы знаем, что нечто, простое и логичное для одного человека, может быть непонятным и запутанным для другого, иногда бывает неудобно разбираться в чужой схеме.
Порой эти схемы делают цветными: на модулях и волокнах не просто пишут, что они красные и зелёные, но и красят их соответствующе. Иногда даже вовсе не подписывают, какого цвета волокно. Плюс в том, что так нагляднее, меньше нагрузка на внимание спайщика при разварке, схема смотрится намного солиднее. Минус — если эту схему распечатают для спайщика на лазерном чёрно-белом принтере (что часто и происходит), то жёлтые, светло-зелёные и прочие светлые линии видно бывает очень плохо. А если цвета ещё и не подписаны словами, вообще работа встанет. И ещё хорошим тоном будет, если нанесли сквозную нумерацию всех волокон.
Я взял для примеров несколько разношёрстных схем в порядке усложнения: часть из них использовалась на моей работе, часть надёргал из интернета.
1) Для начала рассмотрим схему распайки прямой муфты, где оба кабеля одинаковые — это самый простой вариант. Эта схема найдена на просторах англоязычного интернета.

Тут, как мы видим, ничего сложного нет: в каждом из кабелей 4 модуля по 12 волокон, всего нужно сделать 48 сварок. Всё варится цвет в цвет — синее волокно из первого синего модуля первого кабеля — с синим волокном синего модуля второго кабеля, оранжевое — с оранжевым и т.д. Если известно, что муфта прямая — можно обойтись и без схемы. Хотя для отчётности схему всё равно нарисовать нужно.
Главное — не перекрестить по ошибке модули!

Что касается раскладки сваренных волокон на кассетах, я об этом писал в прошлой статье: нужно заранее продумать, какие группы волокон на какой ложемент какой кассеты лягут и соответствующим образом отмерить волокна перед сваркой. Алгоритмизировать это для сложных муфт, думаю, нереально; нужно просто по ситуации смотреть, какая у нас муфта, сколько волокон и как рациональнее их разместить. Что касается примера с картинки выше, то, в зависимости от того, какая у нас муфта с какими кассетами, я бы распределил волокна так:
а) Если у нас компактная муфта с маленькими кассетами по 12 мест для КДЗС, то очевидно, что волокна из синих модулей лягут на первую кассету, из оранжевых — на вторую и т.д. Кстати, можно сварить муфту и с конца, тогда на первой (самой нижней) кассете окажется коричневый модуль. Так будет логичнее: сверху первые волокна, снизу последние. Но это на усмотрение спайщика.
б) Если у нас кассеты по 32 волокна, то логично на первой кассете сварить первые 2 модуля (12+12 волокон), на второй — третий и четвёртый (12+12). Да, при этом в каждой кассете останется по 8 свободных мест, которые теоретически могут пригодиться, если в муфту потом будет что-то ввариваться. Конечно, было бы здорово, чтоб одна кассета была заполнена полностью, а во второй осталось сразу 16 свободных мест. При этом КДЗС от гипотетического вваривающегося кабеля расположатся рядом, все вместе, на одной кассете, а не разобьются на две кассеты. Но в этом случае нам придётся делить второй модуль на 2 кассеты и для этого лепить переходную трубку, что неудобно. Лучше всё же переходную трубку не ставить и сварить 12+12 на первой кассете и 12+12 на второй.
в) Если кассеты на 36 волокон, то нам опять же потребуется 2 кассеты, и опять же мы можем сделать по-разному. Мы можем или занять каждую частично (24 места из 36), или в первой разварить 3 модуля, а во второй — 4-й. Я лично выбрал бы второй вариант: городить переходные трубки нам не понадобится (12+12+12=36, кассета полностью занята), и у нас остаётся 24 места во второй кассете.
Подобным же простым образом, как и разварка прямой муфты, выглядит схема распайки кросса (если только это просто кросс и там нет волокон, сваренных транзитом). С кроссом ещё проще: волокна нужно отмерять лишь с одной стороны, а пиг-тейлы можно сложить кольцами внутри кросса (выдержав радиусы изгиба) и зафиксировать на внутренней поверхности кросса, не наматывая их в кассету. Кстати: для фиксации пиг-тейлов внутри кросса, чтобы они не болтались, служит вот такой пластиковый крепёж. Он обычно бывает в комплекте ко многим кроссам. Хотя если его нет, можно приклеить изолентой или скотчем.

Крепёж

2) Следующий вариант схемы распайки — та же схема, что в прошлый раз, только цвета модулей и волокон отличаются (но количество волокон в каждом модуле одинаковое, скажем, 12). Рисунок схемы приводить смысла нет. На раскладку волокон на кассете это не повлияет, но вот внимание при работе нужно будет включить! Перед каждой сваркой нужно сверяться по схеме, проверяя, что — да, действительно,

[тринадцатое синее волокно из второго синего модуля первого кабеля {МаркаКабеля1, направление1}]
варится на
[тринадцатое красное волокно второго зелёного модуля кабеля {МаркаКабеля2, направление2}].

Кстати: если так случается, что с какого-то из кабелей остаются (согласно схеме) незадействованные волокна, их ни в коем случае не следует отрезать! Их нужно уложить в кассету, даже не отмеряя. В будущем они могут оказаться задействованы (при модернизации сети или если часть волокон в кабеле повредится), и тот спайщик, кто потом полезет в муфту привариться к этим волокнам и обнаружит их отрезанными под корень, будет очень «счастлив» от перспективы полной переделки муфты…

3) Следующий пример — это прямая муфта на 2 кабеля, которые отличаются и цветами волокон, и количеством волокон в модулях. Подходящей «красивой» схемы сразу не нашёл, так что нарисовал свою, очень похожую на то, с чем часто работал, на скорую руку в Paint’е. Для наглядности я всё раскрасил цветами (цвета от балды), но обычно так не заморачиваются и просто подписывают цвета сокращённо.

Тут, как видите, модули и волокна по-красивому не стыкуются, идёт разнобой. Да, я не люблю кабели с непостоянным количеством волокон в модуле (как левый на моей схеме), потому что они вносят асимметрию и неудобство, но тем не менее такие кабели попадаются часто и варить их нужно.
По-прежнему берём 2 кассеты на 32 (36) волокон, но нам теперь понадобится часть волокон с одного из модулей перепустить во вторую кассету через переходную трубку. Скорее всего, разделится модуль №4 на кабеле слева (тогда кол-во сварок делится поровну между кассетами), соответственно, через переходную трубку с первой кассеты во вторую пойдут волокна зелёное, коричневое, голубое и розовое с 3-го синего модуля. Но по обстоятельствам можно разделить и 3-й модуль правого кабеля. Очень желательно подписать, где какие волокна: я обычно подписываю тонким спиртовым маркером (который для CD) прямо на кассете, что куда идёт. Также во время разварки можно вешать на группы волокон временные бирки (из бумажки с надписью карандашом и кусочка скотча), чтобы не забыть, какие волокна куда пойдут. И главное — нужно включить внимание, чтоб не допустить ошибку при распайке! Такая муфта, несмотря на то, что прямая, может потрепать нервы новичку. На схеме для удобства можно отмечать карандашом, что уже сварено, а что нет, чтобы не запутаться.

4) Следующая муфта, которую рассмотрим — это простенький «тройник», она же «отпайная муфта», она же «разветвительная». Рисунок возьмём — ну, скажем, из примера заполнения формы ВОЛС ПТ-6.

Мы видим, что большая часть волокон распаивается транзитом, а по 2 волокна с каждого 12-волоконного кабеля (приходящего с НРП 1/2 (Необслуживаемого Регенационного Пункта) и уходящего на НРП 2/2) развариваются на «отпайный» 4-волоконный кабель (который пошёл на МТС 1). Хотя может быть и так, что кабель слева не будет никак связан с кабелем справа, а весь левый кабель уйдёт на «левую» половину нижнего, а весь правый — на «правую» половину (предположим, в нём не 4 волокна, а 24).
Вот так и реализуется «тройник» на оптике. Тут отпай как бы двусторонний, то есть 2 волокна отпаялись, 2 вернулись. А может быть «односторонний», когда 2 волокна ушли на отпай, но не вернулись и оставшиеся волокна остаются незадействованными. Вариантов может быть много, чтоб прочувствовать — нужно «пощупать» самому.
С помощью таких муфт связь отводят от магистрали к промежуточным пунктам. И именно с помощью таких отпайных муфт строятся кольца, например, FTTB: у коммутатора имеются как абонентские порты Fast/Gigabit Ethernet, так и магистральные порты для модулей GBIC/SFP/XFP/прочих. Вот два отпаивающихся волокна (через кроссовое соединение) подключаются к одному порту XFP (на 1 модуле обычно 2 розетки стандарта LC), а со второго порта два волокна возвращаются в кабель. И так эти 2 волокна из кабеля (в нашем примере — 11-е и 12-е) ныряют из дома в дом, из коммутатора в коммутатор, соответственно коммутаторы пропускают через эти порты как свой трафик, так и с других коммутаторов. Ну и потом кольцо замыкается, кабель возвращается в узел, откуда начиналось кольцо, туда же подходит магистральная оптика. Кольцо нужно для резервирования: если кабель порвут, то трафик пойдёт по другому полукольцу. А остальные волокна, которые идут транзитом, можно задействовать под отдельную сеть телевидения (тогда на каждый дом отпаивается ещё по одному волокну с кабеля), или в будущем пустить для других нужд. Про эту а

Монтаж ВОЛС — сварка оптоволокна. Блог компании LanTorg.

В прошлых статьях мы говорили об этапах, предшествующих непосредственно сварке — разделке кабеля и подготовке оптических волокон, а также о классификации видов оптического кабеля и оптических разъемов. В сегодняшней статье — сам процесс сваривания волокон пошагово.

Сварка оптоволокна чем-то напоминает работу ювелира. Если даже подготовка волокон требует большой аккуратности и четкости движений, то что говорить непосредственно о процессе сварки. Только чистые руки, никакой пыли и ни в коем случае не трогаем очищенное волокно пальцами.

Убираем все лишнее и оставляем на рабочем столе:

  1. Скалыватель.
  2. Сварочный аппарат.
  3. Емкость со спиртом, для протирки волокна.
  4. Салфетки безворсовые.
  5. Стриппер (для зачистки волокна, если понадобится).
  6. Муфту или кросс (уже подготовленные).
  7. Пинцет.
  8. Изолента (для сбора осколков волокон и крепления переходов в кроссе).

 

Скалыватель

Скалыватель — это механическое высокоточное устройство. Основное назначение — создать как можно более плоскую и перпендикулярную оптоволокну поверхность скола.

 

Устройство скалывателя

Скалыватель — довольно дорогое устройство. Но его применение полностью оправдано. Вручную разломать оптоволокно пинцетом, или старым советским набором — лезвием и резиновым ластиком — и получить хотя бы сколько-нибудь ровный скол — невозможно. А ведь именно от качества скола зависит качество сварки.

Если вы попытаетесь сварить два не слишком ровно сколотых волокна, то получится примерно такое:

Результат сварки неровных сколов

На снимке видно, что поверхности сколов попросту не соприкасаются, образовался «пузырь».

Каков принцип действия большинства скалывателей?

  1. Оптоволокно (очищенное от лака)  закладывается в аппарат и фиксируется.
  2. Ножом (в разных моделях скалывателей он может быть из твердой стали или алмазным) делается микроскопический надрез на волокне.
  3. К волокну прилагается усилие, и, благодаря ему, волокно раскалывается в месте надреза (в идеале).

 

На практике один из самых неприятных моментов работы с устройством — это когда волокно ломается вовсе не в месте надреза, т.е. портится. Особенно часто такие фокусы скалыватель начинает выкидывать в холодной и влажной среде.

Вот пример хорошего скалывателя, который идет в комплекте со сварочным аппаратом для оптоволокна Signal Fire AI-7.

Как оценивается качество скалывателя?

При выборе устройства учитывается:

  • насколько приближен к перпендикуляру угол скола;
  • насколько ровную поверхность скола дает скалыватель;
  • каков процент сломанных волокон;
  • каков ресурс работы устройства;
  • насколько продумана эргономика устройства.

 

Конечно же, скалыватели бывают разные — дешевые и дорогие, китайские и японские, специализированные и давно устаревшие. Общий совет при выборе:

Не экономьте на скалывателе, если есть возможность.

 

Потому что хороший скол — это 50% работы и успеха пайщика, и чем меньше будет брака, чем удобнее продуманы операции на скалывателе — тем быстрее будет идти работа.

Порядок действий при скалывании оптоволокна

  • Зачищаем волокно от лака.
  • Тщательно протираем салфеткой, смоченной спиртом — проворачивая вокруг оптоволокна, чтобы снять всю грязь.
  • Аккуратно закладываем в канавку скалывателя по линейке. Важно его при этом не выпачкать. Граница, где заканчивается лаковое покрытие и начинается оголенное оптоволокно, должна приходиться на определенную цифру на линейке. Какую именно цифру — зависит от модели вашего сварочного аппарата, какая длина очищенного оптоволокна для него оптимальна. Если вы ее превысите — волокно нормально сварится, однако гильза КДЗС не будет полностью покрывать оголенную часть. Если же оно окажется слишком коротким, аппарат не спаяет концы.
  • Скалываем волокно (в зависимости от модели аппарата — нажимаем на крышку или производим другое действие).
  • Осторожно достаем волокно (если оно не сломалось в процессе скалывания) и ни в коем случае ничего не касаясь сколом, не цепляясь за бортики канавки ни в скалывателе, ни в сварочном аппарате, укладываем в сварочник.

Главное правило работы с волокном — чистота и еще раз чистота.

 

Если вы все-таки чего-то коснулись, можно попытаться очистить волокно — заново протереть салфеткой, а поверхностью скола «потыкать» в спиртовую салфетку (осторожно, чтобы не сломать волокно), после этого — в сухую. Но это не дает гарантии полного очищения.

А вот как выглядит на экране сварочного аппарата волокно с пылинкой на сколе и загрязненной поверхностью:

Загрязненный скол оптоволокна

Правила безопасности

Сломавшиеся и сколотые кусочки оптоволокна — вовсе не безобидный мусор. Мелкие стеклянные «иголочки», попав в еду, могут повредить желудок или пищевод. Попав под кожу — очень сложно удаляются, так как крошатся при попытке их вытащить. Если же они попадут в кровоток — теоретически могут вызвать опасные последствия, добравшись до сердца.

Поэтому всегда собирайте отходы из скалывателя либо в специальный контейнер, либо в любую другую емкость и ни в коем случае не выбрасывайте их просто так.

По этой же причине нельзя есть во время работы.

Сварочный аппарат и сварка

Сварочный аппарат для оптических волокон — это сложное высокоточное устройство, полностью выполняющее процесс юстировки и сварки волокон.

 

 

О видах сварочных аппаратов можно написать отдельную большую статью. Если вкратце, то основная часть моделей на рынке представлена японскими (Fujikura, Sumitomo) и китайскими (Jilong, к примеру) разработками. Японские лучше, но существенно дороже. В принципе, если перед вами не стоит задача варить особо важные магистрали — вполне можно обойтись и хорошим китайским сварочником.

 

Вариант подороже, японский Fujikura FSM-60S:

Fujikura FSM-60S

Вариант подешевле, китайский Signal Fire AI-7. Устройство с хорошими показателями быстрого нагрева, постороено на новой технологии центрирования ядра, имеет в своем арсенале шесть сервоприводов и автофокус. Данный сварочный аппарат отвечает всем стандартам сращивания оптоволоконного кабеля известным на данный момент:

Fujikura FSM-60S

 

Порядок сварки в сварочном аппарате:

  1. Сколотые очищенные волокна укладываются в специальные канавки и фиксируются зажимами. Гильза КДЗС надевается на волокна заранее.
  2. Аппарат начинает передвигать волокна по направлению друг к другу до тех пор, пока не зафиксирует их в своей оптической системе.
  3. Устройство подает на концы волокон короткий разряд, очищая от случайно попавшей пыли. Но если на концах сколов — жирные отпечатки пальцев или грязь, которую так просто не сдуешь, она только запекается и окончательно портит скол.
  4. Далее сварочный аппарат сводит волокна для окончательной сварки — по трем координатам, с нарастающей точностью. Если на этом этапе умное устройство обнаружит неровность сколов или еще что-то, что помешает их качественно сварить — процесс сварки остановится, на экране сварочного аппарата появится соответствующее сообщение.
  5. Если же все нормально, подается окончательный разряд, сколы оплавляются, и аппарат во время этого придвигает их уже вплотную друг к другу. Все, волокна спаяны.
  6. Далее сварочный аппарат оценивает качество сварки по изображению места стыка под микроскопами оптической системы, и на просвет определяет затухание. Следующая стадия проверки — на прочность, устройство при этом пытается развести только что сваренные волокна в стороны. Однако многие эту функцию отключают, боясь что не остывшая до конца сварка может испортиться.
  7. Пайщик достает спаянные волокна, надвигает гильзу КДЗС, закрывая место сварки и прилегающее оголенное оптоволокно, и кладет гильзу в печку для усаживания.
  8. После извлечения из печки гильза выкладывается на специальную полочку, чтобы остыть. В горячем виде ее нельзя располагать в кассете — есть риск сломать оптоволокно, т.к. защищающая его гильза еще мягкая. Кроме того, класть ее куда-то кроме специально предназначенной полочки тоже нельзя — горячий пластик может прилипнуть. Именно поэтому и забывать ее в печке тоже нельзя — прилипнет. Вынимать гильзу из печки нужно сразу после сигнала таймера.

 

Наглядный процесс сварки вы сможете увидеть в данном видеообзоре:

На фото — сваренное волокно. Хорошо видна точка, в которой преломляется свет — место сварки.

Оптоволокно после сварки

Важно помнить:

И сварочный аппарат, и скалыватель — дорогие и сложные устройства. Да, пайщики оптоволокна работают в самых разных условиях — в канализации, на чердаках, в поле, в мороз и дождь. Но при этом нужно беречь технику от падения и ударов. Ведь не зря их чемоданчики для переноса выложены изнутри пенопластом или толстой мягкой тканью. Фирма-производитель легко определит, перестало ли устройство работать «само» или этому предшествовало падение или удар. В последнем случае гарантии не будет.

Поэтому при работе всегда проверяйте — надежно ли стоит устройство? Надежно ли стоит стол, на котором расположен сварочник или скалыватель? И т.д. Собственно, зная цену хорошего сварочного аппарата, это даже нельзя назвать фанатизмом.

Важно также регулярно проводить техническое обслуживание устройств (многие профилактические действия предусмотрены в самом аппарате и выполняются по инструкции), а не использовать до последнего.


применяемое оборудование, инструменты для пайки оптических кабелей

Сварка оптоволокнаСварка оптики — процесс сваривания при высокой температуре оптических волокон. Сварка оптоволокна сегодня осуществляется обычно без участия человека.

Для сваривания оптики используется специализированное сварочное оборудование, предоставляющее возможность полностью автоматизировать рабочий процесс.

Структура оптоволокна:

  • сердечник 9 нм;
  • защитный лак с отражающей оболочкой 125 нм;
  • защитное покрытие, буфер 250 нм;
  • вторичный буфер.

Современное сварочное оборудование

Аппараты для сварки оптики современного типа представляют собой промышленных роботов небольших размеров, оснащенных системой управления. Самим роботом управляет оператор.

Устройство агрегата для сварки

Рассмотрим подробнее устройство сварочного агрегата:

  • БП;
  • ЭБ, включающий материнку, блоки, преобразователи;
  • механические элементы;
  • монитор для видеоконтроля.

Как провести сварку оптоволокнаТакое оборудование называют аппаратом автоматической сварки оптоволокна.

Каждая отдельная модель сварки оснащена уникальным программным обеспечением, интерфейсом пользователя: монитор, рабочее меню (сервисное, пользовательское), клавиатура.

Сервисное меню, как правило, секретное, открывается с помощью специального пароля или одновременным нажатием комбинации определенных клавиш. Его используют для максимальной настройки сварочных работ. Пользовательское меню — открытое.

Современные сварочные аппараты можно разделить на следующие категории:

  • для сваривания оптических волокон;
  • для сварки с выравниванием по сердцевине;
  • с фиксированными канавками V-образной формы.

Процедура сваривания ВОЛС

ВОЛС — волоконно-оптические линии связи. Их сваривание осуществляется поэтапно:

  1. Как правильно провести сваркуОптоволоконный кабель разделяется: снимается изоляционное покрытие, отделяются отдельные модули, состоящие из определенного количества оптического волокна. Их сваривание производится отдельно.
  2. Волокна зачищаются (с них удаляется влагозащитное покрытие).
  3. На оптоволокно надевается КДЗС — специальная насадка из термоусадочных трубок и усилительных стержней.
  4. С волоконных окончаний убирается защитный слой (гель, лак), производится обработка спиртом.
  5. Затем волокна фиксируют прецизионными скалывателями (скол должен сформироваться перпендикулярно оси волокна).
  6. Свариваемые волокна помещаются в V-образные канавки (зажим).
  7. Их совмещают под микроскопом. В современных моделях эта процедура выполняется автоматически.
  8. Волокна разогреваются электрической сварочной дугой до необходимой температуры.
  9. Посредством механической деформации сварка оптоволоконного кабеля проверяется на прочность, оценивается процесс затухания, осуществляемый стыками.
  10. Оператор сварочного оборудования устанавливает защитный комплект на участок сваривания изделия, который далее помещается в специальную тепловую камеру для температурной усадки.

Классификация оптического кабеля

Оптические кабели можно классифицировать:

По структуре:

  • стандартные кабели, имеющие оболочку с модульными трубочками;
  • современные многослойные кабели, которые наделены двухуровневой защитой и прочими достоинствами.

По области применения:

  • для наружного использования;
  • для внутренней прокладки (этот вариант используется нечасто исключительно в дата-центрах).

По условиям эксплуатации:

  • подвесные;
  • грунтовые;
  • для кабельных канализационных систем;
  • подводные;
  • для ЛЭП.

Наиболее востребованными являются подвесные, грунтовые кабели, тонкие, спаренные патч-корды. Немного реже используются кабели с гофрированной броней и тросиками. Остальные виды оптоволоконных кабелей встречаются редко.

Разделка оптоволоконного кабеля

Основная задача при выполнении разделки оптоволоконного кабеля — сохранить длину его компонентов, обозначенную в инструкции муфты. Поэтому в некоторых случаях необходимо оставлять длинные силовые компоненты, предназначенные для закрепления в муфте, а иногда в этом нет необходимости. В некоторых случаях из кевлара нужно сделать «косичку», зажать ее винтом, кевлар лучше не резать. Эти нюансы зависят от конструктивных особенностей муфты каждого кабеля. Итак, этапы выполнения работы:

  1. Как соединять оптоволокноПредварительно с волокон удаляется гидрофобный защитный слой. Для этого они протираются специальными салфетками: сначала сухими, затем обработанными спиртом. Довольно важно соблюдать это правило, так как на первых салфетках будет оставаться большое количество гидрофобного материала. А вот когда незначительные остатки защитного слоя сухой салфеткой убрать уже будет невозможно, то поможет спирт. Он легко растворит гидрофобные частички и мгновенно испарится с поверхности волокна.

Следует обратить внимание, что чистота волокон, особенно их окончаний — это залог качественной сварки оптического волокна. При работе с микронами даже малейшие загрязнения недопустимы!

Обязательно необходимо проверять волокна на целостность покрытия из лака, отсутствие сломанных участков. Если есть повреждения лакового покрытия, то такой кабель рекомендуется переделать (но он не должен быть сломан).

  1. Как провести стыковкуВ комплект муфты входит специальная термоусадка, которую надевают на уже разделанный кабель (о чем часто забывают новички). Если кабель будет зажиматься резиной с герметиком, тогда термоусадка не нужна. Чтобы обеспечить герметичность соединения кабеля с муфтой, для выполнения его усадки рекомендуется использовать строительный фен, паяльник, горелку. Но наиболее практичной считается горелка небольших размеров, надеваемая на газовый баллончик.

Перед тем как начать сварку оптического кабеля, рекомендуется дополнительно приобрести крупнозернистую наждачную бумагу. Это поможет обеспечить лучшую адгезию с клеевым составом.

Применяемые инструменты

Как и для пайки оптоволокна, чтобы разделать кабель, необходимо иметь специальный комплект инструментов.

Стандартный набор инструментов монтажника-спайщика включает в себя:

  • комплект стрипперов;
  • комплект отверток;
  • плоскогубцы;
  • тросокусы;
  • набор ножей;
  • прочие дополнительные инструменты для различных рабочих ситуаций.

Этапы проведения сваркиСегодня существует множество наборов инструментов от разных производителей, с разной комплектацией. Они могут быть полностью укомплектованы необходимым инструментом или содержать только основные. Многие производители не уделяют особого внимания прочности кейсов для хранения инструмента, а только его внешнему виду. Их изготавливают из ДВП, покрывают текстурированной фольгой. Соответственно, такие кейсы в тяжелых условиях эксплуатации долго не выдерживают, требуют периодического ремонта.

И также плохого качества могут быть и некоторые инструменты из набора, а некоторые, вообще, могут не понадобиться в работе. Дорогостоящие фирменные расходники высокого качества могут быть заменены на более дешевые изделия.

Установка быстрого коннектора на оптический кабель в сравнении с соединением с применением сварочного аппарата.

Для соединения оптических кабелей в муфтах или установки пигтейлов в кроссах обычно используют сварочный аппарат — он позволяет надежно и с максимальной плотностью фиксировать волокна, а так же оставлять технологические запасы на повторное соединение и перемещения волокон в кабеле под воздействием температуры и растягивающего усилия. В большинстве случаев сварка самый удобный вид соединения. Но у нее есть и недостатки, которые можно решить с помощью установки на кабель быстрых коннекторов.

Какие проблемы возникают при использовании сварки как основного вида соединений?

1. Место сварки оптического волокна становится хрупким и его следует фиксировать специальной термоусадочной гильзой КЗДС.

2. Термоусадочная гильза требует фиксации, т.к. не защищает волокно от растягивающего усилия.

3. Волокно с обоих сторон гильзы может сломаться, т.к. с него снята защитная оболочка.

4. Нельзя произвести соединение волокон с помощью сварки в сложных условиях, например когда нет запаса волокна или на столбе без технологического запаса волокна.

Из всего следует, что при оконцовывании кабеля всегда требуется установка маленького кросса, а при развертывании сетей в частном секторе всегда требуется снимать муфту со столба и оставлять колечки кабеля магистрального и клиентских, что со временем создает паутину из проводов. И самое главное нельзя провести такие работы одному монтажнику, т.к. он просто не сможет снять муфту.

Однако есть быстрые соединители типа SC, которые предназначены для непосредственной установки на плоский FTTH кабель, который применяется для прокладки внутри помещений. Но эти разъемы можно устанавливать и на любой другой, и даже на отдельные волокна в кроссе. Кроме этого можно осуществлять ремонтные работы или соединение кабелей между собой. Ниже показана не большая инструкция по установке быстрых соединителей на кабель и аналогичные работы с применением оптического сварочного аппарата.

Быстрый соединитель оптического кабеля напоминает обычный коннектор SC с удлиненной задней частью.

Быстрый соединитель состоит из 3-х частей — синего колпачка, который втыкается в розетки, основной частью с фиксатором волокна, и зажимным колпачком, который накручивается и фиксирует кабель специальными зубчиками внутри откидной крышки.

Задняя часть быстрого оптического коннектора SC открывается и внутри видна пластмассовая трубочка для укладки волокна, а так же зубья фиксатора кабеля, которые сдавливают его и не дают выскакивать из разъема.

Кроме FTTH кабеля есть и другой плоский оптический кабель, предназначенный для прокладки на улице, выдерживает усилие на разрыв 4КН. Внутри в центральной трубке расположены волокна, с двух сторон стеклопластиковые нити и черная защитная оболочка.

Для снятия изоляции с плоских FTTH кабелей есть специальный инструмент, похожий на степлер.

В стриппер для плоских FTTH кабелей входит только свой тип кабеля, и представленный выше сзади в калибровочное отверстие просто не влезает, поэтому для разделки следует использовать подручные инструменты.

Обычно это нож и пассатижи. Что бы достать центральную трубку с волокнами без повреждений следует сделать 2 разреза с боков трубки и развести силовые элементы в сторону. Нож следует отрегулировать так, что бы он не повредил трубку. Другой способ, который не требует сноровки — разрезать кабель вдоль силовых элементов, держа его за конец пассатижами.

Получается примерно вот так — вверх поднята часть кабеля с трубкой, в которой находятся волокна, а внизу силовые элементы.

Далее кусачками обрезаем силовые элементы, в нашем случае они стеклопластиковые и их можно обрезать даже ножом, но бывает кабель с силовыми элементами в виде проволоки, с ними справится только соответствующий инструмент.

И аккуратно ножом срезаем изоляцию вокруг центральной трубки.

Специальным кабельным стриппером с двумя отверстиями (одно для снятия трубок с оптическим волокном, второе для снятия изоляции с оптического волокна), освобождаем волокна. Протираем их чистой салфеткой на сухо, либо с применением спирта или специального средства для удаления гидрофобного наполнителя.

Осторожно снимаем изоляцию с оптического волокна. Нужно сначала сдернуть немного с конца волокна что бы проверить усилие сжатия рукояток, и если все нормально, удалить буферное покрытие на всю длину.

Стриппер имеет специальный регулировочный винт, которым можно изменять минимальное расстояние для работы с разными типами волокна. Однако при должной сноровке можно регулировать расстояние руками, регулируя нажатие на ручки инструмента.

После очистки волокна укладываем его в скалыватель Jilong KL-21C, регулируя длину обрезки по линейке сбоку зажимной планки. Для установки в быстрый коннектор необходимо оставить 20 миллиметров волокна со снятым буферным покрытием.

Одеваем зажимной колпачок на кабель перед установкой волокна в быстрый коннектор SC.

Вставляем оптическое волокно в центральную трубку и перемещаем зажимной бегунок вправо, тем самым фиксируя его в разъеме. Передвинув его обратно можно вынуть волокно из коннектора.

Под крышкой, зажимающей кабель от выскальзывания необходимо оставить запас волокна. Быстрый коннектор типа SC одевается непосредственно на кабель, поэтому нельзя оставить большой запас волокна, как при использовании сварочного аппарата. Если длина кабеля более 200 метров нужно предпринять меры для исключения перемещения волокон внутри кабеля, например оставлять запас, свернутый в колечки.

Закрываем крышку быстрого коннектора и затягиваем зажимную втулку. Хотя разъем предназначен для установки на FTTH кабель, можно устанавливать его и на центральную трубку кабеля.

ВНИМАНИЕ!!! При установки на центральную трубку она не надежно фиксируется в разъеме, нужно положить сверху обрезок этой трубки, или намотать немного изоленты, что бы увеличить ее толщину. В этом случае крепление будет надежным.

Осталось только одеть синий пластмассовый фиксатор в розетке и готово — волокно можно подключать к оборудованию. Можно подключить его непосредственно или расположить в кроссе или настенной розетке, а подключение оборудования осуществлять через промежуточный патчкорд.

Теперь для сравнения произведем установку разъема с применением оптического сварочного аппарата. Сами разъемы на кабель с помощью сварки непосредственно не устанавливаются, поэтому нужно использовать разрезанный патчкорд или специальный оптический пигтейл. Он приваривается к волокну из кабеля и устанавливается в кроссе.

Существуют оптические патчкорды с разъемами SC разной длины, у них обычно толстая изоляция 2 или 3 миллиметра, бывают и специальные пигтейлы (обрезанные патчкорды), с тонкой внешней изоляцией 0.9 миллиметров. Использовать можно любые, однако для плотного монтажа многоволоконного кабеля в кроссе целесообразнее использовать пигтейлы с тонкой изоляцией — они легко гнуться и фиксируются, не занимают много места.

Сделать из патчкорда пигтейл можно с помощью специального кабельного стриппера с различными диаметрами отверстий. Разрезаем его пополам и снимаем верхнюю защитную изоляцию.

В итоге получаем тот же оптический пигтейл, который при сравнении с оптическим волокном обладает несколько более толстой защитной оболочкой.

Скалываем оптическое волокно из кабеля по линейке 20 миллиметров скалывателем Jilong KL-21C. Естественно волокно предварительно нужно очистить и снять буферное покрытие стриппером.

Зажимаем волокно прижимной планкой скалывателя KL-21C, закрываем крышку и производим скол.

Аналогичную операцию производим и с привариваемым патчкордом — снимаем буферное покрытие, протираем и скалываем.

Включаем сварочный аппарат Jilong KL-280G и ждем его готовности к работе, когда на экране появится соответствующее сообщение.

Открываем защитную крышку сварочного аппарата и укладываем пигтейл на правую зажимную площадку, волокно при этом должно попасть на V образную канавку перед сварочными электродами. Предварительно на волокно нужно одеть термоусадочную гильзу КЗДС.

Аналогично укладываем волокно из оптического кабеля слева. Роутер Mikrotik RB450G используем в качестве подставки под кабель.

После закрытия крышки сварочного аппарата Jilong KL-280 он автоматически производит сведение и сварку волокон, но предварительно проверяет качество произведенного скола. Аппарату скол не понравился, поэтому он выдал сообщение что превышен угол скола. Хоть на экране аппарата и виден дефект волокна справа, однако не всегда его явно видно и было бы не плохо, если аппарат сообщал с какой стороны плохой скол.

Сообщение с экрана сварочного аппарата об ошибке — «Превышен угол скола». Он предлагает игнорировать дефект и продолжить, но лучше этого не делать и произвести повторный скол волокна.

После произведения повторных действий по сколу, очистке и укладки волокна аппарат без проблем произвел сварку и показал информацию о потерях в сварном соединении — Loss: 0.01dB — такое значение должно быть показано при всех сварках, если оно выше 0.03, то нужно произвести повторное соединение волокон.

Вводить волокна в аппарат Jilong KL-280G можно даже в защитной оболочке, специальная прокладка под крышкой и соответствующий вырез это позволяют.

После сварки волокно натягивается между зажимными планками, если одну пошевелить пальцем, вторая так же будет перемещаться, поэтому открывать крышки следует аккуратно.

Получилось вот такое красивое соединение, однако глаз специалиста сразу поймет не ладное.

Забыли одеть термоусадочную гильзу КЗДС, а без нее волокно можно легко сломать. Это одна из основных ошибок при начале работы с оптикой. Придется разрезать волокно и произвести повторную сварку. Нельзя просто взять и разрезать волокно в любом месте, нужно найти место сварки и вырезать его с двух сторон, как красную ленточку при открытии новых объектов строителями.

Производим повторный скол скалывателем Jilong

Статьи — Пайка оптоволоконного кабеля

03 июня 2014 года

Пайка оптоволокна кабеля представляет собой стандартный процесс присоединения жилы оптического волокна с помощью термообработки посредством высоких температур. На сегодняшний день такие манипуляции выполняются с помощью специализированных паяльных аппаратов в автоматическом режиме. Процесс пайки оптоволокна, который осуществляется посредством высокотехнологичного оборудования, дает возможность выполнять весь объем паяльных работ в любом объеме: от спайки и совмещения окончаний до работ по защите соединения для кабелей и патч корд 2 м.

Модернизированные паяльные аппараты – это высокопрофессиональные приборы промышленного назначения, которые снабжены автоматическим управлением. Среднестатистический сварочный аппарат имеет определенные размеры 15 х 15 х 15 см, за исключением выступающих частей.

Пайка оптоволоконных кабелей – это ответственный и достаточно трудоемкий процесс, который затрагивает все виды оптических кабельной продукции. Ничего удивительного в этом нет, так как даже небольшое смещение сердечника, который соединяет концы кабелей, может привести к серьезным сбоям в работе оптоволоконных линий. Пайка представляет собой соединение и закрепление стеклянных волокон.

Основные этапы процесса пайки волокна:

  1. Очистка подготовленного оптоволоконного кабеля от верхней изоляции. На этом этапе освобождается внутренняя часть концов кабеля – стеклянный сердечник. Очищается сам кабель и непосредственно каждое волокно, входящее в его состав. Отдельных модулей насчитывается от 4 до 8 штук, а также оптическая муфта GIS 6005.
  2. Процесс обезжиривания волокон. Специальное обезжиривающее средство применяется для очистки волокон от защитного слоя. Это средство имеет гелевую основу. После этой процедуры концы нитей оптоволоконных сетей аккуратно и тщательно склеиваются. Важным моментом этого процесса является срез, который должен быть абсолютно перпендикулярным. Соединение в месте спайки должно быть точным, так как влечет за собой качество передачи волн.
  3. Этап создания защиты соединения. Для того, чтобы обеспечить максимальную надежность, перед началом процесса пайки конец одного из кабелей оборудуется термоусадочной гильзой, которая представляет собой трубку, оснащенную силовым стержнем. Именно такие гильзы позволяют выполнять пайку оптоволокна на более высоком качественном уровне.

Процесс пайки:

  1. Зажим оптоволокна. Перед началом самого процесса концы фиксируются зажимами, установленными на сварочном аппарате.
  2. Юстировка. Этот этап предназначен для того, чтобы точно совместить оптические волокна, которые предполагается спаять. Для этих целей также применяются аппараты со специальной системой, которая осуществляет высокоточное совмещение в авторежиме. Если таких аппаратов нет, волокна совмещаются вручную под микроскопом.
  3. Пайка. Сам процесс пайки выполняется с помощью электрической дуги. Перед началом пайки между подготовленными волокнами оставляют микроскопический зазор, а во время разогрева до необходимой температуры производится доводка.
  4. Проверка качества произведенных работ. Для таких работ используется специальная аппаратура. Она производит проверку прочности соединения кабеля и уровня затухания сигналов на этом участке, где пигтейл SC, цена которого в прайсе.
  5. Защита соединения. Гильза, которая была заранее одета на кабель, передвигается на место стыка. Под воздействием тепла гильза с термоусадочным материалом усаживается и плотно обтягивает место соединения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *