Самодельный трансформатор с 6 В до 30000 В
Порой электронику необходимо получить высокое напряжение для различных целей. Сделать это не так уж сложно, если смастерить самодельный повышающий высоковольтный трансформатор, способный выдать 30 кВ из обычных 6 В.
Изготовление повышающего трансформатора на 30000 Вольт
Нам понадобится разборный сердечник из старого телевизора с кинескопом. Там он используется тоже в высоковольтном трансформаторе строчной развертки.
Делаем каркас под катушку. Обматываем одну сторону плотной бумагой и склеиваем суперклеем.
Снимаем с сердечника каркас и устанавливаем его для удобства на маркер. Далее обматываем слоем скотча.
Берем проволоку 0,2 мм толщиной, старый трансформатор как раз кстати.
Один конец очищаем от лака, наматываем на провод и припаиваем.
Изолируем термоусадкой. Кладем на всю длину каркаса и обматываем слоем скотча.
Матаем обмотку в ряд виток к витку. Каждый слой — 200 витков.
После каждого слоя кладем два слоя скотча и один слой изолентой.
Такая многослойность нужна обязательно, иначе катушку запросто пробьет высоким напряжением.
Намотали еще 200 витков — производим опять тройную изоляцию.
Итак должно быть 5 слоев по 200 витков. Общее количество, как вы наверное уже подсчитали, 1000 витков. Надеваем катушку на каркас.
С противоположной стороны мотаются две обмотки обычным проводом. Первая (синяя) 6 витков, вторая (желтая) 5 витков. Фиксируем суперклеем.
Схема генератора
Перед вами классическая схема блокинг-генератора на одном транзисторе. Проще не придумаешь. Собираем схему на биполярном транзисторе.
В настройке генератор практически не нуждается. И при исправных деталях работает сразу. Но если только генерация не запустилась с первого раза — попробуйте поменять вывода одной из обмоток между собой, тогда все должно заработать.
Испытания высоковольтного трансформатора
Запитываем схему от аккумуляторной батареи 6 В. Высоковольтный генератор в работе.
Дуга упала на изоляцию и тут же почти зажгла ее.
Частота генерации порядка около 10-15 кГц. При такой частоте высоковольтные разряды не так опасны, но все же не стоит прикасаться к токоведущим проводам во время работы трансформатора.
Смотрите видео
Как правильно намотать трансформатор своими руками
В современных броневых и стержневых трансформаторах обмотки наматываются на жёсткий каркас. Поэтому, для закрепления каркаса, можно воспользоваться вот такими щёчками. Одну из щёчек нужно жёстко закрепить на шпильке двумя гайками, чтобы каркас вместе со щёчками при намотке не прокручивался относительно шпильки.

Если же Вам попадётся какой-нибудь старинный трансформатор с картонным каркасом, то придётся выпилить деревянную бобышку размером чуть шире сечения магнитопровода, чтобы при намотке каркас не деформировался вместе с обмотками.

Каркас вместе с бобышкой можно прикрутить к шпильке подобным образом.
Я использую для перемотки трансформаторов вот такое нехитрое приспособление, которое с натяжкой можно назвать намоточным станком. В одни тиски зажимаю ручную дрель, а в другие счётчик оборотов.

Катушку с проводом закрепляю вот на таком мобильном устройстве, которое обычно стоит на полу, как раз под тем местом, где находится каркас.
Как трансформатор намотать на кольце
Трансформатор намотать на кольце можно намотать при помощи челнока. При мощности более 100 Ватт, число витков вторичной обмотки понижающего трансформатора столь мало, что намотка не вызывает серьёзных затруднений даже в отсутствие челнока.

Быстро изготовить челнок под любые размеры сердечника трансформатора и диаметр провода можно из медной проволоки подходящего диаметра. Чем толще обмоточный провод, тем соответственно толще нужно выбирать и проволоку для челнока.
Как закрепить выводы обмоток трансформатора?

Если при намотке трансформаторов на броневых и стрежневых магнитопроводах, выводы катушки можно закрепить на контактах встроенных в каркас, то при намотке трансформатора на кольцевом магнитопроводе, такая возможность отсутствует.
Одним из способов решения этой проблемы является вывод концов обмоток гибким многожильным проводом. Особенно это полезно делать, если обмотка намотана сравнительно тонким приводом.
Припаиваем к началу катушки отрезок многожильного провода. Лучше, если это будет провод во фторопластовой изоляции (МГТФ), но можно использовать и любой другой.
Затем помещаем место пайки в небольшой кусочек электрокартона или бумаги сложенной пополам. Толщина электрокартона – 0,1мм.
Закрепляем электрокартон вместе с местом пайки на внешней стороне магнитопровода при помощи витков катушки.
К концу катушки так же, как и к началу, припаиваем отрезок многожильного провода и изолируем кусочком электрокартона. Закрепляем соединение при помощи толстых швейных ниток. Чтобы при завязывании узла нить не ослабла, можно закрепить её расплавленной канифолью или клеем.
Видео: Как намотать трансформатор
Как намотать трансформатор. Меняю параметры вторичной обмотки (вольты и амперы), по советским формулам. Получилось небольшое расхождение по параметрам.
- 0:28 разбираем китайский блок питания
- 0:50 находим первичную и вторичную обмотки трансформатора
- 1:08 разбираем трансформатор, снимаем трансформаторное железо
- 2:00 разматываем вторичную обмотку трансформатора
- 2:15 рассчитываем по формуле количество витков на 1 вольт
- 4:57 наматываем вторичную обмотку трансформатора
- 5:43 тестируем перемотанный трансформатор
Повышающий трансформатор как работает, схема, применение
Повышающий трансформатор это обычный трансформатор (см. назначение и принцип действия трансформатора) который повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.
Принцип работы повышающего трансформатора заключается в величине К (коэффициент трансформации).
При К>1 трансформатор является понижающим, а при К<1 — повышающим трансформатором.
U1/U2 ≈ E1/E2 = N1/N2 = К
где: U1, U2 — напряжение на первичной и вторичной обмотке; E1, E2-мгновенные значения ЭДС; N1, N2 — количество витков первичной и вторичной обмотки

Применение повышающих трансформаторов
Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.
В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.
Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.
Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.
Повышающий тороидальный трансформатор
Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.
Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.
Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов.
Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности.
Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.
Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам:
- во-первых, экономия материалов на производстве,
- во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест,
- в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.
Охлаждение обмоток — еще один важный фактор.
Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой.
Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.
Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора.
Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.
При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.
Для чего около электростанций устанавливают повышающий напряжение трансформатор?
Любой проводник имеет свое сопротивление и поэтому в ЛЭП неизбежно возникают тепловые потери на нагрев проводника. Величина нагрева пропорциональна квадрату тока в цепи, по этому повышая напряжение до сотен киловольт, мы, согласно закону Ома понижаем ток, а значит и снижает тепловые потери и размер проводников ЛЭП, экономия материалов и стоимости.
Видео: Повышающий трансформатор
Как намотать импульсный трансформатор своими руками
Одной из важнейших деталей импульсного блока питания является импульсный трансформатор.
«А где ж взять-то подходящий?», — спрашивают некоторые товарищи.
Попробую облегчить вам задачу. Просто найдите трансформатор с подходящим сердечником, а я расскажу как вам его перемотать.
Предполагается, что необходимое количество витков обмоток и диаметры проводов вам известны.
Итак для того чтобы намотать импульсный трансформатор нам нужно:
1. Провода. Для намотки трансформаторов используются провода в двойной и тройной изоляции. Можно взять провода подходящего диаметра из старых силовых трансформаторов или реле (например, провод ПЭВ-2).
2. Сердечник от старого/сгоревшего/неподходящего импульсного трансформатора.
Допустим, что у нас есть каркас, такой, как на рисунке. Нам нужно намотать трансформатор, такой, как в нижнем правом углу рисунка.

Сначала наматываем первичную обмотку импульсного трансформатора
Зачищаем один конец провода и припаиваем его к четвертой ножке трансформатора. Это будет начало обмотки. Наматываем провод виток к витку снизу вверх, в направлении, указанном на рисунке. Когда первый слой заполнится, начинаем наматывать второй слой, также виток к витку, но уже сверху вниз. Последний слой нужно равномерно распределить по всей высоте сердечника. Оставшийся конец провода зачищаем и припаиваем к первой ножке.
После этого наматываем несколько слоев изоляции, например, полиэстеровой или фторопластовой пленки.

Изоляцию нужно наматывать так, чтобы она была от самого низа, немного с запасом, и до самого верха, так же с запасом.
Небольшой запас делается для того, чтобы полностью исключить возможность соскальзывания вторичной обмотки, которая будет поверх изоляции, на первичную, так как это очень опасно (чревато замыканием обмоток и тем, что напряжение с первичной обмотки попадёт во вторичную цепь).
Далее наматываем вторичную обмотку импульсного трансформатора
Зачищаем и припаиваем один конец провода к восьмой ножке трансформатора. Это будет начало обмотки. Наматываем провод виток к витку снизу вверх, в направлении, указанном на рисунке вверху.
Когда первый слой заполнится, начинаем наматывать второй слой, также виток к витку, но уже сверху вниз.
Последний слой нужно равномерно распределить по всей высоте сердечника.
Оставшийся конец провода зачищаем и припаиваем к пятой ножке.
И, наконец, поверх вторичной обмотки снова наматываем несколько слоев изоляции.
Вот и все, трансформатор — готов.
При намотке нужно избегать образования перегибов или узелков на проводе, так как изоляция в таком месте будет хуже, что чревато межвитковым замыканием.
Для намотки не рекомендуется использовать провод толще AWG26 (0,4 мм) из-за возникновения скин-эффекта (протекание высокочастотных токов не по всему объему проводника, а только по поверхностному слою).
Если при расчете у вас получилось, что нужен провод толще 0,4 мм, то нужно использовать намотку двойным или тройным проводом 0,4 мм.
Как намотать импульсный трансформатор на тороидальный сердечник

При помощи наждачной бумаги стачиваем острые грани.

Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку.

Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.
Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным.

Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.
При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок.
Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.
Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца.
Таким образом, изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.


Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.
Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05… 0,1мм.
Наматываем начало обмотки так, чтобы надёжно закрепить место соединения.
Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли или клея.
Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика).

Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты. Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно.

Как перемотать трансформатор из блока питания ПК
Перед тем как начать перемотку трансформатора, его нужно разобрать. О простом методе разборки импульсного трансформатора из блока питания ПК можно прочитать тут.
Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.
Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый. В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части. То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.
Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.
Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT. При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.
Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.
Скачиваем и запускаем программу Lite-CalcIT. Вбиваем нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления. Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.
Вторичных обмотки будет две, с отводом от середины. Номинальное напряжение указывается для одной обмотки. В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.
Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки. Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.
Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.
Ничего в расчете сложного нет. В ходе него я получил следующие параметры:
— Число витков первичной обмотки 38;
-Число витков вторичной обмотки 10+10 двумя жилами указанного провода.
Начинаем мотать транс.
38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.
Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.
Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.
После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому. Припаиваем контакт.
Кладем изоляцию. Все, первичка готова.
Пример намотки первичной обмотки на частоту 30 кГц.
По расчетам я получил количество витков первичной обмотки, равное 48. В первый слой я положил 35 витков.
Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.
Изолируем первичную обмотку от вторичной.
P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.
Мотаем вторичную обмотку импульсного трансформатора.
Подпаиваем два провода к выводу нашего транса от БП ПК.
Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.
Оставляем хвост и изолируем.
Далее подпаиваем еще два провода к другим контактам.
Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.
Оставляем хвост.
Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.
В принципе можно и с отводом от середины так мотать, кому как удобней короче.
P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.
Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.
Косу, которая получилась, перед скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.
Похожие статьи
Что такое повышающий и понижающий трансформаторы? Определение и применение
Повышающий трансформатор
Трансформатор, в котором выходное (вторичное) напряжение больше, чем его входное (первичное) напряжение, называется повышающим трансформатором. Повышающий трансформатор снижает выходной ток для поддержания одинаковой входной и выходной мощности системы.
Считается повышающим трансформатором, показанным на рисунке ниже. E 1 и E 2 — это напряжения, а T 1 и T 2 — количество витков на первичной и вторичной обмотке трансформатора.
Число витков на вторичной обмотке трансформатора больше, чем на первичной, т. Е. T 2 > T 1 . Таким образом, передаточное отношение напряжения повышающего трансформатора составляет 1: 2. Первичная обмотка повышающего трансформатора сделана из толстой изолированной медной проволоки, поскольку через нее протекает ток небольшой величины.
Применения — Повышающий трансформатор используется в линиях передачи для преобразования высокого напряжения, вырабатываемого генератором переменного тока.Потери мощности в линии передачи прямо пропорциональны квадрату тока, протекающего через нее.
Мощность = I 2 R
Выходной ток повышающего трансформатора меньше, поэтому он используется для уменьшения потерь мощности. Повышающий трансформатор также используется для запуска электродвигателя, в микроволновой печи, рентгеновских аппаратах и т. Д.
Понижающий трансформатор
Трансформатор, у которого выходное (вторичное) напряжение меньше входного (первичного) напряжения, называется понижающим трансформатором.Число витков на первичной обмотке трансформатора больше, чем на вторичной обмотке трансформатора, то есть T 2
Передаточное число напряжения понижающего трансформатора составляет 2: 1. Коэффициент передачи напряжения определяет величину преобразования напряжения от первичной до вторичной обмоток трансформатора.
Понижающий трансформатор состоит из двух или более катушек, намотанных на железный сердечник трансформатора.Он работает по принципу магнитной индукции между катушками. Напряжение, приложенное к первичной обмотке катушки, намагничивает железный сердечник, который индуцирует вторичные обмотки трансформатора. Таким образом, напряжение преобразуется с первичной на вторичную обмотку трансформатора.
Применения — Используется для гальванической развязки, в распределительной сети, для управления бытовой техникой, в дверном звонке и т. Д.
.Разница между повышающим и понижающим трансформатором
Трансформатор — это статическое устройство, которое передает электрическую мощность переменного тока от одной цепи к другой с той же частотой, но уровень напряжения обычно изменяется. По экономическим причинам электрическая энергия должна передаваться при высоком напряжении, тогда как с точки зрения безопасности она должна использоваться при низком напряжении. Это увеличение напряжения для передачи и уменьшение напряжения для использования может быть достигнуто только с помощью повышающего и понижающего трансформатора.
Основное различие между повышающим и понижающим трансформаторами состоит в том, что повышающий трансформатор повышает выходное напряжение, а понижающий трансформатор снижает выходное напряжение. Некоторые другие различия объясняются ниже в виде сравнительной таблицы с учетом факторов: напряжение, обмотка, количество витков, толщина проводника и область применения.
Содержание: Повышающий трансформатор против понижающего трансформатора
- Таблица сравнения
- Определение
- Ключевые отличия
- Запомните
Таблица сравнения
ОСНОВА ДЛЯ СРАВНЕНИЯ | СТУПЕНЧАТЫЙ ТРАНСФОРМАТОР | СТУПЕНЧАТЫЙ ТРАНСФОРМАТОР |
---|---|---|
Определение | Повышающий трансформатор увеличивает выходное напряжение. | Понижающий трансформатор снижает выходное напряжение. |
Напряжение | Входное напряжение низкое, а выходное напряжение высокое. | Входное напряжение высокое, а выходное напряжение низкое. |
Обмотка | Обмотка высокого напряжения — вторичная обмотка. | Обмотка высокого напряжения — первичная обмотка. |
Ток | Низкий ток вторичной обмотки. | Большой ток во вторичной обмотке. |
Номинальное выходное напряжение | 11000 В или выше | 110 В, 24 В, 20 В, 10 В и т. Д. |
Размер жилы | Первичная обмотка изготовлена из толстой изолированной медной проволоки. | Вторичная обмотка выполнена из толстой изолированной медной проволоки |
Применение | Электростанция, рентгеновский аппарат, микроволновые печи и т. Д. | Дверной звонок, преобразователь напряжения и т. Д. |
Определение повышающего трансформатора:
Когда напряжение на выходе повышается, трансформатор называется повышающим трансформатором.В этом трансформаторе количество витков во вторичной обмотке всегда больше, чем количество витков в первичной обмотке, поскольку на вторичной стороне трансформатора создается высокое напряжение.
В таких странах, как Индия, обычно электроэнергия вырабатывается на 11 кВ. По экономическим причинам мощность переменного тока передается при очень высоких напряжениях (220-440 В) на большие расстояния. Поэтому на генерирующей станции применяется повышающий трансформатор.
Определение понижающего трансформатора:
Понижающий трансформатор снижает выходное напряжение или, другими словами, преобразует мощность высокого напряжения с низким током в мощность с низким напряжением и высоким током.Например, в нашей силовой цепи 230-110 В, а для дверного звонка требуется только 16 В. Итак, нужно использовать понижающий трансформатор для понижения напряжения с 110 В или 220 В до 16 В.
Для питания различных зон из соображений безопасности напряжение понижено до 440/230 В. Таким образом, количество витков на вторичной обмотке меньше, чем на первичной; меньшее напряжение индуцируется на выходе (вторичной обмотке) трансформатора.
Ключевые различия между повышающим трансформатором и понижающим трансформатором
- Когда выходное (вторичное) напряжение больше, чем его входное (первичное) напряжение, оно называется повышающим трансформатором, тогда как в понижающем трансформаторе выходное (вторичное) напряжение меньше.
- В повышающем трансформаторе обмотка низкого напряжения является первичной обмоткой, а обмотка высокого напряжения — вторичной обмоткой, тогда как в понижающем трансформаторе обмотка низкого напряжения является вторичной обмоткой.
- В повышающем трансформаторе ток и магнитное поле менее развиты во вторичной обмотке и сильно развиты в первичной обмотке, тогда как в понижающем трансформаторе напряжение на вторичной обмотке низкое. магнитное поле высокое.
- Примечание 1 : Ток прямо пропорционален магнитному полю.
- Примечание 2 : Согласно законам Ома, напряжение прямо пропорционально току. Если мы увеличим напряжение, то ток также увеличится. Но в трансформаторе для передачи того же количества мощности, если мы увеличим напряжение, ток будет уменьшаться и наоборот. Таким образом, мощность на передающем и приемном концах трансформатора остается неизменной.
- В повышающем трансформаторе первичная обмотка состоит из толстого изолированного медного провода, а вторичная — из тонкого изолированного медного провода, тогда как в понижающем трансформаторе выходной ток велик, поэтому толстый изолированный медный провод проволока используется для изготовления вторичной обмотки.
- Примечание : Толщина проволоки зависит от силы тока, протекающего через них.
- Повышающий трансформатор увеличивает напряжение с 220 В до 11 кВ или выше, тогда как понижающий трансформатор снижает напряжение с 440-220 В, 220-110 В или 110-24 В, 20 В, 10 Вольт.
Что следует помнить:
Тот же трансформатор может использоваться как повышающий или понижающий трансформатор. Это зависит от того, каким образом он включен в цепь. Если питание подается на обмотку низкого напряжения, она становится повышающим трансформатором.В качестве альтернативы, если питание подается на обмотку высокого напряжения, трансформатор становится понижающим.
.