Прямая и обратная: Прямая и обратная пропорциональность – Прямая и обратная пропорциональность. Коэффициент и формулы

Прямая и обратная пропорциональность. Коэффициент и формулы

Пропорциональность – это зависимость одной величины от другой, при которой изменение одной величины приводит к изменению другой во столько же раз.

Пропорциональность величин может быть прямой и обратной.

Прямая пропорциональность

Прямая пропорциональность – это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным. Такие величины называются прямо пропорциональными или просто пропорциональными.

Рассмотрим пример прямой пропорциональности на формуле пути:

s = vt

где s – это путь, v – скорость, а t – время.

При равномерном движении путь пропорционален времени движения. Если взять скорость v равной 5 км/ч, то пройденный путь s будет зависеть только от времени движения t:

Скорость v = 5 км/ч
Время t (ч)124816
Путь s (км)510204080

Из примера видно, что во сколько раз увеличивается время движения t, во столько же раз увеличивается пройденное расстояние s. В примере мы увеличивали время каждый раз в 2 раза, так как скорость не менялась, то и расстояние увеличивалось тоже в два раза.

В данном случае скорость (v = 5 км/ч) является коэффициентом прямой пропорциональности, то есть отношением пути ко времени, которое остаётся неизменным:

s   =  v,   следовательно,   5  = 10  = 20  = 40  = 80  = 5
t
124816

Если время движения остаётся неизменным, то при равномерном движении расстояние будет пропорционально скорости:

Время t = 2 ч
Скорость v (км/ч)5154590
Расстояние s (км)103090180

В этом примере коэффициентом прямой пропорциональности, то есть, отношением пути к скорости, которое остаётся неизменным, является время (t = 2 ч):

s   =  t,   следовательно,   10  = 30  = 90  = 180  = 2
v5154590

Из данных примеров следует, что две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз другая увеличивается (или уменьшается) во столько же раз

.

Формула прямой пропорциональности

Формула прямой пропорциональности:

y = kx

где y и x – это переменные величины, а k – это постоянная величина, называемая коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности – это отношение любых соответствующих значений пропорциональных переменных y и x равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Обратная пропорциональность

Обратная пропорциональность – это зависимость двух величин, при которой увеличение одной величины приводит к пропорциональному уменьшению другой. Такие величины называются обратно пропорциональными.

Рассмотрим пример обратной пропорциональности на формуле пути:

s = vt

где s – это путь, v – скорость, а t – время.

При прохождении одного и того же пути с разной скоростью движения время будет обратно пропорционально скорости. Если взять путь s равным 120 км, то потраченное на преодоление этого пути время t будет зависеть только от скорости движения v:

Путь s = 120 км
Скорость v (км/ч)10204080
Время t (ч)12631,5

Из примера видно, что во сколько раз увеличивается скорость движения v, во столько же раз уменьшается время t. В примере мы увеличивали скорость движения каждый раз в 2 раза, а так как расстояние, которое нужно преодолеть, не менялось, то количество времени на преодоление данного расстояния сокращалось тоже в два раза.

В данном случае путь (s = 120 км) является коэффициентом обратной пропорциональности, то есть произведением скорости на время:

s = vt,  следовательно    10 · 12 = 20 · 6 = 40 · 3 = 80 · 1,5 = 120

Из данного примера следует, что две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Формула обратной пропорциональности

Формула обратной пропорциональности:

где y и x – это переменные величины, а k – это постоянная величина, называемая коэффициентом обратной пропорциональности.

Коэффициент обратной пропорциональности – это произведение любых соответствующих значений обратно пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента обратной пропорциональности:

xy = k

Обратная пропорциональность в математике и в жизни

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две  величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки.  Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x. В котором x ≠ 0 и k ≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме
    x
    = 0. D(y): (-∞; 0) U (0; +∞).
  2. Областью значений являются все действительные числа, кроме y = 0. Е(у): (-∞; 0) U (0; +∞).
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k > 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k < 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k > 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k < 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

График Функции Обратной Пропорциональности

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V2, которая по условию выше в 2 раза: V2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t2, которое требуется от нас по условию задачи: t2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч ↑

↓120 км/ч – х ч ↑

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч ↑

↓ 3 рабочих – х ч ↑

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин ↑

↓ х л/мин – 75 мин ↑

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч ↑

↓ 48 визитки/ч – х ч ↑

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Расскажите нам в комментариях, какие примеры обратной и прямой пропорциональной зависимости вы замечаете вокруг себя. Пускай это будет такая игра. Вот увидите, как это увлекательно. Не забудьте «расшарить» эту статью в социальных сетях, чтобы ваши друзья и одноклассники тоже смогли поиграть.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пропорциональность — Википедия

Материал из Википедии — свободной энциклопедии

Пропорциональными называются две взаимно зависимые величины, если отношение их значений остаётся неизменным[1].

Равенство между отношениями двух или нескольких пар чисел или величин в математике называется пропорцией.

Масса керосина пропорциональна его объёму: 2 л керосина имеют массу 1,6 кг, 5 л имеют массу 4 кг, 7 л имеют массу 5,6 кг. Отношение массы к объёму при одинаковых условиях всегда будет равно плотности:

1,6:2=4:5=5,6:7=0,8.{\displaystyle 1{,}6:2=4:5=5{,}6:7=0{,}8.}

Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой[1].

Математический символ ∝{\displaystyle \propto } используется для указания пропорциональности двух величин. Например, A∝B{\displaystyle A\propto B}.

В Юникоде для отображения используется символ U+221D.

Две величины называются прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз, другая увеличивается (уменьшается) во столько же раз. Пример: такие величины, как скорость объекта и пройденное им расстояние являются прямо пропорциональными.

Обра́тная пропорциона́льность — это функциональная зависимость, при которой увеличение независимой величины (аргумента) вызывает пропорциональное уменьшение зависимой величины (функции).

y=kx,x≠0,k≠0{\displaystyle y={\frac {k}{x}},\;x\neq 0,\;k\neq 0}

Свойства функции:

  1. 1 2 М. Я. Выгодский. «Справочник по элементарной математике», М., 1974
⛭
  • Плюс (+)
  • Минус ()
  • Знак умножения (· или ×)
  • Знак деления (: или /)
  • Обелюс (÷)
  • Знак корня ()
  • Факториал (!)
  • Знак интеграла ()
  • Набла ()
  • Знак равенства (=, , и др.)
  • Знаки неравенства (, >, < и др.)
  • Пропорциональность ()
  • Скобки (( ), [ ], ⌈ ⌉, ⌊ ⌋, { }, ⟨ ⟩)
  • Вертикальная черта (|)
  • Косая черта, слеш (/)
  • Обратная косая черта, бэкслеш (\)
  • Знак бесконечности ()
  • Знак градуса (°)
  • Штрих (, , , )
  • Звёздочка (*)
  • Процент (%)
  • Промилле ()
  • Тильда (~)
  • Карет (^)
  • Циркумфлекс (ˆ)
  • Плюс-минус (±)
  • Знак минус-плюс ()
  • Десятичный разделитель (, или .)
  • Символ конца доказательства ()

Урок 7. прямая и обратная пропорциональность. решение задач — Математика — 6 класс

Математика

6 класс

Урок № 7

Прямая и обратная пропорциональность. Решение задач

Перечень рассматриваемых вопросов:

  • Понятия прямой и обратной пропорциональной зависимости.
  • Краткая запись условия задачи.
  • Составление и решение пропорций по условию задачи.
  • Решение задач на прямую и обратную пропорциональную зависимость.

Тезаурус

Равенство двух отношений называют пропорцией.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Основная литература

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 258 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Прямая пропорциональность.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Обратная пропорциональность.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Для решения задач на пропорциональную зависимость, удобно составить таблицу или сделать краткую запись условия.

Столбцы таблицы соответствуют наименованиям зависимых величин.

Строки таблицы соответствуют значениям величин при первом и втором измерении.

Одинаково направленные стрелки показывают прямо пропорциональную зависимость, противоположно направленные – обратно пропорциональную.

Задача.

Поезд, скорость которого 55 км/ч, был в пути 5 часов. За сколько часов пройдёт этот же участок пути товарный поезд, скорость которого 45 км/ч?

Решение.

При постоянном пути скорость и время движения обратно пропорциональны.

Допустим, товарный поезд пройдёт этот же путь со скоростью 45 км/ч за x ч.

Сделаем краткую запись условия.

Задача.

Двигаясь с постоянной скоростью, велогонщик проезжает 40 метров за 3 с. Какой путь проедет велогонщик за 45 с?

Решение.

При постоянной скорости путь прямо пропорционален времени движения.

Пусть х м проедет велогонщик за 45 с.

Сделаем краткую запись условия.

Задача.

Усилие при восхождении на высоту 600 м равно усилию, требуемому для перехода 25 км по равнине. Турист поднялся в горы на 792 м. Какому расстоянию на равнине соответствует этот подъём?

Решение:

Решение.

Задача.

Четыре программиста могут написать игру за 12 месяцев. За сколько месяцев эту работу могут выполнить три программиста?

Решение.

Количество программистов и скорость написания игры – это обратно пропорциональная зависимость.

Разбор заданий тренировочного модуля

№ 1. Подстановка элементов в пропуски в тексте.

Подставьте нужные элементы в пропуски.

Пешеход шёл 3 часа со скоростью 8 км/ч. За сколько часов он пройдёт то же расстояние со скоростью 6 км/ч?

Решение:

При фиксированном расстоянии время в пути и скорость – ______ пропорциональны.

Пусть _____ часов – пешеход идёт со скоростью 6 км/ч.

Составим пропорцию:

_________

х=_______

х=_______(ч).

Правильный ответ.

Решение:

При фиксированном расстоянии время в пути и скорость – обратно пропорциональны.

Пусть х часов – пешеход идёт со скоростью 6 км/ч.

№ 2. Подстановка элементов в пропуски в таблице.

Заполните таблицу.

Поезд движется со скоростью 45 км/ч. Какое расстояние он пройдёт, если будет в пути 3 ч; 4 ч; 5 ч; 6 ч.

Варианты ответов:

135 км;

180 км;

225 км;

270 км.

Решение.

При постоянной скорости пройденный путь и время прямо пропорциональны. Скорость движения поезда 45 км/ч означает, что за 1 час поезд преодолевает расстояние в 45 км. Обозначим за x км – расстояние, которое поезд пройдёт за 3, 4, 5 и 6 часов.

Таким же способом находим расстояние, которое пройдёт поезд за 4, 5 и 6 часов, и подставляем соответствующие варианты в таблицу.

Ответ:

Прямая и обратная пропорциональная зависимость — Kid-mama

Две величины называют прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.

Проще всего понять прямо пропорциональную зависимость на примере станка, изготавливающего детали с постоянной скоростью. Если за два часа он делает 25 деталей, то за 4 часа он изготовит деталей вдвое больше — 50. Во сколько раз дольше времени он будет работать, во столько же раз больше деталей он изготовит.

Математически это выглядит так:                      

  4 : 2 = 50 : 25    или так:         2 : 4 = 25 : 50

Прямо пропорциональными величинами тут являются  время работы станка и число изготовленных деталей. 

Говорят: Число деталей прямо пропорционально времени работы станка.

Если две величины прямо пропорциональны, то отношения соответствующих величин равны. (В нашем примере — это отношение времени 1 к времени 2 = отношению количества деталей за время 1 к количеству деталей за время 2)

 Обратная пропорциональность

Две величины называют обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.

Обратно пропорциональная зависимость часто встречается в задачах на скорость. Скорость и время являются обратно пропорциональными величинами. Действительно, чем быстрее движется объект, тем меньше времени у него уйдет на путь.

Например:

Если величины обратно пропорциональны, то отношение значений одной величины (скорости в нашем примере) равно обратному отношению другой величины ( времени в нашем примере). ( В нашем примере — отношение первой скорости к второй скорости равно отношению второго времени к первому времени.

Задача 1:

Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?

Решение:

Запишем краткое условие задачи:


Задача 2:

Для перевозки груза потребовалось 24 машины грузоподъемностью 7,5 тонн. Сколько нужно машин грузоподъемностью 4,5 т, чтобы перевезти тот же груз?

Решение: 

Краткая запись:

Прямая и обратная пропорциональные зависимости

Сегодня на уроке мы продолжим работать с пропорциями, а точнее познакомимся с прямой и обратной пропорциональными зависимостями.

Задача

Сколько нужно сахара, чтобы сварить варенье из 5 кг черешни, если по рецепту на 2 кг ягод нужно 3 кг сахара?

Решение:

Из решения видно, что во сколько раз больше имеется черешни, во столько раз больше понадобится сахара

Эту же задачу можно решить и при помощи пропорции. Запишем кратко условие задачи в виде таблицы, обозначив за неизвестную нам массу сахара буквой х. Смотрите, у нас есть столбик, где мы будем записывать массу ягод, и столбик, где мы укажем соответствующую массу сахара на массу ягод. Итак, по условию задачи известно, что по рецепту на 2 кг ягод нужно 3 кг сахара. Нам нужно узнать, сколько кг сахара потребуется на 5 кг ягод.

Такая зависимость между массой ягод и массой сахара условно обозначается в таблице одинаково направленными стрелками. Их направление говорит о том, что если первая величина возрастает (стрелка вверх), то и вторая тоже возрастает (стрелка тоже вверх).

Задача

Велосипедист, двигаясь с постоянной скоростью, проехал 10 км за 20 минут. Какой путь проедет велосипедист за 50 минут?

Решение: для наглядности запишем кратко условие задачи в виде таблицы.

Понятно, что путь увеличится во столько раз, во сколько раз увеличится время. Ставим стрелки в одном направлении.

Такие величины, как масса ягод для варенья и масса сахара, время и пройденный за это время при постоянной скорости путь, и т.д. называют прямо пропорциональными величинами.

Определение

Две величины называются прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.

Задача

Автомобиль ехал 3 часа со скоростью 60 км/ч. За какое время он продет это же расстояние, если будет ехать со скоростью 90 км/ч?

Решение:

Из решения видно, что во сколько раз скорость автомобиля больше, во столько раз меньше времени тратится на этот же путь

Эту же задачу решим при помощи пропорции. Запишем в таблицу кратко условие задачи. За х обозначим неизвестное нам время.

Понятно, что чем больше скорость автомобиля, тем меньше времени ему понадобится на преодоление этого же пути. Такая зависимость между скоростью и временем, затраченным на пройденный путь, условно обозначается в таблице противоположно направленными стрелками. Их направление говорит о том, что если первая величина возрастает (стрелка вверх), то вторая убывает (стрелка вниз). Составим пропорцию. Т.к. стрелки направлены в разные стороны, то второе отношение перевернём.

Задача

5 рабочих выполнили заказ за 132 часа. За какое время этот же заказ смогут выполнить 12 рабочих?

Решение:

Понятно, что чем больше будет задействовано рабочих, тем быстрее выполнится заказ. Значит, ставим стрелки в противоположном направлении. Составим пропорцию:

Такие величины, как скорость автомобиля и время, за которое он проедет определённый путь, число работников и время, за которое они выполняют заказ, и т.д. называют обратно пропорциональными величинами.

Определение

Две величины называются обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.

Не всякие две величины являются прямо пропорциональными или обратно пропорциональными.

Например, возраст человека и размер его обуви не связаны пропорциональной зависимостью. Зависимость между величинами есть. Размер обуви с возрастом увеличивается, но не во столько же раз.

Возраст дерева и его высота не связаны пропорциональной зависимостью. В этом случае зависимость между величинами есть. Действительно, высота дерева с возрастом увеличивается, но не во столько же раз.

       

Обратно пропорциональные величины — урок. Математика, 6 класс.

Задача. Расстояние между двумя посёлками равно \(240\) км. Определи, за какое время можно доехать из одного посёлка в другой, если скорость \(20\) км/ч увеличить в \(2\) раза, \(3\) раза, в \(4\) раза?

 

Заполним таблицу.

 

Скорость, км/ч

\(20\)

\(40\)

\(60\)

\(80\)
Время, ч

\(12\)

\(6\)

\(4\)

\(3\)

 

Заметим, что при увеличении скорости в \(2\) раза (была \(20\) км/ч, стала — \(40\) км/ч) время сократилось (уменьшилось) в \(2\) раза (было \(12\) ч., стало — \(6\) ч.).

 

Аналогично, при увеличении скорости в \(3\) раза (была \(20\) км/ч, стала — \(60\) км/ч) время сократилось (уменьшилось) в \(3\) раза (было \(12\) ч., стало — \(4\) ч.).

 

Вывод: при увеличении скорости в несколько раз время уменьшается во столько же раз.

 

Говорят, что скорость обратно пропорциональна времени.

 

Две величины называют обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.

 

Обрати внимание!

Если две величины обратно пропорциональны, то отношение значений одной величины  равно обратному отношению соответствующих значений другой величины.

 

Проверим это утверждение на приведённой выше задаче:

 

2040=612=12.

 

Обратную пропорциональность можно задать формулой.

 

Формулу y=kx, где \(y\) и \(x\) — переменные величины, а \(к\) — постоянная величина, называют формулой обратной пропорциональности.

Источники:

Математика. 6 класс. Часть 2. — Изд. 2-е, перераб. / Г. В. Дорофеев, Л. Г. Петерсон. — М.: Издательство «Ювента», 2010. — 128 с.: ил.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *