Работа с оптоволокном: Работа с оптоволокном. Подготовка

Содержание

Работа с оптоволокном: не так страшно, как кажется

В рубрику «Видеонаблюдение (CCTV)» | К списку рубрик  |  К списку авторов  |  К списку публикаций

В прошлом году мы проводили ряд семинаров, посвященных системам передачи информации по оптоволоконному кабелю. Общаясь со слушателями, часто сталкивались с ситуацией, когда люди готовы применять данные системы: у них есть проекты, преимущества решения превалируют над стоимостью — ставь и сдавай проект, получай деньги и уверенность в том, что у заказчика не будет претензий к качеству выполненных работ. Но тот факт, что у специалистов нет никакого опыта работы с подобным оборудованием, их останавливал. Все неоднократно слышали о сложностях, о необходимости высокой квалификации специалистов. Многие считают, что сварка оптоволокна и монтаж оборудования с использованием оптоволоконного кабеля — рискованный процесс, требующий дорогих материалов и высокооплачиваемых сотрудников, что это не для них.


С.А. Карачунский
Руководитель отдела маркетинга компании «В1 электроникс»

На самом деле, работа с оптоволокном хоть и требует определенного опыта и навыков, но их наработать — не такая сложная задача. Тем более что сейчас рынок предлагает большое количество инструментов и оборудования для разделки и монтажа кабеля. Этому вопросу и посвящена данная статья.

Вводная информация

Одно из главных требований при работе с оптоволоконными кабелями — внимательное отношение ко всем этапам процесса монтажа кабельной системы: укладке, разделке, соединению и оконцовке. Ошибка дорогого стоит — это затраты на поиск места повреждения и замена участка кабеля. Замена поврежденного участка не только увеличивает трудозатраты, но и снижает качество всей системы: каждый соединительный элемент, каждая спайка вносит свои искажения в передаваемый сигнал, уменьшает расстояние передачи сигнала, требует увеличения оптического бюджета системы. Для специалистов, которые только начинают свою работу по монтажу оптоволокна, рекомендуется приобрести готовый комплект основных инструментов и материалов, необходимых для проведения работ: тара, дозаторы, распределители, расходные материалы и защитные средства. Спустя некоторое время, когда вы получите начальные навыки работы с оптоволоконным кабелем и сформируете предпочтения в разнообразии используемых инструментов и материалов, вы сможете комбинировать набор «под себя».


Разделка волоконно-оптического кабеля

Волоконно-оптический кабель представляет собой несколько оптических волокон, которые вместе с армирующими нитями заключены в защитную полимерную оболочку. Для защиты от агрессивных внешних воздействий кабель помещают в броневую защиту из гофрированной алюминиевой или стальной защитной ленты либо из стальной проволоки. Из-за того, что оптическое волокно в достаточной степени чувствительно к осевым и радиальным деформациям, для его разрезания непригодны недорогие кабелерезы, которые используются для работы с медными кабелями. Рекомендуется использовать инструмент, лезвия которого рассчитаны на резку стали.

Начальный этап разделки волоконно-оптических кабелей — удаление верхнего слоя защитных и броневых покровов, выполняется теми же инструментами, что и разделка обычных кабелей. Полимерная изоляция и фольга вскрываются резаками, а стальная проволока выкусывается бокорезами. Рекомендуется применять кабельные ножи: они позволяют снимать полимерное покрытия с кабеля диаметром от 4 до 35 мм, и при этом кабельный нож имеет специальную насадку, ограничивающую глубину разреза оболочки, что исключает повреждение оптоволоконных жил.


Но в дальнейшей работе без специальных инструментов все равно не обойтись:

  • ножницы или кусачки с керамическими лезвиями — используются для удаления армирующих нитей из кевлара. Обычные ножницы эти тонкие, гибкие и прочные волокна не режут, а выдавливают или гнут;
  • стрипперы — предназначены для снятия буферного слоя. Их применение снижает риск повреждения оптического волокна: в первую очередь из-за того, что его рабочие поверхности имеют фиксированную настройку;
  • скалыватель оптических волокон — применяется для отсекания лишнего отрезка волокна под углом 90 град. Скалыватели бывают ручные и автоматические. При подготовке оптоволокна для последующей сварки или соединения волокон при помощи сплайса рекомендуется использовать автоматические скалыватели, которые позволяют получить чистый и ровный скол без дефектов под углом 90±0,5 град. Например, скол с углом более 2 град. может привести к увеличению потерь в соединении до 1 дБ, что при оптическом общем бюджете системы в 15-25 дБ — зачастую непозволительная роскошь;
  • микроскопы  позволяют  диагностировать разъемы оптических волокон на качество полировки жилы, наличие трещин, царапин;
  • кримперы предназначены для обжимки наконечников, разъемов и контактов.

Способы соединения волоконно-оптического кабеля

Широко применяются три способа монтажа оптоволокна:

  • сварка оптических волокон;
  • соединение   при   помощи   механических разъемов;
  • соединение при помощи сплайса.

Сварка оптических волокон

Осуществляется с помощью специальных сварочных аппаратов и обычно выполняется в три этапа:

  • подготовка и зачистка кабеля, получение качественного торца;
  • сваривание сварочным аппаратом;
  • тестирование и оценка качества соединения. Сварочный аппарат осуществляет соединение оптоволокна с хорошими параметрами места соединения просто и быстро. Современные сварочные аппараты позволяют снизить потери в месте соединения до 0,04 дБ и менее. Аппарат автоматически выполняет все необходимые операции: юстирует оптоволокна, расплавляет концы оптоволокон, сваривает их. Наиболее функциональные (но и, к сожалению, более дорогие) модели также проверяют качество соединения. После чего место сварки защищают, обычно при помощи термоусаживающей трубки.

Соединение при помощи механических разъемов

Сварка оптического волокна также используется при оконцовке волокна коннекторами. Для этих целей используются готовые волоконно-оптические перемычки -пигтейлы (англ. pigtail — гибкий проводник). Пигтейл обычно изготавливается в заводских условиях, он представляет собой отрезок оптоволоконного кабеля, который имеет с одной стороны оптический коннектор. Волокно оптического кабеля сваривается с волокном пигтейла, а уже при помощи коннектора его подключают к оборудованию.


Соединение при помощи сплайса

Сплайс — устройство для сращивания волоконно-оптического кабеля без применения сварки. В сплайс через специальные направляющие навстречу друг другу вводятся подготовленные концы оптических волокон и фиксируются в нем. Для уменьшения вносимых потерь стык между волокнами помещают в специальный (иммерсионный) гель, который зачастую находится внутри сплайса.

Технология соединения при помощи сплайса включает в себя несколько этапов:

  • разделка волоконно-оптического кабеля;
  • обработка торцов;
  • выполнение соединения;
  • тестирование и оценка качества соединения;
  • нанесение защитных покрытий, восстановление защитной оболочки и брони.

Применение сплайсов облегчает процесс сращивания оптоволокна, но работа с ними требует практических навыков. Вносимые потери при этом методе соединения волокон меньше, чем при использовании пары волоконно-оптических вилок и адаптера, но все же могут составлять 0,1 дБ и выше. Согласно требованиям стандартов на СКС IS0 11801, TIA EIA 568B вносимые потери в сплайсе не должны превышать 0,3 дБ. Для этого в ходе монтажа проводится корректировка положения волокон относительно друг друга, в процессе работ также необходимо проводить постоянный замер потерь на месте соединения.


Кроме того, следует принимать во внимание тот факт, что со временем потери в месте соединения при помощи сплайса могут увеличиться из-за смещения волокон в пространстве или высыхания иммерсионного геля.

Выводы

Материал, который здесь представлен, кому-то может показаться неполным, кому-то поверхностным. Я и не ставил себе задачу изложить всю информацию об инструментах и оборудовании, применяющихся при работе с оптоволокном — да и не уверен, что для этого хватит всего журнала: информации много, она разнообразна.

Но, для того чтобы приступить к работе, вполне достаточно начальных знаний и навыков. Читайте, спрашивайте, приходите на семинары и тренинги — поставщики оборудования должны быть сами заинтересованы в повышении вашей грамотности. Не боги горшки обжигали — и у нас все получится.                                

Опубликовано: Журнал «Системы безопасности» #2, 2010
Посещений: 32631

В рубрику «Видеонаблюдение (CCTV)» | К списку рубрик  |  К списку авторов  |  К списку публикаций

44.2 Тб/с по оптоволокну — как это работает? / Хабр

22 мая 2020 в Nature Communications была опубликована статья учёных, представляющих исследовательские и научные заведения Австралии, Китая и Канады, под названием «Ultra-dense optical data transmission over standard fibre with a single chip source».

Естественно, такой заголовок не подошел для широкой аудитории, потому в новостях все писали о 44.2 Тб/с — результате, которого удалось достичь (некоторые не дочитали и в заголовках появились ТБ/с, но правильное значение — терабиты/с). Давайте вместе разберёмся, как же это сделали и о чём на самом деле написали исследователи.

Начнём!





Оглавление

01. Тезисы
02. Эксперимент
03. Результаты
04. Сравнение с другими результатами
05. Полезные ссылки
06. Послесловие

Я постараюсь объяснить ключевые пункты исследования, в том числе термины, устройства и так далее. Кроме того, в конце моей публикации будет список ссылок, пройдя по которым вы можете прочитать больше.

Не стоит на 100% доверять моему объяснению. Как и все, кроме журналистов, я могу ошибаться. Читайте настоящую научную литературу (Раздел 05).





01. Тезисы

Оригинальные тезисы публикации [l-1] (свободный доступ):


Micro-combs – optical frequency combs generated by integrated micro-cavity resonators – offer the full potential of their bulk counterparts, but in an integrated footprint. They have enabled breakthroughs in many fields including spectroscopy, microwave photonics, frequency synthesis, optical ranging, quantum sources, metrology and ultrahigh capacity data transmission. Here, by using a powerful class of micro-comb called soliton crystals, we achieve ultra-high data transmission over 75 km of standard optical fibre using a single integrated chip source. We demonstrate a line rate of 44.2 Terabits s−1 using the telecommunications C-band at 1550 nm with a spectral efficiency of 10.4 bits s−1 Hz−1. Soliton crystals exhibit robust and stable generation and operation as well as a high intrinsic efficiency that, together with an extremely low soliton micro-comb spacing of 48.9 GHz enable the use of a very high coherent data modulation format (64 QAM — quadrature amplitude modulated). This work demonstrates the capability of optical micro-combs to perform in demanding and practical optical communications networks.

Используя интегрированный оптический источник удалось по стандартному оптоволокну передавать информацию на расстояние более 75 км. При этом была достигнута «скорость» в 44.2 терабита/с (Тб/с) для C-полосы (1 550 нм) со спектральной эффективностью 10.4 (б/с)/Гц. Расстояние между соседними солитонами удалось сократить до 48.9 ГГц.

Проверка на 75 км проводилась с помощью оптического волокна в лаборатории. Кроме того, были проведены аналогичные «полевые» испытания на настоящей оптической линии (76.6 км) в Мельбурне, Австралия.

Что нужно знать:

Микро-гребень (micro-comb)
Простыми словами — оптический (читай «лазерный») источник. Его спектр состоит из серии дискретных линий, которые находятся на одинаковом расстоянии друг от друга (потому и называется гребень). Кроме того, также называется и сам импульс такого источника. Если вам интересно, вы можете прочитать обзор [l-2], который затрагивает основные достижения этой области (81 страница, да, основные достижения, свободный доступ). Кратко можно почитать в Википедии [n-1].

Оптический солитон
Это одиночный оптический импульс, который может распространятся в нелинейной среде на большие расстояния без изменения своей формы. Общие сведения можно узнать из статьи в Википедии [n-2].

Солитонный кристалл (soliton crystal)
Это упорядоченный во времени ансамбль солитонов, которые «расположены» периодически благодаря модуляции генерирующего их поля. Кристалл он только во времени.

Квадратурная амплитудная модуляция (QAM)
С помощью изменения фазы и амплитуды сигнала, можно увеличить количество передаваемой информации. Фазу смещают на — четверть круга, потому «квадратурная». Число 64 означаем количество разных комбинаций при такой модуляции. Немного подробнее можно прочитать в Википедии [n-3].

Пожалуй, пока этого будет достаточно, а остальные термины или не самые очевидные вещи я буду объяснять по ходу.





02. Эксперимент



Рис. 1. Концепт эксперимента передачи данных с помощью солитонных кристаллов [l-1].

a. Иллюстрация состояния «солитонного кристалла», используемого в эксперименте.
b. Фото используемого чипа (5 х 9 мм, лишь около площади занято устройством и волноводами) + монета 2 AUD (20.5 мм) для масштаба. Вставка показывает кольцевой резонатор. Дисторсия, заметная на изображении, связана с клеем, фиксирующем оптоволокно.
c. Схема эксперимента. Непрерывно излучающий (CW [n-4]) лазер (1.8 Вт после усилителя) накачивает кольцевой резонатор (48.9 ГГц FSR [n-5]), генерируя микро-гребень при взаимодействии с солитонным кристаллом. Гребень выравнивается (имеется ввиду выравнивание амплитуды на разных частотах) и демультиплексируется [n-6], что позволяет дальнейшую его модуляцию. Далее сигнал снова уплотняется, передаётся по оптоволокну с использованием EDFA (см. ниже) усилителей и каждый канал вновь демультиплексируется (это антоним к уплотнению сигнала).

На Рис. 1 аббревиатуры:


  • ECL — edge-coupled laser — это лазер, соединённый с оптоволокном;
  • WSS — wavelength-selective switch — устройство, позволяющее селективное переключение длины волны [n-7];
  • Rx — receiver;
  • EDFA — Erbium Doped Fiber Amplifier — оптоволоконный усилитель, легированный ионами эрбия [n-8].

При излучении лазера (1 550 нм, непрерывный), микро-резонатор генерирует солитонный кристалл спектральной шириной более 80 нм (с периодом около 0.4 нм). Микро-гребень генерируется при автоматической подстройке лазера на нужное значение.



Рис. 2. Генерация солитонного кристалла. Для генерации, лазер плавно подстраивается с длинноволнового края резонанса на предопределённое значение [l-1].

a. Основной гребень. Генерируется, когда излучение лазера находится в резонансе с кольцом.
b. Спектр солитонного кристалла, который использовался в эксперименте. Такой «усечённый» спектр микро-гребня соответствует единичному временному дефекту, внесённому в кольцо (имеется ввиду вакансия вместо одной из линий гребня). На предопределённой частоте, генерируется солитонный кристалл со спектральными особенностями вокруг линий основного гребня. Таким образом добились линий по всей C-полосе оптической передачи данных.
c. Разница в интенсивности линий гребня для 10 разных параметров генерации (символы каждого вида на Рис. представляют один из 10 случаев). Поскольку интенсивность лежит в пределах ± 0.9 дБ от начального спектра, можно считать, что генерация требуемого солитонного кристалла надёжна.

Солитонные кристаллы генерировались для 10 разных длин волны от 1 550.300 до 1 550.527 нм и показано, что требуемый результат достигается для всех 10 вариаций.

Из всего микро-гребня были выбраны 80 линий в пределах C-полосы (спектральное окно шириной 32 нм от 1 536 до 1 567 нм, 3.95 ТГц). Эти полосы спектрально выровняли и после эффективно удвоили до 160 (что эквивалентно гребню 24.5 ГГц). Удваивание необходимо для оптимизации спектральной эффективности (спектральной полезной информации).

К исследуемому сигналу была добавлена тестовая полоса (6 каналов). Весь гребень модулировался в формате 64 QAM, что даёт символьную скорость [n-9] в 23 гигабод [n-10], что позволило использовать 94% доступного спектра.

Всего было проведено 2 эксперимента по передаче информации на 75 км. В обоих случаях использовалось одномодовое оптоволокно [n-11].


  1. Эксперимент в лаборатории.
  2. Полевые испытания с использованием муниципальной сети, которая соединяет мельбурнский кампус Мельбурнского королевского технологического университета и кампус Университета Монаша в Клейтоне.


Рис. 3. Многоканальные спектры и сигналы солитонного кристалла [l-1].

a. Спектр частотного гребня после выравнивания, измерянный с разрешением 12.5 ГГц, чтобы показать отдельные линии.
b. Лабораторные результаты для 75 км оптоволокна. Разрешение 50 ГГц. Вставка иллюстрирует тестовый канал (разрешение 150 МГц), показывая чётные и нечётные суб-полосы, присутствующие для каждой линии (результат удваивания, которое описывалось раньше).
c. Полевые результаты для 76.6 км оптоволокна. Разрешение 50 ГГц.
d. Сигнальное созвездие [n-12] для линии 193.4 ТГц (1550.1 нм) для двух поляризаций (X и Y). «Back-to-back» (B2B) соответствует напрямую подключённым передатчику и приёмнику, «75 km in-lab fibre» — лабораторному испытанию (b) и «76.6 km field fibre» — полевому испытанию (с).

На Рис. 3 аббревиатуры:


  • BER — bit error rate — коэффициент битовых ошибок [n-13];
  • (от величины вектора ошибки [n-14]) — характеризует качество сигнала.




03. Результаты



Рис. 4. Коэффициент битовых ошибок (BER), спектральная эффективность и обобщённая взаимная информация (GMI) [n-15] в эксперименте [l-1].

a. BER для каждой линии гребня. Синим обозначена B2B конфигурация, красным — лабораторный эксперимент, зелёным — полевой эксперимент. Штриховая линия обозначает 20% SD FEC, базирующиеся на кодах LDPC. Порог FEC выбран в . После передачи, считается, что ошибки во всех каналах отсутствуют.
b. GMI и спектральная интенсивность для каждой линии гребня. GMI рассчитывается отдельно для каждой линии после их нормализации, которая позволяет учесть соотношение сигнал-шум полученного сообщения. Линии показывают 10% и 20% избыточных данных (OH). Спектральная эффективность (SE) рассчитывается из GMI и соотношения символьной скорости к расстоянию между гребнями. Поскольку GMI предполагает идеальный сигнал, она показывает большую общую ёмкость информации по сравнению с BER. В последовательности GMI (SE) для B2B значения варьируются от 11.3 б/символ (10.6 б/символ/Гц) до 10.9 б/символ (10.3 б/символ/Гц). Для передачи по оптоволокну в лабораторных условиях значения (для канала) составляли от 11.0 б/символ (10.4 б/символ/Гц) до 10.7 б/символ (10.1 б/символ/Гц). Такие же результаты были получены в полевых испытаниях.

На Рис. 4 аббревиатуры:


  • FEC — forward error correction — прямая коррекция ошибок [n-16];
  • SD FEC — soft decision FEC;
  • LDPC — low-density parity-check code — код с малой плотностью проверок на чётность [n-17].

Чистый битрейт, полученный в экспериментах оценен в 44.2 Тб/с. При пересчёте в кодированный битрейт (с добавлением избыточной информации для передачи данных) это значение падает до 40.1 Тб/с (B2B конфигурация), 39.2 Тб/с (в лаборатории) и 39.0 Тб/с («в поле»). Это означает спектральную эффективность в 10.4, 10.2 и 10.1 б/с/Гц соответственно.

Такой результат почти на 50% превосходит результаты, полученные при использовании одиночного интегрального устройства [l-3]. При этом, спектральная эффективность выше в 3.7 раз.





04. Сравнение с другими результатами



Табл. 1. Сравнение результатов с другими публикациями.





05. Полезные ссылки



Научные публикации

l-1. Ultra-dense optical data transmission over standard fibre with a single chip source (OpenAccess)
l-2. Micro-combs: A novel generation of optical sources (OpenAccess)
l-3 Microresonator-based solitons for massively parallel coherent optical communications
l-4. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators (OpenAccess)
l-5. Microresonator frequency comb optical clock (OpenAccess)

Может быть полезно (Википедия)

n-1. Frequency comb
n-2. Soliton (optics)
n-3. Quadrature amplitude modulation (QAM)
n-4. Continuous wave (CW)
n-5. Free spectral range (FSR)
n-6. Multiplexing
n-7. Wavelength selective switching (WSS)
n-8. Doped fiber amplifiers (DFA, EDFA)
n-9. Symbol rate
n-10. Baud
n-11. Single-mode optical fiber (SMF)
n-12. Constellation diagram
n-13. Bit error rate (BER)
n-14. Error vector magnitude
n-15. Multivariate mutual information (MMI, GMI)
n-16. Forward error correction (FEC)
n-17. Low-density parity-check code (LDPC)

Рекомендую также просмотреть ссылки на другие роботы в данной области, использованые в публикации [l-1].


06. Послесловие

Достижение скорости передачи данных в 44.2 Тб/с (даже если на практике это 39.0 Тб/с) — это впечатляющее достижение современной науки.

И даже не смотря на то, что использовать его в жизни мы вряд ли сможем скоро, возможность передачи данных с высокой скоростью — одна из немногих сфер науки, которая не вызывает у обычных людей вопросов «а зачем вы это делаете?» или «а как это применить в нашей жизни?».

Надеюсь, вам было интересно. Спасибо за внимание!


P.S. Если вы нашли опечатки или ошибки в тексте, пожалуйста, сообщите мне. Это можно сделать выделив часть текста и нажав «Ctrl / ⌘ + Enter«, если у вас есть Ctrl / ⌘, либо через личные сообщения. Если же оба варианта недоступны, напишите об ошибках в комментариях. Спасибо!
P.P.S. Я буду признателен, если вы потратите ещё 60 секунд и ответите на 2 небольших опроса ниже. Спасибо!

Работа с волоконной оптикой

В данном материале мы рассмотрим ряд мелочей, использование которых облегчает проведение работ с оптическими линиями.

Одно из таких необходимых вспомогательных устройств — волоконно оптический телефон для двухсторонней связи по оптическому кабелю при проведении измерительных работ. Поскольку большинство измерений предполагает наличие приборов на обоих концах линии или снятие замеров с одной и другой стороны, без согласованных действий монтажников организовать их весьма сложно. Использовать с этой целью радиостанции невозможно, так как протяженность оптических линий может превышать сотню километров. Какие-либо металлические изолированные жилы в оптических кабелях, которые могли бы быть задействованы для организации проводной связи, встречаются очень редко. Выход один: волоконно-оптический телефон или переговорное устройство. Они выпускаются как в виде отдельной функционально завершенной системы, так и совмещенными с различными приборами (от источника излучения до рефлектометра). Пожалуй, наиболее разумным выбором станет телефон, встроенный в источник излучения или совмещенный с измерителем оптической мощности.

При проведении измерений на монтируемом оптическом кабеле понадобятся адаптеры для быстрого подключения к нетерминированному оптическому волокну без монтажа соединителя (адаптеры на обнаженное волокно). Такие устройства в виде соединителей с механическим зажимом для фиксации световода за буферное покрытие незаменимы в случае измерений в той части монтируемого оптического кабеля, где будет выполняться сращивание двух кабелей — процесс занимает всего несколько секунд. С их помощью можно быстро провести предварительные оценочные измерения, подсоединить переговорное устройство. Для аналогичных целей можно применять и лабораторные сплайсы. Однако они, в отличие от специальных адаптеров, обеспечивают ограниченное количество подключений.

Уменьшить оптические потери при установке на оптическое волокно адаптера или соединении волокон сплайсом призван иммерсионный гель. В случае заливки места соединения гелем оптический контакт настолько хорош, что качество выполнения скола не имеет особого значения.

Измерительные приборы для оптических линий требуют постоянного ухода и деликатного обращения. Еще больше внимания нужно уделять соединителям, ведь в процессе проведения измерений приходится выполнять большое число подключений; вероятность их загрязнения довольно велика и ставит под сомнение достоверность полученных результатов. Чтобы решить эту проблему, под рукой всегда должны находиться средства очистки. Это могут быть чистящие палочки, пропитанные спиртом, причем спирт и другие химические чистящие растворители должны быть специально предназначенными для таких работ. Плохо очищенный спирт после испарения оставляет невидимую глазу тонкую масленую пленку. Даже сдувать пыль нужно не дыханием, а очищенным сухим сжатым воздухом.

Сегодня, когда волоконная оптика в телекоммуникационных системах самого различного уровня используется все чаще, во многих компаниях задумываются над возможностью освоения технологий монтажа оптических линий. Все нужные для работы с оптическими кабелями инструменты можно приобрести отдельно по мере необходимости. Однако и в этом случае нет гарантии, что весь инструмент, приспособления и расходные материалы будут совместимы технологически (по набору и качеству выполнения операций, сроку службы, производительности и т. п.). Кроме того, вполне реально что-либо забыть или купить материалы ненадлежащего качества. Поэтому инструментарий для монтажных работ (особенно стартовый набор) чаще всего заказывают подобранными комплектами, куда входят не только инструменты, но и все необходимые для проведения работ тара, дозаторы, распределители, расходные материалы и защитные средства. Для удобства работы и хранения все перечисленное поставляется в органайзере (сумке или чемодане). Даже для восполнения расходных материалов лучше всего приобретать подобранные комплекты.

В зависимости от выполняемых работ (типа монтируемых оптических кабелей, места проведения работ, объема работ и требуемой производительности) можно приобрести скромный набор минимально необходимых для обработки одного типа оптического волокна средств и полный набор для любого оптического волокна. А вот комплектов, универсальных с точки зрения обрабатываемых разъемных соединителей, очень мало. Объясняется это просто — часть инструмента для их монтажа поставляется только производителями самих соединителей.

 

Несколько слов для тех, кому придется работать с оптическим кабелем на улице. Для защиты от пыли и осадков, а также создания необходимого микроклимата используются теплоизолированные палатки и боксы. Первые легко переносятся и собираются в любом месте. Вторые представляют собой полностью оборудованное помещение, смонтированное на шасси автомобиля и прицепа. Такие укрытия достаточно дороги, но качественный монтаж коммуникаций будущего под куском грузного брезента вряд ли удастся осуществить.

При укладке оптических кабелей в открытый грунт стоит потратиться на пластиковую маркерную ленту, она укладывается в грунт над кабелем и предохраняет его от повреждений в случае земельных работ. Нелишне задуматься и о более тщательном документировании трассы, поскольку обнаружить оптические кабели с помощью кабельного локатора в большинстве случаев невозможно. Исключение составляют кабели с центральным несущим элементом в виде металлического троса, который применяется для подачи сигнала от генератора кабельного локатора. Облегчат поиск пассивные локационные маяки, уложенные в грунт рядом с кабелем на определенном расстоянии друг от друга и в местах расположения соединительных муфт — такие устройства могут быть обнаружены предназначенными для этого локаторами.

НЕСКОЛЬКО СОВЕТОВ ТЕМ, КТО ХОЧЕТ ПОСТРОИТЬ ОПТИЧЕСКУЮ ЛИНИЮ

Эти простые правила могут оказаться полезными не только для тех, кто решил сделать все своими силами, но и желающим привлечь субподрядчиков. Если вы обнаружите, что они не выполняют предписанные правила — смело требуйте их соблюдения или ищите других исполнителей.

Думайте о технологии укладки. Среди всех возможных вариантов нужно выбрать тот, который обеспечит минимальные суммарные затраты на строительство и эксплуатацию оптической линии.

Правильно выбирайте трассу. Монтаж должен производиться внутри кабельной канализации или в специально отведенных для укладки кабеля местах (кабельных лотках), дабы исключить его повреждение при выполнении других работ в будущем.

Грамотно защищайте кабель. Монтаж открытого бронированного оптического кабеля или укладка облегченного кабеля в защитном кабельном канале (innerduct) имеют свои достоинства и недостатки и должны рассматриваться с учетом конкретной трассы. Заранее смонтированный кабельный канал обойдется дороже, но может использоваться для укладки методом вдувания.

Маркируйте кабель и трассу. Ремонт поврежденного оптического кабеля стоит недешево — гораздо выгодней вложить средства в маркировку трассы на местности и укладку в грунт маяков и маркерной ленты.

Правильно выбирайте емкость. Работы по укладке дополнительного кабеля обойдутся существенно дороже, чем несколько резервных волокон.

Оставляйте запас. Чтобы избежать проблем в дальнейшем, запас по длине должен создаваться в нескольких местах трассы и обязательно на ее концах, в местах заделки кабеля на соединители (не менее 3 м) или на переходной муфте.

Не забывайте о стандартизации. Старайтесь уменьшить число используемых типов кабелей и соединителей.

Помните о балансе мощности. При выборе оборудования и оптических кабелей обязательно рассчитывайте баланс мощности и делайте запас, чтобы изменение параметров с течением времени не вызывало сбоев.

Тестируйте кабель на каждом этапе выполнения работ. Избежать бесполезных трудозатрат, вовремя обнаружить и устранить дефекты можно, только если измерения производятся после каждой операции с оптическим кабелем — до его укладки, после нее, после сварки или монтажа сплайсов, после монтажа соединителей.

Тщательно документируйте трассу и все измерения. Никто не знает, какие проблемы возникнут в дальнейшем и какие сведения пригодятся при их решении. То, на что сегодня вы потратите час, завтра вам может обойтись в неделю работы.

методы и предосторожности / Хабр

Статьи по прослушиванию оптоволокна достаточно редки в силу определенной специфики такого рода коммуникаций. По мере удешевления оборудования и стоимости организации каналов связи на основе оптоволокна, они давно применяются в коммерческой практике. Специалистам ИТ, отвечающим за вопросы безопасности коммуникаций, стоит знать об основных источниках угроз и методах противодействия. Данная статья представляет собой перевод научной работы, опубликованной в материалах конференции HONET (High Capacity Optical Networks and Enabling Technologies ) в 2012 году. В сети удалось найти полнотекстовый авторский препринт, датированный осенью 2011 года, который, хотя и содержит некоторые ошибки (авторы не являются оригинальными носителями английского языка), тем не менее достаточно хорошо описывает существующие проблемы.

Скрытное подсоединие к оптоволокну: методы и предосторожности


М. Зафар Икбал, Хабиб Фатхалла, Незих Белхадж

M.Z IQBAL, H FATHALLAH, N BELHADJ. 2011. Optical Fiber Tapping: Methods and Precautions. High Capacity Optical Networks and Enabling Technologies (HONET).

Аннотация

Связь с использованием оптоволокна далеко не так безопасна, как это обычно принято считать. Существует ряд известных методов, используемых для извлечения или вставки информации в оптический канал и позволяющих избежать обнаружения подключения. Ранее сообщалось о нескольких инцидентах, в которых успешное подключение было сложно обнаружить. В данной работе рассматривается ряд известных методов подключения к оптоволокну, приводится отчет о симуляции оптических характеристик волокна, к которому подсоединение выполнено методом сгиба, а также доказательство концепции в виде физического эксперимента. Также представлены схемы различных сценариев, где злоумышленник, обладающий необходимыми ресурсами и использующий существующие технологии, может скомпрометировать безопасность оптического канала связи. Обсуждаются способы предотвращения подключения к оптоволокну, либо минимизации последствий утечки информации, передаваемой по каналу связи.

Данная статья основана на работе, поддерживаемой Королевскими ВВС Королевства Саудовская Аравия.

М. Зафар Икбал работает в Исследовательском Институте Продвинутых Технологий Принца Султана ([email protected])
Хабиб Фатхалла – доцент (помощник профессора) Университета Короля Сауда([email protected])
Незих Белхадж – постдок-исследователь Универитета Лаваля ([email protected])

I. ВВЕДЕНИЕ

В противоположность общему представлению, оптоволокно, по существу, не имеет защиты от сторонних подключений и прослушивания. В настоящее время по оптическим каналам связи передается огромное количество критической и чувствительной информации, и есть риск того, что она может попасть в руки определенных лиц, имеющих необходимые ресурсы и оборудование.

Подключение к оптоволокну (fiber tapping) – процесс, при котором безопасность оптического канала компрометируется вставкой или извлечением световой информации. Подключение к оптоволокну может быть интрузивным либо неинтрузивным. Первый метод требует перерезания волокна и подсоединения его к промежуточному устройству для съема информации, в то время как при использовании второго метода, подключение выполняется без нарушения потока данных и перерыва сервиса. Неинтрузивным технологиям и будет посвящена данная статья.

В настоящее время сообщается лишь о нескольких зафиксированных случаях подключения к оптоволокну. Это связано с большими сложностями в обнаружении места подключения, в то время как собственно подключение выполняется достаточно просто. Вот список основных инцидентов:

  • 2000, В аэропорту Франкфурта, Германия обнаружено подключение к трем главным линиям компании Deutsche Telekom [1].
  • 2003, на оптической сети компании Verizone обнаружено подслушивающее устройство [1].
  • 2005, подводная лодка ВМФ США USS Jimmy Carter модернизирована специальным образом для установки несанкционированных подсоединений к подводным кабелям [2],[3] (Отдельный пост на хабре — Подводная лодка USS Jimmy Carter, её специальные задачи и подводные оптические кабели).

В следующих разделах мы представим краткий обзор способов неавторизованного подключения [4]. Затем мы представим численное представление потери сигнала при сгибании волокна, сопровождаемое отчетом о физической демонстрации прототипа устройства для подключения к оптоволокну, разработанного в нашей лаборатории. Здесь же мы объясним устройство прототипа, используемое при этом оборудование и программное обеспечение. Также мы обсудим возможные сценарии подключения в реальных условиях и обговорим, какие ресурсы нужны для достижения этих целей. В итоге мы предложим несколько методик по защите оптических каналов против подсоединений.
II. МЕТОДЫ ПОДСОЕДИНЕНИЯ К ОПТОВОЛОКНУ

A.Сгибание волокна

При данном методе подключения, кабель разбирается до волокна. Данный способ основан на принципе распространения света через волокно посредством полного внутреннего отражения. Для достижения данного способа угол падения света на переход между собственно ядром волокна и его оболочкой должен быть больше, чем критический угол полного внутреннего отражения.

В противном случае, часть света будет излучаться через оболочку ядра. Значение критического угла является функцией показателей отражения ядра и его оболочки и представлено следующим выражением:

θc=cos-1cladding / μcore ), причем μcladding < μcore;

Здесь θc – критический угол, μcladding — показатель преломления оболочки, μcore — показатель преломления ядра

При сгибании волокна, оно искривляется таким образом, чтобы угол отражения стал меньше чем критический, и свет начал проникать через оболочку

Очевидно, что могут быть два типа сгибов:

1) Микросгиб

Приложение внешнего усилия приводит к острому, но при этом микроскопическому искривлению поверхности, приводящему к осевым смещениям на несколько микрон и пространственному смещению длины волны на несколько миллиметров (рис.1). Через дефект проникает свет, и он может использоваться для съема информации.

Рисунок 1.Микроизгиб
2) Макросгиб

Для каждого типа волокна существует минимально допустимый радиус изгиба. Это свойство также может использоваться для съема информации. Если волокно сгибается при меньшем радиусе, то возможен пропуск света (рис.2), достаточный для съема информации. Обычно минимальный радиус изгиба одномодового волокна составляет 6.5-7.5 см, за исключением волокна специального типа. Многомодовое волокно может быть изогнуто до 3.8 см.


Рисунок 2. Макроизгиб

B. Оптическое расщепление

Оптоволокно вставляется в сплиттер, который отводит часть оптического сигнала. Этот метод является интрузивным, поскольку требует разрезания волокна, что вызовет срабатывание тревоги. Однако, необнаруженное подключение такого типа может работать годами.
С. Использование неоднородных волн (Evanescent Coupling)

Данный способ используется для перехвата сигнала от волокна-источника в волокно-приемник посредством аккуратной полировки оболочек до поверхности ядра и затем их совмещения. Это позволяет некоторой части сигнала проникать во второе волокно. Данный способ трудновыполним в полевых условиях.
D. V-образный вырез (V Groove Cut)

V-образный вырез – это специальная выемка в оболочке волокна близкая к ядру, сделанная таким образом, что угол между светом, распространяющимся в волокне и проекцией V-выреза больше, чем критический. Это вызывает полное внутреннее отражение, при котором часть света будет уходить из основного волокна через оболочку и V-образный вырез.
E. Рассеяние

На ядре волокна создается решетка Брэгга, с ее помощью достигается отражение части сигнала с волокна. Это достигается наложением и интерференцией УФ лучей, создаваемых лазером с УФ возбуждением.
III. МОДЕЛИРОВАНИЕ

А. Методология

Для точной оценки потерь при сгибании оптоволокна типа SMF-28 используется полновекторный частотный решатель Максвелла, основанный на методе конечных элементов высокого порядка и допускающий адаптацию граничных условий — растягивающегося идеально согласованного слоя. Получены векторные расчеты констант распространения и электрических полей мод в изогнутых волноводах. Потери при сгибе рассчитываются на основе мнимой части константы распространения фундаментальной моды. Общие потери получены сложением потерь ортогональной и базовой моды. Результаты, полученные данным способом достаточно точны и были проверены в [5].
B. Данные для моделирования.

Для волокна SMF-28, радиус ядра и показатель преломления представляют собой соответственно.
rc = 4.15 μm и nc=1.4493
В оболочке, они соответственно равны:
rcl = 62.25 μm and ncl=1.444.
Коэффициент преломления воздуха равен 1.
C. Расчет потери мощности.

Радиус изгиба ρ взят по оси x, мода поляризуется вдоль оси y, а распространение идет по оси z, как показано на рисунке 3.

Рисунок 3

Рисунок 4 представляет собой выраженную в числах потерю на сгибе как функцию радиуса изгиба волокна метровой длины. Наблюдается логарифмическая зависимость потерь относительно радиуса изгиба. Для небольших радиусов изгиба ( ρ < 10 mm ), потери превышают 40 dB/м. При обычных радиусах изгиба ( ρ > 15 mm) потери составляют меньше чем 1 dB/м

Рисунок 4. Численная оценка потери на изгибе, как функции от радиуса изгиба

IV. ЭКСПЕРИМЕНТ ПО ПОДКЛЮЧЕНИЮ К ОПТОВОЛОКНУ

A. Последовательность действий при подсоединении к оптоволокну.

Полностью операция прослушивания может быть реализована с помощью следующих шагов:
  1. Получение оптического сигнала с волокна
  2. Детектирование сигнала.
  3. Обнаружение механизма передачи (декодирование протокола)
  4. Программная обработка обнаружения фреймов/пакетов и извлечение из них необходимых данных.

Эксперимент включал в себя передачу цифрового видеосигнала через оптический Ethernet с одного компьютера на другой. Подсоединяемое волокно было разделано до оболочки и помещено в оптический каплер (coupler), где волокно сгибается, вызывая излучение некоторого количества света, нарушающего принцип полного внутреннего отражения. Это устройство направляет захваченный свет в однонаправленный конвертер Ethernet. В дальнейшем, фреймы Ethernet обрабатываются и из них реконструируется видеопоток на третьем ПК. Для передачи потока и воспроизведения использовался VLC плеер. Анализатор протоколов WireShark использовался для захвата пакетов, а ПО Chaosreader использовалось для реконструкции видео из захваченных пакетов.

B. Процедура

Программное и аппаратное обеспечение соединено как на рисунке 5. Разделанное волокно проходит от источника видео до приемника, через зажим каплера. В зажиме отводится часть света и попадает в однонаправленный медиаконвертер, считывающий Ethernet-фреймы, которые затем передаются в третий PC, на котором стоит WireShark. Анализатор протокола конвертирует фреймы Ethernet и извлекает такую информацию как MAC –адреса источника и приемника. Также он обрабатывает содержимое фреймов и достает из него IP-пакеты. Информация, полученная из пакетов, включает в себя IP-адреса, сообщения сигнальных протоколов и биты служебной загрузки.

Рисунок 5.Экспериментальная схема для подсоединения к волокну методом изгиба

Пакеты собранные таким способом сохраняются в формате файла pcap (packet capture). Затем файл обрабатывается ПО Chaosreader, который реконструирует оригинальные файлы и создает индекс реконструированных файлов. Для обнаружения нашего захваченного видео, мы смотрим в каталоге и ищем *.DAT файлы большого размера. Затем этот файл открывается в плеере VLC и показывает перехваченную часть видеопотока.

C.Возможные действия при прослушке

Помимо проигрывания видео, экспериментальная система, описанная здесь, может быть использована для выполнения ряда задач по перехвату информации, такой например как сведения для атаки по IP-адресам, кражи паролей, прослушивания VoIP-переговоров, реконструкции сообщений электронной почты с помощью бесплатного, коммерческого или самодельного ПО.
V. ДАЛЬНЕЙШИЕ СЦЕНАРИИ ПОДСОЕДИНЕНИЯ.

Эксперимент, описанный здесь, выполнялся с использованием Ethernet компонентов, по причине их наибольшей доступности. Однако, некоторые сценарии, возможные в реальной жизни, вполне могут выглядеть так:


Рисунок 6 Сценарий подсоединения с удаленной обработкой.

А.Подсоединение к сети передачи данных
.

Ценная информация может быть получена из сетей передачи данных таких как SDH и SONET — двух основных стандартов передачи данных по оптоволокну через магистральные каналы связи и метросети.

Информацию из высокоскоростных сетей достаточно сложно сохранять и обрабатывать, но на рынке доступны высокотехнологичные анализаторы SDH-протоколов, которые могут быть использованы для получения низкоуровневых исходных сигналов[6].Частично это упрощает возможные сложности, связанные со скоростью передачи данных. Такие устройства могут быть впоследствии доработаны для получения различных типов трафика, проходящего через сеть. Например, можно извлекать ethernet поток, который сопоставлен некоторому потоку контейнера VC4.

Подсоединение с удалённой обработкой

Существует две важных стимула заниматься удаленной обработкой:
  • При подключении к дальним высокоскоростным (несколькоГбит/сек) каналам связи, роль хранилища становится крайне важной. Захваченные пакеты заполняют диск крайне быстро.
  • Привлечение сетевых экспертов для работы в полевых условиях может оказаться весьма затратным. Более удобно организовать им работу в удаленном центре обработки где присутствует любое необходимое оборудование, сложно выносимое в поле.

При использовании воображения, можно легко достроить все необходимые сценарии по работе с удаленными данными. Например:

1) Использование беспроводного интернета. При использовании Wi-Fi, прослушивающий компьютер может находиться в другой комнате или фургоне, за пределами здания, где установлено подключение. Эксперт может работать в относительной безопасности с возможностью доступа ко всем ресурсам.
2) Использование микрочастотного или спутникового канала. Наша экспериментальная схема была модифицирована и Ethernet трафик перенаправлялся на направленный спутниковый канал (рис.6).
3) Вставка сигнала.При помощи метода рассеяния, описанного ранее, теоретически возможно создать устройство, которое имеет возможность передавать сигнал внутрь волокна посредством видоизмененной технологии оптического каплинга (coupling)
Можно разработать технологии для постановки помех на волокно без разрыва в связи или даже внедрение зловредной информации.

VI. ЗАЩИТА ОТ ПОДКЛЮЧЕНИЙ.

Есть три основных категории методов предотвращающих или снижающих до минимума влияние посторонних подключений:
A. Наблюдение за кабелем и мониторинг.

1. Мониторинг сигналов вблизи волокна.

Производство оптоволокна с дополнительными волокнами, по которым передается специальный сигнал мониторинга. Использование такого метода увеличит стоимость кабеля, но любая попытка согнуть кабель вызывает потерю сигнала мониторинга, и вызывает срабатывание сигнала тревоги [7].
2) Электрические проводники

Другой метод состоит в интегрировании электрических проводников в кабель, и если оболочка кабеля нарушена, то изменяется емкость между электрическими проводниками и это может использоваться для срабатывания тревоги.
3) Мониторинг мощности мод.

Этот метод применим к мультимодовому волокну, в котором затухание – это функция от моды, в которой распространяется свет. Подсоединение влияет на определенные моды, но при этом затрагивает и другие моды. Это приводит к перераспределению энергии от проводящих мод к непроводящим, что меняет соотношение энергии в ядре волокна и его оболочке. Изменение энергии в модах может быть обнаружено на принимающей стороне соответствующим измерением, что будет являться информацией для принятия решения – есть подключение к кабелю или нет [8].
4) Измерение оптически значимой мощности

В волокне может осуществляться мониторинг уровня оптически значимой мощности. В том случае, если она отличается от установленного значения, срабатывает сигнал тревоги. Однако это требует соответствующей кодировки сигнала, так чтобы в волокне присутствовал постоянный уровень сигнала, не зависящий от наличия передаваемой информации [8].
5) Оптические рефлектометры

Поскольку подсоединение к волокну забирает часть оптического сигнала, для обнаружения подключений могут использоваться оптические рефлектометры. С их помощью можно установить расстояние по трассе, на котором обнаруживается падение уровня сигнала (рис.7) [8]


Рисунок 7. Поиск подключения на оптической трассе с помощью оптического рефлектометра

6) Методы с использованием пилотного тона:

Пилотные тоны проходят по волокну также как и коммуникационные данные. Они используются для обнаружения перерывов в передаче. Пилотные тоны могут использоваться для обнаружения атак, связанных с постановкой помех, но если несущие волновые частоты пилотных тонов не затрагиваются, то данный метод не является эффективным при обнаружении такого рода атак. О наличии подключения можно судить только по существенной деградации уровня сигнала пилотного тона [8]
B. Сильногнущееся волокно.

Эти виды волокна, обычно называемые волокном с низкими потерями и сильным радиусом изгиба, защищают сеть передачи данных, ограничивая высокие потери, возникающие при прокалывании волокна или его сгибании. Кроме того, для светового потока становятся менее повреждающими такие факторы как вытягивание, перекручивание и другие физические манипуляции с волокном. Существуют также другие типы волокна основанные на иных технологиях производства [9].
C. Шифрование

Хотя шифрование никак не препятствует подсоединению к волокну, она делает украденную информацию малополезной для злоумышленников. Шифрование обычно классифицируется по уровням 2 и 3.
1) Шифрование третьего уровня

Пример шифрования третьего уровня – протокол IPSec. Он реализуется на стороне пользователя, так что это вызывает определенные задержки в обработке. Протокол поднимается вначале сессии и общая реализация может быть весьма сложной если в работу вовлечено большое количество сетевых элементов. Рассмотрим, например, разработку мультимедийных подсистем. При первоначальной разработке, связь между различными узлами и элементами является незащищенной. Существенно позже IPSec был встроен в оригинальный дизайн, так как технологии нижнего уровня не предлагали никакого шифрования вообще.
2) Шифрование второго уровня.

Шифрование второго уровня освобождает элементы третьего уровня от любого бремени шифрования информации. Один из возможных источников шифрования второго уровня – это оптический CDMA, который считается относительно безопасным [10-12]. Данное допущение, в основном, базируется на методах расшифровки методом грубой силы и упускает из виду более продвинутые способы. Вероятность успешного перехвата данных является функцией нескольких параметров, включая отношение сигнал/шум, и дробление (fraction) доступной системной емкости. В [12] указывается что увеличение сложности кода может увеличить отношение сигнал/шум, требуемое для злоумышленника чтобы «сломать» кодирование всего лишь на несколько dB, в то время как обработка менее чем 100 бит со стороны злоумышленника может уменьшить отношение сигнал/шум на 12 dB. Перепрыгивание по длинам волн и распределение сигнала во времени в частности, и использование O-CDMA в общем, обеспечивают достаточный уровень секретности, но он высоко зависит от системного дизайна и параметров реализации.
БЛАГОДАРНОСТИ

Авторы благодарят Исследовательский Институт Продвинутых Технологий Принца Султана за предоставление его ресурсов и выполнение экспериментальной части работы.
VII. ЗАКЛЮЧЕНИЕ

Подсоединение к оптоволокну является весьма осязаемой угрозой интересам национальной безопасности, финансовым организациям а также персональной приватности и свободам. После подключения, получаемая информация может быть использована многими способами в зависимости от мотивации злоумышленника и его технических возможностей. В данной работе мы предоставили концепцию как в виде симуляции, так и в виде физического эксперимента, используя подключение посредством ‘подключения методом сгиба’ и также продемонстрировали возможность существования разных сценариев, выполнимых при помощи доступных технологий. Помимо получения информации с оптоволокна, существует ряд методик, позволяющих вставлять информацию в неё, как в случае с разделением на неоднородных волнах и достигнуть постановки помех или вброса неверной информации. Явная легкость прослушивания оптоволокна требует определенных предосторожностей, что также описано в этой статье.
ССЫЛКИ

  1. Sandra Kay Miller, «Hacking at the Speed of Light », Security Solutions Magazine, April 2006
  2. Davis, USN, RADM John P.«USS Jimmy Carter (SSN-23): Expanding Future SSN Missions». Undersea Waifare, Fall 1999 Vol.2, No. I
  3. Optical Illusion by: Sandra Kay Miller Information security Issue: Nov 2006.
  4. Optical Network Security: Technical Analysis of Fiber Tapping Mechanisms and Methods for detection and Prevention, Keith Shaneman & Dr. Stuart Gray, IEEE Military Communications Conference 2004.
  5. R. Jedidi and R. Pierre, High-Order Finite-Element Methods for the Computation of Bending Loss in Optical Waveguides, lLT, Vol. 25, No. 9, pp. 2618-30, SEP 2007.
  6. FTB-8140 Transport Blazer — 40143 Gigabit SONETISDH Test Module, EXFO
  7. «Optical Fiber Design for Secure Tap Proof transmission», US Patent No. 6801700 B2, Oct. 5,2004.
  8. All Optical Networks (A ON), National Communication System, NCS TIB 00-7, August 2000
  9. DrakaElite, BendBright-Elite Fiber for Patch Cord, Draka Communications, July, 2010
  10. W. Ford, «Computer Communications Security», Upper Saddle River, NJ: Prentice-Hall, 1994.
  11. D. R. Stinson, «Cryptography», Boca Raton, FL: CRC, 1995.
  12. N. Ferguson and 8. Schneier, «Practical Cryptography», Indianapolis, IN: Wiley, 2003.

Безопасность при работе с оптоволокном

В рубрику «Видеонаблюдение (CCTV)» | К списку рубрик  |  К списку авторов  |  К списку публикаций

Эксперты отмечают увеличение числа проектов по созданию систем видеонаблюдения и систем безопасности с использованием в качестве каналов передачи информации оптоволоконных кабелей. Со своей стороны, анализируя статистику продаж, мы также наблюдаем заметный рост спроса на оборудование по передаче различных видов сигналов по волоконно-оптическим линиям связи, что влечет за собой более интенсивное использование оптоволокна

С.A. Карачунский
Руководитель отдела маркетинга компании «В1 электроникс»

Оптоволоконные системы в настоящее время становятся все более востребованными – очень многие компании заинтересовались модернизацией своих сетей с помощью внедрения оптоволоконной продукции. Множится число новых проектов, в которых применяется оптоволокно.

Спрос рождает предложение, и как следствие, все больше специалистов осваивают тонкости работы с оптоволоконным кабелем – разделка и зачистка волокон, последующая сварка и тестирование соединений. Но всегда следует помнить, что при работе с оптическим кабелем надо знать и соблюдать меры безопасности – оптоволоконный кабель не является абсолютно безвредным, как может показаться на первый взгляд.

Подготовка кабеля к монтажу

По своему строению оптоволоконный кабель напоминает привычный коаксиальный: оптические волокна, буферный слой для их защиты, внешний защитный слой из полимерного материала. Для прокладки в особых условиях применяются кабели, имеющие дополнительную защиту в виде гофрированной металлической ленты или скрученной стальной проволоки. Специалисту, который располагает опытом обращения с коаксиальным кабелем, работы по удалению его внешних оболочек не принесут никаких неприятных сюрпризов.

Для получения качественного соединения оптоволоконного кабеля после разделки и подготовки поверхностей оптические нити надо обезжирить. Часто для этого используют изопропиловый спирт или пропитанные им безворсовые салфетки. Следует помнить, что он обладает раздражающим действием на глаза и дыхательные пути, оказывает угнетающее действие на нервную систему даже при относительно низкой концентрации. Поэтому работы надо осуществлять в хорошо проветриваемом помещении, рекомендуется пользоваться респиратором. Не следует проводить работы в небольшом замкнутом пространстве при отсутствии принудительного притока воздуха.

Главная особенность оптоволоконного кабеля – волокна, сделанные из кварцевого стекла или пластика. Максимальное число травм возникает именно при работе с оптическими волокнами. После удаления последнего буферного слоя тонкие нити легко ломаются, осколки могут попасть под кожу, прилипнуть к ней и проникнуть в дыхательные пути или попасть в глаза. То же самое может случиться во время сращивания волокон – одним из этапов является подготовка торцов нитей путем скалывания, при этом не все скалыватели имеют функцию автоматического сбора остатков волокна. Вероятность возникновения травмы возрастает, если на рабочем месте не поддерживается чистота.

При работах по зачистке оптоволоконного кабеля настоятельно рекомендуется:
1. Использовать рабочую одежду, очки и желательно перчатки.
2. Операции проводить на монтажных столах и ковриках с покрытием, не отражающим свет и устойчивым к воздействию химических препаратов. Цвет монтажной поверхности не должен совпадать с цветом волокон в кабеле – иначе это затруднит нахождение и удаление остатков оптических волокон. При выборе монтажного стола следите за тем, чтобы конструкция не позволяла скапливаться осколкам волокна в его швах и по краям.
3. Необходимо обеспечить хорошее освещение рабочего места.
4. Своевременно убирать обрезки волокон – их необходимо собирать в плотно закрывающиеся контейнеры или на клейкую ленту.
5. Прием пищи на рабочем месте запрещен: осколки вместе с едой могут попасть внутрь и поранить стенки желудка и кишечника.
6. Чаще мыть руки с мылом, поскольку осколки волокна прозрачны и незначительны по своим размерам, а значит, легко могут прилипнуть к коже, оставаясь незаметными, и впоследствии попасть в глаза или внутрь организма.

Если же во время сращивания кабелей осколок волокна попал под кожу, необходимо осторожно извлечь его пинцетом с тефлоновым покрытием, который имеет более упругую поверхность, чем стальной пинцет, и не сломает кусочек волокна, оставив часть его под кожей. Необходимые инструменты и нужные расходные материалы присутствуют в укомплектованных наборах инструментов, большое разнообразие которых широко представлено на российском рынке.

Сварка оптического кабеля

Развитие функционала сварочных аппаратов происходит не только в сторону улучшения качества соединения, но и в сторону безопасности работ. Современная аппаратура полностью автоматизирует процесс, оставляя оператору только задачу установить свариваемые волокна и выбрать режим работы. Но следует помнить, что сваривание волокон происходит в поле электрической дуги, которое формируется путем подачи высокого напряжения. Малейшая неисправность аппарата может привести к серьезным травмам – как к поражению электрическим током, так и к ожогам.


Еще раз хочется напомнить о вентиляции места работы – дуговой разряд между электродами может привести к возгоранию горючих газов и паров легковоспламеняющихся жидкостей.

Курение во время работы с оптоволокном может способствовать резкому снижению качества сварки из-за попадания в участок сплавления волокон вместе с дымом от сигареты твердых частиц – продуктов горения табака.

Тестирование мест соединения кабелей

Обычно тестирование места соединения проводят путем подачи тестового сигнала в оптоволоконный кабель с последующим замером излучения и его мощности на другом конце кабеля. Как правило, все работы сделаны качественно, и потери не превышают рамки допустимого. Затем место соединения герметизируют, и работа считается выполненной. Но бывают случаи, что сигнал не проходит или его мощность минимальна. Начинается проверка участков соединения.

Специалисты, имеющие дело с оптической техникой передачи данных, обязательно должны руководствоваться правилом, что любое волокно может оказаться активным – в нем присутствует излучение. Никогда не следует заглядывать в выходное отверстие передатчика или в торец коннектора. Для контроля качества свариваемого соединения обычно используется микроскоп. Он позволяет посмотреть на поверхность «вооруженным глазом», увеличивая размеры в 200 раз и более, но обнаружить излучение внутри волокна, которое находится за границей видимого спектра, невозможно. Если при сваривании волокна сместились относительно друг друга или произошли их повреждения в непосредственной близости от места сварки, то есть вероятность, что часть излучения может отразиться и попасть в микроскоп.

Для предотвращения таких случаев ряд моделей микроскопов оборудован встроенным лазерным фильтром, ослабляющим уровень излучения на 2–35 дБ в зависимости от длины волны. Такие микроскопы дороже обычных, но безопаснее. Если же вы используете микроскоп без фильтра, то рекомендуется надевать специальные защитные очки с соответствующими фильтрами, предохраняющими глаза от излучения.

Безопасность прежде всего

Системы передачи сигналов по оптоволоконным кабелям значительно расширяют возможности систем безопасности, и в настоящее время спрос на них неуклонно растет – как следствие, все больше специалистов осваивают навыки монтажа оптоволоконного кабеля. Однако никогда не следует забывать о правилах безопасности при проведении работ – знание и соблюдение элементарных правил позволит сохранить работоспособность и выполнить работу в срок.

Опубликовано: Журнал «Системы безопасности» #4, 2010
Посещений: 17304

  Автор


Карачунский С. А.Руководитель отдела маркетинга компании «В 1 электроникс»

Всего статей:  3

В рубрику «Видеонаблюдение (CCTV)» | К списку рубрик  |  К списку авторов  |  К списку публикаций

как работает и другие секреты стеклянных нитей

В момент чтения этого текста терабайты информации проходят по всей планете через стеклянные нити, протянутые всевозможными способами. Это больше напоминает волшебство, но на самом деле это одна из важнейших технологий, изобретенных человечеством.

Она появилась благодаря естествоиспытателям XIX века, которые в теории предположили возможность управления светом. Сама идея была воплощена в жизнь после более детального изучения оптических свойств разных материалов. Что такое оптоволокно, как работает, особенности и производство кабеля – все это темы нашей статьи.

Передача света

Как работает оптоволокно: все подробности простым языкомКак работает оптоволокно: все подробности простым языком

Через медную витую пару проходит огромное количество электронов. Ток переходит по проводнику, передавая закодированную последовательность импульсов – данные. Сам код состоит из нулей и единиц (двоичный). Оптоволокно отправляет сигналы по аналогичному принципу, хотя в плане физики здесь сложнее.

Лучше обойтись без теории и просто понимать, что аналогично электронам, световые волны также умеют передавать данные. К примеру, когда на аэродромах отказывает связь по радио, используется запасной вариант – сигналы отправляются по прожекторам. Однако, такой способ можно использовать лишь в прямой видимости, а оптоволокно передает свет на тысячи километров и не всегда по прямой.

Изначально ученые пытались передавать свет на долгие расстояния с помощью зеркал. Так, металлические трубы внутри покрывались зеркальным слоем и в них направлялся световой луч. Но цена таких световодов оказалась слишком высокой, а свет рано или поздно терял свои свойства и угасал.

Позже решение было найдено – свет можно запереть, если использовать для его передачи две среды с разными оптическими свойствами. При этом будет достаточно даже небольшого различия.

Как работает оптоволокно: все подробности простым языкомКак работает оптоволокно: все подробности простым языком

Световоды по новой технологии

Что такое оптоволокно, вы узнаете, посмотрев следующее видео:

Уже понятно, что для простой передачи света не столь важен выбор материалов. Для физических опытов в школе достаточно иметь под рукой воду и трубку из пластмассы. Тем не менее, для трансляции сигналов на тысячи километров необходимы максимально чистые материалы с практически идеальными оптическими свойствами и с минимальными примесями.

Наиболее подходящим материалом оказался диоксид кремния (кварцевое стекло). Для получения в нем разных коэффициентов преломления света используется хитрость. Так, его центр оставили чистым, а внешние слои насытили германием, позволяющим изменить свойства стекла.

Как работает оптоволокно: все подробности простым языкомКак работает оптоволокно: все подробности простым языком

Производство световолокна

Болванка (которая в будущем превратится в провод) спекается из двух подготовленных трубок, вставляемых одна в одну. Существует и другой вариант, когда сердцевина насыщается германием.

Однако, лучше наполнить трубки изнутри газом. Затем достаточно подождать, чтобы германий сам осел на стекло с минимальным слоем. После этого останется разогреть трубку и растянуть на метр. Вдобавок, полость внутри закроется самостоятельно.

У готового стержня будет сердцевина и оболочка с различными оптическими свойствами.

Как работает оптоволокно: все подробности простым языкомКак работает оптоволокно: все подробности простым языком

Именно он подходит для будущего оптоволоконного провода. Хотя заготовка с диаметром несколько десятков сантиметров не слишком его напоминает, зато стекло из кварца отлично можно растянуть.

Поэтому готовую болванку поднимают на башню с высотой 10 метров, укрепляют ее и начинают равномерно подогревать, чтобы ее консистенция начала напоминать нугу. Начиная с определенного момента, из болванки под ее весом начнет тянуться тонкая нить. Опускаясь вниз, она застынет и станет достаточно гибкой. Это вызывает удивление, однако, сверхтонкие стекла хорошо сгибаются.

Приготовленное оптоволокно, постоянно опускающееся вниз, спускают в наполненную жидким пластиком емкость. Это позволяет нанести защиту на кварцевую поверхность, затем нить сматывают. Процесс идет до того момента, пока болванка не превратится в одну нить, длиной 100-200 километров.

Уже с такой нити плетутся кабели, которые могут содержать от двух до двухсот стекловолокон. Далее кабель оснащают вставками для упрочнения, экранирующими слоями и оболочкой для защиты.

Как работает оптоволокно: все подробности простым языкомКак работает оптоволокно: все подробности простым языком

Передача информации со скоростью света

Для запуска в производство оптоволокна необходимо строить специализированные заводы, специально обучать персонал, не забывая при этом об огромных вложениях. В любом случае, вложения стоят полученной выгоды.

Скорость света – это максимальный предел, позволяющий обмениваться информацией. Медные провода такого предела достигнуть не могут.

Единственным конкурентом оптоволокна можно назвать линию прямого оптического соединения.

В постсоветских странах в основном домашний интернет проводят посредством двужильного кабеля, где толщина жил составляет от одного до двух миллиметров. Максимальная скорость передачи данных составляет 100 Мбит/сек. Ее вполне хватит для нескольких компьютеров, однако, при наличии Smart TV, NAS сервера и других смарт-устройств, будет недостаточно кабеля даже с восемью жилами. При этом у оптоволокна с толщиной 9 микрон пропускная способность в 30 раз выше, а сам оптоволоконный кабель работает на нескольких жилах.

Еще одно преимущество применения оптоволоконного кабеля – его меньший вес, по сравнению с медными проводами, и габариты. Это удобно при прокладывании магистральных линий.

Как работает оптоволокно: все подробности простым языкомКак работает оптоволокно: все подробности простым языком

Благодаря оптическим кабелям, появилась возможность соединить даже целые континенты. Например, в России первая линия была проложена в Москве. Подводным кабелем первым соединили Санкт-Петербург и Аберслунд (Дания).

После этого оптоволокно стали использовать для связи между предприятиями, банками и госучреждениями. Что касается интернета для населения, в городах применяется практика, когда такими линиями провайдеры подключают многоквартирные дома, а уже в квартиры интернет поступает при помощи традиционной витой пары. Тем не менее, некоторые пользователи уже начали переходить на оптику, хотя такая возможность доступна не всем.

Предлагаю к просмотру познавательный документальный фильм про оптоволокно:

Сложность технологии и ограничения

Оптоволокно не только дорого и сложно производить. Львиную долю затрат занимает его обслуживание. Здесь невозможно обойтись стандартной изолентой. Во время монтажа кабелей кварц нужно сращивать с применением специальной технологии, а линии необходимо доукомплектовывать дополнительным оборудованием.

Как работает оптоволокно: все подробности простым языкомКак работает оптоволокно: все подробности простым языком

Благодаря разным коэффициентам преломления света, в оболочке и сердцевине теоретически можно получить световод. Однако, пущенный через кварц свет будет постепенно затухать, поскольку свое дело делают примеси в стекле. При этом устранить этот недостаток полностью почти невозможно. Да и нескольких молекул h30 на целый километр провода хватит для появления ошибок в сигнале и понижения максимального расстояния его передачи.

Аналогичная проблема еще появлялась у электриков во время изготовления медных и других проводов. Позже был введен новый термин «дистанция регенерации» – максимальное расстояние, по которому без проблем передается сигнал.

Одна оптоволоконная жила в состоянии держать свет до двух-трех сотен километров. Однако, рано или поздно потребуется дополнительно усиливать и восстанавливать сигнал.

Для стандартных линий связи достаточно установить недорогие усилители. Для оптоволокна необходим монтаж сложного оборудования, для работы которого необходимо использовать редкоземельные металлы и запускать инфракрасные лазеры.

Так, в линию связи нужно врезать участок специального стекловолокна, насыщенного эрбием. Его атомы, благодаря накачиванию светом, будут находиться в возбужденном состоянии. Для поддержания такого состояния и нужен специальный лазер. Когда сигнал проходит через эту область, его мощность увеличивается почти вдвое, так как эрбий излучает свет, аналогичной сигналу, волны. Следовательно, зашифрованная информация сохраняется также. Далее свет может пройти еще 100 километров, где нужно еще раз повторить усиление.

Для поддержания этой системы нужен обслуживающий персонал и беспрерывный присмотр. Поэтому экономический эффект от прокладки оптики для абонентов почти во всех странах мира остается под большим вопросом. Тем не менее, оптоволокно для передачи данных – универсальный вариант.

Именно на данной технологии основан интернет современного уровня, позволяющий передавать видео в высоком разрешении, вести видеостриминг, поддерживать серверы онлайн-игр практически без задержек, предоставлять моментальную связь между любыми городами мира, а также обеспечивать мобильную передачу данных. Ведь станции мобильных операторов соединены между собой тоже стекловолокнами.

Хотя специалисты работают над созданием новых средств коммуникации, более мощная технология появится в обиходе еще нескоро. Да, некоторые решения позволяют увеличить пропускную способность примерно в два раза, а между континентами прокладываются все более толстые жилы из кварца.

Обойти принципиальный предел, связанный с максимальной скоростью света, через кварц, скорее всего, не получится. Можно отказаться от кварца и обеспечить передачу сигнала лазерами. Однако, это можно делать только по прямой линии. Поэтому передатчики потребуется устанавливать только в космосе или хотя бы над орбитой земли.

прошлое и настоящее / Блог компании НАГ / Хабр

В 1966 году ученый и выходец из Китая Чарльз Као Куэн представил миру результаты собственного исследования. Основной посыл его разработок заключался в том, что оптическую связь можно организовать с помощью стеклянного волокна. В своей работе Као представил миру уникальные конструктивные особенности волокна и его материалов. Исследования ученого можно по праву считать основой волоконно-оптических телекоммуникаций сегодняшнего дня. Первое же упоминание термина “оптическое волокно” впервые было использовано в 1956 году компанией NS Kapany из США.

Сегодня технологии волоконно-оптической связи настолько прочно проникли в нашу жизнь, что мы уже не видим в них ничего удивительного и воспринимаем их наличие также, как наличие водопровода в многоквартирном доме. Поэтому в этой публикации хотелось бы подробнее поговорить об оптике и рассказать несколько интересных фактов о технологии, на которой основана современная высокоскоростная связь.

Немного истории


За время истории развития волоконной оптики было проведено множество интересных исследований и экспериментов. Остановим свой взгляд лишь на некоторых из них.

Английский физик Джон Тиндалл провел эксперимент с отражением светового луча в струе воды, описание которого он зафиксировал в своей книге.

«Если угол, под которым падает луч света из воды в воздух (т.е. угол между поверхностью двух сред и перпендикуляром), превышает 48 градусов, то луч не выходит из воды – он полностью отражается от границы вода-воздух… Если наименьший угол падения, при котором наблюдается полное внутреннее отражение, назвать предельным углом, то для воды он будет равным 48°27», для бесцветного стекла (флинтглас) – 38°41″, а для алмаза – 23°42″, — пишет Тиндалл.

Экспериментальная установка Джона Тиндалла

Этот эксперимент при желании может дома поставить любой желающий. Лазерной указкой нужно светить под разными углами в ванной на струю воды из крана. Под определенным углом световой луч будет полностью отражаться в потоке воды.

Аналогичный эксперимент можно произвести и с фонариком. Для этого в прозрачной пластиковой бутылке нужно сделать отверстие сбоку. Пропускаем воду через бутылку и начинаем светить фонарем с противоположной стороны бутылки. Если мы подставив ладонь, то на ней будет отражаться пятно света.

Активные разговоры о волоконных светодиодах начались еще в пятидесятых годах прошлого столетия. Тогда же и начали их делать из разного рода прозрачных материалов. Но прозрачности тех материалов не хватало для хорошей проводимости света.

В те годы Советский Союз даже опережал Запад в сфере волоконной оптики. Первая оптическая линия связи была запущена в СССР в 1977 году в Зеленограде. Канал был создан для соединения Северной промзоны и администрации города. Изготовлена она была на оптическом кабеле разработки особого конструкторского бюро кабельной промышленности (ОКБ КП), входящего в Концерн «Радиоэлектронные технологии» (КРЭТ) Государственной корпорации Ростех, специализирующегося на производстве кабелей и кабельных сборок.

В мае 1981 года в СССР вышло Постановление ЦК КПСС и СМ СССР «О разработке и внедрении световодных систем связи и передачи информации». Это событие стало толчком для развития волоконно-оптической связи и увеличению количества разработок в этой сфере.

В начале 60-х сначала в СССР, а затем и на Западе ученые приходят к выводу, что светопоглощение стекла сильно зависит от красящих материалов и продуктов разъедания огнеупоров. Экспериментально было доказано, что светопоглощение идеально чистого стекла настолько мало, что лежит за пределами чувствительности измерительных приборов.
В 1966 году группа ученых во главе Чарльзом Куэн Као приходит к выводу, что наиболее подходящим материалом для волоконно-оптической связи будет кварцевое стекло. Уже тогда Као считал, что с помощью оптики можно будет передавать информацию и вскоре этот вид связи заменит передачи сигнала по медным проводам.

Спустя три года Као получил волокно с коэффициентом затухания на уровне 4 дБ/км. Это результат стал первым экземпляром сверхпрозрачного стекла. Еще год спустя компания Corning Incorporated произвела волокна со ступенчатым профилем показателя преломления и достигла коэффициента затухания 20 дБ/км на длине волны 633 нм. Впервые кварцевое волокно пропустило световой луч на расстояние до 2 километров.

Согласитесь в схожем темпе сейчас развивается квантовая передача данных. По чуть-чуть, да понемногу. В качестве экспериментов и коммерческого использования на небольших расстояниях.

Где оптоволокно применяется помимо телекома


Сегодня волокно применяется во множестве отраслей помимо телекома. Это рентгеновские аппараты, где оно обеспечивает гальваническую развязку между источником высокого напряжения и низковольтным управляющим оборудованием. Так персонал и пациенты получают изоляцию от высоковольтной части аппаратуры. Волокно применяют в распределительных устройствах электроподстанций в качестве датчика системы защиты.

Обширно оптические волокна используют в разного рода измерительных системах, где невозможно применять традиционные электроприборы. Например, в системах измерения температуры в реактивных двигателях самолета, в аппаратах МРТ (томографические медицинские аппараты для исследования внутренних органов, в том числе головного мозга) и др. Датчики на основе оптических волокон могут измерять частоту вибраций, вращения, смещения, скорость и ускорение, вращающий момент, скручивание и другие параметры.

Сегодня применяются гироскопы на основе оптического волокна, которые работают на основе эффекта Саньяка. У такого гироскопа нет подвижных частей, что делает его весьма надежным. Несмотря на то что в современных системах навигации используется огромное количество различных датчиков, благодаря которым определяется положение объекта, наиболее независимую систему можно создать лишь на основе волоконно-оптических гироскопов.
Оптика широко применяется в охранной сигнализации. Устроена такая охранная система следующим образом: когда злоумышленник проникает на территорию условия прохождения света через световод изменяются, и срабатывает сигнализация.

Пример реализации волоконно-оптического гироскопа

Трехосевой волоконно-оптический инерциальный измерительный модуль серии ASTRIX производства фирмы AIRBUS DEFENCE&SPACE; в датчик по каждому направлению встроен LiNb03 модулятор

Волокно активно используется в декоративных целях, как украшение праздников, в искусстве и рекламе.

Постоянно разрабатываются новые типы оптических волокон. К примеру, фотонно-кристаллических световоды. Распространение света в них основано на несколько иных принципах. Такое волокно можно использовать в качестве жидкостных, химических и газовых датчиков. Кроме того его можно применять для для транспортировки мощного излучения в промышленных или медицинских целях.

Уже не в новинку волоконные лазеры с выходной мощностью непрерывного излучения в несколько десятков киловатт. Оружие на основе 6-волоконных 5.5 кВт лазеров еще в 2014 году испытали в американском флоте. Волоконным лазерами режут металл и бетон. Например, установка для резки металла компании IPG Photonics имеет мощность в 100 кВт.

Полным ходом идет разработка оптоволокна, с помощью которого можно было бы передавать энергию лазерного излучения мощность в несколько киловатт. В теории передача излучения мощность 10 кВт по волокну длиной 250 м при диаметре сердцевины 150 мкм считается возможной.

Фотонно-кристаллическое волокно

Также стоит отметить, что сегодня активно разрабатываются многосердцевинные волокна. Их использование позволит значительно увеличить общую пропускную способность ВОЛС.
Волокну уже за пятьдесят, но технология явно не собирается на пенсию. Инновации в сфере оптоволокна появляются регулярно и телеком здесь далеко не единственная отрасль заинтересованная в развитии технологии.

Что такое оптическое волокно? -Определение и типы оптического волокна

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1 — 3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar
            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • 9000 Pro Числа Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
                0003000
            • FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000
              • 000 Калькуляторы
              • 000 Физические модели 900 Образцы документов для класса 6
              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 1 1
              • Образцы документов CBSE для класса 12
            • Вопросники предыдущего года CBSE
              • Вопросники предыдущего года CBSE, класс 10
              • Вопросники предыдущего года CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Класс 11 Физика
              • HC Verma Solutions Класс 12 Физика
            • Решения Лакмира Сингха
              • Решения Лакмира Сингха класса 9
              • Решения Лахмира Сингха класса 10
              • Решения Лакмира Сингха класса 8
            • 9000 Класс
            9000BSE 9000 Примечания3 2 6 Примечания CBSE
          • Примечания CBSE класса 7
          • Примечания
          • Примечания CBSE класса 8
          • Примечания CBSE класса 9
          • Примечания CBSE класса 10
          • Примечания CBSE класса 11
          • Примечания 12 CBSE
        • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
        • CBSE Примечания к редакции класса 10
        • CBSE Примечания к редакции класса 11
        • Примечания к редакции класса 12 CBSE
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы по математике класса 8 CBSE
        • Дополнительные вопросы по науке 8 класса CBSE
        • Дополнительные вопросы по математике класса 9 CBSE
        • Дополнительные вопросы по математике класса 9 CBSE Вопросы
        • CBSE Class 10 Дополнительные вопросы по математике
        • CBSE Class 10 Science Extra questions
      • CBSE Class
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8 Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Учебные решения
    • Решения NCERT
      • Решения NCERT для класса 11
        • Решения NCERT для класса 11 по физике
        • Решения NCERT для класса 11 Химия
        • Решения NCERT для биологии класса 11
        • Решение NCERT s Для класса 11 по математике
        • NCERT Solutions Class 11 Accountancy
        • NCERT Solutions Class 11 Business Studies
        • NCERT Solutions Class 11 Economics
        • NCERT Solutions Class 11 Statistics
        • NCERT Solutions Class 11 Commerce
      • NCERT Solutions for Class 12
        • Решения NCERT для физики класса 12
        • Решения NCERT для химии класса 12
        • Решения NCERT для биологии класса 12
        • Решения NCERT для математики класса 12
        • Решения NCERT, класс 12, бухгалтерия
        • Решения NCERT, класс 12, бизнес-исследования
        • NCERT Solutions Class 12 Economics
        • NCERT Solutions Class 12 Accountancy Part 1
        • NCERT Solutions Class 12 Accountancy Part 2
        • NCERT Solutions Class 12 Micro-Economics
        • NCERT Solutions Class 12 Commerce
        • NCERT Solutions Class 12 Macro-Economics
      • NCERT Solut Ионы Для класса 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для математики класса 6
        • Решения NCERT для науки класса 6
        • Решения NCERT для класса 6 по социальным наукам
        • Решения NCERT для класса 6 Английский язык
      • Решения NCERT для класса 7
        • Решения NCERT для математики класса 7
        • Решения NCERT для науки класса 7
        • Решения NCERT для социальных наук класса 7
        • Решения NCERT для класса 7 Английский язык
      • Решения NCERT для класса 8
        • Решения NCERT для математики класса 8
        • Решения NCERT для науки 8 класса
        • Решения NCERT для социальных наук 8 класса ce
        • Решения NCERT для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 по социальным наукам
      • Решения NCERT для математики класса 9
        • Решения NCERT для математики класса 9 Глава 1
        • Решения NCERT для математики класса 9, глава 2
        • Решения NCERT
        • для математики класса 9, глава 3
        • Решения NCERT для математики класса 9, глава 4
        • Решения NCERT для математики класса 9, глава 5
        • Решения NCERT
        • для математики класса 9, глава 6
        • Решения NCERT для математики класса 9, глава 7
        • Решения NCERT
        • для математики класса 9, глава 8
        • Решения NCERT для математики класса 9, глава 9
        • Решения NCERT для математики класса 9, глава 10
        • Решения NCERT
        • для математики класса 9, глава 11
        • Решения
        • NCERT для математики класса 9 Глава 12
        • Решения NCERT
        • для математики класса 9 Глава 13
        • NCER Решения T для математики класса 9 Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки класса 9
        • Решения NCERT для науки класса 9 Глава 1
        • Решения NCERT для науки класса 9 Глава 2
        • Решения NCERT для науки класса 9 Глава 3
        • Решения NCERT для науки класса 9 Глава 4
        • Решения NCERT для науки класса 9 Глава 5
        • Решения NCERT для науки класса 9 Глава 6
        • Решения NCERT для науки класса 9 Глава 7
        • Решения NCERT для науки класса 9 Глава 8
        • Решения NCERT для науки класса 9 Глава 9
        • Решения NCERT для науки класса 9 Глава 10
        • Решения NCERT для науки класса 9 Глава 12
        • Решения NCERT для науки класса 9 Глава 11
        • Решения NCERT для науки класса 9 Глава 13
        • Решения NCERT
        • для науки класса 9 Глава 14
        • Решения NCERT для научного класса 9 Глава 15
.

Руководство FOA по волоконной оптике


Волокно Оптика, основы (уровень CFOT) Большинство ссылок относятся к веб-страницам с учебными пособиями. «VHO» означает пошаговое практическое руководство по установке. Много тем есть видео на YouTube, перечисленные ниже.

Основы Волоконная оптика, домашняя страница
Базовый обзор
жаргон и технологии
Волокно Оптические сети: основные приложения и передача системы
Волокно Оптические каналы передачи данных, оптоволокно Оптические трансиверы для линий передачи данных
Оптический Волокно
Волокно Оптические кабели VHO: Cable подготовка.Midspan Доступ.
Прекращение действия и сращивание прекращение VHO: эпоксидная смола / польский, Анаэробный, Горячей Плавиться Предварительно полированный Splice / SOC одномодовый прекращение Splice VHO: Mech splice Fusion: одиночный волокнистая лента
Волокно Оптическое тестирование VHO Insertion тестирование потерь Использование OTDR
Сеть Типовой проект дома
Установка
О компании Стандарты
Глоссарий условий
Часто задаваемые вопросы по волоконной оптике

БЕСПЛАТНО Основы работы в Интернете программы самообучения по волоконной оптике на Fiber U

См. «Волокно Оптические технологии и стандарты »ниже в разделе информация о сетях, WDM и др.

FOA Видео-лекции по

FOA Видео о подготовке, заделке, сращивании кабелей и тестирование на

FOA Учебник



Помещение Кабельные системы (оптоволоконные, медные и беспроводные) (CPCT Уровень)

Большинство ссылки на веб-страницы с учебными пособиями.«VHO» означает пошаговое практическое руководство по установке. Много тем есть видео на YouTube, перечисленные ниже.

Помещение Домашняя страница Cabling
Обзор кабелей и стандартов помещений, О Стандарты
Жаргон
Сети
Мощность Кабели UTP
через Ethernet (PoE)
UTP Окончания, UTP Прекращение (Учебное пособие)
UTP Установка VHO.Кабель 66 Блок, 110 Блок, Валеты, Вилки
UTP Testing, UTP Схема подключения VHO: UTP Коаксиальный кабель Test
Коаксиальный кабель VHO Прерывание
волокна Оптика в помещениях, кабельная разводка, а также дополнительная информация на OLAN (Оптические сети) FTTD / FTTO (Централизованное оптоволокно), пассивное OLANs
Беспроводной
Дизайн, Новый Т-568-С Номенклатура
Помещения Кабельная установка
Глоссарий

БЕСПЛАТНО Интернет-помещения Программа самообучения по кабельной разводке по Fiber U

См. «Волоконно Оптические технологии и стандарты »ниже в разделе информация о сетях и др.

FOA Видео-лекции по
Видео FOA о подготовке кабеля, заделке, сварка и тестирование на
FOA Учебник



снаружи Завод волоконной оптики (специалист, уровень CFOS / O) Большинство ссылок относятся к веб-страницам с учебными пособиями.«VHO» означает пошаговое практическое руководство по установке. Много тем есть видео на YouTube, перечисленные ниже.
OSP Home Стр. Решебника
Базовый Обзор
Жаргон и технология
OSP Fiber Сети, основные приложения и передача Системы
Волокно Optic Datalinks
Optical Fiber
Волокно Оптические кабели VHO: Кабель подготовка.Midspan Доступ.
Сварка и Прекращение действия
Splice VHO: мех. splice Fusion: одиночный волокнистая лента
Прерывание VHO: эпоксидная смола / полироль, Анаэробный, Горячей Предварительно отполированный расплав Splice / SOC одномодовый прекращение
Волоконно-оптический кабель Тестирование
VHO Вставка тестирование потерь Использование OTDR
Сеть Типовой проект дома
О Стандарты
Установка

БЕСПЛАТНО Онлайн за пределами Программа самообучения Plant Fiber Optics по оптоволокну U

снаружи Завод Строительство завода оптоволоконных кабелей

БЕСПЛАТНО Онлайн за пределами Самостоятельное изучение конструкции оптического волокна завода Программа на Fiber U FOA OSP Civil Works Guide (Установка от начала до конец) (PDF, 3.9 МБ)

Дополнительные темы для OSP Fiber Optics

Restoration

FTTH (Fiber To Home). Бесплатно Онлайн-курс по Fiber U

FTTH,
FTTH Архитектуры,
FTTH Протоколы PON,
FTTx Инсталляция,
Антенна FTTH сбрасывает
FTTH Тестирование
FTTx Учебник

Волоконно для беспроводных сетей. Бесплатно Онлайн-курс по Fiber U
Волоконно для беспроводной связи Сети
Волокно к антенне (FTTA)
Тестирование FTTA,
DAS- Распределенные антенные системы

Определения Условий

См. «Волоконно-оптический кабель. Технологии и стандарты »ниже в разделе информация о сетях, WDM и др.

Видео-лекции FOA по
Видео FOA о подготовке кабеля, заделке, сварка и тестирование на

Приложения волоконной оптики

Связь
Волоконно Оптические каналы передачи данных
Волокно Оптические трансиверы для линий передачи данных
Длина волны Полосы, используемые для оптоволоконной передачи
с разделением по длине волны Мультиплексирование (WDM)
Технические характеристики для волоконно-оптических линий и систем, включая FTTx

Сети Сети строятся на кабельных заводах, но это помогает понять, как они работают.
Телефон, дальние перевозки, столичный
Связный Связь для высокоскоростных сетей дальней связи

FTTH (Волокно к Главная) Бесплатно онлайн Курс по Fiber U

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *