Расход углекислоты при сварке полуавтоматом: Расход углекислоты при сварке полуавтоматом: формула расчета, таблица — Pcity.su

Содержание

Расход газа на сварку — Дневник строителя Pilonstroy.ru

Расход газа на сварку. Расчёт защитного газа

Содержание:

В настоящее время сварочный процесс получил свое заслуженное почетное место, так как без металлических конструкций, которые создаются благодаря сварке, нашу жизнь тяжело представить. Автомобили, здания и даже кровати, и стулья, которые созданы из металла — все это произведено с помощью сварки. Сварочные работы смогли существенно облегчить производство множество сложных механизмов и массивных деталей, а автоматизация производства и вовсе создала максимально эффективные условия для развития сварочного производства. Но в данной статье мы будем говорить не о преимуществах и недостатках различных сварочных приборов, а скорее обсудим актуальную проблему, а именно расчёт расхода защитного газа при сварке. Множество сварщиков имеют свои формулы, для того чтобы определить расход газа на сварку, но большинство из них неточны, а неточности, как известно, могут сильно отразиться на производстве в целом. В данной статье предоставим вам основные формулы для расчётов и постараемся максимально объяснить трудно воспринимаемые данные.

Общие характеристики защитных газов при сварке.

Особенность сварки в среде защитного газа заключается в том, что сварочная дуга горит в среде защитных газов, которые оттесняют окружающий воздух от свариваемой детали, защищая расплавленный металл от контакта с кислородом и азотом.

На сегодняшний день широко используется сварка именно в среде углекислого газа, а также в смеси аргона с углекислым газом. Данные защитные газы применяются для производства изделий из высокоуглеродистых, конструкционных и легированных сталей и в большинстве случаев для работы с перлитной, теплоустойчивой и высоколегированой сталью.

Аргон является весьма эффективным защитным газом, так как по своей природе он инертный и препятствует попаданию в шов расплавленного металла окисляющих газов, таких как кислород и азот.

Важное качество сварки в защитной среде из углекислого газа – это быстрое выгорание всех газов, которые имеют сходство с кислородом. Окисление происходит при контакте с углекислым газом, но также и при дислокации защитного газа под действием высоких температур.

Расчёт расхода защитных газов при сварке.

Существует множество методов расчёта используемого при сварке защитного газа, но необходимо учитывать вид производства – серийное, массовое, единичное, а также номенклатуры. При производстве металлоконструкций на мелкосерийном производстве для составления сертификаций на материалы можно воспользоваться следующей формулой, которая, напомним, применима лишь к мелкосерийному производству:

В данном уравнении Nп представляется собой норму расхода проволоки на изделие, определяемое в килограммах, а Rг – это коэффициент, который учитывает затраты защитного газа на один килограмм проволоки. Для обобщающих отчётов под величиной данного коэффициента можно использовать значение 1.15. Но при производстве на предприятиях опытных образцов или выставочных серий изделий нормативы расхода материалов на сварку рекомендуем применять с коэффициентов не более 1.3.

Можно применять метод расчёта защитного газа под величиной Нг в кубометрах и литрах на один метр шва, и данная формула применима в основном для многосерийного производства однотипных конструкций и деталей, либо же для малого производства. Формула представляет собой:

В данном случае Нг представляет собой условное обозначение удельного расхода защитного газа, которое приведено в таблице ниже. Величина Т – это основное время, которое необходимо для сваривания определённого прохода, измеряется в секундах или минутах. Ндг – это дополнительное количество расхода защитного газа, который был затрачен на подготовительные, финишные операции прохода. N – это количество проходов, которое может равняться любому числу.

Чтобы определить расчёт расхода углекислого газа на сварку в килограммах, важно учитывать, что при испарении 1 килограмма жидкой углекислоты выделяется около 509 литров углекислого газа. Дополнительный расчет расхода защитного газа при сварке в литрах или кубических метрах производится по следующей формуле:

Здесь Тпз представляет собой условное обозначение времени, затраченного на выполнение заключительных – подготовительных операций (продувка горелки до сварки, настройку сварочного аппарата, обдув места сварки по окончанию работ), измеряется в секундах, минутах. Последний метод расчёта для определения, какой расход газа на сварку является наиболее точным и экономичным. Для того чтобы проконтролировать расход газа в баллоны рекомендуем ставить расходомеры и редуктора.

Расход углекислоты при сварке полуавтоматом

Содержание:

Использовать защитный газ входе проведения сварочных работ — значит обеспечивать улучшение качества сваренных соединений, ускорять рабочий процесс и давать кислороду возможность попадать внутрь сварочной зоны.

Помимо этого, стоимость такого газового баллона отличается доступностью. С его помощью обеспечивается домашняя сварка. Поэтому возникает потребность выпускать разновидности компактных баллонов, легко транспортируемых внутри автомобильного багажника. Все больше потребителей интересует вопрос о расходе углекислоты в процессе сварке полуавтоматом.

Домашнему сварщику не приходится задаваться таким вопросом, так как он просто покупает такой баллон компактных размеров в магазине и не беспокоится, какой его. В случае использования одного баллона можно воспользоваться вторым. Но иногда в производственных условиях к сварщикам выдвигаются требования относительно расхода газа при сварке полуавтоматом. В такой ситуации важно знать правила вычисления оптимального расхода углекислоты, когда приходится использовать полуавтомат.

Что влияет на показатели расхода

Прежде чем определить, какой расход углекислоты при сварке полуавтоматом, важно разобраться, что влияет на такой расход. В первую очередь учитывается характеристика металла, который используется для работы. Также важны показатели, какая в диаметре присадочная проволока и какой силы сварочный ток. Именно сочетание таких компонентов и влияет на показатели расхода углекислоты в процессе сварки.

Усредненные показатели

Показатели, сколько газа расходуется, могут быть следующими:

Диаметр проволоки (см)Сила тока (Ампер)Средние показатели расхода (литров в минуту)
0,8 — 160 — 1608
1,2100 — 2509 — 12
1,4120 — 32012 — 15
1,6240 — 13015 — 18
2 см280 — 45018 — 20

Измерение расхода защитного газа

Чем измеряют расход защитного газа при сварке? Для ответа на этот вопрос можно взять конкретный пример на емкости стандартного баллона объемом в 40 л. Такие баллоны используются на большинстве современных предприятий.

В одном таком баллоне чистая углекислота содержится в количестве примерно 24 кг. В процессе испарения происходит её преобразование в 12 000 ДЦ. газовой фазы. Для примерного понимания расхода это вполне исчерпывающий ответ.

Причины расхода защитного газа

В процессе выполнения сварочных работ можно выделить несколько основных показателей, влияющих на то, сколько сварочной смеси расходуется:

  • какой силы ток;
  • проволоку какого диаметра используют;
  • какой толщины будет металл, который сваривают.

Найти показатели этих значений можно у многих производителей, если изучить паспортные данные о конкретно взятом сварочном газе. Это позволит в значительной степени упростить процесс выполнения расчетов.

К примеру, показатели среднего значения, сколько смеси аргона используется в процессе сварочных работ, выполняемых методом TIG, составляют 6 литров в минуту при использовании силы тока в 100 А. Если силу тока увеличивают до показателей в 300 А, то и нормы потребления будут расти до 10 литров в минуту.

Соблюдение такой тенденции происходит и в случае с методом MIG — если диаметр проволоки увеличить с 1 до 1,6 мм, это приведет тому, что количество потребляемого газа вырастет от 9 до 18 литров за минуту.

Также важную роль играет тот факт, какие условия созданы для проведения сварочных работ.

Влияние условий

Показатели расход газа при сварке полуавтоматом в смеси зависят от того, какие условия обеспечены для проведения работ по сварке. Это может быть открытое пространство. Если вокруг сквозняки, то возможно увеличение расхода. Так как оптимальные факторы защитного плана работают только при условии, что защитный слой имеется в большом количестве. В такой ситуации заправку баллона можно будет производить чаще.

Формула расчета

Показатели расхода для сварочной смеси при сварке с полуавтоматом можно выполнить с помощью следующей формулы:

  • P = Py * T;
  • Py — показатели удельного расхода газа, о которых заявил производитель;
  • T — количество основного времени, необходимое, чтобы сварить один проход.

В приведенной ниже таблице указаны нормы потребления газа, на которые оказывают влияние такие показатели: какая в диаметре проволока и какие средние показатели имеет силы тока.

Так как 40-литровый баллон содержит сварочную смесь в количестве 6 000 литров, нетрудно произвести вычисления, сколько времени можно пользоваться одним резервуаром, если процесс сварки происходит непрерывно.

К примеру, расход CO2 при полуавтоматической сварке, когда используется проволока 1 мм в диаметре, составляет от 10 до 11 часов при условии, что процесс происходит непрерывно.

Показатели таких расчетов довольно грубые, ведь здесь не учитывают, сколько газа потребляется при выполнении подготовительных и финишных операций за один проход. Это поможет в определении приблизительной картины. Если потребуются более точные показания, для их проведения может потребоваться расходомер.

Советы по сокращению расхода

Расход защитного газа при полуавтоматической сварке можно сократить. В этом помогут следующие советы.
Уровень сварочных работ зависит от того, насколько качественным и надежным будет шов. Для этих целей и понадобится использование защитного газа. Поэтому в занижении расхода сварочной смеси искусственным путем нет никакого смысла. Иначе это может вызвать ситуацию, когда образуются поры и возникнут побочные эффекты другого плана.

Для экономии очень важным является качество газовой смеси. Например, если постоянно использовать состав «Микспро 3212», в котором много разных компонентов, можно сократить потребление как минимум вдвое. В сравнении с ситуацией, когда используется бинарный защитный газ. Его основа состоит из аргоновой и углекислотной смесей. Применение смеси «Микспро» приводит к тому, что получается наиболее качественный шов.

Интересное видео

Расход газа на сварку

Расход газа на сварку определяется продолжительностью работ, которая, в свою очередь, зависит от объема наплавки и скорости процесса образования шва. Причем защитные газы должны обдувать зону стыка даже после завершения процесса сварки – пока не остынет свежий шов. Иначе прочность соединения не выйдет на расчетные значения.

В итоге, качество соединения зависит от того, насколько точно был подсчитан расход газа при сварке. И в этой статье мы приведем оптимальные способы вычисления объемов газообразного флюса.

Характеристики защитных газов

Расход газообразного флюса, в том числе, зависит еще и от его характеристик. Поэтому перед обзором процесса вычисления режима подачи флюса в зону сварки мы рассмотрим физические характеристики составляющих этой защитной среды.

Как правило, газообразный флюс состоит из технического аргона, смеси аргона и гелия или обычной углекислоты. При этом в состав флюса можно добавить кислород – он пригодится для огненной «чистки» поверхности.

Причем основная составляющая флюса – аргон, гелий или углекислота – «работает» совершенно по-разному. Например, инертный аргон просто предотвращает контакт присадочного или основного металла с кислородом, а углекислота – подавляет любые реакции окисления.

Кроме того, нужно учитывать, что флюс подается к месту сварки в баллонах, объемом до 40 литров. Причем с учетом плотности входящих в состав флюса газов вес аргона в баллоне равен 10,85 килограмма (при давлении 6,5 МПа). Вес углекислоты – 24 килограмма (при давлении 2,92 МПа).

И эти параметры нужно учитывать при определении максимального объема газа, пропускаемого сквозь шланги к горелке сварочного аппарата. Проще говоря, от указанных параметров зависит: сколько времени «протянет» функционирующий на максимуме аппарат.

Расчет расхода защитного газа инертного типа

При расчете расхода газов нужно учитывать принадлежность сварочного процесса к оному из видов производства – единичному, серийному и крупносерийному.

Так, для единичного и мелкосерийного производства в основе расчета лежит формула:

N=nR,

Где n – это норма расхода присадочного материала на одно изделие, а R – это расход газа на один килограмм проволоки. В итоге, зная общий вес наплавки (n) и расход газа на один килограмм наплавки (R) можно вычислить расход газа на всю металлоконструкцию. Причем коэффициент «R» обычно равен 1,15-1,3

Для крупносерийного производства или для однотипных операций в мелкосерийном производстве расчет основывается на массе наплавки, которой заполняют шов длинной один метр.

И формула расчета выглядит следующим образом:

Н = (Нуг х Т + Ндг),

Где Нуг это удельный расход газа, «вытекающего» из форсунки за одну минуту работы аппарата (причем данное значение зависит от диаметра присадочной проволоки и выбирается из специальной таблицы). Т – это время сварки одного погонного метра шва или время формирования одной типовой операции. Ндг – это дополнительное количество газа, расходуемое на понижение температуры шва, или попросту истекающего из форсунки при переходе между стыками или во время поджига дуги.

Расход углекислого газа при сварке

При расчете расхода углекислоты необходимо учитывать физическую природу данного вещества, которое при смене агрегатного состояния выделяет более 500 литров газа из одного килограмма жидкости.

В итоге, расход углекислоты считают по следующей формуле:

Н=Тh,

Где h – это удельный расход углекислоты за одну минуту работы горелки, измеряемый в литрах. Эта переменная имеет постоянное значение, указываемое в спецификации к сварочному аппарату. Соответственно, Т – это время формирования сварочного шва.

Следует отметить, что указанная формула, несмотря на ее простоту, гарантирует точный подсчет объемов расходуемого газа.

Сварочная проволока: расход, заправка, подача

Проволока ESAB OK AristoRod 12.50. Фото 220Вольт

Для выполнения разовой сварочной работы в домашних условиях необходимо определиться с количеством расходного материала, который потребуется закупить в магазине. В промышленных условиях величина расхода сварочной проволоки скажется на окончательной цене производимого продукта и в конечном итоге на спрос покупателя.

Особенности проволоки

На расход проволоки оказывает влияние множество причин, включая человеческий фактор в контексте наличия у сварщика требуемой квалификации. Однако наиболее объективным является значение коэффициента наплавки.

Нержавеющая сварочная проволока Alfa Global ER 347Si. Фото Сварочные Технологии

Этот показатель определяет количество наплавленного металла за единицу времени при силе тока один ампер. На величину коэффициента влияют состав материала проволоки, организация защиты зоны сварки (газы, флюс), а также вид тока (переменный, постоянный) и его полярность. Значение коэффициента наплавки в зависимости от типа проволоки и способа ведения технологического процесса могут колебаться от 5-7 до 18-20 г/А*ч. Выделяют несколько видов проволок: титановая, медная, легированная, полированная, нержавеющая, стальная, алюминиевая, омедненная, порошковая. Определяется коэффициент в основном экспериментальным путем.

Справка. Коэффициент наплавки, а также другие технические характеристики популярных марок: ПАНЧ-11, СВ08Г2С, ER70S-6, ВТ1-ооСв представлены в соответствующих статьях.

Нормы расхода проволоки

Наличие норм расхода проволоки, которые представляются в виде количества расходного материала в единицах массы на один погонный метр шва, позволяет сориентироваться в количестве проволоки для выполнения конкретного вида сварочных работ. При механизированном способе сварки (автоматическая, полуавтоматическая, распространенной технологии аргонодуговой сварки) нормы расхода значительно меньше, чем при ручном.

Таблица расхода материалов на метр шва при сварке полуавтоматом

Варианты разделки кромок

При разработке технологического процесса сварки даются рекомендации по разделке кромок и зазорам в сварном соединении. Они основываются на базе конструкторской документации, где определены размеры заготовок и тип сварного соединения (нахлесточное, стыковое, угловое и так далее).

Далее в государственных, отраслевых стандартах и технических условиях на сварные соединения находятся требуемые размеры сварного шва. Просчитать теоретическую площадь его сечения при наличии современной компьютерной техники не представляет трудностей.

Такие расчеты особенно востребованы в строительной отрасли, где сварочные работы выполняются в большом количестве и требуется хорошо ориентироваться в разнообразном количестве и номенклатуре расходных материалов. В документе ВСН 416-81 «Общие производственные нормы расхода материалов в строительстве» в разделе «Сварочные работы» даются нормы расхода сварочных материалов. Эти нормы в зависимости от видов работ представлены в таблицах по типам соединений.

Пример одной из таблиц для механизированной стыковой сварки в углекислом газе для одностороннего стыкового соединения без скоса кромок:

Таблица. Нормы на 1 метр шва.

Код строкиТолщина деталей, мм.Газ углекислый, кг.Проволока сварочная, кг.
011,00,0270,05
022,00,0490,091
033,00,0520,099
044,00,0560,105
055,00,0850,161
066,00,090,17

Здесь следует учитывать, что нормы расхода даются для шва, расположенного в нижнем положении. При других положения, согласно документу ВСН 416-81, применяется коррекция в виде следующих коэффициентов:

  • вертикальное положение – 1,12;
  • горизонтальное положение – 1,13;
  • потолочное – 1,26.

Нормы расхода газа рассчитываются в таблице при его подаче с удельным расходом 6 л/мин. Если подачу увеличивают, то соответственно вводятся корректирующие коэффициенты:

  • для 8 л/мин — 1,3;
  • для 10 л/мин — 1,6;
  • для 12 л/мин -2,0.

Расход углекислоты на 1 кг материала

Сварка нержавейки полуавтоматом в закрытом помещении

Расход углекислого газа не должен быть меньше определенного уровня, после которого начнет понижаться качество сварного шва. Но и большой расход экономически нецелесообразен. Выбор оптимальной величины зависит от толщины свариваемых заготовок, диаметра проволоки и величины сварочного тока.

Учитывается также фактор места, где производится сварка. При сварке на открытом воздухе газ быстрее улетучивается и расход следует увеличивать. Особенно сильно это сказывается при сильном движении воздушных масс (ветер).

Необходимо следить за чистотой газа. На расход газа оказывает влияние качество газовой смеси.

Сильно влияет на расход газа квалификация сварщика.

Расчет: формула

При выполнении разовой работы можно самостоятельно посчитать примерный расход проволоки. Увеличив получившийся результат на обязательные в работе технологические потери, получите гарантированный задел сварочной проволоки для выполнения сварочных работ.

Расчет ведется по формуле N=G*K,

  • где N – норма расхода проволоки;
  • G – масса наплавленного металла в сварочном шве;
  • К – коэффициент, учитывающий повышенный расхода материала для создания имеющейся наплавки.

Для расчета массы наплавленного металла, самым трудным будет точно определить площадь (F) поперечного сечения наплавки. Здесь потребуется воспользоваться формулами из геометрии для расчета площадей различных фигур.

Плотность (γ) наплавки зависит от вида материала сварочной проволоки. По формуле F*γ находится масса (G) наплавки 1 метра шва. Коэффициент К зависит от пространственного положения сварочного шва, применяемого защитного газа и других особенностей деталей. Этот расчет даст возможность избежать непроизводительных расходов времени при проведении сварочных работ.

Механизм подачи материала

За стабильную подачу в зону сварки, в соответствии с заданными параметрами в полуавтомате, отвечает механизм подачи. Он позволяет регулировать скорость подачи проволоки в широком диапазоне значений.

Сварочный полуавтомат Blue Weld MEGAMIG 500S с механизмом подачи проволоки. Фото ВсеИнструменты.ру

В зависимости от конструктивного исполнения полуавтомата механизм может располагаться как в корпусе устройства, так и вне его.

  • В случае расположения механизма в корпусе принцип работы основан на выталкивании проволоки в зону сварки. Передача расходного материала к соплу горелки происходит через гибкий металлический канал, вследствие чего имеются ограничения в длине такого направляющего устройства.
  • Механизм может располагаться на самой горелке. Тогда он будет выполнять тянущее действие, подтягивая проволоку на себя. Преимущества такого способа заключаются в применении рукавов достаточно большой длины. Однако сварочная головка с увеличенным весом и габаритами создает существенные неудобства в работе сварщика.
  • Механизмы подачи с комбинированным исполнением имеют право на существование, но применяются крайне редко.

Принцип работы механизма основан на подаче вращающимися роликами проволоки прижатой между ними. Основные узлы механизма следующие:

  • стационарный ролик, который имеет возможность осуществлять только вращающие движения, канавки на ролике выполняются в согласование с диаметром протягиваемой проволоки;
  • ролик с подвижной осью, соединенной с прижимным устройством и канавками с зеркальным отображением расположенных на стационарном ролике;
  • прижимное устройство, регулирующее давление на проволоку;
  • электропривод с червячным редуктором приводит в движение стационарный ролик;
  • электронная схема управляющая параметрами (изменение скорости подачи, прерывание на заданный промежуток времени подачи и другие) устройства;
  • направляющие втулки с диаметром несколько большим диаметра проволоки, устанавливаемые до и после устройства.

Для создания более равномерного прижима на проволоку применяют механизм с четырьмя роликами, расположенных по принципу 2 х 2.

Катушки и катушкодержатели

Проволока сварочная алюминиевая ER4043 (1.6 мм; катушка 6 кг) ELKRAFT 93614. Фото ВсеИнструменты.ру

На катушки наматывается сварочная проволока, с которых происходит ее съем во время работы. Катушка надежно закрепляется в полуавтоматах с помощью устройств называемых катушкодержателями. Устройства для крепления катушек должно соответствовать аналогичному на катушкодержателе.

При выключении полуавтомата катушка с проволокой стремится продолжить свое движение, что может привести к образованию петель на проволоке. Конструкция катушкодержателя имеет тормозное устройство, например, в виде фрикциона. Регулировка его с помощью гайки не позволяет катушке свободно разматываться и сохраняет правильную намотку проволоки.

Как заправить, установка на автомат и полуавтомат

Как заправить сварочную проволоку на полуавтомат показано в видео. Здесь следует отметить ключевые моменты на которые обращает внимание автор.

  • При надевании новой кассеты обязательно придерживать конец проволоки, чтобы не допустить разматывания катушки.
  • Проволока должна попасть в канавку ролика.
  • Для протягивания использовать холостой ход электропривода (без подачи газа) на режиме самой высокой скорости подачи.
  • Не допускать застревание в рукаве или токосъемнике.

Автор видео ничего не упомянул о регулировке прижимного устройства. Использование порошковой проволоки требует к нему особого внимания. Для сварки с меньшим количеством брызг, для порошковой проволоки рекомендуется механизм подачи с четырьмя роликами, для лучшего распределения усилия прижима.

Где купить

Продажей расходных материалов различных типов занимаются компании, собранные в отдельном разделе. Ознакомление с представленной информацией позволит узнать, где купить сварочную проволоку.

Кроме возможности приобретения продукции у поставщиков, рекомендуется также ознакомиться с ассортиментом, предлагаемом производителями. Ведущие мировые предприятия, например, ESAB и DEKA, обладают широкой сетью представительств, что позволяет приобрести расходные материалы и быть полностью уверенным в качестве продукции.

Расход углекислого и защитного газа при сварке

Автор admin На чтение 3 мин. Просмотров 1.6k. Опубликовано

Расход газа на сварку определяется продолжительностью работ, которая, в свою очередь, зависит от объема наплавки и скорости процесса образования шва. Причем защитные газы должны обдувать зону стыка даже после завершения процесса сварки – пока не остынет свежий шов. Иначе прочность соединения не выйдет на расчетные значения.

В итоге, качество соединения зависит от того, насколько точно был подсчитан расход газа при сварке. И в этой статье мы приведем оптимальные способы вычисления объемов газообразного флюса.

Характеристики защитных газов

Расход газообразного флюса, в том числе, зависит еще и от его характеристик. Поэтому перед обзором процесса вычисления режима подачи флюса в зону сварки мы рассмотрим физические характеристики составляющих этой защитной среды.

Как правило, газообразный флюс состоит из технического аргона, смеси аргона и гелия или обычной углекислоты. При этом в состав флюса можно добавить кислород – он пригодится для огненной «чистки» поверхности.

Причем основная составляющая флюса – аргон, гелий или углекислота – «работает» совершенно по-разному. Например, инертный аргон просто предотвращает контакт присадочного или основного металла с кислородом, а углекислота – подавляет любые реакции окисления.

Кроме того, нужно учитывать, что флюс подается к месту сварки в баллонах, объемом до 40 литров. Причем с учетом плотности входящих в состав флюса газов вес аргона в баллоне равен 10,85 килограмма (при давлении 6,5 МПа). Вес углекислоты – 24 килограмма (при давлении 2,92 МПа).

И эти параметры нужно учитывать при определении максимального объема газа, пропускаемого сквозь шланги к горелке сварочного аппарата. Проще говоря, от указанных параметров зависит: сколько времени «протянет» функционирующий на максимуме аппарат.

Расчет расхода защитного газа инертного типа

При расчете расхода газов нужно учитывать принадлежность сварочного процесса к оному из видов производства – единичному, серийному и крупносерийному.

Так, для единичного и мелкосерийного производства в основе расчета лежит формула:

N=nR,

Где n – это норма расхода присадочного материала на одно изделие, а R – это расход газа на один килограмм проволоки. В итоге, зная общий вес наплавки (n) и расход газа на один килограмм наплавки (R) можно вычислить расход газа на всю металлоконструкцию. Причем коэффициент «R» обычно равен 1,15-1,3

Для крупносерийного производства или для однотипных операций в мелкосерийном производстве расчет основывается на массе наплавки, которой заполняют шов длинной один метр.

И формула расчета выглядит следующим образом:

Н = (Нуг х Т + Ндг),

Где Нуг это удельный расход газа, «вытекающего» из форсунки за одну минуту работы аппарата (причем данное значение зависит от диаметра присадочной проволоки и выбирается из специальной таблицы). Т – это время сварки одного погонного метра шва или время формирования одной типовой операции.  Ндг – это дополнительное количество газа, расходуемое на понижение температуры шва, или попросту истекающего из форсунки при переходе между стыками или во время поджига дуги.    

Расход углекислого газа при сварке

При расчете расхода углекислоты необходимо учитывать физическую природу данного вещества, которое при смене агрегатного состояния выделяет более 500 литров газа из одного килограмма жидкости.

В итоге, расход углекислоты считают по следующей формуле:

Н=Тh,

Где h – это удельный расход углекислоты за одну минуту работы горелки, измеряемый в литрах. Эта переменная имеет постоянное значение, указываемое в спецификации к сварочному аппарату. Соответственно,

Т – это время формирования сварочного шва.

Следует отметить, что указанная формула, несмотря на ее простоту, гарантирует точный подсчет объемов расходуемого газа.

Сварка и наплавка в среде углекислого газа

 

Углекислый газ (С02) при этом методе сварки и наплавки подается в зону сварки, тем самым оттесняет воздух и предохраняет металл от воздействия кислорода и азота. Схема наплавки в углекислом газе приведена на рисунке 8. Наплавку в среде углекислого газа целесообразно применять для восстановления наружных и внутренних поверхностей деталей цилиндрической формы небольшого диаметра.
Сварку в среде углекислого газа применяют при ремонте тонколистовых конструкций. Наибольшее применение этот сварочный процесс получил для заварки трещин и приварки заплат при ремонте облицовки, кабин тракторов, автомобилей и сельскохозяйственных машин.

Сварка и наплавка в углекислом газе осуществляются автоматическим и полуавтоматическим способами. При полуавтоматической сварке и наплавке механизированы только операции подачи углекислого газа и электродной проволоки, при автоматической сварке механизирована также операция перемещения электрода относительно детали.
Материалы. Для сварки и наплавки в среде углекислого газа применяют проволоки следующих марок: Св-08ГС, Св-08Г2С, Св-12ГС, Св-10ХГ2С, Св-18ХГСА, Нп-ЗОХГСА, ПП-АН4, ПП-АН5, ПП-АН8, ПП-ЗХ2В8Т, ПП-Р18Т, ПП-Х12ВФТ и другие. Выбор электродной проволоки производится по содержанию элементов раскислителей. Основные раскислители в проволоке для сварки и наплавки углеродистых и низколегированных сталей — кремний и марганец. Сварка и наплавка проволокой, не содержащей достаточного количества раскислителей и с большим содержанием углерода, сопровождается повышенным разбрызгиванием, металл шва становится пористым, появляется опасность возникновения трещин.
Для обеспечения защитной среды углекислый газ получают обычно из пищевой углекислоты или специальной осушенной углекислоты. В баллонах содержится 20… 25 кг жидкой углекислоты под давлением 5,0… 6,0 МПа. В нормальных условиях из одного килограмма углекислоты при ее испарении получают 509 л СОг.
Оборудование. Для сварки и наплавки в среде углекислого газа выпускаются комплекты специального оборудования различных конструкций. В комплект входят автоматическая головка, подающий механизм, пульт управления, подогреватель, осушитель. Пост автоматической и полуавтоматической сварки и наплавки в углекислом газе, кроме узлов, входящих в комплект, дополнительно оборудуется понижающим редуктором, баллоном с СО2, резиновыми шлангами для подачи газа к горелкам, расходомером для определения расхода газа при сварке или наплавке
Для сварки и наплавки в углекислом газе используют аппараты А-547-Р, А-547-У, А-929, ПДПГ-300, А-577-У
Полуавтомат А-547-Р предназначен для сварки и наплавки электродной проволокой диаметром 0,5… 1,2 мм. Скорость подачи проволоки можно регулировать в пределах 120 … 140 м/ч. В качестве источника питания полуавтомат комплектуется селеновым сварочным выпрямителем ВС-200, рассчитанным на номинальный ток 200 А и напряжение 17 … 25 В.
Полуавтомат А-547-У. Диаметр применяемой электродной проволоки 0,6… 1,2 мм. Скорость подачи ее 140… 600 м/ч. Номинальный сварочный ток 300 А. Источник питания — выпрямитель ВС-300. Полуавтомат обеспечивает качественную сварку металла толщиной 0,8 … 4 мм.
Полуавтомат А-929. Диаметр электродной проволоки 1…2 мм. Скорость подачи проволоки 120… 620 м/ч. Толщина свариваемого металла 1 … 8 . мм. Номинальный сварочный ток питания дуги 350 А, напряжение 17… 30 В. А-929 работает от сварочного преобразователя ПСГ-500.
Аппарат ПДПГ-300 работает с электродной проволокой диаметром 0,8 … 2 мм. Скорость ее подачи 90… 960 м/ч. Номинальный ток 300 А. Толщина свариваемого металла 0,8 … 6 мм.
Аппарат А-577-У работает с электродной проволокой диаметром 1,6 … 2 мм. Скорость ее подачи 80 … 600 м/ч. Ток питания дуги 500 А. Толщина свариваемого металла свыше 3 мм.
Специально для сварки в среде углекислого газа выпускаются сварочные преобразователи ПСГ-300, ПСГ-500, сварочные выпрямители ВС-200, ВС-300, ВС-500, ВС-600 и др.
Для поворота узлов и деталей в удобное для сварки или наплавки положение используют наплавочные станки или манипуляторы. Установки для автоматической наплавки в среде углекислого газа монтируют также на токарных станках. Наплавляемую деталь закрепляют в патроне станка, на суппорте станка устанавливают наплавочный аппарат, к которому подводят мундштук для подачи углекислого газа в зону наплавки. Для наплавки деталей используют любую автоматическую головку со специальным мундштуком.
При выходе из баллона температура углекислого газа резко падает, так как жидкая углекислота испаряется и поглощает тепло. Снижение температуры углекислого газа может привести к замерзанию влаги и закупорке каналов вентиля и редуктора и перекрытию доступа газа к соплу горелки. В связи с этим углекислый газ подогревают с помощью электрических подогревателей. Для удаления влаги из углекислого газа применяют осушители. Реагенты (силикагель или медный купорос), заполняющие осушитель, нужно периодически (не менее одного раза в неделю) прокаливать при температуре 200… 250 °С в течение двух часов.
Режимы сварки и наплавки. Качество сварного шва и наплавленного слоя, их химический состав и структура зависят не только от материала наплавочной проволоки, но и от режимов сварки и наплавки. Основные параметры режимов: сила сварочного тока, напряжение дуги, диаметр, величина вылета и скорость подачи электродной проволоки, скорость сварки, расход углекислого газа.
Сварка и наплавка в среде углекислого газа производятся на постоянном токе обратной полярности. Сварочный ток и диаметр электродной проволоки определяют в зависимости от химического состава и толщины свариваемого металла, числа слоев шва и применяемого сварочного оборудования. В зависимости от величины, сварочного тока, напряжения дуги, диаметра и химического состава электродной проволоки выбирают скорость подачи электродной проволоки с таким расчетом, чтобы обеспечить устойчивое горение дуги.
Вылет электрода должен быть в пределах 8… 14 мм. Он зависит от удельного электрического сопротивления проволоки, ее диаметра, силы тока и существенно влияет на качество сварного шва. Расход углекислого газа, достаточный для защиты зоны сварки от воздуха, составляет 7… 10 л/мин, с возрастанием плотности тока расход газа увеличивается.

Толщина металла, мм

Диаметр электродной проволоки, мм

Сила

сварочного тока, А

Напряжение дуги, В

Скорость подачи проволоки, м/ч

Скорость сварки, м/ч

1,0…1,5

0,8

70….110

17…19

110…120

30…40

1,5…2,5

0,8

100….150

18…21

120…150

25…35

1,0…2,0

1,0

100…180

18…22

110…150

30…40

2,0…3,0

1,0

125…180

19…22

130…160

30…40

3,0…4,0

1,0

150…270

18…22

150…300

25…30

2,0…3,0

1,2

140…250

20…23

250…220

30…45

3,0…4,0

1,2

170…300

22…28

200…300

30…40

Механизированную наплавку в среде углекислого газа целесообразно применять для восстановления цилиндрических деталей диаметром 10… 40 мм и глубоких отверстий, когда затруднительно применять другие способы. Наплавку во всех случаях проводят при напряжении 17… 20 В, силе тока 75… 90 А. Электродную проволоку применяют диаметром 0,8 … 1,0 мм, вылет электрода составляет 8 … 15 мм, смещение электрода должно быть в пределах 3… 8 мм, скорость подачи проволоки 175… 230 м/ч. Скорость наплавки — 35… 45 м/ч, шаг — 2,5— 3,5 мм, толщина наплавленного слоя достигает 0,8 … 1,0 мм. Применяя данные режимы, этот способ широко используют для восстановления гладких и шлицевых валов. Наплавка деталей, для которых требуется высокая твердость (до HRC 50), осуществляется проволоками Нп-ЗОХГСА, Св-18ХГСА и другими с последующей закалкой токами высокой частоты. Наряду с проволокой сплошного сечения применяются порошковые проволоки с введением титана и углерода.

Основные способы наплавки и примеры их использования

Наименование сплавов

Способ наплавки

В каких случаях применяется

Примеры применения

Каким видам износа противостоит

Порошковая проволока;

ПП-Х12ВФ;

ПП-Х12Ф;

ПП-Х12М;

ПП-Х12ТФ;

ПП-сормайт № 2

Автоматическая дуговая наплавка под слоем флюса АН-30

На новых деталях в целях повышения износостойкости. При восстановлении деталей после износа

Ножи гильотинных ножниц, броневые листы бункеров на металлургических заводах, штампы холодной штамповки,валки холодной прокатки, волочильные барабаны, детали строительных и дорожных машин, пуансоны и матрицы для брикетирования бурых углей, детали землечерпалок, углеразмольных мельниц и т. д.

Механическому износу

Порошковая проволока ПП-ЗХ2В8. 

Проволока сплошного -сечения ЭИ-701

То же под флюсом АН-20

То же

Валки горячей прокатки, штанги к малому конусу доменной печи, ножи для горячей резки металла, штампы для горячей штамповки, различный прессовый инструмент и другие детали, работающие в подобных условиях

Механическому износу

Порошковая проволока ПП-Г13. 

Проволока сплошного сечения СВ-Х20Н10Г6

То же под флюсом; АН-30 для проволоки ПП-Г13; 

АН-22 для проволоки СВ-Х20Н10Г6

При восстановлении изношенных деталей, из готовленных из стали Г13Л

Детали камне- и углеразмольных мельниц, щеки дробилок, траки, зубья ковшей экскаваторов и других деталей из стали Г13Л, работающих в условиях ударной нагрузки и высоких удельных давлений

Механическому износу

Порошковая проволока:
ПП-Х12ВФ 
(ЭШ; ПП-Х12М) ЭШ; ПП-Х12Ф1/ ЭШ; ПП-4Ф
(ЭЩ; ПП-Х12)ЭШ

Электрошлаковая автоматическая наплавка под флюсом АН-22

На новых деталях в целях повышения износостойкости, где допускается значительная толщина наплавленного слоя

Рабочие поверхности деталей, имеющих плоские поверхности и поверхности тел вращения. Наряду с небольшими изделиями можно наплавлять и крупные детали с толщиной наплавленного слоя 13— 20 мм. Проволока применяется в зависимости от требований, предъявляемых к наплавленной поверхности

Механическому износу

Порошковая проволока; 
ПП-Р18; 
ПП-Р9; 
ПП-ЗХ2В8; 
ПП-Х12ВФ

Автоматическая дуговая наплавка в среде углекислого газа

На новых деталях в целях повышения износо-стойкости. При восстановлении деталей после износа

Рабочие поверхности деталей, имеющих прямолинейные участки, поверхности тел вращения. Проволока применяется в зависимости от требований, предъявляемых к наплавленному слою

Механическому износу

Сталинит

Электрической дугой-угольным электродом (метод Бенардоса)

Электрической дугой — металлическим электродом (метод Славя-нова)

На новых деталях в целях повышения износостойкости

При восстановлении повышенного износа (комбинированный слой)

Муфты; соединительные шпиндели и муфты прокатных станов; воронки; челюсти грейферов доменных печей; валки дробилок; молотки дробилок; брони мельниц; лопатки дымососов; торфонасосы торфяных машин; землесосы; зубья и козырьки ковшей экскаваторов и др.

Механическому износу

Стеллиты

Ацетиленокис-лородным пламенем

Электрической дугой в струе атомного водорода

Электрической дугой по методу Славянова

На новых деталях в целях повышения износостойкости

При восстановлении деталей после износа

Лопатки турбин; клапаны двигателей внутреннего сгорания; ножи пресс-ножниц для горячей и холодной резки металла; штамповочный инструмент (матрицы и пуансоны)

Коррозии, эрозии, механи-ческому износу и кавитации

Сормайт № 1 (стеллитоподоб-ные)

Ацетилено-кислородным пламенем

Электрической дугой в струе атомного водорода

Электрической дугой по методу Славянова

На новых деталях в целях повышения износостойкости. При восстановлении деталей после износа

Ножи пресс-ножниц для горячей и холодной резки металла; режущие плоскости инструмента для резки других материалов; штамповый инструмент (матрицы, пуансоны)

Волочильный инструмент диаметром 25 мм и больше; обжимные кольца; оси клещей кронов нагревательных печей

Крупногабаритные детали, предварительный подогрев которых для наплавки газом затруднителен или невозможен

Механи-ческому износу

На сколько хватит баллона углекислоты для сварки

В итоге подобрал кое какую инфу и хочу ею с вами поделиться.

А поделиться я хочу информацией про то какой выбрать баллон под углекислоту для полуавтомата в гараж.

И так. Если вы не занимаетесь профессионально ремонтом авто. То есть у вас не СТО а вы просто по тиху ремонтируете в своём гараже своё авто (ну может эпизодически авто друзей) То на мой взгляд идеальным вариантом болона под углекислоту для полуавтомата будет следующий баллон:

20-ти литровый углекислотный баллон (ГОСТ 949-73)

40-ка литровый баллон большой и тяжелый. Его даже просто переместить по гаражу одному проблематично. Возить на заправку такой баллон тоже геморно. И тд.

Давайте сравним размеры и вес этих двух баллонов.

Начнём с 40-ка литрового:

Емкость — 40л.
Рабочее давление — 14,7 МПа (150 кгс/см2)

Диаметр цилиндрической части — 219 мм.
Длина корпуса баллона — 1370 мм. (без башмака ещё накинете сантиметров 5-8)

Вес баллона — 58,5 кг.

К этому весу надо прибавить ещё: Вес газа 40-литровый баллон — 12 куб. м / 24 кг жидкого газа. плюс башмак — 5,2 кг и вентиль – 0,5 кг.

И того: около 88 кг!

Теперь 20-ти литровый баллон:

Рабочее давление — 14,7 МПа (150 кгс/см2)

Диаметр цилиндрической части — 219 мм.

Длина корпуса баллона — 740 мм (+башмак)

Вес баллона — 32,3 кг.

К этому весу надо прибавить ещё: Вес газа 20-литровый баллон — 6 куб. м / 12 кг жидкого газа. плюс башмак — 5,2 кг и вентиль – 0,5 кг.

И того: около 50 кг

Исходя из вышеприведенных данных. лично я считаю что 20-ти литровик будет оптимальный вариант для наших маленьких гаражей.

Удобнее перемешать одному. Удобнее возить на заправку. От этого меньше нервов. а меньше нервов приятнее и быстрее работается.

Также помимо баллона понадобиться регулятор газа. Газовый редуктор.

Сей прибор нуден для понижения давления газа который выходит из баллона и для регулировки его подачи в ваш сварочный полуавтомат.

Для углекислоты — Редуктор УР 6-6

По поводу расхода газа и проволоки.

И так на сколько же хватит газа и проволоки при сварке полуавтоматом с кассетой проволоки 0,8 мм весом 5 кг и баллона с углекислотой объемом 20 литров?

Сварочная проволока СВ-08 диаметром 0,8 мм весит 3,950 кг 1 километр, значит на кассете 5 кг примерно 1200 метров проволоки. Если средняя скорость подачи для такой проволоки 4 метра в минуту, то кассета уйдет за 300 минут. Углекислоты в 20-литровом баллоне 6 кубометров или 6000 литров. Если в среднем расход газа на продувку 10 литров в минуту, то 20-литрового баллона должно хватить 600 минут или на 2 бабины проволоки 0,8 весом 5 кг.

Так что думаю что с 20-литровиком можно переварить не одну тачку. :))

На момент написания данной статьи

Ну вот как-то так народ. Надеюсь данная информация кому то может быть полезна.

Одним из наиболее популярных защитных газов, используемых в процессе сварки, является СО2. Обычно, сварщики еще до начала работ стараются узнать, на сколько хватает баллона углекислоты и от каких показателей зависит ее потребление. Некоторые справочные материалы и реальный опыт позволяют с необходимой точностью определить данный параметр.

От чего зависит расход углекислоты

Как и в случае с другими защитными газами, чтобы определить, на сколько хватает баллонов углекислоты, необходимо знать толщину обрабатываемого металла, диаметр проволоки и силу тока. Это основные параметры, влияющие на потребление газа.

Ниже приведены усредненные значения расхода СО2, в зависимости от диаметра проволоки и тока:

  • 0,8-1,0 мм (60-160 А) – 8-9 л/мин;
  • 1,2 мм (100-250 А) – 9-12 л/мин;
  • 1,4 мм (120-320 А) – 12-15 л/мин;
  • 1,6 мм (240-380 А) – 15-18 л/мин;
  • 2,0 мм (280-450 А) – 18-20 л/мин.

Расход зависит от диаметра проволоки, силы тока и скорости

На показатели расхода большое влияние оказывают внешние факторы. На открытом воздухе потребуется больше защитного газа для обеспечения нормальных условий сварки, особенно, если работа ведется в ветреную погоду. Поэтому, в закрытом помещении одного баллона хватает на больший срок.

Не менее важную роль играет качество смеси и ее соответствие для работы с конкретным металлом. Больше об этом читайте в статье: сварочная смесь или углекислота – выбираем защитный газ для сварки.

На сколько хватает баллонов углекислоты разного объема

Как известно, стандартный 40-литровый баллон содержит 24 кг СО2, который при испарении образует около 12 000 дм³ газовой фазы. Учитывая приведенные выше данные, можно определить, на сколько хватает баллона углекислоты при непрерывном рабочем процессе.

Вот обычный 40 литровый баллон, заполненный углекислотой

Так, например, при использовании 1-миллиметровой проволоки и средней силе тока в 100 А, 40 литров газа хватит приблизительно на 24 часа. Соответственно, баллона объемом 10 л должно хватить на 6 часов непрерывной эксплуатации.

Согласно справочным материалам, на 1 кг наплавленного металла расходуется 1,1 кг СО2 и 1,35 кг сварочной проволоки. Благодаря этим данным определяется следующая пропорция: СО2/проволока = 1:1,2 кг. То есть, на 1,2 кг проволочного материала приходится 1 кг углекислоты в жидкой фазе.

Опираясь на полученный коэффициент, можно легко посчитать потребление: 24 кг углекислого газа (емкость 40 литров) хватит на 29 кг сварочного металла. Как показывает практика, данные расчеты в большинстве случаев соответствуют действительности.

Можно ли уменьшить расход?

Как отмечалось выше, во время рабочего процесса большое значение имеют внешние факторы. Поэтому желательно минимизировать их негативное влияние. Для этого достаточно соорудить закрытое помещение, защищенное от ветра и сквозняков. Не стоит забывать и о безопасности работы сварщика, обеспечив помещению хорошую вентиляцию.

В закрытом помещении заполненного баллона хватит на большее количество времени

Специальное сокращение расхода обычно не приводит к желаемому результату, поскольку, в таком случае, уменьшаются защитные функции, и качество сварочных швов становится хуже. Для сокращения потребления можно использовать многокомпонентную газовую смесь, например «Микспро 3212», которая, кроме того, обеспечит значительный рост качественных показателей сварки. Однако, цена у подобной смеси будет выше, чем у обычного углекислого газа. Поэтому, окончательный выбор необходимо делать, опираясь на технические требования и бюджет.

Компания «Промтехгаз» — качественный газ для сварки

Если вас действительно интересует, на сколько хватает баллонов углекислоты, и вы не хотите платить за воздух, тогда необходимо обращаться только к проверенным и надежным поставщикам. Много полезной информации по данному вопросу можно найти в статье: углекислота: где заправить – вопрос не праздный.

Компания «Промтехгаз» занимается не только заправкой баллонов техническими газами от лучших российских поставщиков, но и сама является их производителем. Поэтому, в качестве заправленной газовой смеси можно не сомневаться, поскольку все процессы выполняются в соответствии с установленными стандартами, правилами и нормами. По прочим техническим газам вы найдете статьи в соответствующем разделе блога.

Сейчас и на маленьких, и на крупных производствах можно все чаще встретить баллоны с защитным газом. Использование защитного газа при сварке улучшает качество сварного соединения, ускоряет работу и не позволяет кислороду проникать в сварочную зону. Кроме того, баллон с газом стоит недорого и специально для домашней сварки производители выпускают компактные баллоны, которые легко помещаются в багажник машины.

Если вы домашний сварщик, то просто приобретаете компактный баллон в магазине и пользуетесь, не беспокоясь о расходе. Если газ закончится, то можно быстро докупить еще один баллон. А что делать, если вы сварщик на производстве и к вам предъявляют довольно жесткие требования по расходу газа? Как подобрать объем так, чтобы газа точно хватило на весь сварочный процесс? В этой статье мы постарались кратко рассказать вам, как вычислить оптимальный расход углекислоты при сварке полуавтоматом.

От чего зависит расход

Для начала разберемся, от чего вообще зависит расход газа или расход сварочной смеси из нескольких газов. Прежде всего, вы должны учесть металл, с которым будете работать, диаметр присадочной проволоки и силу сварочного тока. От сочетания трех этих компонентов как раз и складывается расход.

Далее мы дадим несколько рекомендаций, какой должен быть расход газа при полуавтоматической сварке, учитывая диаметр присадочной проволоки и силу сварочного тока. Учтите, что это довольно усредненные значения, от них можно отступать.

Итак, если вы используете проволоку диаметром от 0,8 до 1 миллиметра и установили силу тока от 60 до 160 Ампер, то средний расход должен быть около 8 литров в минуту.

Если вы используете проволоку диаметром 1,2 миллиметра и установили силу тока от 100 до 250 Ампер, то средний расход должен быть около 9-12 литров в минуту.

Если вы используете проволоку диаметром 1,4 миллиметра и установили силу тока от 120 до 320 Ампер, то средний расход должен быть около 12-15 литров в минуту.

Если вы используете проволоку диаметром 1,6 миллиметра и установили силу тока от 240 до 380 Ампер, то средний расход должен быть около 15-18 литров в минуту.

Если вы используете проволоку диаметром 2 миллиметра и установили силу тока от 280 до 450 Ампер, то средний расход должен быть около 18-20 литров в минуту.

Это средний расход газа при сварке полуавтоматом. Ведь помимо прямых факторов увеличения расхода (таких как диаметр проволоки и толщина металла), есть еще и косвенные. К примеру, если вы варите на улице или просто не в закрытом боксе, то расход может существенно увеличиться, ведь газ будет быстро улетучиваться. Особенно расход неприятно удивит вас, если на улице дует ветер.

Также важно качество самого газа и то, насколько хорошо он взаимодействует с металлом. Ведь если на производство поставляют некачественный разбавленный газ, вы просто не сможете сохранить показатели расхода в норме. Перерасход будет в любом случае.

Расход защитного газа

Теперь давайте более подробно разберемся с темой расхода газа на конкретном примере. В качестве примера возьмем стандартный газовый баллон 40 л, который есть на большинстве предприятий. Один такой баллон содержит около 24 килограмм чистой углекислоты, при испарении она образует до 12 тысяч кубических дециметров газовой фазы. Этой информации нам уже достаточно, чтобы примерно понимать расход.

Допустим, вы используете присадочную проволоку диаметром 1 миллиметр и установили почти минимальную силу тока. Скажем, 100 Ампер. Судя по справочной литературе, при таком режиме сварки нам хватит одного 40 литрового баллона ровно на сутки, то есть 24 часа. Но вы, естественно, не сидите на работе днями, поэтому поделим это на 6 часов работы. Получим 10 литров газа.

Также можно рассчитать расход исходя из того, сколько килограмм металла мы наплавили. Мы знаем, что на 1 килограмм наплавки мы должны тратить около 1,1 килограмм углекислоты и 1,30 килограмм присадочной проволоки. Зная эти данные несложно рассчитать, сколько газа и проволоки вы потратите. Подскажем: если вы потратили около 1,2 килограмм присадочной проволоки, значит расход газа составил около 1 килограмма.

Теперь, когда мы знаем эти значения, можно посчитать, сколько вообще металла удастся наплавить при использовании 40 литрового баллона с газом. Ответ: 29 килограмм металла. Конечно, это всегда приблизительные цифры, но наша практика доказала, что обычно расход как раз и варьируется в этих пределах. Новичкам рекомендуем использовать таблицу, приведенную ниже.

Экономия газа

Выше мы говорили, что расход газа также влияет от косвенных факторов, на которые сварщик практически не может повлиять. Но он все же может при возможности минимизировать действие этих факторов, тем самым сэкономив газ.

Самое простое, что можно сделать — производить сварку в закрытом цеху с хорошей вентиляцией. Не должно быть сквозняков и ветра. Также лучше к работе привлекать квалифицированных опытных сварщиков, которые выполняют работу быстро и четко. Ведь у новичков в любом случае расход газа будет гораздо выше.

Многие начинающие сварщики интересуются, можно ли еще какими-то методами сократить расход со2 при полуавтоматической сварке? Например, просто подавать меньше газа в сварочную зону. Наш ответ: нет. Умышленно уменьшив количество используемого газа вы ухудшите качество шва, поскольку в сварочную зону будет попадать кислород.

Но у этой проблемы все же есть решение. Опытные мастера советуют применять в своей работе многокомпонентные газовые смеси, благодаря им расход уменьшается, при этом качество сварки остается на достойном уровне. Но будьте готовы к тому, что стоимость многокомпонентных смесей куда выше, чем у стандартного газа. Так что убедитесь, что использование таких смесей экономически выгодно.

Вместо заключения

Опытные мастера зачастую даже измеряют расход во время работ, поскольку точно знают, сколько расходуют углекислоты. Чтобы новичку получить подобные навыки нужно посвятить сварке полуавтоматом огромное количество времени. Но не стоит об этом беспокоиться, ведь даже если вы редко сталкиваетесь со сваркой в среде защитного газа всегда можно посмотреть нормативные документы. Выпишите себе основные тезисы из этой статьи (а лучше запомните), чтобы потом применить их на практике.

Параметры, которые определяют расход газа | Блог — Информация (новости, статьи, советы) | Славянская газовая компания

В процессе сварочных работ сварщики зачастую используют газ СО₂, т.е. углекислоту. Перед началом работы каждый сварщик задается вопросом, на сколько ему хватит баллона углекислоты емкостью 10 л, и от каких показателей зависит потребление баллона в целом. Исходя из опыта в сварочном деле, мы можем с точностью определить такие параметры.

Основными параметрами, которые определяют расход газа, являются толщина обрабатываемого металла, диаметр проволоки, сила тока, а также внешние факторы. Так, если говорить о последних, то на открытом воздухе требуется больше газа для обеспечения нормальных условий сварки. В закрытых помещениях израсходуется меньше газа.

Если брать, к примеру, 10-литровый баллон углекислоты, он содержит 6 кг углекислоты, которая при испарении образует около 3000 дм³ газовой фазы.

Согласно справочным материалам, существует определенная пропорция: СО₂/проволока = 1:1,2 кг.

Иными словами, на 1,2 кг проволоки приходится 1 кг углекислоты в жидкой фазе. При непрерывном рабочем процессе баллона объемом 10 л обычно хватает на 6 часов бесперебойной работы.  Этого объема достаточно для 5 кг проволоки. Как показывает практика, эти данные достоверны.

Многие сварщики интересуются, можно ли уменьшить расход газа при сварке.

Отвечаем – можно, но при условии минимизации негативного влияния внешних факторов. Хотите сэкономить расход углекислоты – проводите сварочные работы в закрытом помещении, или соорудите помещение, защищенной от ветра и сквозняков. При этом следует позаботиться о хорошей вентиляции ради вашей безопасности. Но не стоит экономить углекислоту специально. Это приведет лишь к ухудшению качества сварочных швов.

ООО «Славянская газовая компания» реализует баллоны углекислотные высокого качества. Можете не сомневаться: мы предлагаем продукцию в соответствии стандартам, правилам и нормам. Если не хотите платить за воздух, обращайтесь к нам – надежному и проверенному поставщику газосварочного оборудования и расходных материалов.

Проволока для сварки в углекислом газе

Химический состав сварочных проволок для сварки в углекислом газе (по ГОСТ 2246-60)  [c.76]

Тип покрытого электрода для ручной дуго-юй сварки Сварка под флюсом Марка проволоки для сварки в углекислом газе Марка порошковой проволоки Электро шлаковая сварка  [c.237]

Область применения проволоки для сварки в углекислом газе  [c.372]

Одним из основных факторов, влияющих на полное использование сварочной техники, срок ее службы и производительность сварщиков, является мобильность сварочного оборудования. Большое значение имеет правильный выбор форм мобильности. Например, можно перевозить сварочное оборудование на автомашинах, выгружая его на рабочем месте и погружая на автомашину для новой перевозки, или же стационарно устанавливать оборудование на автоприцепах. На погрузку и разгрузку на объекте уходит много времени, часто требуется автокран. От погрузок, разгрузок и перевозок в не приспособленных для этого автомашинах оборудование портится и быстро выходит из строя. Кроме того, подсчитано, что высвобождение от погрузочно-разгрузочных работ одного автомобильного крана в течение года позволяет сэкономить средства, достаточные для приобретения нескольких одноосных автомобильных прицепов. На сварочных участках целесообразно поэтому применять передвижные сварочные установки на одно- или двухосных автомобильных прицепах. Такие установки, размещаемые на закрытом прицепе, могут иметь различное назначение для ручной сварки на переменном и постоянном токах, для сварки порошковой проволокой, для сварки в углекислом газе, под флюсом. Защита от влияния внешней среды и стационарность установки позволяют удлинить срок службы оборудования, а мобильность и более высокая загрузка сварщиков — повысить коэффициент использования оборудования.  [c.243]


Расход электродной проволоки для сварки в углекислом газе и расход углекислого газа зависят от марки свариваемого металла, режима сварки, рода и полярности тока, положения шва в пространстве. Норма расхода электродной проволоки устанавливается в зависимости от веса наплавленного металла на 1 м шва и технологических потерь и определяется по формуле  [c.277]

Из изложенного следует, что выгорание элементов из проволоки более значительно, чем из основного металла. Это обстоятельство нужно учитывать при выборе электродной проволоки для сварки в углекислом газе той или иной стали, особенно при многослойной сварке. Прежде всего необходимо, чтобы металл ванны был хорошо раскислен, а содержание кремния и марганца в сварочной ванне к моменту затвердевания металла было достаточным для подавления реакции окисления углерода. В противном случае выделение СО в момент затвердевания металла вызовет образование пор в шве.  [c.59]

Рекомендуемые электродные проволоки для сварки в углекислом газе углеродистых и низколегированных сталей  [c.219]

При выборе проволоки для сварки в углекислом газе той или иной стали необходимо учитывать соответствующее выгорание таких элементов, как титан, марганец, кремний. Напомним также, что, если в проволоке содержится повышенное количество марганца и кремния, уменьшается выгорание таких элементов-стабилизаторов кислотостойких швов, как титан, ниобий.  [c.224]

В табл. 76 приведены марки электродных проволок для сварки в углекислом газе высоколегированных сталей, рекомендуемые в за-  [c.224]

ОРИЕНТИРОВОЧНЫЙ СОСТАВ ПРОВОЛОКИ ДЛЯ СВАРКИ в УГЛЕКИСЛОМ ГАЗЕ  [c.160]

Дополнительное легирование проволок для сварки в углекислом газе сильными элементами-раскислителями (титаном, алюминием, цирконием и др.) приводит к уменьшению разбрызгивания при сварке. В настоящее время ведется разработка таких проволок.  [c.480]

Проволоки для сварки в углекислом газе с принудительным формированием шва  [c.79]

Порошковая проволока для дуговой сварки углеродистых и низколегированных сталей подразделяется на газозащитную (ПГ), применяемую для сварки в углекислом газе или газовых смесях, и само-защитную (ПС), сварка которой осуществляется без дополнительной защиты (ГОСТ 26271-84). В соответствии с допустимыми пространственными положениями сварки и условиями формирования сварного шва проволока подразделяется  [c.177]

Специфическое требование к источникам питания для сварки в углекислом газе связано с необходимостью ограничения пикового тока короткого замыкания и скорости его нарастания для снижения разбрызгивания электродного металла. Ток настраивается изменением скорости подачи проволоки. Поэтому источник должен иметь регулятор напряжения дуги с воздействием на U .  [c.113]


При сварке плавящимся электродом в защитных газах зависимости формы и размеров шва от основных параметров режима такие же, как и при сварке под флюсом (см. рис. 3.29). Для сварки используют электродные проволоки малого диаметра (до 3 мм). Поэтому швы имеют узкую форму провара и в них может наблюдаться повышенная зональная ликвация. Применяя поперечные колебания электрода, изменяют форму шва и условия кристаллизации металла сварочной ванны и уменьшают вероятность зональной ликвации. Имеется опыт применения для сварки в углекислом газе электродных проволок диаметром 3. .. 5 мм. Сварочный ток в этом случае достигает 2000 А, что значительно повышает производительность сварки. Однако при подобных форсированных режимах наблюдается ухудшенное формирование стыковых швов и образование в них подрезов. Формирование и качество угловых швов вполне удовлетворительны.  [c.138]

Сущность способа. Порошковая проволока выпускается двух типов для сварки в углекислом газе и самозащитная, т.е. не нуждающаяся в дополнительной защите. Конструкция порошковой проволоки определяет некоторые особенности ее расплавления дугой. Сердечник проволоки на 50. .. 70 % состоит из неметаллических материалов и поэтому его электросопротивление велико — в сотни раз больше, чем металлической оболочки. Поэтому практически весь сварочный ток проходит через металлическую оболочку, расплавляя ее. Плавление же сердечника, расположенного внутри металлической оболочки, происходит в основном за счет теплоизлучения дуги и теплопередачи от расплавляющегося металла оболочки. Ввиду этого сердечник может выступать из оболочки (рис. 3.53), касаться ванны жидкого металла или переходить в нее частично в нерасплавленном состоянии. Это увеличивает засорение металла шва неметаллическими включениями.  [c.143]

В состав наиболее распространенных — шланговых — полуавтоматов входят (рис. 4.5) горелка I или комплект горелок со шлангом 2 механизм подачи электродной проволоки кассета, катушка или другие устройства 4, являюш,иеся емкостями для электродной проволоки шкаф или блок управления 5 (если он конструктивно не объединен с источником питания) источник питания б провода для сварочной цепи 7 и цепей управления 8 редуктор и аппаратура для регулирования и измерения расхода газа 9 шланг для газа 10 (в полуавтоматах для сварки в защитных газах) подогреватель газа (в полуавтоматах для сварки в углекислом газе) специальный инструмент, запасные и быстроизнашивающиеся составные части полуавтомата, а также эксплуатационная документация.  [c.174]

В ЦНИИТМАШ разработан полуавтомат ПГШ-2м для сварки в углекислом газе. Он состоит из подающего механизма с кассетой для электродной проволоки, газоэлектрической горелки со шлангом, аппаратного шкафа, стойки на три баллона с углекислотой, аппаратуры газовой магистрали, переносного пульта управления и механизма регулирования сварочного режима, устанавливаемого на реостате сварочного преобразователя ПС-500. Аппаратура газовой магистрали включает осушитель, подогреватель, редуктор с индикатором расхода газа, реле давления и электромагнитный клапан.  [c.179]


Подготовка кромок и сборка соединений для сварки в углекислом газе аналогичны подготовке изделий для ручной сварки. При полуавтоматической сварке проволокой диаметром 1,2 мм и менее (тем более при сварке в вертикальном положении металла толщиной более 3 мм) требования к точности сборки соединений менее жесткие, чем при сварке под флюсом.  [c.109]
Рис. 105. Полуавтомат А-537 для сварки в углекислом газе проволокой диаметром 1,6—2,0 мм
Примечание. Для сварки в углекислом газе ряда марок сталей используются те же проволоки, что и для сварки под флюсом (см, табл. 13).  [c.209]

Проволока для сварки в углекислом газе и смесях аргона с углекислым газом. При сварке в углекислом газе применяют проволоку марок СВ-08Г2С, СВ-10ХГ2СМА, Св-08ХН2Г2СМЮ (ГОСТ 2246-70) или порошковую проволоку.  [c.294]

Порошковые проволоки для сварки в углекислом газе. Сварка в углекислом газе проволокой сплошного сечения Св-08Г2С наряду с известными преимуществами, обусловившими ее массовое применение, имеет ряд недостатков. Важнейшие из них повышенное разбрызгивание электродного металла и посредственный внешний вид швов при сварке проволокой диаметром 1,6—2,0 мм в диапазоне наиболее употребляемых сварочных токов (340—400 А). В ряде случаев наблюдается недостаточная пластичность металла шва.  [c.301]

При новом способе обеспечивается надежная защита металла сварочной ванны от азота, а окисление углекислым газом устраняется применением электродной проволоки с повышенным содержанием раскислителей. К. В. Любавский и Н. М. Новожилов на основе данных, полученных при сварке под флюсом, применили для сварки в углекислом газе плавящую, легированную кремнем и марганцем электродную проволоку и увеличенные плотности тока в электроде, что обеспечило значительное повышение качества сварных соединений и производительности процесса при низкой его стоимости (углекислый газ в 10—15 раз дешевле аргона). Способ легко поддается механизации и автоматизации. Этот способ сильно потеснил шланговую полуавтоматическую сварку под флюсом при укладке швов в труднодоступ пых местах, а также при сварке швов небольшой длины, при сварке тонкого металла и монтаже (например, в строительстве). Кроме того, сварка в углекислом газе успешно применяется для исправления дефектов литья и при наплавочных работах.  [c.127]

Сварка в защитной среде углекислого газа. За последние годы в ремонтной практике в се большее расиространение начинает получать электрическая дуговая сварка в защитной среде углекислого газа (СОз). Рабочим инструментом для сварки в углекислом газе является тазоэлектрическая горелка, в которую автоматически, подается сварочная проволока и к которой подводится ова рочный тюк и углекислый газ.  [c.185]

Для наплавки порошковыми проволоками используют специальные полуавтоматы шлангового типа. По конструкции они отличаются от полуавтоматов для сварки в углекислом газе отсутствием газовой аппаратуры и устройством подающего механизма (имеют две пары подающих роликов, которые расположены последовательно). Наибольшее применение нашел полуавтомат А-765 конструкции Института электросварки имени Е. О. Патона, предназначенный для сварки порошковой проволокой диаметром от 2 до 3,6 мм. Для наплавки может быть использован также универсальный полуавтомат А-1035М, техническая характеристика которого приведена в табл. 11. Этот полуавтомат может применяться для сварки и в углекислом газе и порошковой проволокой, для чего он укомплектован сменными шлангами и горелками. При отсутствии специальных полуавтоматов можно использовать также. полуавтомат А-537 (табл. 11). Для бесперебойной подачи порошковой проволоки подающий шланг должен быть укорочен до 2 м.  [c.98]

Порошковые проволоки в зависимости от вида шихты сердечника используются или с дополнительной защитой (обычно это углекислый газ), или без нее. Последние называют самозащитнъши. При сварке самозащитными проволоками защита расплавленного металла осуществляется за счет газо- и шлакообразующих элементов шихты сердечника. Как правило, без дополнительной защиты применяются ру-тил-органические, карбонатно-флюоритные и флюоритные проволоки. Проволоки рутилового и рутил-флюоритного типов используют для сварки в углекислом газе, эти проволоки называют еще газозащитными. Типы порошковых проволок можно выбирать в зависимости от положения свариваемых стыков деталей в пространстве и требований к сварному соединению (табл. 16).  [c.159]

Для сварки в углекислом газе стыков труб наружным диаметром 1420 мм с толщиной стенки 16,5 мм состав защитного газа СО2 100 %, при использовании сварочной проволоки Св-08ХМ СО2 75 % + + Аг 25 %.  [c.258]

Примечания 1. Специализированный автомат АДФГ-501УХЛ4 предназначен для сварки под флюсом и для сварки в защитном газе, автомат А-1406УХЛ4 — для сварки под флюсом и для сварки в углекислом газе порошковой проволокой.  [c.405]

Для сварки в углекислом газе рекомендуют применять рутило-вые и рутил-флюоритовые порошковые проволоки. Техника сварки порошковой проволокой незначительно отличается от сварки плавящимся электродом в защитном газе, но при многослойной сварке требуется тщательная очистка поверхности предыдущих швов от шлака.  [c.213]

Универсальные сварочные преобразователи. Для ручной дуговой сварки и сварки на автоматах, снабженных авторегуляторами напряжения,, автоматически воздействующими на скорость подачи электродной, проволоки, требуются источники питания е падающими внешними характеристиками. Для питания автоматов и полуавтоматов с постоянной скоростью подачи электродной проволоки, в том числе для сварки в углекислом газе и порошковой проволокой ЭПС-15,, необходиг-мы генераторы с жесткими внешними характеристика  [c.166]

Для сварки в углекислом газе элек-)одная проволока роликами подво-1ТСЯ к детали. При включении элек-шческого тока в цепи возбуждается та, которая окружена углекислым га- М, поступающим через сопло. Ме-  [c.153]

Необходимым условием возможности сварки сталей в углекислом газе является наличие в присадочной проволоке кремния и марганца. Обычно для сварки в углекислом газе используются проволоки Св О,8Г2С, Св-Г2С, Св-ЗОХГСА, а также порошковые проволоки.  [c.153]

Рис. 104. Подающий механизм и держатель полуавтомата А-547 для сварки в углекислом газе проволокой диаметпом 0,5—1,2 мм

Инверторный полуавтоматический сварочный аппарат RESANTA OF SAIPA-165 — купить по низким ценам в интернет-магазине Joom

Главное преимущество

Сварочный аппарат SAIPA-165 работает от обычной электросети с бытовыми параметрами и укомплектован оборудованием. возможность производить широтно-импульсную модуляцию сварочного тока, что позволяет плавно регулировать его.

Благодаря инверторной схеме система получила небольшие габариты и вес, что повысило мобильность и удобство использования устройства, в том числе в домашних условиях.

Аппарат обеспечивает достаточно высокое качество сварки даже для начинающих сварщиков.

Устройство имеет возможность предотвращения перегрузки электросети в момент зажигания дуги.

Система оснащена автоматической защитой от перегрева главного трансформатора и принудительным охлаждением во время работы.

Сварочный аппарат этого типа прост в использовании, удобен, практичен и не требует особо квалифицированного пользователя.

Пульт управления сварочным аппаратом САИПА-165

Общее описание

Монтаж Трансформатор воздушного охлаждения САИПА-165 с инверторной системой преобразования, система питания постоянного тока, специальная сварочная проволока, барабан с подачей этой проволоки, пистолет-аппликатор для подачи проволоки и защитного газа (углекислый газ или его смесь с аргоном) в зону сварки и предназначен для ручных сварочных работ любой сложности в полуавтоматическом режиме.В качестве электрода для сварки здесь используется гибкая проволока особого состава, а вместо защитного флюса, не позволяющего шву контактировать с кислородом и другими примесями воздуха, используется струя защитного газа. В отличие от сварочных аппаратов, в которых используются электроды, эта система лучше подходит для выполнения более тонких сварочных операций.

В бытовых (особенно в частных или загородных домах) или промышленных условиях необходимо периодически надежно скреплять между собой определенные металлические детали.Особенно это актуально при выполнении различных ремонтных или строительных работ. После того как высокотехнологичные инверторные сварочные аппараты САИПА-165 стали общедоступными, эти работы перестали относиться к разряду особо сложных, поскольку вес и габариты такого аппарата несоразмерно меньше предыдущих аналогов, а оборудование позволяет производить качественная сварка даже для новичка в этом деле.

Особое внимание производитель уделил безопасности и надежности устройства.Специальные датчики контролируют температуру основного рабочего тела (трансформатора) и в случае приближения температуры его нагрева к критической обеспечат автоматическое отключение источника питания. Оператору потребуется дать системе отдохнуть в течение нескольких минут, после чего устройство самостоятельно восстановит свою работоспособность. момент перегрева отобразится на панели управления в виде горящего аварийного индикатора.

удобная ручка для транспортировки сварочного аппарата saipa-165

электросварочная установка saipa-165 изготовлена ​​с использованием самых современных материалов и технологий.Его органы управления компактно сосредоточены на передней панели и позволяют контролировать рабочий процесс и состояние агрегата, а также плавно изменять значение рабочего тока и напряжения.

Основные характеристики Торговая марка: RESANTA Диапазон тока, А: 20 … 160 Максимальный ток потребления, А: 22 Рекомендуемый диаметр проволоки, мм: 0,6 … 0,9 Напряжение дуги, В: 17 … 26 Номинальная продолжительность включения,%: 70% 160 А Класс защиты: IP21 Вес продукта, кг: 11,5 Напряжение сети, В: 198 … 242 Частота тока, Гц: 50 Вес нетто, кг: 8,165 Полная масса, кг: 8,165 Размеры упаковки, см: 47 х 30 х 23 EAN13: 46060568 Модель: RESANTA OF SAIPA-165

Дуговые сварочные аппараты

Тип продукции: Сварочное оборудование

Сварочное полуавтоматическое оборудование и оборудование опытного завода сварочного оборудования Института электросварки им.О. Патон — Новости | ПАТОН ™

Степахно Анатолий Валерьевич,
Председатель Правления Опытного завода сварочного оборудования №

Институт электросварки им. Патон

Автоматизация и механизация процесса электродуговой сварки — одна из приоритетных задач современного сварочного оборудования. Ручная дуговая сварка трудоемка, требует наличия большого коллектива высококвалифицированных сварщиков, но не способна обеспечить однородность продукции, что важно для крупных промышленных предприятий.

Поэтому, помимо ручной дуговой сварки, в промышленности широко применяется машинная дуговая сварка; различают автоматическую и полуавтоматическую дуговую сварку. В автоматической сварке моторизованы две основные операции: подача электрода к дуге в процессе ее плавления и перемещение дуги по линии сварки; а полуавтоматическая сварка обеспечивает только моторизацию подачи электродов.

Автоматическая сварка не всегда целесообразна, а иногда и невозможна. Это выгодно при крупносерийном и серийном производстве изделий с относительно длинными прямыми и круглыми швами.Поэтому в большинстве случаев применяется полуавтоматическая сварка, когда моторизована только подача электродной проволоки, а дуга перемещается в ручном режиме.

Широкое использование полуавтоматической сварки в среде двуокиси углерода вместо ручной сварки покрытыми электродами объясняется ее более высокой эффективностью, лучшими условиями труда и более низкими требованиями к профессиональному уровню работников.

С целью защиты дуги и расплавленного металла от контакта с воздухом в зоне сварки при полуавтоматической сварке формируется газовая защита, в основном из углекислого газа.Специальные горелки используются для подачи сварочного тока от источника питания к сварочной проволоке и для создания газовой защиты в зоне сварки. Такая горелка имеет токопроводящий и направляющий мундштук со съемным наконечником, через который проталкивается проволока; Через сопло подается поток газа, который направляется в зону сварки, чтобы защитить сварочную ванну от воздействия воздуха. Электродная проволока подается в горелку из змеевика по гибкому шлангу с помощью специального подающего механизма. Итак, комплект оборудования для полуавтоматической сварки, состоящий из источника питания, механизма подачи и горелки, называется сварочным полуавтоматом.

Сварочные полуавтоматы Paton производятся в двух блоках. Выполняют сварку в углекислом газе и газовой смеси CO 2 + Ar сплошной и порошковой проволокой диаметром не менее 0,8 мм. Имеют плавную и ступенчатую регулировку скорости подачи проволоки (возможно дистанционное управление), производят обдув участка до и после сварки; они оснащены плавным пуском.

Фото 1. Сварочный полуавтомат ПС-351.2

Полуавтоматы удобны, просты в использовании и надежны даже в тяжелых условиях эксплуатации: на открытых площадках, при высоких перепадах температуры, повышенной влажности окружающей среды и т. Д.

Полуавтоматы сварочные. ПС-253.2 и ПС-313.2 могут комплектоваться блоком воздушно-плазменной резки металла толщиной не более 6 мм, этот блок встроен в корпус полуавтомата. Блок обеспечения двух- и четырехконтактного режима работы, т.е.е. Также доступен «клепальный» режим.

Технические характеристики сварочных полуавтоматов Paton приведены в таблице 1.

Таблица 1

9103

0

9006 7 2

2

0

Номинальный сварочный ток, А

При продолжительности работы 40%

3

мм

Длина

Ширина

Высота

Параметры

PS-180.2

PS -253.2

ПС-351.2

Напряжение питания, В

3х380

3х380

3х380

0

0

Пределы регулирования рабочего тока, А

50-180

50-250

50-315

Пределы регулирования рабочего напряжения, В

16 -25

17-28

17-30

Номинальная потребляемая мощность, не более, кВ A

7

11

13,5

Количество роликов 03

2

4

Максимальное напряжение холостого хода, В

40

40

40

180 (Продолжительность работы 60%)

250

315

Номинальное рабочее напряжение, В

24

9 0101 26

26

Расход защитного газа, л / мин.

15

15

15

Диаметр сварочной проволоки, весь

порошок

0,8-1,2

0, 8-1,4

0,8-1,6

1,2-1,8

Пределы регулирования скорости подачи сварочной проволоки, м / мин.

2-16

2-16

2-16

Размеры выпрямителя, не более, мм

Длина

Ширина

Высота

6100003

6100003

470

600

850

440

570

850

440

570

460

210

330

625

253

456

3

45603

выпрямитель

блок питания 9000 3

80

12

117

22,6

190

22,6

Используются классические выпрямители со ступенчатым регулированием напряжения в широком диапазоне в качестве источников питания для сварочных полуавтоматов.В отличие от тиристорных выпрямителей классические выпрямители не искажают синусоиду вторичного напряжения силового трансформатора, обеспечивая меньшие значения импульса на выходе выпрямительного блока. Такая конструкция позволяет существенно улучшить динамические параметры процесса сварки, повысить стабильность горения дуги и снизить разбрызгивание электродного металла.

Для улучшения динамических параметров в полуавтоматическом сварочном аппарате ПС- установлен параметрический дроссель вместо обычного сглаживающего. 351.2. Благодаря обратной связи через сварочный ток, параметрический дроссель плавно изменяет индуктивность, обеспечивая значительное улучшение формирования и качества сварного шва, а также облегчает нанесение вертикальных и накладных швов.

Комплект оборудования, состоящий из блока питания БП-608 и выпрямителя ВС-650ЦП, предназначен для тяжелых условий эксплуатации с большими токами. Этот комплект оборудования предназначен для полуавтоматической сварки в среде защитного диоксида углерода цельным электродом или порошковой проволокой большого диаметра.Для улучшения процесса сварки в выпрямитель установлен параметрический дроссель.

Фото 2. Выпрямитель VS-650 СР

Данный выпрямитель может также работать в многопользовательском режиме ручной дуговой сварки с подключением четырех сварочных постов 315A с кратностью 0,5. . В данном случае выпрямитель комплектуется балластным реостатом типа RB302.

Технические характеристики ВС-650СР и БП-608 приведены в таблице 2.

Таблица 2

Параметры

VS-650 СР

Напряжение питания, В

3х380

Номинальный сварочный ток, A при продолжительности работы 80%

650

Пределы регулирования x / x напряжения, ступенчато, В

18-58

Пределы регулирования скорости подачи сварочной проволоки, м / мин.

2-20

Расход защитного газа, л / мин.

15

Диаметр сварочной проволоки, мм весь

1,0-2,4

порошок

1,2-3,6

Размеры, Д x Ш x В, мм, подающего блока

650х320х442

источник

820х750х830

Масса, кг, подающего блока

источник

200

Использование источников питания для различных видов ручной дуговой сварки и электросварки в среде защитных газов зависит от условий эксплуатации: монтажно-ремонтные работы или промышленное производство.Легкое оборудование малых габаритов, отличающееся ограничениями по сроку эксплуатации, в основном используется для монтажных и ремонтных работ, а машины с улучшенными техническими характеристиками — в промышленном производстве; Как правило, такие аппараты рассчитаны на большой сварочный ток при большой продолжительности нагрузки или работы.

Сварочное оборудование производства Опытного завода сварочного оборудования Института электросварки им. Е.О. Патон более 55 лет пользуется стабильным спросом не только в Украине, но и за рубежом, благодаря высокому качеству изготовления и надежности в эксплуатации.

Горячие работы · Политики и процедуры · Администрирование

  1. Цель
  2. Определения
  3. Ссылки

Цель

Эта процедура применима ко всем, кто выполняет сварку, резку, пайку, пайку, шлифование или любую работу, при которой возникает искра. Цель этой программы — предотвратить травмы и потерю имущества в результате пожара при использовании оборудования для производства тепла, такого как тепловые пушки, паяльные инструменты, кислородно-топливный газ, а также оборудование для электродуговой резки и сварки.

Горячие работы должны быть разрешены в утвержденных областях, и разрешения будут выдаваться как персоналу Keene State College (KSC), так и сторонним подрядчикам отделом KSC по охране окружающей среды и безопасности (EHS) или квалифицированным сотрудником KSC. Иногда разрешение на одеяло может быть предоставлено для долгосрочного проекта и в утвержденных зонах горячих работ, таких как гараж Whitcomb, сантехнический цех и скульптурная студия. Эти области будут ежегодно инспектироваться EHS.

Разрешение на проведение огневых работ требуется для следующих видов деятельности: пайка, резка, нагрев, пайка *, сварка или аналогичные работы в соответствии с OSHA 20 CFR 1910.252. Низкотемпературная пайка (например, термовоздушные карандаши и паяльники) освобождается от требований разрешения, за исключением случаев, когда место или характер работы представляют значительную опасность пожара. Тем не менее, по-прежнему важно обеспечить соблюдение общих процедур, изложенных в этом документе, при выполнении любого типа пайки.

Разрешение на выполнение огневых работ можно получить в офисе EHS (358-2879). Разрешение также должно быть получено от города Кин для любых операций по сварке или резке, выполняемых сторонним подрядчиком (http: // www.ci.keene.nh.us/departments/fire-department).

Общие указания

  • По возможности, работы следует выполнять с использованием альтернативных методов, кроме огневых.
  • Горячие работы следует выполнять в специально отведенных для этого помещениях, где это возможно.

Разрешение

Для получения разрешения на проведение огневых работ необходимо обеспечить следующее:

  • Зона должна быть проверена EHS или квалифицированным сотрудником KSC
  • Вид огневых работ должен быть утвержден для выполняемого проекта
  • Контейнеры и / или трубы должны быть должным образом очищены, продуваны и проверены
  • Все горючие и легковоспламеняющиеся материалы должны быть защищены огнестойким брезентом или перенесены на 35 футов от зоны горячих работ.
  • Отверстия в полу и стенах (в пределах 35 футов) должны быть закрыты и герметизированы для предотвращения распространения огня
  • Оборудование для обнаружения и тушения пожара должно оставаться в рабочем состоянии постоянно, если иное не защищено или не одобрено KSC Physical Plant
  • Огнетушители надлежащего размера и типа должны располагаться в пределах 25 футов от зоны проведения горячих работ.
  • Оборудование для горячих работ, такое как газовые баллоны, шланги, кабели и горелки, должно поддерживаться в надлежащем состоянии, закрепляться, храниться, транспортироваться и использоваться постоянно
  • Надлежащие средства индивидуальной защиты (т.е. одежду, защитную маску, защитные очки, перчатки, средства защиты головы и ног) необходимо использовать в соответствии с требованиями
  • Прочие опасности для здоровья и безопасности, такие как асбест, хранение / использование химикатов, замкнутое пространство, электричество, огонь, тепло, вентиляция, должны быть рассмотрены и оценены до проведения огневых работ
  • Должен существовать план эвакуации для конкретных работ
  • При выполнении любых огневых работ должно проводиться пожарное дежурство (не менее ½ часа).
  • Мешки для дымовых извещателей должны быть поставлены и установлены подрядчиком при необходимости
  • Постоянные или переносные шторы и экраны должны использоваться, если люди подвергаются или могут подвергнуться прямому или отраженному излучению
  • Должна быть предусмотрена вытяжная вентиляция, если вентиляция не определена как достаточная

Пожарная вахта

Пожарная вахта должна поддерживаться в течение не менее одного часа после завершения горячих работ (1/2 часа, если это одобрено EH&S или квалифицированным сотрудником KSC).Пожарная охрана требуется при наличии любого из следующих условий.

  • Горючие материалы находятся на расстоянии менее 35 футов до точки эксплуатации
  • Горючий материал находится на расстоянии более 35 футов, но легко воспламеняется от искры
  • Отверстия в стене или полу в радиусе 35 футов открывают доступ к горючим материалам на прилегающих территориях
  • Горючие материалы прилегают к противоположной стороне металлических перегородок, стен, потолков или крыш и могут воспламениться от чрезмерного тепла

Обязанности пожарного:

  • Иметь оборудование для пожаротушения, готовое к использованию
  • Обучиться обращению с пожарным оборудованием
  • Знайте, куда идти, чтобы подать сигнал тревоги в случае возникновения чрезвычайной ситуации
  • Следите за возгоранием и тушите его, только если это возможно.
  • Когда пожар не в их силах, им необходимо подать сигнал тревоги
  • Следить за возгоранием не менее получаса после завершения огневых работ

Общие меры контроля при сварке и резке

Операции по сварке и резке должны выполняться только работниками, прошедшими соответствующее обучение. По возможности, огневые работы должны выполняться в правильно спроектированном помещении цеха, оборудованном всеми необходимыми средствами контроля и соответствующей вентиляцией. Горючие материалы, такие как строительные материалы или другое строительное содержимое, должны располагаться на расстоянии не менее 35 футов от горячей рабочей зоны или должным образом защищаться от контакта с горячими искрами.Полы в этой зоне также необходимо очистить от всех горючих материалов. Все отверстия в полу и стенах в пределах 35 футов от горячей рабочей зоны должны быть закрыты, чтобы горячие искры не попадали в стены, не падали под пол или на более низкий уровень. Запрещается проводить огневые работы в присутствии взрывоопасных смесей горючих газов, паров, жидкостей или пыли или там, где взрывоопасные смеси могут образоваться внутри неправильно подготовленных резервуаров или оборудования. Атмосферные испытания и мониторинг горючих газов и паров должны проводиться до начала работы и после этого через заранее определенные промежутки времени.Следует использовать огнестойкие занавески и тонированные экраны для предотвращения возгорания, ожогов сотрудников и воздействия ультрафиолетового излучения. Персональные средства защиты, специально разработанные для огневых работ, должны быть предоставлены и использоваться рабочими. Следует учитывать возможность выделения токсичных паров из обрабатываемого материала или поверхностных покрытий. Огнетушитель класса не ниже 2-A: 20-B: C должен быть в наличии в цехах, где выполняются горячие работы. На все переносные сварочные тележки должен быть установлен огнетушитель класса не ниже 2-A: 10-B: C.Обратитесь в EHS за дополнительными инструкциями по выбору огнетушителя. Спринклерная система здания, если таковая имеется, должна быть в рабочем состоянии до начала горячих работ. Лицо, не являющееся оператором, должно выполнять обязанности пожарной вахты и оставаться на рабочем месте не менее 30 минут после завершения горячих работ.

Сварка или резка в замкнутом пространстве

  • При выполнении работ в замкнутом пространстве необходимо соблюдать процедуры в замкнутом пространстве.
  • При работе в плохо вентилируемых помещениях воздействие загрязнителей воздуха, образующихся при сварке или резке, должно контролироваться с помощью вентиляции, защиты органов дыхания или их комбинации.
  • Газовые баллоны и сварочные аппараты следует оставлять за пределами помещения, когда работа выполняется в таких помещениях, как котлы, резервуары или сосуды под давлением. Тяжелое переносное оборудование, установленное на колесах, должно быть надежно заблокировано для предотвращения движения.

Хранение и транспортировка газа

  • Все баллоны должны быть постоянно закреплены либо одобренной цепью, либо ремнем
  • На всех баллонах должна быть постоянно установлена ​​крышка или регулятор **
  • Все баллоны необходимо хранить, транспортировать и использовать в вертикальном положении.
  • Все цилиндры и навесное оборудование не должны иметь повреждений и утечек
  • Все цилиндры должны иметь надлежащую маркировку.
  • За исключением случаев использования, баллоны с кислородом и топливным газом следует хранить отдельно, на расстоянии не менее 20 футов друг от друга или разделенных негорючей стенкой высотой не менее 5 футов.

Обучение

Рабочие должны быть обучены выбору и использованию средств индивидуальной защиты, правильной эксплуатации оборудования, обращению и хранению сварочных материалов, безопасности сжатого газа, химическим опасностям, замкнутым пространствам и процедурам огневых работ, включая письменные горячие работы разрешать.Свяжитесь с EHS для обучения.

Определения

Резка с воздушной угольной дугой (CAC-A, ранее известная как воздушно-дуговая резка ), процесс резки, при котором металлы разрезаются и плавятся под действием тепла дуги с использованием угольного электрода. Расплавленный металл отталкивается от разреза струей нагнетаемого воздуха. Это может быть опасно, так как расплавленный материал может разноситься на значительные расстояния. [Процесс также очень шумный. Он чаще всего используется для резки и строжки алюминия, меди, железа, магния, углеродистой и нержавеющей стали.Этот процесс отличается от операций плазменной резки, поскольку при воздушной угольной резке используется открытая или несуженная дуга, и дуга действует отдельно от воздушной струи.

Дуговая сварка использует источник сварочного тока для создания электрической дуги между электродом и основным материалом для плавления металлов в точке сварки. Дуговая сварка использует постоянный (DC) или переменный (AC) ток, а также плавящиеся или неплавящиеся электроды. Область сварки обычно защищена каким-либо защитным газом, паром и / или шлаком.Электрический ток используется для зажигания дуги между основным материалом и стержнем плавящегося электрода, который изготовлен из стали и покрыт флюсом, который защищает область сварного шва от окисления и загрязнения за счет выделения в процессе сварки газообразного диоксида углерода (CO2). Сам сердечник электрода действует как присадочный материал, поэтому необходимость в отдельном наполнителе отпадает.

Пайка — это процесс соединения металлов, при котором присадочный металл нагревается сверху и распределяется между двумя или более плотно прилегающими частями за счет капиллярного действия.Присадочный металл немного нагревается до температуры плавления, в то время как он защищен подходящей атмосферой, обычно флюсом. Затем он течет по основному металлу (так называемое смачивание), а затем охлаждается, чтобы соединить детали вместе. Это похоже на пайку, за исключением того, что температура плавления присадочного металла превышает 450 ° C (842 ° F).

Дуговая сварка порошковой проволокой (FCAW) — это вариант метода GMAW . Проволока FCAW на самом деле представляет собой тонкую металлическую трубку, заполненную порошкообразным флюсом.Иногда используется защитный газ, подаваемый извне, но часто сам флюс используется для создания необходимой защиты от атмосферы. Этот процесс широко используется в строительстве из-за высокой скорости сварки и портативности.

Газовая дуговая сварка металлическим электродом (GMAW) , обычно называемая MIG (металлический инертный газ), представляет собой полуавтоматический или автоматический процесс сварки с непрерывно подаваемой расходной проволокой, действующей как электрод и присадочный металл, а также инертный или полуинертный защитный газ, который обтекает проволоку, чтобы предотвратить загрязнение места сварки.GMAW предлагает относительно высокие скорости сварки, но более сложное оборудование снижает удобство и универсальность по сравнению с процессом SMAW. GMAW широко используется в автомобильной промышленности из-за его качества, универсальности и скорости. Из-за необходимости поддерживать стабильную оболочку из защитного газа вокруг места сварки может быть проблематичным использование процесса GMAW в областях с сильным движением воздуха, например на открытом воздухе.

Шлифовка, сверление и шлифование и другие виды механических операций могут вызвать искры, которые могут воспламенить мусор и легковоспламеняющиеся пары.В некоторых случаях может потребоваться разрешение на огневые работы.

Горячие работы — это любой процесс, который может быть источником возгорания при наличии горючего материала или может представлять опасность пожара независимо от наличия горючего материала на рабочем месте. Обычные процессы горячей обработки — это сварка, пайка, резка и пайка. Когда присутствуют горючие материалы, другие механические процессы, такие как шлифование и сверление, становятся горячими рабочими процессами.

Газ MAPP широко используется в качестве общего названия для стабилизированного метилацетилен-пропадиена UN 1060 (нестабилизированный метилацетилен-пропадиен известен как MAPD).Газ MAPP широко считается более безопасным и простым в использовании заменителем ацетилена. Текущие продукты с маркировкой «MAPP» на самом деле являются заменителями MAPP. Эти версии представляют собой стабилизированный сжиженный углеводородный газ (LPG) с высоким содержанием пропилена. Газ MAPP может использоваться в сочетании с кислородом для нагрева, пайки, пайки и даже сварки из-за его высокой температуры пламени 2927 ° C (5300 ° F) в кислороде. Хотя ацетилен имеет более высокую температуру пламени (3160 ° C, 5720 ° F), MAPP имеет то преимущество, что не требует ни разбавления, ни специальных наполнителей контейнеров во время транспортировки, что позволяет транспортировать больший объем топливного газа при том же заданном весе и это намного безопаснее в использовании.

Сварка MIG (металл в инертном газе) (GMAW или газовая дуговая сварка металлическим электродом) — Также называемая сваркой сплошной проволокой, представляет собой процесс дуговой сварки, при котором соединяются металлы путем их нагрева дугой. Дуга возникает между непрерывно подаваемым присадочным (расходуемым) электродом и заготовкой. Подача газа или газовых смесей из внешнего источника обеспечивает защиту. См. Раздел «Сварка металлическим электродом в газе»

Кислородно-топливо (оксиацетиленовый газ) Кислородноацетилен является наиболее горячим горящим обычным топливным газом. Около 20 процентов ацетилена расходуется на газовую сварку и резку ацетилена из-за высокой температуры пламени; при сжигании ацетилена с кислородом образуется пламя с температурой более 3300 ° C (6000 ° F) ***.Рабочее давление как для сварки, так и для резки должно контролироваться с помощью регулятора, поскольку ацетилен взрывоопасно разлагается при давлении выше 15 фунтов на квадратный дюйм. Для кислородно-топливной сварки / резки обычно требуются два бака, топливный и кислородный. Горелки, в которых топливо не смешивается с кислородом (вместо этого сочетается атмосферный воздух), не считаются кислородными горелками и обычно могут быть идентифицированы по одному резервуару. Большинство металлов невозможно расплавить с помощью горелки с одним баком. Таким образом, горелки с одним баком обычно используются только для пайки и пайки, а не для сварки.

Газокислородная сварка (обычно называемая кислородно-ацетиленовой сваркой, кислородной сваркой или газовой сваркой.) И газокислородная резка — это процессы, в которых для сварки и резки металлов используются горючие газы и кислород соответственно. Чистый кислород вместо воздуха (20% кислорода / 80% азота) используется для повышения температуры пламени, чтобы обеспечить локальное плавление материала заготовки (например, стали) в помещении. Два куска металла нагреваются до температуры, при которой образуется общая лужа расплавленного металла с помощью сварочной горелки.В ванну расплава обычно добавляют дополнительный металлический наполнитель. Кислородная сварка была очень популярным сварочным процессом в предыдущие десятилетия; но развитие и преимущества процессов дуговой сварки значительно снизили потребность в газокислородной сварке. Однако универсальность газокислородной сварки по-прежнему легко поддается пайке, пайке-сварке, нагреву металла (для отжига или отпуска, гибки или формовки), ослаблению корродированных гаек и болтов и другим применениям.Кислородную сварку можно также использовать в местах, где нет доступа к электричеству.

В газокислородной резке используется резак для нагрева металла до температуры возгорания. Затем поток кислорода направляется на металл, и металл горит в этом кислороде, а затем вытекает из пропила (пропила) в виде оксидного шлака.

Плазменная резка (PAC) — это процесс дуговой резки, который используется для резки стали и других металлов разной толщины (или иногда других материалов) с помощью плазменной горелки для расплавления небольшой площади заготовки.При этом инертный газ (в некоторых установках — сжатый воздух) с большой скоростью выдувается из сопла; в то же время электрическая дуга образуется через этот газ от сопла к разрезаемой поверхности, превращая часть этого газа в плазму. Плазма достаточно горячая, чтобы расплавить разрезаемый металл, и движется достаточно быстро, чтобы сдувать расплавленный металл от разреза. Этот процесс может разрезать все металлы, проводящие электричество. PAC отличается от кислородно-топливной резки тем, что в плазменном процессе используется дуга для плавления металла, тогда как в кислородно-топливном процессе кислород окисляет металл, а тепло от экзотермической реакции плавит металл.В отличие от газокислородной резки, процесс PAC может применяться для резки металлов, образующих тугоплавкие оксиды, таких как нержавеющая сталь, чугун, алюминий и другие сплавы цветных металлов.

Плазменно-дуговая сварка (PAW) — это процесс дуговой сварки, аналогичный дуговой сварке вольфрамовым электродом (GTAW). Электрическая дуга образуется между электродом (который обычно, но не всегда изготавливается из спеченного вольфрама) и заготовкой. Ключевое отличие от GTAW заключается в том, что плазменную дугу можно отделить от оболочки защитного газа, поместив электрод в корпус горелки.Затем плазма проталкивается через медное сопло с мелким отверстием, которое сужает дугу, и плазма выходит из отверстия с высокими скоростями (приближающимися к скорости звука) и температурой, приближающейся к 20000 ° C. В этом процессе используется неплавящийся вольфрамовый электрод и дуга, суженная через медное сопло с мелким отверстием. PAW может использоваться для соединения всех металлов, свариваемых GTAW (т. Е. Большинства промышленных металлов и сплавов).

Экранированная дуговая сварка (SMAW, ручная дуговая сварка металлическим электродом (MMA) или ручная сварка) .Электрический ток используется для зажигания дуги между основным материалом и расходуемым электродным стержнем или «стержнем». Стержень электрода изготовлен из материала, совместимого с основным свариваемым материалом, и покрыт флюсом, который выделяет пары, которые служат в качестве защитного газа и образуют слой шлака, которые защищают зону сварки от атмосферного загрязнения. . Сам сердечник электрода действует как присадочный материал, поэтому необходимость в отдельном наполнителе отпадает. Этот процесс очень универсален, требует небольшого обучения операторов и недорогого оборудования.Однако время сварки довольно велико, поскольку расходные электроды необходимо часто заменять, а шлак, остатки флюса, необходимо удалять после сварки. Универсальность метода делает его популярным в целом ряде приложений, включая ремонтные работы и строительство.

Защитные газы — это инертные или полуинертные газы, которые обычно используются в нескольких сварочных процессах, особенно в газовой дуговой сварке металлическим электродом и газовой дуговой сварке вольфрамовым электродом (GMAW и GTAW, более известные как MIG и TIG, соответственно).Их цель — защитить зону сварного шва от атмосферных газов, таких как кислород, азот, углекислый газ и водяной пар. В зависимости от свариваемых материалов эти атмосферные газы могут снизить качество сварного шва или усложнить процесс сварки. Защитные газы делятся на две категории: инертные (гелий и аргон) и полуинертные (углекислый газ, кислород, азот и водород). Большинство этих газов в больших количествах могут повредить сварной шов, но при использовании в небольших контролируемых количествах могут улучшить характеристики сварного шва.В других процессах дуговой сварки также используются другие методы защиты сварного шва от атмосферы — дуговая сварка металлическим электродом с защитным слоем, в которой используется электрод, покрытый флюсом, который при потреблении выделяет диоксид углерода, полуинертный газ, который является приемлемым защитным газом для сварки стали .

Пайка — это процесс, в котором два или более металлических предмета соединяются вместе путем плавления и протекания присадочного металла (припоя) в соединение — присадочный металл, имеющий более низкую температуру плавления, чем обрабатываемая деталь.Пайка отличается от сварки тем, что при пайке детали не плавятся. Существует три формы пайки, каждая из которых требует более высоких температур и каждая обеспечивает более высокую прочность соединения: мягкая пайка, при которой первоначально в качестве присадочного металла использовался сплав олово-свинец; серебряная пайка, в которой используется сплав, содержащий серебро; и пайка, при которой в качестве наполнителя используется латунный сплав. Сплав присадочного металла для каждого типа пайки можно регулировать, чтобы изменить температуру плавления присадки.Пайка кажется процессом горячего склеивания, но он существенно отличается от склеивания тем, что присадочный металл сплавляется с заготовкой в ​​месте соединения, образуя газо- и водонепроницаемое соединение. Мягкая пайка характеризуется тем, что температура плавления присадочного металла ниже примерно 400 ° C (752 ° F), тогда как при пайке серебром и пайке используются более высокие температуры, для чего обычно требуется пламенная или угольная дуговая горелка для достижения плавления наполнителя.

Ручной паяльный инструмент включает в себя электрический паяльник, который имеет множество доступных наконечников, от тупых до очень мелких, до зубильных головок для горячей резки пластмасс, а также паяльный пистолет, который обычно обеспечивает большую мощность, обеспечивая более быстрый нагрев вверх и позволяет паять более крупные детали.Пистолеты с горячим воздухом и карандаши позволяют выполнять доработку комплектов компонентов, которую нелегко выполнить с помощью электрических утюгов и пистолетов.

Паяльники подают тепло для расплавления припоя, так что он может стекать в стык между двумя деталями. Паяльник состоит из нагреваемого металлического жала и изолированной ручки. Нагрев часто достигается электрически, путем пропускания электрического тока (подаваемого через электрический шнур или кабели батареи) через резистивный материал нагревательного элемента

Карандаши горячего воздуха являются альтернативой паяльнику, который нагревает стык струей горячего воздуха.Они часто используются для электронных компонентов, таких как печатные платы.

Паяльные пистолеты используют припой на основе олова для обеспечения контакта с высокой проводимостью. Инструмент имеет форму пистолета и имеет переключатель типа спускового крючка, поэтому им можно легко управлять одной рукой. Паяльные пистолеты используются там, где требуется больше тепла, чем от паяльников карандашного типа. Их можно использовать для тяжелых электрических соединений, сборки витражей и легких работ с листовым металлом. Типичные паяльные пистолеты имеют мощность от 100 до 240 Вт.Пистолет может включать в себя двухступенчатый спусковой крючок для двух настроек нагрева.

Паяльные горелки — это тип паяльного устройства, в котором для нагрева припоя используется пламя, а не жало паяльника. Паяльные горелки часто работают на бутане] и доступны в размерах от очень маленьких бутановых / кислородных блоков, подходящих для очень тонких, но высокотемпературных ювелирных изделий, до полноразмерных кислородно-топливных горелок, подходящих для гораздо более крупных работ, таких как медные трубопроводы. Обычные многоцелевые пропановые горелки, такие же, как для снятия тепла с краски и оттаивания труб, могут использоваться для пайки труб и других довольно крупных объектов как с насадкой для паяльника, так и без нее; трубы обычно паяют горелкой, непосредственно прикладывая открытый огонь.

Сварка сплошной проволокой См. Сварка металлическим электродом в газе (GMAW).

Сварка под флюсом (SAW) — это высокопроизводительный сварочный процесс, при котором дуга зажигается под покровным слоем гранулированного флюса. Это повышает качество дуги, поскольку загрязняющие вещества в атмосфере блокируются флюсом. Шлак, образующийся на сварном шве, обычно снимается сам по себе, и в сочетании с использованием непрерывной подачи проволоки скорость наплавки высока. Условия работы значительно улучшены по сравнению с другими процессами дуговой сварки, поскольку флюс скрывает дугу и не образуется дыма.Этот процесс обычно используется в промышленности, особенно для крупногабаритных изделий.

TIG (вольфрамовый инертный газ или газовая вольфрамовая дуга, GTAW) — Этот процесс сварки соединяет металлы путем их нагрева вольфрамовым электродом, который не должен становиться частью завершенного сварного шва. Иногда используется присадочный металл, а для защиты используются инертный газ аргон или смеси инертных газов.

Сварка — это процесс изготовления или скульптуры, который соединяет материалы, обычно металлы или термопласты, вызывая коалесценцию.Это часто делается путем расплавления заготовок и добавления присадочного материала для образования ванны расплавленного материала (сварочной ванны), которая остывает, чтобы стать прочным соединением, при этом давление иногда используется вместе с теплом или само по себе, чтобы произвести сварка. Это контрастирует с пайкой и пайкой, которые включают плавление материала с более низкой температурой плавления между деталями для образования связи между ними без плавления деталей.

Каталожные номера

* Свяжитесь с электриками, чтобы организовать упаковку дымовых извещателей в пакеты, когда требуется пайка.По окончании пайки в течение не менее ½ часа должна вестись пожарная охрана.

** Многие регуляторы похожи по конструкции и конструкции. Убедитесь, что регуляторы предназначены для используемого баллона, проверив номер модели производителя и сравнив его с требованиями поставщика газа.

*** Обычное пламя пропана / воздуха горит при температуре около 3630 ° F (2000 ° C), пламя пропана / кислорода горит при температуре около 4530 ° F (2500 ° C), а пламя ацетилена / кислорода горит при около 6330 ° F (3500 ° C).

Об этой политике

Китайский производитель сварочного аппарата, инверторный сварочный аппарат, поставщик сварочного оборудования

Импульсный инверторный сварочный аппарат TIG AC / DC

Видео

Цена FOB: 201–221 долл. США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 221–232 доллара США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 212–234 долл. США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 225–236 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

GIF

Цена FOB: 271–284 доллара США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

GIF

Цена FOB: 567–593 долл. США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 338–355 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 1,114–1216 долл. США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

ИНТЕЛЛЕКТУАЛЬНАЯ СЕРИЯ TIG-AC / DC ДВОЙНОГО НАПРЯЖЕНИЯ

Видео

Цена FOB: 287–320 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 287–320 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 367-400 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 367-400 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 367-400 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 367-400 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 367-400 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 287–320 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

СВАРОЧНАЯ МАШИНА WSME & WSM

Видео

Цена FOB: 1 044–1144 долл. США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 596–653 долларов США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 542–594 долл. США / набор

Мин.Заказ: 1 комплект

Связаться сейчас

Цена FOB: 764 доллара США.57-837,38 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Цена FOB: 536 долларов США.54-587,64 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 274 доллара США.98-301,16 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Цена FOB: 234 доллара США.44-245,6 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Цена FOB: 228 долларов США.03-238,89 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

АРГОНОВАЯ СВАРКА TIG DC

GIF

Цена FOB: 234 доллара США.44-245,6 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

GIF

Цена FOB: 294 доллара США.72-322,79 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

GIF

Цена FOB: 589 долларов США.44-645,58 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 830 долларов США.58-909,68 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 589 долларов США.44-645,58 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Цена FOB: 220–267 долларов США / Набор

Мин.Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 830 долларов США.58-909,68 / Набор

Мин. Заказ: 1 комплект

Связаться сейчас

Видео

Цена FOB: 220–267 долларов США / Набор

Мин.Заказ: 1 комплект

Связаться сейчас

Профиль компании

{{util.each (imageUrls, function (imageUrl) {}} {{})}} {{if (imageUrls.длина> 1) {}} {{}}} Информация с пометкой «» проверена SGS

ООО «Сварочное оборудование Гуанчжоу Ницзя» расположено в красивом очаровательном городе Гуанчжоу. Компания занимается технологическими исследованиями и разработками предприятий по производству сварочного оборудования.

Ведущие науки и технологии, совершенная технология продукта, отлитая хорошая продукция. В компании работает профессиональная команда, занимающаяся исследованиями и разработками, управлением, продажами и обслуживанием инверторных сварочных аппаратов на протяжении многих лет, передовыми технологиями SMT, сборочным оборудованием, совершенным …

Сварка

MIG | Металлургия для чайников

Сварка МИГ — Обзор

Сварка МИГ — это аббревиатура от Metal Inert Gas Welding.Этот процесс был разработан в 1940-х годах и считается полуавтоматическим. Это означает, что сварщику по-прежнему требуются навыки, но сварочный аппарат MIG будет постоянно заполнять свариваемое соединение. Сварка MIG может использоваться для сталей любой толщины, для алюминия, никеля и даже для нержавеющей стали и т. Д. Однако чаще всего она используется на производстве и в промышленных условиях.

Сварка MIG — это сокращение от Metal Inert Gas Welding

Сварка металла в среде инертного газа (MIG), также иногда называемая дуговой сваркой металла в газе (GMAW), — это процесс, который был разработан в 1940-х годах для сварки алюминия и других цветных металлов.Сварка MIG — это автоматический или полуавтоматический процесс, в котором проволока, подключенная к источнику постоянного тока, действует как электрод для соединения двух металлических частей, когда она непрерывно проходит через сварочный пистолет. Поток инертного газа, первоначально аргона, также пропускается через сварочную горелку одновременно с проволочным электродом. Этот инертный газ действует как щит, удерживая переносимые по воздуху загрязнители вдали от зоны сварки.

Основным преимуществом сварки MIG является то, что она позволяет сваривать металл намного быстрее, чем традиционные методы сварки штучной сваркой.Это делает его идеальным для сварки более мягких металлов, таких как алюминий. Когда этот метод был впервые разработан, стоимость инертного газа делала процесс сварки стали слишком дорогим. Однако с годами процесс эволюционировал, и теперь для обеспечения защитной функции можно использовать полуинертные газы, такие как диоксид углерода, что делает сварку MIG рентабельной для сварки стали.

Оборудование

MIG состоит из сварочной горелки, источника питания, источника защитного газа и системы подачи проволоки, которая вытягивает проволочный электрод из катушки и проталкивает ее через сварочную горелку.Для сварочного пистолета с водяным охлаждением может потребоваться источник охлаждающей воды. Существуют также стержневые печи Mig для правильного хранения электродов.

Для большинства сварочных операций MIG требуется постоянный ток с обратной полярностью. Этот тип электрического соединения обеспечивает стабильную дугу, помогает сгладить перенос металла, имеет относительно низкие потери от разбрызгивания и дает хорошие характеристики сварного шва. Прямая полярность постоянного тока (отрицательный электрод) используется редко, поскольку дуга может стать нестабильной и неустойчивой, даже если скорость плавления электрода выше.

Основные принципы сварки MIG

Переменный ток не нашел коммерческого применения при сварке MIG, потому что дуга гаснет в течение каждого полупериода, поскольку ток уменьшается до нуля, и она может не загореться повторно, если катод достаточно охладится. Пистолеты MIG доступны для ручного управления, полуавтоматической сварки, а также для машинной или автоматической сварки. Поскольку электрод подается непрерывно, сварочная горелка должна иметь скользящий электрический контакт для передачи сварочного тока на электрод.Пистолет также должен иметь газовый канал и сопло, чтобы направлять защитный газ вокруг дуги и расплавленной сварочной ванны.

Электрический выключатель используется для включения и выключения сварочного тока, подачи электрода и подачи защитного газа. Выбор пистолетов с воздушным или водяным охлаждением зависит от типа защитного газа, диапазона сварочного тока, материалов, конструкции сварного шва, а также существующих производственных практик и условий. Пистолеты с воздушным охлаждением обычно ограничиваются работой с током 200 ампер или меньше. Пистолеты с водяным охлаждением обычно используются для применений, требующих от 200 до 750 ампер.Гидравлические линии в пистолете с водяным охлаждением добавляют вес и снижают маневренность пистолета для сварки. Когда он был впервые разработан, он назывался (GMA) Gas Metal Arc.

Сварка МИГ , в отличие от большинства других сварочных процессов, имеет один стандартный тип напряжения и тип полярности. Постоянный ток течет в одном направлении, от отрицательного (-) к положительному (+). Источник питания, используемый для сварки MIG, называется «источником постоянного напряжения». При сварке MIG контролируется и регулируется напряжение.При сравнении сварки MIG с дуговой сваркой или сваркой TIG сварочные аппараты MIG используют настройки напряжения для настройки аппарата. Сварочные аппараты TIG и дуговой сварки используют силу тока для настройки аппарата или «источника постоянного тока».

Сварочные аппараты

MIG состоят из рукоятки с спусковым крючком, контролирующим подачу проволоки, подающую проволоку от катушки к сварному шву. Проволока похожа на бесконечный велосипедный тормозной трос. Проволока проходит через лайнер, который также имеет газ, подводимый по тому же кабелю к месту возникновения дуги, что защищает сварной шов от воздействия воздуха.

Преимущества сварки MIG:

  • Высококачественные сварные швы можно производить намного быстрее
  • Поскольку флюс не используется, нет возможности улавливания шлака в металле сварного шва, что приведет к получению высококачественных сварных швов
  • Газовый экран защищает дугу, поэтому потери легирующих элементов очень малы. Образуются лишь незначительные брызги при сварке
  • Сварка MIG универсальна и может использоваться с широким спектром металлов и сплавов
  • Процесс MIG может осуществляться несколькими способами, включая полуавтоматический и полностью автоматический
  • Он производит длинные непрерывные сварные швы намного быстрее, чем традиционные методы сварки.
  • Поскольку защитный газ защищает сварочную дугу, этот тип сварки дает чистый сварной шов с очень небольшим количеством брызг.
  • Может использоваться с широким спектром металлов и сплавов.

Недостатки:

  • Сварку MIG нельзя использовать в вертикальном или потолочном положении из-за высокого тепловложения и текучести сварочной ванны
  • Оборудование сложное.
  • Оборудование довольно сложное, так как для сварки MIG требуется источник постоянного тока, постоянный источник и поток газа, а также постоянно движущийся проволочный электрод.Кроме того, электроды доступны в широком диапазоне размеров и изготавливаются из различных типов металлов в зависимости от области применения при сварке.
  • Фактическая используемая техника отличается от традиционной сварки, поэтому сварка MIG требует обучения даже для опытных сварщиков. Например, сварщикам MIG необходимо отодвинуть сварочную ванну от себя и вдоль шва.
  • Необходимость в защите от инертного газа означает, что сварку MIG нельзя использовать на открытой местности, где ветер сдует газовую защиту.

Газ для сварки MIG — это то, что делает сварку MIG возможной. Название сообщает нам об этом; «Сварка металлов в инертном газе». Используемые газы защищают сварной шов от кислорода воздуха. Когда в смесь добавляется углекислый газ или кислород, сварка MIG технически больше не является сваркой MIG. Это связано с тем, что и углекислый газ, и кислород не являются инертными газами. Затем процесс становится GMAW или газовой дуговой сваркой.

Также определяет вид использования газа:

  • Насколько глубоко сварной шов проникает в свариваемый металл
  • Характеристики сварочной дуги
  • Механические свойства сварного шва.

При выборе типа используемого газа лучше всего запросить информацию в магазине сварочных материалов. Магазин порекомендует газ, соответствующий используемой сварочной проволоке. Или можно воспользоваться рекомендациями производителя сварочной проволоки. Как правило, производитель предлагает несколько вариантов: от наилучшего до того, что обеспечит минимально приемлемые результаты. Окончательный выбор типа газа основывается на стоимости.

Четыре наиболее часто используемых газа:

  • Аргон
  • CO2 / двуокись углерода
  • O2 / кислород
  • Гелий (наименее распространенный)

В большинстве случаев эти газы используются в виде смеси, обычно состоящей из диоксида углерода и аргона или кислорода.Кислород является причиной большинства дефектов сварного шва, однако, в небольшом количестве, смешанный с другими газами, он улучшает характеристики дуги. Аргон и углекислый газ можно использовать сами по себе. В некоторых случаях используется трехкомпонентный защитный газ, содержащий аргон, диоксид углерода и гелий.

Наиболее распространенные смеси и газы:

  • C2 или 2% диоксида углерода и 98% аргона
  • C25 или 25% двуокиси углерода и 95% аргона
  • 100% диоксид углерода
  • 100% аргон

Сварку углеродистой стали можно производить только с использованием только диоксида углерода, и это дает самое глубокое проплавление, наибольшее количество дыма и самый грубый сварной шов.Можно использовать смесь газов от 2% до 25% углекислого газа и остального аргона. Однако более высокий процент аргона приведет к более гладкому и красивому сварному шву и улучшит характеристики дуги.

Сварка нержавеющей стали обычно выполняется с использованием C2 или 2% двуокиси углерода и 98% аргона. В некоторых случаях используется трехкомпонентный защитный газ, содержащий 90% гелия, 7,5% аргона и 2,5% двуокиси углерода. Сварка алюминия обычно выполняется одним аргоном, за одним исключением. Если свариваемый алюминий толще, чем ½ дюйма, в смесь может быть добавлен гелий.

Сварка МИГ — это сварочный процесс, с помощью которого можно сваривать практически любой металл. Возможно, это не всегда лучший выбор для обеспечения качества сварки, но сварка MIG является быстрой, экономичной и дает результаты, более чем приемлемые для большинства производственных и производственных нужд! Не все строят космическую станцию.

Три наиболее распространенных металла, свариваемых сварочным аппаратом MIG:

  • Углеродистая сталь.
  • Нержавеющая сталь.
  • Алюминий, со специальным устройством подачи, потому что алюминиевая проволока очень мягкая.

Сварные швы из углеродистой стали почти безупречно выполняются сварочным аппаратом MIG. Есть очень мало проблем, кроме недостатков конструкции сварочного аппарата MIG. Жесткость проволоки достаточна для того, чтобы проходить через футеровку из машины с минимальным трением, вызывающим проблемы, и имеет достаточную жесткость для подачи без наматывания. В зависимости от того, какое напряжение работает на сварочном аппарате MIG, сварку можно настроить на один из трех типов переноса: короткое замыкание, шаровидное соединение или распыление.

MIG-сварка нержавеющей стали не требует специального оборудования. В случае сварки нержавеющей стали самая большая проблема возникает из-за шнура или гильзы сварочного аппарата. Уловка при сварке нержавеющей стали заключается в том, чтобы шнур оставался как можно более прямым. В противном случае механизм подачи проволоки, который питает сварное соединение, будет иметь слишком большое трение из-за того, что нержавеющая сталь более жесткая, чем углеродистая. Представьте себе попытку протолкнуть проволочную вешалку через изогнутый садовый шланг. Скорее всего, если шланг прямой, его можно будет легко пропустить.Если шланг погнут, у вас возникнут трудности.

Сварка алюминия MIG обычно требует двойной подачи, называемой, (метод выталкивания и вытягивания). То есть катушка с проволокой проталкивается через ручку MIG, а сама ручка имеет шкив, который тянет проволоку. Сварка алюминия не очень распространена для сварки MIG. Обычно это делается, когда требуется высокая производительность. Первое изображение ниже представляет собой двухвальцовую толкающую подачу на машине Millermatic 350P MIG. Второе и третье изображения ниже — это вид снизу и вид сверху пистолета с питанием с питанием Python.

Возможно вам понравится

Случайные стойки

  • Поломка вала направляющего ролика
    Часть вышедшего из строя вала «направляющего ролика» была отправлена ​​на анализ неисправности (рис. 1). Этот вал предназначен для …
  • Алюминиевый сплав
    Алюминий — очень универсальный металл, его можно отливать в любой известной форме. Его можно катать, штамповать, вытягивать, формовать, формовать …
  • Сварка
    Сварка — это процесс изготовления или скульптуры, при котором материалы, обычно металлы или термопласты, соединяются путем образования коагулянтов…
  • Подводная сварка
    Подводная сварка — это процесс сварки при повышенном давлении, обычно под водой. Подводная или гипербарическая сварка …
  • Как склепать алюминий?
    Заклепка — это неразъемная механическая застежка. Перед установкой заклепка состоит из гладкого цилиндрического вала с …

(PDF) Выбор подходящих параметров процесса для газовой дуговой сварки стали под защитой от газа 100% двуокиси углерода

IND IAN WELD ING JOURNAL Том 49 №4, октябрь 2016 г.

сварочный ток 130 А, этот класс сначала увеличивается, а затем

уменьшается.

Если ток увеличивается, то серый относительный уровень также

увеличивается со всеми уровнями скорости, кроме скорости 327

мм / мин.

Интересное наблюдение обнаружено для напряжения и скорости.

Для скорости 327 мм / мин серый относительный класс почти

линейно увеличивается с напряжением. Для сварочного шва 554 мм / мин скорость горелки

сначала уменьшается, а затем

увеличивается с увеличением напряжения.А для скорости 723 мм / мин значение

серого цвета уменьшается с увеличением напряжения. Это показывает

, что и напряжение, и скорость перемещения имеют некоторый эффект взаимодействия

.

·

·

5.0 ЗАКЛЮЧЕНИЕ

Из настоящего экспериментального исследования можно сделать следующие выводы

:

· Для получения сварного шва хорошего качества влияние сварочного тока

оказывается максимальным. Следующим важным фактором является скорость сварочной горелки

.Ожидается, что сварочное напряжение станет наименее важным параметром в этом исследовании.

· Высокий сварочный ток 160 А, сварочное напряжение 30 В и умеренная скорость сварочной горелки

554 мм / мин оцениваются

как оптимальные параметры процесса в этом исследовании

с помощью анализа отношений Грея. Эти выводы хорошо

подтверждены знанием основ сварки.

ССЫЛКИ

[1] О.П. Ханна, Учебник по сварочной технологии, Dhanpat

Rai Publications, Нью-Дели, 2001.

[2] Р. Качар и К. Кокемли, Влияние контролируемой атмосферы

на свойства дуговой сварки MIG-MAG, журнал

Materials and Design, Vol. 26, с. 508–516, 2005.

[3] Ю.С. Ким, Д. МакЭлигот и Т. Игар, Анализ

теплообмена электродов при газовой дуговой сварке металла, Сварка

Журнал

, Приложение к исследованиям в области сварки, Том 70, № 1,

стр. 20–31с, 1991.

[4] Муруган В. В.Гунарадж, Влияние процесса

Параметры

на угловую деформацию металла, сваренного дуговой сваркой в ​​газовой среде

Листы конструкционной стали, Сварка, Сварка

Research Supplement, Vol.84, No. 11, pp.165s-171s,

2005.

[5] Дж. Тусек и М. Субан, Экспериментальное исследование

эффекта водорода в аргоне в качестве защитного газа в дуге

Сварка высоколегированной нержавеющей стали, International

Journal of Hydrogen Energy, Vol.25, pp.369-376, 2000.

[6] К. Сабируддин, С. Бхаттачарья и С. Дас, Выбор

соответствующих параметров процесса для газовой дуговой сварки

образцов среднеуглеродистой стали с использованием аналитического

Процесс иерархии

, Международный аналитический журнал

Процесс иерархии

, Том 5, № 2, стр. 252-267, 2013 г.

[7] С. Датта, А. Бандйопадхьяй и П.К. Pal, Gray-Based

Метод Тагучи для оптимизации геометрии валика в сварке

Дуговая сварка под флюсом, сварка пластин под флюсом, International

Journal of Advanced Manufacturing Technology, Vol.39,

№ 10, стр.1136-1143, 2008.

[8] А. Саркар и С. Дас, Применение серого метода Тагучи

для оптимизации газовой дуговой сварки нержавеющих сталей

, Indian Welding Journal, Vol.44, No. 1, pp.37-48,

2011.

[9] К. Сабируддин, С. Дас и А. Бхаттачарья, Применение

Процесс аналитической иерархии для оптимизации Process

Parameters in GMAW, Indian Welding Journal, Vol.42,

No.1, pp.38-46, 2009.

[10] К.М. Канти и П.С. Рао, Прогнозирование геометрии валика при импульсной сварке GMA

с использованием нейронной сети обратного распространения

, Журнал технологий обработки материалов,

Том 200, № 1–3, стр. 300–305, 2008 г.

[11 ] МК Саха, С. Дас, А. Бандйопадхай и С.

Бандйопадхьяй, Применение ортогонального массива L6 для оптимального выбора некоторых параметров процесса в процессе GMAW

, Indian Welding Journal, Vol.45, No. 4, pp.41-50,

2012.

[12] D.T. Thao, I.S. Kim, H.H. Na, S.M. Юнг и Дж. Shim,

Разработка математической модели с генетическим алгоритмом

для процесса автоматической дуговой сварки металлическим электродом в газовой среде,

International Journal of Advanced Manufacturing

Technology, Vol.73, No. 5, pp.837-847, 2014.

[13] В. Пандхаре, П. Рай, Б. К. Лад, С. Дас и К. Сабируддин,

Определение существенных факторов, влияющих на изгиб

Прочность

сварного шва, полученного дуговой сваркой металлическим газом,

Международный журнал исследований в области машиностроения

and Technology, Vol.2, №1, стр. 1-10, 2016.

[14] R.K. Рой, Планирование экспериментов с использованием подхода Taguchi

, John Wiley & Sons, Inc, 2001.

[15] С.В. Надкарни, «Современные технологии дуговой сварки», Оксфорд,

,

IBH Publishing Co. Pvt. Ltd., Нью-Дели, 1988.

Сварка | Лазерный орех

  • MIG — низкоуглеродистая сталь и алюминий

  • TIG

  • Точечная сварка

Газовая дуговая сварка металлическим электродом ( GMAW ), иногда называемая подтипами металлический инертный газ ( MIG ) сварка или металлический активный газ ( MAG ) сварка , Процесс сварки, при котором между плавящимся проволочным электродом и металлом (-ами) заготовки образуется электрическая дуга, которая нагревает металл (-ы) заготовки, заставляя их плавиться и соединяться.

Наряду с проволочным электродом через сварочную горелку проходит защитный газ, который защищает процесс от загрязнений в воздухе. Процесс может быть полуавтоматическим или автоматическим. Источник постоянного напряжения постоянного тока чаще всего используется с GMAW, но могут использоваться системы постоянного тока, а также переменного тока. Существует четыре основных метода переноса металла в GMAW, называемых глобулярным, короткозамкнутым, распылительным и импульсным, каждый из которых имеет определенные свойства и соответствующие преимущества и ограничения.

Первоначально разработанный для сварки алюминия и других цветных металлов в 1940-х годах, GMAW вскоре стал применяться для сталей, поскольку он обеспечивает более быстрое время сварки по сравнению с другими сварочными процессами. Стоимость инертного газа ограничивала его использование в сталях до тех пор, пока несколько лет спустя не стали широко использоваться полуинертные газы, такие как диоксид углерода. Дальнейшие разработки в 1950-х и 1960-х годах сделали процесс более универсальным, и в результате он стал широко используемым промышленным процессом. Сегодня GMAW является наиболее распространенным процессом промышленной сварки, предпочтительным из-за его универсальности, скорости и относительной простоты адаптации процесса к роботизированной автоматизации.В отличие от сварочных процессов, в которых не используется защитный газ, таких как дуговая сварка в среде защитного металла, он редко используется на открытом воздухе или в других областях с нестабильностью воздуха. Родственный процесс, дуговая сварка порошковой проволокой, часто не использует защитный газ, а вместо этого использует полую электродную проволоку, заполненную флюсом.

Дуговая сварка вольфрамовым электродом ( GTAW ), также известная как вольфрамовый инертный газ ( TIG ) сварка , представляет собой процесс дуговой сварки, в котором для сварки используется неплавящийся вольфрамовый электрод.Область сварного шва защищена от атмосферного загрязнения инертным защитным газом (аргон или гелий), и обычно используется присадочный металл, хотя для некоторых сварных швов, известных как автогенные швы, он не требуется. Сварочный источник постоянного тока вырабатывает электрическую энергию, которая проходит через дугу через столб высокоионизированного газа и паров металлов, известный как плазма.

GTAW чаще всего используется для сварки тонких профилей нержавеющей стали и цветных металлов, таких как алюминий, магний и медные сплавы.Этот процесс предоставляет оператору больший контроль над сварным швом, чем конкурирующие процессы, такие как дуговая сварка металлическим электродом в защитных оболочках и дуговая сварка металлическим электродом в среде защитного газа, что позволяет получать более прочные и качественные сварные швы. Однако GTAW сравнительно сложнее и труднее в освоении, и, кроме того, он значительно медленнее, чем большинство других методов сварки. Связанный с этим процесс, плазменная сварка, использует немного другую сварочную горелку для создания более сфокусированной сварочной дуги и, как следствие, часто автоматизируется.

Сопротивление Точечная сварка (RSW) — это процесс, в котором соприкасающиеся металлические поверхности соединяются теплом, полученным в результате сопротивления электрическому току.

Заготовки удерживаются вместе под давлением электродов. Обычно листы имеют толщину от 0,5 до 3 мм (от 0,020 до 0,118 дюйма). В процессе используются два профилированных электрода из медного сплава для концентрации сварочного тока в небольшом «пятне» и одновременного зажима листов вместе. Пропуск большого тока через пятно расплавит металл и образует сварной шов. Привлекательная особенность точечной сварки заключается в том, что к точке может быть доставлено много энергии за очень короткое время (примерно 10–100 миллисекунд).Это позволяет производить сварку без чрезмерного нагрева остальной части листа.

Количество тепла (энергии), доставляемого пятну, определяется сопротивлением между электродами, а также величиной и продолжительностью тока. Количество энергии выбирается в соответствии со свойствами материала листа, его толщиной и типом электродов. Применение слишком малого количества энергии не приведет к расплавлению металла или плохой сварке. Применение слишком большого количества энергии приведет к расплавлению слишком большого количества металла, выбросу расплавленного материала и образованию отверстия, а не сварного шва.Еще одна особенность точечной сварки заключается в том, что можно контролировать энергию, подводимую к точке, для получения надежных сварных швов.

Проекционная сварка — это модификация точечной сварки. В этом процессе сварной шов локализуется с помощью выступов или выступов на одной или обеих соединяемых заготовках.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *