Температура плавления пленки полиэтиленовой: Свойства пленки полиэтиленовой | Теплопроводность полиэтиленовой пленки

Содержание

Свойства пленки полиэтиленовой | Теплопроводность полиэтиленовой пленки

Выбрать полиэтиленовая пленка по параметрам, фото, стоимости.

Выберите характеристики

Вид

Парниковая Техническая Армированная Термоусадочная

Ширина полотна, мм

1500 (стандартная) 1000 2000 (армированная)

Тип

рукав полурукав полотно

Длина намотки, м

100 (стандарт) 25 (армированная) 50 50 (армированная)

Толщина полотна, мкм

120 (стандарт) 60 80 100 150 150 200

Кол-во рулонов, шт

1 2 3 4 5 10 15 20 >20 (опт.)

Заказать

Полиэтиленовая пленка активно используется в различных сферах жизнедеятельности. И это не случайно, ведь свойства пленки полиэтиленовой позволяют использовать ее как упаковочный, оберточный материал, из нее делают пакеты, покрытия для теплиц, дождевики, укрывной материал.

Главным преимуществом изделий из полиэтиленовой пленки является ее стоимость. Дешевле стоит, наверное, только бумажные изделия. Но, в отличие от бумаги, пленка более долговечна, она не промокает, не гниет и не рвется так легко. Если взять укрывные материалы из пленки, которые используются в сельском хозяйстве, то главным их преимуществом является легкость. Тот же брезент гораздо тяжелее и дороже, а толку от него не намного больше, в тоже время стоимость изделий просто не сопоставима.

Полиэтиленовая пленка часто незаменима как гидроизоляционный материал при укладке напольных покрытий, гипсокартона и при сооружении кровли. Ее небольшая толщина позволяет аккуратно прокладывать между основным покрытием и основанием, не нарушая общую структуру покрытия. С другими материалами не было бы так просто.

Пакеты и мусорные мешки уже давно вошли в нашу жизнь. Ни одна покупка не обходится без пакетов. Их основное качество – высокая прочность, а также привлекательный дизайн и оформление.

Теплицы из полиэтиленовой пленки намного дешевле стеклянных, а эффект практически тот же. Даже если где то пленка порвется, то это быстро можно подправить подклейкой или заменой отдельного участка, тогда как стекло легко разбивается и труднее поддается восстановлению и замене.

Полиэтиленовые изделия не боятся холода и жары, они легко монтируются и компактно хранятся в рулонах, не занимая много места. Если вас устраивают описанные свойства пленки полиэтиленовой и хотите приобрести ее, обращайтесь в компанию «ЛЕНТАПАК».

При сооружении парников важно знать, сколько тепла потребуется для растений во время их роста. Такие свойства как теплопроводность полиэтиленовой пленки (излучение и конвекция), способ обогрева, а также количество возможных тепло-потерь напрямую влияют на микроклимат теплицы.

Определив, какое количество тепла требуется для отопления теплиц, можно выбрать соответствующий тип пленки, вид теплицы, а также отопительную систему. Таким образом можно подсчитать затраты на сооружение теплицы.

Для определения необходимого количества тепла внутри теплицы пользуются формулой:

(сумма площадей стен и потолков) х (разница внутренней и наружной температуры) х 5,4 = необходимое количество тепла (в кДж). К примеру, если площадь стен теплицы равняется 30 м. кв., а площадь крыши – 28 м.кв., перепад температур -15 градусов, то имеем следующий расчет: (28+30) х 15 х 5,4 = 4698 ккал = 19140 кДж.

После определения необходимого количества тепла для теплицы переходим к выбору пленки. Лучшим вариантом будет использование специальной парниковой пленки. Благодаря специальным добавкам, она имеет большой срок использования. Солнечные лучи не разрушают поверхность пленки, теплопроводность небольшая, поэтому климат внутри теплиц с такой пленкой будет идеальным для растений.

Важным показателем является температура на отдельных участках теплицы. Чтобы она была одинаковой, следует соблюдать герметичность конструкции и правильно использовать обогревательное и вентиляционное оборудование. Как известно, теплопроводностью материала называют его способность пропускать тепло.

Средняя теплопроводность полиэтиленовой пленки составляет 0,04 Вт/(м°С), что считается низким показателем. Это означает, что такой материал можно использовать в качестве укрывного при низких и минусовых температурах. Главным достоинством пленки является то, что она сохраняет тепло внутри теплицы. Пленка толщиной 150-200 мкм идеально подходит для теплиц и парников. Если вы желаете приобрести полиэтиленовую продукцию, обращайтесь в компанию «ЛЕНТАПАК» (г. Москва).

Горючесть и температура плавления полиэтиленовой пленки

Полиэтиленовая пленка достаточно востребована как в быту, так и в разных отраслях. Как известно, полиэтилен относится к легко воспламеняемым веществам. Средняя температура плавления полиэтиленовой пленки составляет 125-132 градусов.

Учитывая свойства горючести полиэтилена, для снижения этого показателя, в него добавляют специальные вещества — антипирены. Их применение признали целесообразным после многочисленных исследований процессов горения изделий из полиэтилена, в частности, пленки. Во время сгорания на воздухе или в кислороде полиэтилен переходит в горючие паро- и газообразные вещества, которые догорают в окружающей среде.

Для предотвращения горения в полиэтилен вводят вещества, препятствующие его разложению, а также соединения, которые при сгорании образуют негорючие углеводороды или выделяют инертные газы типа N2 или СО2, интенсивно поглощающие тепло, а также снижающие концентрацию горючих продуктов разложения.

Для снижения скорости горения в полиэтилен добавляются соединения сурьмы и некоторые органические соединения. Такой полиэтилен используется компанией «ЛЕНТАПАК» при изготовлении некоторых типов пленок, которые можно использовать в строительстве и сельском хозяйстве в качестве укрывного материала.

При выборе антипиренов обращают внимание на совместимость их с полиэтиленом. Выбор их достаточно ограничен. Такой показатель, как температура плавления полиэтиленовой пленки

, должен всегда учитываться при ее использовании. Как материал для теплиц, в качестве укрывного материала в сельском хозяйстве, как упаковки. Если вам нужны консультации по техническим характеристикам полиэтиленовых пленок, обращайтесь к нам.

температура плавления, потребительские свойства и применение

Сегодня человечество не может обойтись без искусственных материалов. Они обладают рядом уникальных качеств, доступны и значительно удешевляют производство. Одним из таких материалов выступает полиэтилен. Температура плавления, а также прочие его технические характеристики заслуживают подробного рассмотрения. Ведь это один из самых востребованных сегодня материалов. Более половины всего этилена, производимого мировой химической промышленностью, направляется для получения полиэтилена. Чтобы понимать, почему он так популярен сегодня, следует рассмотреть его характеристики.

Что собой представляет вещество

Структура молекулы полиэтилена достаточно простая. Она выглядит как цепочка, которая состоит из атомов углерода. К каждому из них присоединяются 2 молекулы водорода. В мире существует две модификации этого вещества. Они различны по структуре. Это отражается и на свойствах, которыми обладает полиэтилен (температура плавления и кипения, потребительские свойства). Объединяет их только происхождение. Обе модификации получают из этилена.

Первая разновидность полиэтилена состоит из линейных мономеров. Их степень полимеризации равна 5000 и больше. Вторая модификация имеет разветвления мономеров. Они состоят из атомов углерода (от 4 до 6).

Чтобы создать линейный полиэтилен, применяют специальные катализаторы. Процесс полимеризации идет при температуре до 150 °С.

Характеристики

Термопластичным полимером, который характеризуется непрозрачностью при толстом слое, предстает для нас полиэтилен. Температура плавления, технические особенности материала делают его популярным. Он кристаллизуется в диапазоне от -60 до -269 °С.

Основным его положительным качеством является отсутствие смачивания полиэтилена водой. В домашних условиях он не подвержен воздействию различных органических растворителей. Также он не вступает в реакцию при комнатной температуре с водными солевыми, кислотными и щелочными растворами.

При повышении температуры до 60 °С, материал становится уязвим для серной и азотной кислот. Применяя окислители для обработки поверхности полиэтилена, следует ожидать разрушения поверхностного слоя. Материал начинает смачиваться водой. Это качество необходимо для склеивания полиэтилена.

Способы полимеризации

В зависимости от способа полимеризации этилена, полиэтилен бывает 3 видов: низкого, высокого давления и линейный тип материала. Это определяет, какими качествами будет обладать полиэтилен. Температура плавления, технические свойства каждой разновидности различны. Поэтому их применяют практически в любой сфере человеческой деятельности.

Полиэтилен, изготовленный под высоким давлением, более мягкий. Его полимеризируют радикальным методом. Давление при это достигает 1-3 тыс. атм. Температура равна 180 °С. Кислород в этом случае участвует как инициатор.

Полиэтилен низкого давления изготавливают при помощи катализаторов Циглера-Натта. В этом процессе также принимает участие органический растворитель. Рабочее давление составляет не менее 5 атм., а температура превышает 80 °С.

Линейный (средний) полиэтилен является промежуточным материалом между рассмотренными разновидностями. Это касается его качеств и свойств. Его изготавливают при давлении 30-40 атм. При использовании металлоценовых катализаторов удается получить продукт усиленной прочности.

Причина различий свойств полиэтилена

Разветвленность структуры макромолекул определяет свойства, которыми обладает полиэтилен. Температура плавления, плотность зависят от вида цепи. Чем больше разветвлений она имеет, тем более эластичный материал с меньшими кристаллическими свойствами получается на выходе.

Такая особенность структуры затрудняет образование более плотной упаковки макромолекул, становится препятствием 100% уровня кристалличности. Материал также имеет атмосферную фазу. В ней содержатся недостаточно упорядоченные участки молекул. Способ производства определяет соотношение кристаллической и атмосферной фаз. Именно эта особенность влияет на свойства полиэтилена.

Поэтому пленки, которые производят под низким давлением, более проницаемые, чем их другие разновидности. Чем больше кристалличность (молекулярная масса), тем выше механические показатели. Поэтому в виде пленки материал прозрачен и эластичен. Но листы из полиэтилена будут жесткими и непрозрачными.

Воздействие температуры

Под воздействием окружающей среды меняются качества, которыми наделен полиэтилен. Температура плавления этого вещества также зависит от способа производства. В общем виде при нагреве полиэтилен проходит несколько стадий. Сначала он становится более мягким, эластичным. Он легко поддается деформации под воздействием механических влияний.

Температура хрупкости, при которой средний полиэтилен теряет свои прочностные характеристики, составляет 70 °С. При дальнейшем ее повышении вещество размягчается еще больше. Оно полностью теряет присущую ранее форму при нагреве 120 °С. В жидкую субстанцию он превращается при температуре 130 °С.

Помимо температуры нагрева, необходимо учитывать воздействие ультрафиолета. Если материал применяется для уличных изделий, необходимо выбирать более прочные разновидности. Иначе мягкий, эластичный полиэтилен после года эксплуатации под прямыми солнечными лучами станет твердым и хрупким. Даже цвет материала меняется со временем.

Полиэтилен низкого давления

У каждой разновидности материала существуют особенные качества. Это расширяет спектр применения, которым обладает полиэтилен. Температура плавления (высокая плотность) составляет 120-135 °С. У отдельных марок теплостойкость составляет 110 °С. Высокая молекулярная плотность способствует повышению тепловой и ударной стойкости.

Помимо перечисленных качеств, полиэтилен низкого давления менее подвержен химическим воздействиям. Однако излишняя плотность молекул при низких температурах делает материал хрупким, он становится проницаемым для паров, газов.

Эта разновидность материала обладает хорошими диэлектрическими характеристиками. Он биологически неактивен, но легко перерабатывается в промышленном производстве.

Полиэтилен высокого давления

К этой группе относят эластичный, легкий полиэтилен. Температура плавления, свойства кристаллизации не позволяют выполнять из него высокопрочные, устойчивые к нагревам изделия. В зависимости от марки может иметь разную плотность. Их температура плавления составляет от 60 до 90 °С.

Так же, как и предыдущий тип материала, полиэтилен высокого давления бывает более прочным, если молекулярная масса увеличивается. Он становится менее подверженным химическим, ультрафиолетовым влияниям. Но при этом снижается его способность выдерживать удары. На таком полиэтилене в сильные морозы появляются трещины, разрывы. Он становится проницаемым для паров и газов.

У такого материала также присутствуют хорошие диэлектрические качества. Он не проявляет стойкости к жирам, маслу. Зато этот материал способен сдерживать радиационные лучи. Биологически этот материал также инертен, но прост в переработке.

Применение полиэтилена низкого давления

Присущие материалу качества определяют область применения, которую имеет полиэтилен. Температура плавления (применение этого показателя обязательно при выборе каждого изделия) позволяет делать из такого вещества упаковку и тару. Чаще всего изготавливают контейнера выдувным формованием. Это могут быть емкости для косметики или духов, пищевая тара.

Канистры и контейнера из полиэтилена низкого давления применяют в автомобильной и химической промышленности, при изготовлении бочек и топливных баков.

Набирает оборотов производство упаковочных пленок из подобного материала. Его широко применяют при производстве труб, фитингов. Это дешевый и долговечный материал. Он способен вытеснить прочую конкурентную продукцию с рынка.

Применение полиэтилена высокого давления

Полиэтилен, температура плавления которого ниже, чем у предыдущей разновидности, применяется в производстве пленок для сельского хозяйства, пищевой промышленности и прочих технических целей. Его востребованность постоянно растет.

Различные пленки для сельскохозяйственных целей могут иметь дополнительную армировку, их цвет также различен. Их применяют в теплицах, на полях для повышения качества и объемов урожая.

Пищевые пленки, пакеты во всем мире потребляются с каждым годом все в больших масштабах. Этот вид материала вытеснил из основных рыночных сегментов продукцию из других материалов.

Структура потребления

Полиэтилен, температура плавления которого определяет область его применения, во всем мире пользуется большим спросом. Структура потребления материала довольно интересна. 60-70% полиэтилена используется для изготовления листов и пленок.

Также довольно большую часть в общем объеме производства занимают изделия, полученные литьем под давлением или при помощи экструзии. Более незначительно производство изоляции для электрических проводов, труб и фитингов. Также полиэтилен применяется для получения изделий путем выдувания и прочего.

В производстве листов и пленок практически всегда применяют полиэтилен высокого давления (низкой плотности). Они изготавливаются разными способами. Толщина пленок находится в пределах 0,03-0,3 мм, а листов – 1-6 мм.

Помимо упаковки, из такого материала могут производить мешки, сумки, облицовки для ящиков, коробки и прочую тару. Свойства, которыми должно обладать изделие, определяют способ производства полиэтилена. В конце производства каждому типу материала присваивается марочность. Она помогает подобрать правильную разновидность материала для любой отрасли.

ГОСТ 10354-82. ОСТ 10354-82. Пленка полиэтиленовая. Технические условия (42511)


Таблица 7

Толщина, мм

Сорт

Код ОКП для пленки марки СМ с добавками

Стабилизатор

(базовая марка)

Модифицирующая (ф)

0,060

Первый

22 4518 1401

22 4518 1501

0,070

Первый

22 4518 1402

22 4518 1502

0,080

Первый

22 4518 1403

22 4518 1503

0,100

Первый

22 4518 1404

22 4518 1504

0,120

Первый

22 4518 1405

22 4518 1505

0,150

Первый

22 4518 1406

22 4518 1506

0,200

Первый

22 4518 1407

22 4518 1507

0,220

Первый

22 4518 1408

22 4518 1508

0,060

Высший

22 4518 1409

22 4518 1509

0,070

Высший

22 4518 1410

22 4518 1510

0,080

Высший

22 4518 1411

22 4518 1511

0,100

Высший

22 4518 1412

22 4518 1512

0,120

Высший

22 4518 1413

22 4518 1513

0,150

Высший

22 4518 1414

22 4518 1514

0,200

Высший

22 4518 1415

22 4518 1515

0,220

Высший

22 4518 1416

22 4518 1516

Таблица 8

Толщина, мм

Сорт

Код ОКП для пленки

марки СИК с добавками

Стабилизатор (базовая марка)

0,100

Первый

22 4518 1601

0,120

Первый

22 4518 1602

0,150

Первый

22 4518 1603

0,180

Первый

22 4518 1604

0,200

Первый

22 4518 1605

0,220

Первый

22 4518 1606

0,250

Первый

22 4518 1607

0,100

Высший

22 4518 1608

0,120

Высший

22 4518 1609

0,150

Высший

22 4518 1610

0,180

Высший

22 4518 1611

0,200

Высший

22 4518 1612

0,220

Высший

22 4518 1613

0,250

Высший

22 4518 1614

ПРИЛОЖЕНИЕ 2а

Обязательное

Термины и определения

Термин

Определение

Трещина

Дефект, характеризующийся локальным разделением пленки

Запрессованная складка

Дефект в виде складки, не расплавляющейся при приложении ручного усилия

Разрыв

Дефект, характеризующийся разделением пленки на части

Отверстие

Дефект, представляющий собой сквозную полость в пленке

ПРИЛОЖЕНИЕ 2

Справочное

Таблица показателей полиэтиленовой пленки

Наименование показателя

Норма

1. Плотность при 20 °С, кг/м

919-929

2. Температура плавления, °С

108-112

3. Температура начала деформации (под действием собственной массы), °С

90-100

4. Температура морозостойкости, °С

Минус 70

5. Рабочий интервал температур, °С

От минус 60 до плюс 80

6. Модуль упругости при растяжении, МПа (кгс/см)

147-294 (1500-3000)

7. Предел текучести при растяжении, МПа (кгс/см)

8,8-11,9 (90-120)

8. Линейная усадка при 100 °С, %

Менее 3

9. Сопротивление раздиру, Н/см (кгс/см)

6950-8900 (70-90)

10. Газопроницаемость, м·Па·с

азот

3·10-1·10

кислород

8·10-5·10

углекислый газ

3·10-2·10

водород

2·10-1·10

11. Паропроницаемость, г/м·24 ч

0,5-30

12. Водопоглощение за 24 ч при 20 °С, %

0,01

13. Диэлектрическая проницаемость при 10 Гц и 20 °С

2,2

14. Тангенс угла диэлектрических потерь при 10 Гц и 20 °С

0,0003

15. Удельное объемное электрическое сопротивление

при 20 °С, Ом·см

1·10-1·10

16. Электрическая прочность, кВ/мм, не менее:

при переменном токе при частоте 50 Гц и 20 °С

200

при постоянном токе при 20 °С

300

17. Коэффициент интегрального светопропускания, %, не менее:

для пленок толщиной:

0,02-

92

св. 0,10 до

90

» 0,20 »

88

» 0,35 »

84

18. Химстойкость

Стойка к действию кислот (за исключением концентрированной азотной и серной) и щелочей различной концентрации, нерастворима в органических растворителях (частично набухает в ароматических и хлорированных углеводородах)

(Измененная редакция, Изм. N 4)

ПРИЛОЖЕНИЕ 3

Справочное

ТАБЛИЦА

проницаемости полиэтиленовой пленки марок СТ, СИК и СМ

в различных областях спектра

Наименование области спектра

Норма, %, для марки

СТ

СИК

СМ

1. Инфракрасная или тепловая с длиной волны 5-15 нм

70

25

2. Фотосинтетически активная радиация с длиной волны 380-710 нм

90

85

0

3. Ультрафиолетовая с длиной волны:

320-400 нм

70

60

0

290-330 нм

15

10

0

ПРИЛОЖЕНИЕ 4

Справочное

ТАБЛИЦА

расчетной массы полиэтиленовой пленки

Номинальная толщина, мм

Масса пленки, г

Количество м в пленки

0,015

13,80

72,5

0,020

18,40

54,3

0,025

23,0

43,5

0,030

27,6

36,2

0,040

36,8

27,2

0,050

46,0

21,7

0,060

55,2

18,1

0,070

64,4

15,5

0,080

73,6

13,6

0,090

82,8

12,1

0,100

92,0

10,9

0,110

101,2

9,9

0,120

110,4

9,1

0,130

119,6

8,4

0,140

128,8

7,8

0,150

138,0

7,2

0,160

147,2

6,8

0,170

156,4

6,4

0,180

165,6

6,0

0,190

174,8

5,7

0,200

184,0

5,4

0,210

193,2

5,2

0,220

202,4

4,9

0,230

211,6

4,7

0,240

220,8

4,5

0,250

230,0

4,3

0,260

239,2

4,2

0,270

248,4

4,0

0,280

257,6

3,9

0,290

266,8

3,7

0,300

276,0

3,6

0,310

285,2

3,5

0,320

294,4

3,4

0,330

303,6

3,3

0,340

312,8

3,2

0,350

322,0

3,1

0,360

331,2

3,0

0,370

340,4

2,9

0,380

349,6

2,9

0,390

358,8

2,8

0,400

368,0

2,7

0,410

377,2

2,6

0,420

386,4

2,6

0,430

395,6

2,5

0,440

404,8

2,5

0,450

414,0

2,4

0,460

423,2

2,4

0,470

432,4

2,3

0,480

441,6

2,3

0,490

450,8

2,2

0,500

460,0

2,2

Примечания:

1. Расчет проведен для пленки из полиэтилена плотностью 0,920 г/см.

2. Расчетная масса приведена без учета предельного отклонения по толщине.

Скачать бесплатно

Все, что вам нужно знать о полиэтилене (ПЭ)

Что такое ПЭ и для чего он используется?

Полиэтилен – термопластичный полимер с переменной кристаллической структурой и широким спектром применения в зависимости от конкретного типа. Это один из наиболее широко производимых пластиков в мире: ежегодно во всем мире производятся десятки миллионов тонн. Коммерческий процесс (катализаторы Циглера-Натта), который принес ПЭ такой успех, был разработан в 19 веке.50-х годов двумя учеными, Карлом Циглером из Германии и Джулио Натта из Италии.

Существует несколько типов полиэтилена, каждый из которых лучше всего подходит для различных областей применения. Вообще говоря, полиэтилен высокой плотности (ПЭВП) гораздо более кристалличен и часто используется в совершенно других условиях, чем полиэтилен низкой плотности (ПЭНП). Например, LDPE широко используется в пластиковой упаковке, такой как пакеты для продуктов или полиэтиленовая пленка. HDPE, напротив, широко применяется в строительстве (например, при производстве дренажных труб). Полиэтилен сверхвысокой молекулярной массы (UHMW) имеет высокоэффективные применения в таких вещах, как медицинские устройства и пуленепробиваемые жилеты.

Какие существуют типы полиэтилена?

Полиэтилен обычно относят к одному из нескольких основных соединений, наиболее распространенными из которых являются LDPE, LLDPE, HDPE и полипропилен со сверхвысокой молекулярной массой. Другие варианты включают полиэтилен средней плотности (MDPE), полиэтилен сверхнизкой молекулярной массы (ULMWPE или PE-WAX), полиэтилен высокой молекулярной массы (HMWPE), сшитый полиэтилен высокой плотности (HDXLPE), сшитый полиэтилен. полиэтилен (PEX или XLPE), полиэтилен очень низкой плотности (VLDPE) и хлорированный полиэтилен (CPE).

  • Полиэтилен низкой плотности (LDPE) — очень гибкий материал с уникальными свойствами текучести, что делает его особенно подходящим для изготовления пакетов для покупок и других видов пластиковой пленки. LDPE обладает высокой пластичностью, но низкой прочностью на растяжение, что проявляется в реальном мире по его склонности к растяжению при деформации.
  • Линейный полиэтилен низкой плотности (LLDPE) очень похож на LDPE, но имеет дополнительные преимущества. В частности, свойства ЛПЭНП могут быть изменены путем корректировки компонентов рецептуры, а общий производственный процесс для ЛПЭНП обычно менее энергоемкий, чем для ПЭНП.
  • Полиэтилен высокой плотности (ПЭВП) — прочный, умеренно жесткий пластик с высококристаллической структурой. Он часто используется в производстве пластиковых пакетов для молока, стирального порошка, мусорных баков и разделочных досок.
  • Полиэтилен сверхвысокой молекулярной массы (UHMW) представляет собой чрезвычайно плотный вариант полиэтилена, молекулярная масса которого обычно на порядок больше, чем у HDPE. Из него можно сплести нити с прочностью на растяжение, во много раз большей, чем у стали, и его часто используют в пуленепробиваемых жилетах и ​​другом высокопроизводительном оборудовании.

Каковы характеристики полиэтилена?

Теперь, когда мы знаем, для чего он используется, давайте рассмотрим некоторые ключевые свойства полиэтилена. PE классифицируется как «термопласт» (в отличие от «термореактивного») в зависимости от того, как пластик реагирует на тепло. Термопластичные материалы становятся жидкими при температуре их плавления (110-130 градусов Цельсия в случае ПЭНП и ПЭВП соответственно). Полезным свойством термопластов является то, что их можно нагревать до точки плавления, охлаждать и снова нагревать без существенной деградации. Вместо сжигания термопласты, такие как полиэтилен, сжижаются, что позволяет легко формовать их под давлением, а затем перерабатывать. Напротив, термореактивные пластмассы можно нагревать только один раз (обычно в процессе литья под давлением). Первый нагрев вызывает схватывание термореактивных материалов (аналогично двухкомпонентной эпоксидной смоле), что приводит к химическому изменению, которое невозможно обратить. Если вы попытаетесь нагреть термореактивный пластик до высокой температуры во второй раз, он сгорит. Эта характеристика делает термореактивные материалы плохими кандидатами на переработку.

Различные типы полиэтилена демонстрируют широкое разнообразие своей кристаллической структуры. Чем менее кристаллический (или аморфный) пластик, тем более он проявляет склонность к постепенному размягчению; то есть пластик будет иметь более широкий диапазон между температурой стеклования и температурой плавления. Кристаллические пластики, напротив, демонстрируют довольно резкий переход от твердого состояния к жидкому.

Полиэтилен является гомополимером, так как состоит из одного мономерного компонента (в данном случае этилена: Ch3=Ch3).

Почему так часто используется полиэтилен?

Полиэтилен — невероятно полезный товарный пластик, особенно среди компаний, занимающихся дизайном продукции. Из-за разнообразия вариантов PE он используется в самых разных областях. Если это не требуется для конкретного применения, мы обычно не используем полиэтилен как часть процесса проектирования в Creative Mechanisms. Для некоторых проектов деталь, которая в конечном итоге будет массово производиться из полиэтилена, может быть прототипирована с использованием других, более удобных для прототипирования материалов, таких как АБС.

Полиэтилен недоступен для 3D-печати. Она может быть изготовлена ​​на станке с ЧПУ или вакуумной формовкой.

Как производится полиэтилен?

Полиэтилен, как и другие пластмассы, начинается с перегонки углеводородного топлива (в данном случае этана) в более легкие группы, называемые «фракциями», некоторые из которых объединяются с другими катализаторами для производства пластмасс (обычно путем полимеризации или поликонденсации). Подробнее о процессе можно прочитать здесь.

Полиэтилен для разработки прототипов на станках с ЧПУ и 3D-принтерах

Полиэтилен доступен в виде листов, стержней и даже специальных форм во множестве вариантов (LDPE, HDPE и т. д.), что делает его хорошим кандидатом для субтрактивной обработки обработки на фрезерном или токарном станке. Цвета обычно ограничены белым и черным.

PE в настоящее время недоступен для FDM или любого другого процесса 3D-печати (по крайней мере, не от двух основных поставщиков: Stratasys и 3D Systems). PE похож на PP тем, что с ним может быть сложно создать прототип. Вы в значительной степени застряли с обработкой с ЧПУ или вакуумным формованием, если вам нужно использовать их в процессе разработки прототипа.

Является ли полиэтилен токсичным?

В твердой форме, шт. Полиэтилен часто используется в пищевой промышленности. Он может быть токсичным при вдыхании и/или попадании на кожу или в глаза в виде пара или жидкости (т. е. во время производственных процессов). Будьте осторожны и следуйте инструкциям по обращению с расплавленным полимером, в частности.

Каковы недостатки полиэтилена?

Полиэтилен, как правило, дороже полипропилена (который можно использовать в аналогичных деталях). ПЭ уступает только ПП как лучший выбор для живых петель.

Если вашей компании требуется использование полиэтилена для питания вашего продукта, обратитесь в фирму по разработке продуктов, которая знает плюсы и минусы полиэтилена и сможет найти способ реализовать его или найти лучшую замену. Чтобы назначить встречу с командой Creative Mechanisms, свяжитесь с нами сегодня.

 

Полиэтилен (ПЭ) – свойства, применение и применение

Что такое полиэтилен?

Что такое полиэтилен?

Молекулярная структура полиэтилена

Полиэтилен — это разновидность полиолефинов. Это легкий и прочный пластик, который часто используется для изготовления пакетов для замороженных продуктов, бутылок, вкладышей для хлопьев, контейнеров для йогурта и т. д. Оглянитесь вокруг: все пластики с кодами переработки 2 и 4 сделаны из полиэтилена. Полиэтиленовые пластики имеют различную кристаллическую структуру. Через минуту мы рассмотрим подсемейства (HDPE, LDPE, LLDPE и т. д.).

Как производится полиэтилен?

Как производится полиэтилен?

ПЭ получают путем полимеризации мономера этилена (или этилена). Химическая формула полиэтилена (C2h5)n.

Полиэтиленовые цепи получают аддитивной или радикальной полимеризацией. Возможными методами синтеза являются как катализаторы Циглера-Натта, так и металлоценовые катализаторы.


Структура мономера ПЭ
C 2 H 4

Полимеризация Циглера-Натта
Или металлоценовый катализ

Структура полиэтилена
(C 2 H 4 )n

Можно получить большое разнообразие кристаллической структуры. Мы рассмотрим, как это повлияет на конечную производительность.

Распространенные типы полиэтилена (ПЭ)

Распространенные типы полиэтилена (ПЭ)

В зависимости от плотности и разветвленности разные марки полиэтилена могут сильно отличаться друг от друга. Таким образом, марки
PE классифицируются следующим образом.
(нажмите на название полимера, чтобы узнать о них подробнее)
  • Версии с ответвлениями
    • Полиэтилен низкой плотности (LDPE)
    • Линейный полиэтилен низкой плотности (LLDPE)

  • Линейные версии
    • Полиэтилен высокой плотности (HDPE)
    • Полиэтилен сверхвысокой молекулярной массы (СВМПЭ)

  • Сшитый полиэтилен (PEX или XLPE)

Кроме того, ПЭ также доступен в других типах, таких как, но не ограничиваясь:

  • Полиэтилен средней плотности (MDPE)
  • Полиэтилен сверхнизкой плотности (ULDPE)
  • Высокомолекулярный полиэтилен (HMWPE)
  • Металлоценовый полиэтилен (мПЭ)
  • Хлорированный полиэтилен (ХПЭ)

На данный момент более поздние сорта не обсуждаются в этом руководстве, но подробный список коммерчески доступных сортов находится всего в одном клике!

Сравнение основных типов полиэтилена

Сравнение основных типов полиэтилена

  ПЭНП ЛПЭНП ПЭВП
Полимер Полное наименование Полиэтилен низкой плотности Линейный полиэтилен низкой плотности Полиэтилен высокой плотности
Структура Высокая степень короткоцепочечного разветвления + длинноцепочечное разветвление Высокая степень разветвления короткой цепи Линейная (или низкая степень короткоцепочечного разветвления)
Катализатор и процесс Использование радикальной полимеризации трубчатым методом или автоклавным методом Использование катализатора Циглера-Натта или металлоценового катализатора Катализатор Циглера-Натта в:
— Одностадийной полимеризации
— Многостадийной полимеризации или катализаторе типа Cr или Филлипса
Плотность 0,910-0,925 г/см 3 0,91–0,94 г/см 3 0,941-0,965 г/см 3
Кристалличность Низкокристаллические и высокоаморфные (менее 50-60% кристалличности) Полукристаллический, уровень от 35 до 60% Высококристаллические и низкоаморфные (>90% кристалличности)
Характеристики
  • Гибкость и хорошая прозрачность
  • Хорошие влагоизоляционные свойства
  • Высокая ударная вязкость при низких температурах
  • Превосходная стойкость к кислотам, основаниям и растительным маслам
По сравнению с ПВД имеет:
  • повышенная прочность на растяжение
  • более высокая стойкость к ударам и проколам
  • Превосходная химическая стойкость
  • Высокая прочность на растяжение
  • Превосходные влагоизоляционные свойства
  • Жесткий или полугибкий
Код утилизации
Общее применение Термоусадочная пленка, пленки, сжимаемые бутылки, мешки для мусора, экструзионные молдинги и ламинаты Высококачественные мешки, амортизирующие пленки, пленки для сепарации шин, промышленные вкладыши, эластичные пленки, мешки для льда, мешки для дополнительной упаковки и мешки для мусора
  • Молекулярно-массовое распределение относительно узкое, применяется в литье под давлением или плоской пряже, последний тип

  • Молекулярно-массовое распределение широкое, используется для изготовления пленочных изделий, полых пластиковых изделий и труб
Коммерческие продукты ПЭНП марки ЛПЭНП марки ПЭНД марки

Теперь, когда основные различия ясны, узнайте подробнее об этих 3 типах полиэтилена и посмотрите, какой из них лучше всего подходит для ваших конечных потребностей.

Полиэтилен высокой плотности (HDPE)

Полиэтилен высокой плотности (HDPE)

Полиэтилен высокой плотности (ПЭВП) представляет собой экономичный термопласт с линейной структурой и без разветвлений или с низкой степенью разветвления. Он производится при низкой температуре (70-300°C) и давлении (10-80 бар) и получается либо путем модификации природного газа (смесь метана, этана и пропана), либо путем каталитического крекинга сырой нефти в бензин.
  • Модифицирующий природный газ (смесь метана, этана, пропана) или
  • Каталитический крекинг сырой нефти в бензин

HDPE производится в основном с использованием двух технологий: суспензионной полимеризации или газофазной полимеризации.

Молекулярная структура полиэтилена высокой плотности

Полиэтилен высокой плотности
является гибким, полупрозрачным/воскообразным, устойчивым к атмосферным воздействиям и демонстрирует прочность при очень низких температурах.

Свойства полиэтилена высокой плотности


  1. HDPE Точка плавления: 120-140°C
  2. Плотность HDPE: от 0,93 до 0,97 г/см 3
  3. Полиэтилен высокой плотности Химическая стойкость:
    • Превосходная стойкость к большинству растворителей
    • Очень хорошая устойчивость к спиртам, разбавленным кислотам и щелочам
    • Средняя стойкость к маслам и смазкам
    • Плохая устойчивость к углеводородам (алифатическим, ароматическим, галогенированным)
  4. Длительная температура: от -50°C до +60°C, относительно жесткий материал с полезными температурными характеристиками
  5. Более высокая прочность на растяжение по сравнению с другими формами полиэтилена
  6. Недорогой полимер с хорошей технологичностью
  7. Хорошая устойчивость к низким температурам
  8. Отличные электроизоляционные свойства
  9. Очень низкое водопоглощение
  10. Соответствует требованиям FDA

Вам кажется, что HDPE соответствует вашим потребностям? Ознакомьтесь со списком производителей »

Недостатки HDPE


  • Подвержен растрескиванию под напряжением
  • Меньшая жесткость, чем у полипропилена
  • Высокая усадка формы
  • Плохая устойчивость к ультрафиолетовому излучению и низкой термостойкости
  • Высокочастотная сварка и соединение невозможны

Однако некоторые марки были модернизированы и предлагают несколько улучшенных профилей производительности.

Ознакомьтесь с марками, специально разработанными для устойчивости к растрескиванию под воздействием окружающей среды (ESCR), высокой жесткости, низкой усадки, устойчивости к УФ-излучению…

СОВЕТ: .

Применение полиэтилена высокой плотности (HDPE)


Превосходное сочетание свойств делает ПЭВП идеальным материалом для различных областей применения в различных отраслях промышленности. Некоторые из основных областей применения полиэтилена высокой плотности включают:
  1. Применение в упаковке – Полиэтилен высокой плотности используется в различных упаковочных целях, включая ящики, лотки, бутылки для молока и фруктовых соков, крышки для упаковки пищевых продуктов, канистры, бочки, промышленные контейнеры для массовых грузов и т. д. В таких применениях ПЭВП обеспечивает конечный продукт имеет разумную ударную вязкость.

    Выберите марку HDPE, подходящую для упаковки »

  2. Товары народного потребления . Низкая стоимость и простота обработки делают ПЭВП предпочтительным материалом для изготовления ряда бытовых и потребительских товаров, таких как контейнеры для мусора, посуда, холодильники, игрушки и т. д.

  3. Волокна и текстиль – Благодаря своей высокой прочности на разрыв полиэтилен высокой плотности широко используется в сельском хозяйстве, например, в канатах, рыболовных и спортивных сетях, сетях, а также в промышленных и декоративных тканях.

Другие области применения полиэтилена высокой плотности включают трубы и фитинги (трубы для газа, воды, канализации, дренажа, водоотводы, промышленное применение, защита кабеля, покрытие стальных труб, большие смотровые камеры и люки для канализации и т. д.) из-за его отличной прочности. к химическим и гидролизным, автомобильные – топливные баки, электропроводка и кабели – защитное покрытие энергетических, телекоммуникационных кабелей.

В целом, по сравнению с другими разновидностями (LDPE, LLDPE), HDPE более жесткий из-за высокой степени кристалличности (> 90%), но это также означает, что он менее прозрачен.

Полиэтилен низкой плотности (LDPE)

Полиэтилен низкой плотности (LDPE)

Полиэтилен низкой плотности (ПЭНП) представляет собой полужесткий полимер с низкой степенью кристалличности (~50-60%). По сравнению с ПЭВП он имеет более высокую степень разветвления коротких и длинных боковых цепей. ПЭНП состоит из 4000-40000 атомов углерода с множеством коротких ответвлений.

Производится при высоком давлении (1000-3000 бар; 80-300°C) методом свободнорадикальной полимеризации.

Два основных процесса, используемых для производства полиэтилена низкой плотности: автоклав с мешалкой или трубчатый способ. Трубчатый реактор получает предпочтение перед автоклавным способом из-за его более высоких скоростей конверсии этилена.

Структура из полиэтилена низкой плотности

Если вам нужна большая эластичность, но ограниченная прочность, обратите внимание на материал LDPE. См. этот исчерпывающий список товарных сортов, чтобы найти подходящий продукт »

Свойства полиэтилена низкой плотности


  1. ПЭНП Точка плавления: от 105 до 115°C
  2. Плотность LDPE: 0,910–0,940 г/см 3
  3. Химическая стойкость LDPE:
    • Хорошая устойчивость к спиртам, разбавленным щелочам и кислотам
    • Ограниченная стойкость к алифатическим и ароматическим углеводородам, минеральным маслам, окислителям и галогенированным углеводородам
  4. Термостойкость до 80°C непрерывно и до 95°C кратковременно.
  5. Недорогой полимер с хорошей технологичностью
  6. Высокая ударная вязкость при низких температурах, хорошая устойчивость к атмосферным воздействиям
  7. Отличные электроизоляционные свойства
  8. Очень низкое водопоглощение
  9. Соответствует требованиям FDA
  10. Прозрачный в виде тонкой пленки

Недостатки полиэтилена низкой плотности


Наличие большего количества разветвлений в полимерной цепи вносит определенные недостатки в характеристики ПЭНП. Например:
  • Подвержен растрескиванию под напряжением
  • Низкая прочность, жесткость и максимальная рабочая температура. Это ограничивает его использование в приложениях, требующих экстремальных температур.
  • Высокая газопроницаемость, особенно углекислый газ
  • Плохая стойкость к УФ-излучению
  • Легковоспламеняющийся
  • Высокочастотная сварка и соединение невозможны

Для решения этих проблем было разработано несколько марок ПЭНП с улучшенными свойствами, такими как УФ-стабилизация, высокая прочность, антиадгезивность и т. д.

Совет: Не забудьте использовать фильтр «Ключевые характеристики», чтобы изучить другие оптимизированные марки ПЭНП.

Применение полиэтилена низкой плотности (LDPE)

Использование полиэтилена низкой плотности
(LDPE) в основном связано с производством контейнеров, дозирующих бутылок, бутылок для промывания, трубок, пластиковых пакетов для компьютерных компонентов и различного формованного лабораторного оборудования. Наиболее популярным применением полиэтилена низкой плотности являются полиэтиленовые пакеты.

Применение LDPE


  1. Упаковка – Благодаря своей низкой стоимости и хорошей гибкости ПЭНП используется в упаковочной промышленности для изготовления фармацевтических и прессованных бутылок, колпачков и укупорочных средств, средств защиты от вскрытия, вкладышей, мешков для мусора, пленок для упаковки пищевых продуктов (замороженных, сухих товаров, и т. д.), ламинаты и т. д.
  2. Трубы и фитинги – Полиэтилен низкой плотности используется для производства водопроводных труб и шлангов для труб и фитингов благодаря своей пластичности и низкому водопоглощению.

Прочие области применения включают потребительские товары — предметы домашнего обихода, гибкие игрушки, сельскохозяйственные пленки, электропроводка и кабели — изоляторы подпроводников, оболочки кабелей.

Изучаете варианты марки LDPE для упаковки продуктов питания, медицинских товаров или косметики? У нас есть исчерпывающий список для вас здесь »

Линейный полиэтилен низкой плотности (LLDPE)

Линейный полиэтилен низкой плотности (LLDPE)

ЛПЭНП получают полимеризацией этилена (или мономера этана) с 1-бутеном и меньшими количествами 1-гексена и 1-октена с использованием катализаторов Циглера-Натта или металлоценовых катализаторов. Он структурно подобен LDPE.

Структура LLDPE имеет линейную основу с короткими однородными ответвлениями (в отличие от более длинных ответвлений LDPE). Эти короткие ответвления способны скользить друг относительно друга при удлинении, не запутываясь, как LPDE.

В современных условиях линейный полиэтилен низкой плотности (LLDPE) успешно заменяет полиэтилен низкой плотности благодаря нижеуказанным свойствам.

Свойства ЛПЭНП


  • Очень гибкий, с высокой ударной вязкостью
  • Полупрозрачный натуральный молочный цвет
  • Отлично подходит для мягких и сильных буферов, хорошая химическая стойкость
  • Хорошие барьерные свойства для водяного пара и спирта
  • Хорошая стойкость к растрескиванию под напряжением и ударопрочность

Области применения ЛПЭНП: Подходит для различных применений пленки, таких как пленка общего назначения, стрейч-пленка, упаковка для одежды, сельскохозяйственная пленка и т. д.

Хотя ЛПЭНП может конкурировать с ПЭВП и ПЭНП в различных областях применения, приведенная ниже таблица может быть полезной. чтобы упростить процесс выбора среди трех типов PE.

Собственность ПЭНП ПЭВП LLDPE Относительно LDPE LLDPE относительно HDPE
Прочность на растяжение (МН/м 2 ) 6,9-15,9 21. 4-38 Высшее Нижний
Удлинение (%) 90-650 50-800 Высшее Высшее
Ударная вязкость (Дж/12,7 мм) Без перерыва 1,02-8,15 Лучше Аналог
Стойкость к растрескиванию под воздействием окружающей среды Лучше То же
Температура тепловой деформации (°C) 40-50 60-82 На 15°C выше Нижний
Жесткость (4,5 МН/м 2 ) 1,18-2,42 5,53-10,4 Высшее Нижний
Деформация Меньше Аналог
Технологичность Отлично Хорошо Легче
Мутность (%) 40 Хуже Лучше
Глянец (45° %) 83 Хуже Лучше
Прозрачность От почти прозрачного до непрозрачного От полупрозрачного до непрозрачного Хуже Лучше
Прочность расплава Нижний Нижний

Диапазон температуры размягчения (°C) Проницаемость (мл см -2 г -1 мил -1 см) H г -1 при 25°C Х 10 -8

  • H 2 Пар O
  • СО 2

85-87

420

60

120-130

55

13

Уже

Лучше

Лучше

Уже

Хуже

Хуже

Источник : Мукерджи, А. К. и др., Popular Plastics : 15 октября 1985 г.

Полиэтилен сверхвысокой молекулярной массы (СВМПЭ)

Полиэтилен сверхвысокой молекулярной массы (СВМПЭ)

Полиэтилен сверхвысокой молекулярной массы или СВМПЭ имеет молекулярную массу примерно в 10 раз выше (обычно от 3,5 до 7,5 миллионов а.е.м.), чем смолы из полиэтилена высокой плотности (ПЭВП).

Когда дело доходит до HDPE и UHMWPE, они оба имеют схожий внешний вид, но UHMWPE является чрезвычайно прочным, стойким к истиранию и недорогим пластиком, поэтому лучше подходит для промышленных или производственных применений, где трение или износ могут быть проблемой. Узнайте больше о свойствах UHMWPE ниже.

СВМПЭ синтезируют с использованием металлоценовых катализаторов и этановых звеньев, в результате чего получается структура, в которой этановые звенья связаны друг с другом, что приводит к структуре СВМПЭ, обычно имеющей от 100 000 до 250 000 мономерных звеньев на молекулу.

  • Обладает отличными механическими свойствами, такими как высокая стойкость к истиранию, ударная вязкость и низкий коэффициент трения.
  • Материал практически полностью инертен, поэтому используется в самых агрессивных или агрессивных средах при умеренных температурах.
  • Даже при высоких температурах он устойчив к некоторым растворителям, за исключением ароматических, галогенированных углеводородов и сильных окислителей, таких как азотная кислота.
  • Эти особые свойства позволяют использовать продукт в нескольких высокопроизводительных приложениях.
  • UHMWPE подходит для изделий с высоким износом, таких как трубы, вкладыши, силосы, контейнеры и другое оборудование.

Просмотреть все марки СВМПЭ с высокой ударопрочностью »

Сшитый полиэтилен (PEX или XLPE)

Сшитый полиэтилен (PEX или XLPE)

Сшитый полиэтилен высокой плотности, или XLPE, представляет собой форму полиэтилена со сшитой структурой. специально разработан для критически важных приложений.

Сшитый полиэтилен производится из полиэтилена под высоким давлением с использованием органических пероксидов, что создает свободный радикал. Свободный радикал создает сшивку полимера, в результате чего получается смола, специально разработанная для критических применений, таких как системы трубопроводов для хранения химикатов, водяные системы лучистого отопления и охлаждения, а также изоляция для высоковольтных электрических кабелей.

Основные характеристики сшитого полиэтилена


  • Высокая и низкая температура
  • Стойкость к гидролизу
  • Высокие электрические и изоляционные свойства
  • Высокая стойкость к истиранию
  • Допуск для питьевой воды
  • Высокая скорость экструзии на стандартных линиях
  • Более низкая стоимость
  • Механически прочнее 

Основные характеристики сшитого полиэтилена

Кабели из сшитого полиэтилена
на сегодняшний день являются самыми популярными, и сшитый полиэтилен предлагает неограниченные преимущества в нескольких электрических применениях благодаря своей влагостойкости, устойчивости к нагрузкам и более высокой защите от тепловой деформации по сравнению с другими сопоставимыми силовыми кабелями. Особенно при сравнении кабелей из сшитого полиэтилена с кабелями из ПВХ силовой кабель из сшитого полиэтилена имеет:
  • Более длительный срок службы
  • Повышенная термостойкость, силовой кабель из сшитого полиэтилена обычно выдерживает температуру до 260°
  • Обладает лучшей прочностью на растяжение и ударопрочностью
  • Более высокая пригодность для приложений с более высоким номинальным током

Вот список всех марок сшитого полиэтилена, подходящих для проводов и кабелей »

Как обрабатывать полиэтиленовый пластик?

Как обрабатывать полиэтиленовый пластик?

Различные формы полиэтилена могут использоваться в таких процессах, как литье под давлением, выдувное формование, экструзия и различные процессы создания пленки, такие как каландрирование или экструзия пленки с раздувом.
  • Полиэтилен высокой плотности легко перерабатывается литьем под давлением, экструзией (трубы, выдувные и литые пленки, кабели и т.д.), выдувным и ротационным формованием. Будучи идеальным материалом для процесса литья под давлением, он в основном используется для серийного и непрерывного производства.

  • Наиболее распространенным методом обработки, используемым для полиэтилена низкой плотности, является экструзия (трубы, выдувные и литые пленки, кабели…). Полиэтилен низкой плотности также можно перерабатывать литьем под давлением или ротоформованием.

    Легко избегайте сбоев в работе вашей производственной линии для литья под давлением или экструзии
    Посмотрите бесплатное видео сегодня!


  • UHMWPE обрабатывается различными способами: компрессионным формованием, поршневой экструзией, формованием геля и спеканием. Это обычные методы, такие как литье под давлением, выдувное или экструзионное формование, поскольку этот материал не течет даже при температурах выше точки его плавления.

  • Полиэтилен (в основном HDPE) постепенно набирает популярность в качестве материала для 3D-печати. Его прочность, низкая плотность и нетоксичность делают его идеальным для широкого спектра 3D-печатных объектов. Кроме того, переработанные сорта полиэтилена и полиэтилен на биологической основе также используются для обработки с помощью 3D-печати. Огромная доступность полиэтилена стимулирует усилия по применению этого материала для аддитивного производства.
ПЭВП ПЭНП
Литье под давлением
  • Температура плавления: 200-300°C
  • Температура формы: 10-80°C
  • Сушка не требуется при правильном хранении
  • Высокая температура пресс-формы улучшит блеск и внешний вид детали
  • Усадка формы составляет от 1,5 до 3%, в зависимости от условий обработки, реологии полимера и толщины готовой детали
  • Температура плавления: 160-260°C
  • Усадка после пресс-формы составляет от 1,5 до 3,5%
  • Давление впрыска материала: до 150 МПа
Экструзия
  • Температура плавления: 200-300°C
  • Степень сжатия: 3:1
  • Температура цилиндра: 180-205°C
  • Предварительная сушка: Нет, 3 часа при 105-110°C (221-230°F) для измельчения
  • Температура плавления: 180-240°C
  • Для экструзионного покрытия необходимы более высокие температуры расплава (280-310°C)
  • Рекомендуется трехзонный винт с отношением L/D около 25
  • Температура плавления: 160-260°C
  • Усадка после формования составляет от 1,5 до 3,5%

Основные области применения полиэтилена

Основные области применения полиэтилена

Полиэтилен является наиболее распространенным пластиком, производимым в мире и выпускаемым в трех различных формах: HDPE, LDPE, LLDPE. Итак, каковы типичные приложения, в которых вы найдете PE?

От электроизоляции, бытовых контейнеров, упаковки и пленки до ведер и бутылок, каждая форма полиэтилена имеет широкий спектр применения, как описано ниже.

Нет сомнений в том, что превосходное сочетание свойств делает полиэтилен идеальным материалом для различных применений в различных отраслях промышленности. Кроме того, он может быть спроектирован в соответствии с требованиями конечного использования.

Среди более чем 6800 марок полиэтилена, доступных сегодня на рынке, вы можете найти применение ПЭ в следующих областях.

  • Упаковка бутылок и пленок — HDPE широко используется для производства ящиков, лотков, крышек для бутылок, бочек и т. д. В то время как LDPE в основном используется в пленках, пластиковых пакетах, мешках для мусора и других упаковочных материалах для пищевых продуктов.

  • Медицина и здравоохранение — используется для создания медицинских изделий, таких как пластыри, средства индивидуальной защиты, упаковочные пленки, контейнеры, крышки, заголовки пакетов и т. д.

  • Трубы, шланги и фитинги — Детали из полиэтилена используются в газовых трубах, водопроводных трубах, канализационных трубах, шлангах и т. д., что обеспечивает превосходную стойкость к химическим веществам и гидролизу.

  • Хозяйственные товары/Товары народного потребления — Контейнеры для мусора, кухонная утварь, домашняя утварь, коробки для льда, миски, ведра, бутылки для кетчупа и т.д.

  • Сельское хозяйство — Полиэтиленовые пленки широко используются для покрытия теплиц, проходных туннелей и низких туннелей, а также для мульчирования.

  • Электропроводка и кабель — смолы из сшитого полиэтилена или сополимера полиэтилена используются для изоляции и оболочки проводов и кабелей.

(Чтобы увидеть несколько вариантов материалов, доступных сегодня, нажмите на приложение)

Переработка полиэтилена и токсичность

Переработка полиэтилена и токсичность

Идентификационный код смолы для двух основных форм полиэтилена:
LDPE и HDPE не являются биоразлагаемыми по своей природе и вносят значительный вклад в мировые пластиковые отходы. Обе формы полиэтилена пригодны для вторичной переработки и используются для производства бутылок для непродовольственных товаров, пластика для наружного применения, компостных баков и т. д.

В твердой форме полиэтилен безопасен и нетоксичен по своей природе, но может быть токсичен при вдыхании и/или всасывании в виде пара или жидкости (т. е. во время производственных процессов).

Посмотреть несколько доступных сегодня марок переработанного полиэтилена »

PE (HDPE и XLPE) широко используется в системах, связанных с водой. Сшитый полиэтилен в последние годы стал популярен для питьевой воды, но PEX требует специальных фитингов и не подлежит вторичной переработке. Трубы из полиэтилена высокой плотности (HDPE) используются для непитьевой воды. Для питьевой воды полиэтилен высокой плотности можно использовать как для горячего, так и для холодного водоснабжения.

Направляйте свои исследования и разработки быстрее и в правильном направлении с более четким представлением о достижениях в области материалов для переработки пластмасс ( объемные смолы, добавки для вторичной переработки, рециклируемые соединения… ) и областях применения (упаковка, потребительские товары, автомобили…). Пройдите этот эксклюзивный курс от отраслевого эксперта Дональда Росато.

Является ли полиэтилен идеальным пластиком для вашего чемодана?

Является ли полиэтилен идеальным пластиком для вашего чемодана?


PE имеет широкий спектр применения. Он используется для пластиковых контейнеров, бутылок, пакетов, пластиковых игрушек, пленок, тюбиков, пластиковых деталей, ламинатов и т. д.

По сути, если ваше приложение не требует экстремальных характеристик, предпочтительным материалом может быть полиэтилен. При определенных обстоятельствах полиэтилен также может составить конкуренцию инженерным пластикам. Как вы можете себе представить, учитывая его стоимость и широкую доступность, промышленность нашла разумные способы увеличить предел производительности.

Если вы все еще колеблетесь между полиэтиленом и полипропиленом, полиэтилентерефталатом, поливинилхлоридом… давайте рассмотрим основную причину выбора полиэтилена по сравнению с другими видами пластика; и когда это может быть не лучший выбор.

Полиэтилен низкой плотности против полиэтилена высокой плотности

Полиэтилен (ПЭ) был открыт незадолго до начала 20-го века и сразу же стал фаворитом в отрасли. Благодаря своей доступности, обрабатываемости и совместимости с другими материалами полиэтилен по-прежнему остается одним из основных продуктов в обрабатывающей промышленности. ПЭ широко используется в потребительских товарах, медицинских приборах и промышленных применениях, таких как резервуары и трубы.

Существует множество форм полиэтилена, разделенных по трем основным химическим структурам — разветвленные версии, линейные версии и сшитые полиэтилены. Полиэтилен высокой плотности (HDPE) и полиэтилен низкой плотности (LDPE) являются двумя наиболее распространенными видами полиэтилена. В этом руководстве «Знай свои материалы» о полиэтилене низкой плотности и полиэтилене высокой плотности содержится все, что вам нужно знать об этих двух материалах, чтобы вы могли решить, какой тип полиэтилена лучше всего подходит для вашего следующего проекта.

Полиэтилен высокой плотности (HDPE)

HDPE имеет линейную структуру, что делает его идеальным материалом для применений, требующих высокой прочности на растяжение.

HDPE представляет собой тип полиэтилена с линейной структурой. Поскольку его молекулы плотно упакованы, полиэтилен высокой плотности представляет собой невероятно прочный полиэтилен с высокой прочностью на растяжение, жесткостью и ударопрочностью. HDPE также устойчив к химическим веществам и может быть устойчив к ультрафиолетовому излучению. Наряду с долговечностью, HDPE является довольно универсальным материалом и прост в изготовлении.

Благодаря своей пластичности и стабильности размеров полиэтилен высокой плотности часто используется в уличной мебели и оборудовании, в том числе в таких конструкциях, как детские площадки. HDPE также используется в промышленных целях, таких как фланцы труб и резервуары для химикатов, а также в потребительских товарах, таких как бутылки для еды и напитков, разделочные доски и даже игрушки.

Вот несколько ключевых механических и химических свойств полиэтилена высокой плотности:

  • Температура плавления: 135°C (275°F)
  • Прочность на растяжение: 4000 фунтов на кв. дюйм
  • Удлинение при растяжении: 600 фунтов на кв. дюйм
  • Модуль упругости при изгибе: 200 000 фунтов на кв. дюйм
  • Водопоглощение: 0,10% при погружении в течение 24 часов

Некоторые недостатки ПЭВП включают склонность к растрескиванию под действием сильного давления и термостойкость от низкой до умеренной. Существует также риск усадки при формовании ПЭВП, и по этой причине ПЭВП лучше всего подходит для обработки на станках с ЧПУ и аддитивного производства. Обработка ПЭВП с помощью станков с ЧПУ особенно популярна, поскольку этот метод производства может давать жесткие допуски.

Одним из огромных преимуществ ПЭВП является возможность его вторичной переработки и повторного использования. Переработанный ПЭВП часто так же универсален и пригоден для сварки, как и новый или «первичный» ПЭВП, что делает переработанный ПЭВП отличным материалом для снижения вашего воздействия на окружающую среду.

Полиэтилен низкой плотности (LDPE)

LDPE — это прозрачная разветвленная версия PE, которую часто можно найти в пластиковых пакетах в продуктовых магазинах.

LDPE представляет собой разветвленную версию полиэтилена, то есть его молекулы более рыхло упакованы. В результате LDPE менее плотный, чем другие линейные полиэтилены, такие как HDPE. Однако это не означает, что LDPE не прочен.

Наряду с ударопрочностью, LDPE также является устойчивым к пятнам, электроизоляционным и водонепроницаемым. LDPE также естественно прозрачен и хорошо отражает свет. Некоторые другие механические свойства ПЭНП низкой плотности включают:

  • Точка плавления: 115 ° C (239 ° F)
  • Прочность на растяжение: 1 400 фунтов на квадратный дюйм
  • Распространение растягивания: 500 фунтов на квадратный дюйм
  • Модуль изгиб потребительские компоненты включают пакеты для продуктов, пластиковую пленку или обертку, гибкий упаковочный материал и контейнеры для пищевых продуктов и напитков. LDPE также используется в производстве медицинского оборудования для ортопедии и протезирования.

    Команды разработчиков должны помнить о некоторых ограничениях LDPE — LDPE более склонен к растрескиванию под напряжением, чем HDPE, менее термостойкий, чем HDPE, и обладает высокой проницаемостью для газов, таких как углекислый газ. LDPE также легко воспламеняется, что значительно ограничивает его использование в высокотемпературных приложениях.

    Одним из преимуществ пониженной термостойкости LDPE является его низкая температура плавления, которая улучшает термосваривание. Это упрощает переработку LDPE с помощью литья под давлением, что открывает множество производственных возможностей в этой области.

    Различия между HDPE и LDPE

    Полиэтилен высокой плотности и полиэтилен низкой плотности — это два распространенных полиэтилена с разной структурой, но схожими свойствами. HDPE имеет линейную структуру и является непрозрачным, тогда как LDPE представляет собой прозрачную разветвленную версию PE. Оба материала обладают превосходной прочностью и свариваемостью, ударопрочностью и химической стойкостью, а также ковкостью и технологичностью.

    В то время как LDPE и HDPE можно перерабатывать с помощью литья под давлением и аддитивного производства, LDPE лучше всего подходит для литья под давлением, тогда как обработка HDPE на станках с ЧПУ может помочь достичь жестких допусков. Команда разработчиков должна провести исследование и определить, какой материал лучше всего подходит для их будущего проекта. Надежный партнер-производитель может помочь вам принять эти решения с уверенностью.

    Fast Radius может помочь вам понять основные различия между HDPE и LDPE, а также выбрать один из многих других производственных материалов. Наша команда экспертов по производству посвящает себя тому, чтобы помочь вам создать наилучшую возможную деталь, сопровождая вас на каждом этапе процесса. С Fast Radius узнайте, как выбрать правильный материал и оптимизировать дизайн продукта на каждом шагу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *