Температура плавления сплавов: Легкоплавкие сплавы — Википедия – Температура плавления — Википедия

Содержание

Легкоплавкие сплавы — Википедия

Состав
сплава
Tпл,
°C
Плот-
ность
г/см³
Область
приме-
нения
ПримечаниеДругие
сведения
висмут 76,5 %, таллий 23,5 %198Т, ПКислотоупоренЭвтектический сплав
олово 89 %, цинк 11 %198Т, П
висмут 47,5 %, таллий 52,5 %188ТЭвтектический сплав
висмут 44,2 %, свинец 9,8 %, таллий 48 %186Т∑?Эвтектический сплав
олово 62 %, свинец 38 %1838,5Т, П~ПОС 61
олово 64 %, свинец 36 %181Т, ПЭвтектический сплав, ~ПОС 63
натрий 70 %, ртуть 30 %
181ТХим.акт, Токсичен.
кадмий 32 %, олово 68 %177 (178)Т, ПТоксичен.Эвтектический сплав
свинец 32 %, олово 68 %177Т, П
висмут 12,8 %, свинец 49 %, олово 38,2 %172Т, П
калий 80 %, таллий 20 %165ТХим.акт
висмут 13,3 %, свинец 46 %, олово 40,1 %165Т, П∑?
висмут 10,5 %, свинец 42 %, олово 47,5 %160Т, П
висмут 13,7 %, свинец 44,8 %, олово 41,5 %160Т, ПЭвтектический сплав
висмут 16 %, свинец 36 %, олово 48 % 155Т, П
висмут 18,1 %, свинец 36,2 %, олово 45,7 %151Т, П
висмут 25 %, свинец 50 %, олово 25 %149Т, П
висмут 62,5 %, кадмий 37,5 %149Т, ПТоксичен.
висмут 19 %, свинец 38 %, олово 43 %148Т, П
висмут 50 %, свинец 50 %145Т, П
свинец 32 %, олово 50 %, кадмий 18 %145Т, ПТоксичен.
висмут 60 %, кадмий 40 %144Т, ПТоксичен.Эвтектический сплав
свинец 42 %, олово 37 %143
Т, П∑?
кадмий 18,2 %, свинец 30,6 %, олово 51,2 %1428,8Т, ПТоксичен.~ПОСК 50-18
висмут 57 %, таллий 43 %139ТЭвтектический сплав
висмут 57 %, олово 43 %139Т, ПЭвтектический сплав
ртуть 70 %, калий 30 %135ТХим.акт, Токсичен.
калий 90 %, таллий 10 %133ТХим.акт
висмут 28,5 %, свинец 43 %, олово 28,5 %132Т, П
висмут 56 %, олово 40 %, цинк 4 %130Т, ПЭвтектический сплав
висмут 43 %, свинец 43 %, олово 13 %128 Т, П∑?
висмут 27,2 %, свинец 44,5 %, олово 33,3 %127Т, П∑?
висмут 56,5 %, свинец 43,5 %125Т, ПЭвтектический сплав
олово 52 %, индий 48 %125П~ПОИн 52
висмут 33,4 %, свинец 33,3 %, олово 33,3 %123Т, П~ПОСВ 33
висмут 36,5 %, свинец 36,5 %, олово 27 %117Т, П
висмут 40 %, свинец 40 %, олово 20 %113Т, ПВисмутовый Сплав
висмут 42,1 %, свинец 42,1 %, олово 15,8 %108Т, П
висмут 48 %, свинец 28,5 %, олово 14,5 %, ртуть 9 %105Т
висмут 53 %, олово 26 %, кадмий 21 %103Т, ПТоксичен.
висмут 50 %, олово 25 %, кадмий 25 %95Т, П, МТоксичен.
висмут 49,9 %, свинец 43,4 %, кадмий 6,7 %95Т, П, МТоксичен.
висмут 50 %, свинец 31,2 %, олово 18,8 %97Т, П, МСплав Ньютона
висмут 50 %, свинец 25–28%, олово 22–25 %94–98Т, П, МСплав Розе
висмут 52.5 %, свинец 32.0 %, олово 15.5 %95Т, П, МЭвтектический сплав
висмут 51,6 %, кадмий 8,1 %, свинец 40,3 %91Т, П, М
Токсичен.
висмут 55,2 %, свинец 33,3 %, таллий 11,5 %91ТЭвтектический сплав
натрий 50 %, ртуть 50 %90ТХим.акт, Токсичен.
натрий 90 %, ртуть 10 %90ТХим.акт, Токсичен.
висмут 53,2 %, кадмий 7,1 %, свинец 39,7 %89,5Т, П, МТоксичен.
натрий 96,7 %, золото 3,3 %80ТХим.акт.Эвтектический сплав
натрий 80 %, ртуть 20 %80ТХим.акт, Токсичен.
висмут 35,3 %, кадмий 9,5 %, свинец 35,1 %, олово 20,1 %80Т, П, МТоксичен.
висмут 58 %, индий 17 %, олово 25 %79Т, П, МЭвтектический сплав. Сплав Филдса (англ.)русск..
висмут 50 %, свинец 34,5 %, олово 9,3 %, кадмий 6,2 %77Т, П, МТоксичен.
висмут 50 %, свинец 34,4 %, олово 9,4 %, кадмий 6,2 %76,5Т, П, МТоксичен.
висмут 27,5 %, кадмий 34,5 %, свинец 27,5 %, олово 10,5 %75Т, П, МТоксичен.
висмут 33,7 %, индий 65,3 %72Т, П, М∑?Эвтектический сплав
висмут 38,4 %, свинец 30,8 %, олово 15,4 %, кадмий 15,4 %71Т, П, МТоксичен.
висмут 49,5 %, свинец 27,27 %, олово 13,13 %, кадмий 10,1 %70Т, П, МТоксичен.
Эвтектический сплав
висмут 50 %, свинец 26,3 %, олово 13,3 %, кадмий 10 %70Т, П, МТоксичен.
натрий 70 %, ртуть 30 %70ТХим.акт, Токсичен.
висмут 48,8 %, свинец 24,3 %, олово 13,8 %, кадмий 13,1 %68,5Т, П, МТоксичен.
висмут 52,2 %, свинец 26 %, олово 14,8 %, кадмий 7 %68,5Т, П, МТоксичен.
висмут 50,1 %, свинец 26,6 %, олово 13,3 %, кадмий 10 %68Т, П, МТоксичен.Сплав Липовица
висмут 50 %, свинец 25 %, олово 12,5 %, кадмий 12,5 %68Т, П, МТоксичен.Сплав Вуда
висмут 50,4 %, свинец 25,1 %, олово 14,3 %, кадмий 10,2 %
67,5
Т, П, МТоксичен.Сплав Вуда
висмут 50,1 %, свинец 24,9 %, олово 14,2 %, кадмий 10,8 %65,5Т, П, МТоксичен.Сплав Вуда
натрий 99 %, таллий 1 %64ТХим.актЭвтектический сплав
висмут 50,0 %, олово 12,5 %, свинец 25 %, кадмий 12,5 %60,5Т, П, М, ЖТоксичен.
висмут 53,5 %, олово 19 %, свинец 17 %, ртуть 10,5 %60Ттоксичен
натрий 60 %, ртуть 40 %60ТХим.акт. Токсичен.
висмут 49,4 %, индий 21 %, свинец 18 %, олово 11,6 %57Т, П, М, ЖЭвтектический сплав
ртуть 70 %, натрий 30 % 55Ттоксичен, реаг.с водой.
висмут 42 %, свинец 32 %, ртуть 20 %, кадмий 6 %50Ттоксичен
висмут 36 %, ртуть 30 %, свинец 28 %, кадмий 6 %48Ттоксичен
висмут 47,7 %, индий 19,1 %, олово 8,3 %,
кадмий 5,3 %, свинец 22,6 %
47Т, П, М, ЖТоксичен.Эвтектический сплав
натрий 50 %, ртуть 50 %45ТХим.акт.
висмут 40,2 %, кадмий 8,1 %, индий 17,8 %,
свинец 22,2 %, олово 10,7 %, таллий 1 %
41,5Т, П, М, ЖТоксичен.
галлий 95 %, цинк 5 %255,95Т
натрий 85,2 %, ртуть 14,8 %21,4
ТХим.акт.
галлий 92 %, олово 8 %20Т
галлий 82 %, олово 12 %, цинк 6 %176,13Т
галлий 76 %, индий 24 %166,235Т
галлий 67 %, индий 29 %, цинк 4 %136,355Т
Галлий 67 %, индий 20,5 %, олово 12,5 %10,6Т
галлий 62 %, индий 25 %, олово 13 %4,856,44Т
галлий 61 %, индий 25 %, олово 13 %, цинк 1 %36,4ТРусский сплав
рубидий 91,8 %, натрий 8,2 %−4,51,485ТХим.акт.
калий 77,3 %, натрий 22,7 %−12,50,882Т, Л, ИХим.акт.Эвтектический сплав NaK
цезий 93 %, натрий 7 %−281,765Т, ИХим.акт.
цезий 94,5 %, натрий 5,5 %−301,778Т, ИХим.акт.
ртуть 97,2 %, натрий 2,8 %−48,213,16ТРеаг.с водой.
ртуть 91,44 %, таллий 8,56 %−6113,45ТТоксиченНаиболее легкоплавкая амальгама
натрий 12 %, калий 47 %, цезий 41 %−781,28Т, ИРеаг. с водой.Советский сплав

Температура плавления — Википедия

Плавление льда

Температура плавления (обычно совпадает с температурой кристаллизации) — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот. При температуре плавления вещество может находиться как в жидком, так и в твёрдом состоянии. При подведении дополнительного тепла вещество перейдёт в жидкое состояние, а температура не будет изменяться, пока всё вещество в рассматриваемой системе не расплавится. При отведении лишнего тепла (охлаждении) вещество будет переходить в твёрдое состояние (застывать), и, пока оно не застынет полностью, его температура не изменится.

Температура плавления/отвердевания и температура кипения/конденсации считаются важными физическими свойствами вещества. Температура отвердевания совпадает с температурой плавления только для чистого вещества. На этом свойстве основаны специальные калибраторы термометров для высоких температур. Так как температура застывания чистого вещества, например олова, стабильна, достаточно расплавить и ждать, пока расплав не начнёт кристаллизоваться. В это время, при условии хорошей теплоизоляции, температура застывающего слитка не изменяется и в точности совпадает с эталонной температурой, указанной в справочниках.

Смеси веществ не имеют температуры плавления/отвердевания вовсе и совершают переход в некотором диапазоне температур (температура появления жидкой фазы называется точкой солидуса, температура полного плавления — точкой ликвидуса). Поскольку точно измерить температуру плавления такого рода веществ нельзя, применяют специальные методы (ГОСТ 20287 и ASTM D 97). Но некоторые смеси (эвтектического состава) обладают определённой температурой плавления, как чистые вещества.

Аморфные (некристаллические) вещества, как правило, не обладают чёткой температурой плавления. С ростом температуры вязкость таких веществ снижается, и материал становится более жидким.

Поскольку при плавлении объём тела изменяется незначительно, давление мало влияет на температуру плавления. Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы даётся уравнением Клапейрона-Клаузиуса. Температуру плавления при нормальном атмосферном давлении (101 325 Па, или 760 мм ртутного столба) называют точкой плавления.

Температуры плавления некоторых веществ[1]
веществотемпература
плавления
(°C)
гелий (при 2,5 МПа)−272,2
водород−259,2
кислород−219
азот−210,0
метан−182,5
спирт−114,5
хлор−101
аммиак−77,7
ртуть[2]−38,83
водяной лёд[3]0
бензол+5,53
цезий+28,64
галлий+29,8
сахароза+185
сахарин+225
олово+231,93
свинец+327,5
алюминий+660,1
серебро+960,8
золото+1063
медь+1083,4
кремний+1415
железо+1539
титан+1668
платина+1772
цирконий+1852
корунд+2050
рутений+2334
молибден+2622
карбид кремния+2730
карбид вольфрама+2870
осмий+3054
оксид тория+3350
вольфрам[2]+3414
углерод (сублимация)+3547
карбид гафния+3890
карбид тантала-гафния[4]+3942

Предсказание температуры плавления (критерий Линдемана)[править | править код]

Попытка предсказать точку плавления кристаллических материалов была предпринята в 1910 году Фредериком Линдеманом (англ.)[5]. Идея заключалась в наблюдении того, что средняя амплитуда тепловых колебаний увеличивается с увеличением температуры. Плавление начинается тогда, когда амплитуда колебаний становится достаточно большой для того, чтобы соседние атомы начали частично занимать одно и то же пространство.

Критерий Линдемана утверждает, что плавление ожидается, когда среднеквадратическое значение амплитуды колебаний превышает пороговую величину.

Температура плавления кристаллов достаточно хорошо описывается формулой Линдемана[6]:

Tλ=xm29ℏ2MkBθrs2{\displaystyle T_{\lambda }={\frac {x_{m}^{2}}{9\hbar ^{2}}}Mk_{B}\theta r_{s}^{2}}

где rs{\displaystyle r_{s}} — средний радиус элементарной ячейки, θ{\displaystyle \theta } — температура Дебая, а параметр xm{\displaystyle x_{m}} для большинства материалов меняется в интервале 0,15-0,3.

Температура плавления — Расчет

Формула Линдемана выполняла функцию теоретического обоснования плавления в течение почти ста лет, но развития не имела из-за низкой точности.

Расчёт температуры плавления металлов[править | править код]

В 1999 году профессором Владимирского государственного университета И. В. Гаврилиным было получено новое выражение для расчёта температуры плавления:

Tпл=ΔHпл1,5N0k{\displaystyle \mathrm {T} _{\text{пл}}={\frac {\Delta \mathrm {H} _{\text{пл}}}{1,5\mathrm {N} _{0}k}}}

где Tпл{\displaystyle \mathrm {T} _{\text{пл}}} — температура плавления, ΔHпл{\displaystyle \Delta \mathrm {H} _{\text{пл}}} — скрытая теплота плавления, N0{\displaystyle \mathrm {N} _{0}} — число Авогадро, k{\displaystyle k} — константа Больцмана.

Впервые получено исключительно компактное выражение для расчёта температуры плавления металлов, связывающее эту температуру с известными физическими константами: скрытой теплотой плавления, числом Авогадро и константой Больцмана.

Формула выведена как одно из следствий новой теории плавления и кристаллизации, опубликованной в 2000 г.[7] Точность расчетов по формуле Гаврилина можно оценить по данным таблицы.

По этим данным, точность расчетов Tпл{\displaystyle \mathrm {T} _{\text{пл}}} меняется от 2 до 30 %, что в расчетах такого рода вполне приемлемо.

  1. Дрица М. Е., Будберг П. Б., Бурханов Г. С., Дриц А. М., Пановко В. М. Свойства элементов. — Металлургия, 1985. — С. 672.
  2. 1 2 Haynes, 2011, p. 4.122.
  3. ↑ Температура плавления очищенной воды была измерена как 0,002519 ± 0,000002 °C, см. Feistel, R.; Wagner, W. A New Equation of State for H2O Ice Ih (англ.) // J. Phys. Chem. Ref. Data (англ.)русск. : journal. — 2006. — Vol. 35, no. 2. — P. 1021—1047. — doi:10.1063/1.2183324. — Bibcode: 2006JPCRD..35.1021F.
  4. Agte, C.; Alterthum, H. Researches on Systems with Carbides at High Melting Point and Contributions to the Problem of Carbon Fusion (англ.) // Z. Tech. Phys. : journal. — 1930. — Vol. 11. — P. 182—191.
  5. Lindemann FA (англ.)русск.. The calculation of molecular vibration frequencies (нем.) // Phys. Z. : magazin. — 1910. — Bd. 11. — S. 609—612.
  6. Жирифалько Л. Статистическая физика твердого тела. — М.: Мир, 1975. — С. 15.
  7. Гаврилин И. В. 3.7. Расчёт температуры плавления металлов // Плавление и кристаллизация металлов и сплавов. — Владимир: Изд. ВлГУ, 2000. — С. 72. — 200 экз. — ISBN 5-89368-175-4.
  • Haynes, William M. CRC Handbook of Chemistry and Physics (неопр.). — 92nd. — CRC Press, 2011. — ISBN 1439855110.

Температура плавления металлов, сплавов, фосфора и кремния, в °C и °F

Алюминий (Al) / Aluminum 660 1220
Алюминиевые сплавы / Aluminum Alloy 463 — 671 865 — 1240
Баббит = Babbitt 249 480
Бериллий (Be) = Beryllium 1285 2345
Бронза алюминиевая = Aluminum Bronze 1027 — 1038 1881 — 1900
Бронза бериллиевая, бериллиевая бронза = Beryllium Copper 865 — 955 1587 — 1750
Бронза марганцовистая = Manganese bronze 865 — 890 1590 — 1630
Ванадий (V), Vanadium 1900 3450
Висмут (Bi) = Bismuth 271.4 520.5
Вольфрам (W), Tungsten 3400 6150
Железо ковкое (Fe)  = Carbon Steel 1482 — 1593 2700 — 2900
Золото (Au) чистое 999 пробы  100% золото = Gold 24K Pure 1063 1945
Инконель, жаропрочный никелехромовый сплав = Inconel 1390 — 1425 2540 — 2600
Инколой, жаропрочный никелехромовый сплав = Incoloy 1390 — 1425 2540 — 2600
Иридий (Ir), Iridium 2450 4440
Кадмий (Cd) = Cadmium 321 610
Калий (K) = Potassium 63.3 146
Кобальт (Co) = Cobalt 1495 2723
Кремний (Si) = Silicon 1411 2572
Латунь желтая = Brass, Yellow 905-932 1660-1710
Латунь морская = Морская латунь (29-30% Zn, 70% Cu-1% Sn и 0,02-0,05% As) = Admiralty Brass 900 — 940 1650 — 1720
Латунь красная = Brass, Red 990 — 1025 1810 — 1880
Медь (Cu) = Copper 1084 1983
Мельхиор, купроникель = Cupronickel 1170 — 1240 2140 — 2260
Магний (Mg), Magnesium 650 1200
Магниевые сплавы = Magnesium Alloy 349 — 649 660 — 1200
Марганец (Mn), Manganese 1244 2271
Молибден (Mo), Molybdenum 2620 4750
Монель (до 67 % никеля и до 38 % меди) = Monel 1300 — 1350 2370 — 2460
Натрий (Na) = Sodium 97.83 208
Никель (Ni), Nickel 1453 2647
Ниобий (Nb), Niobium (Columbium) 2470 4473
Олово (Sn), Tin 232 449.4
Осмий (Os), Osmium 3025 5477
Палладий (Pd), Palladium 1555 2831
Платина (Pt),Platinum 1770 3220
Плутоний (Pu), Plutonium 640 1180
Рений (Re), Rhenium 3186 5767
Родий (Rh) = Rhodium 1965 3569
Ртуть (Hg) = Mercury -38.86 -37.95
Рутений (Ru) = Ruthenium 2482 4500
Селен (Se) = Selenium 217 423
Cеребро 900 пробы = Coin Silver 879 1615
Серебро (Ar) чистое = Pure Silver 961 1761
Cеребро 925 пробы = Sterling Silver 893 1640
Свинец (Pb), Lead 327.5 621
Сталь углеродистая = Carbon Steel 1425 — 1540 2600 — 2800
Сталь нержавеющая = Stainless Steel 1510 2750
Сурьма (Sb) = Antimony 630 1170
Тантал (Ta) = Tantalum 2980 5400
Тит

Температура плавления разных металлов в таблице

Температура плавления металла

Температура плавления металлаКаждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму: она составляет 3422Со, самая низкая — у ртути: элемент плавится уже при — 39Со. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Как происходит

Температурная таблица плавления

Температурная таблица плавленияПлавление всех металлов происходит примерно одинаково — при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул, возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

Разделение металлов

В зависимости от температуры плавления металлы делятся на:

  1. Как происходит плавление металловКак происходит плавление металловЛегкоплавкие: им необходимо не более 600Со. Это цинк, свинец, виснут, олово.
  2. Среднеплавкие: температура плавления колеблется от 600Со до 1600Со. Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
  3. Тугоплавкие: требуется температура свыше 1600Со, чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.

В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.

  1. Увеличивается давление — увеличится величина плавления.
  2. Уменьшается давление — уменьшается величина плавления.

Таблица легкоплавких металлов и сплавов (до 600С о )

Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о )

Таблица тугоплавких металлов и сплавов (свыше 1600С о )

Оцените статью: Поделитесь с друзьями!

Таблица температуры плавления (tпл) металлов и сплавов при нормальном атмосферном давлении

Металл или сплав tпл. С
Алюминий 660,4
Вольфрам 3420
Германий 937
Дуралюмин ~650
Железо 1539
Золото 1064?4
Инвар 1425
Иридий 2447
Калий 63,6
Карбиды гафния 3890
ниобия 3760
титана 3150
циркония 3530
Константин ~1260
Кремний 1415
Латунь ~1000
Легкоплавкий сплав 60,5
Магний 650
Медь 1084,5
Натрий 97,8
Нейзильбер ~1100
Никель 1455
Нихром ~1400
Олово 231,9
Осмий 3030
Платина 17772
Ртуть
38,9
Свинец 327,4
Серебро 961,9
Сталь 1300-1500
Фехраль ~1460
Цезий 28,4
Цинк 419,5
Чугун 1100-1300

Вернуться в раздел аналитики

Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.

температура в градусах при которых плавится металл, железо, алюминий, золото

Температура плавления золотаКаждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Вконтакте

Facebook

Twitter

Google+

Мой мир

Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Температура плавления алюминияЭлементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты. Воздействие при этом примерно одинаковое.

Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие — до 600 °C: свинец, цинк, олово;
  2. среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина — градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Температура плавления оловаМеталлы и сплавы — непременная основа для ковки, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота, ограды из чугуна, ножи из стали или браслеты из меди), для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий — 660 °C;
  2. температура плавления меди — 1083 °C;
  3. температура плавления золота — 1063 °C;
  4. серебро — 960 °C;
  5. олово — 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец — 327 °C;
  7. температура плавления железо — 1539 °C;
  8. температура плавления стали (сплав железа и углерода) — от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) — от 1100 °C до 1300 °C;
  10. ртуть — -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл — ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия — 2519 °C, у железа — 2900 °C, у меди — 2580 °C, у ртути — 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов — у рения — 5596 °C. Наибольшая температура кипения — у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов. Самым лёгким металлом является литий, самым тяжёлым — осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа — очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах — это теплопроводность металлов. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл — серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Вконтакте

Facebook

Twitter

Google+

Мой мир

Методы плавки цветных металлов: температура плавления, плотность и удельный объем

Автор perminoviv На чтение 5 мин. Опубликовано

Температуру плавления металлов, которая изменяется от малейшего (-39 °С для ртути) до наибольшего (3400 °С для вольфрама), а также плотность металлов в твердом состоянии при 20 °С и плотности жидких металлов при температуре плавления приведены в таблице плавки цветных металлов.

Таблица 1. Плавки цветных металлов

Металл

Атомная масса

Температура плавления tпл , °С

Густота ρ, г/см3

твердого при 20 °С

редкого при

tпл

Алюминий

27

660

2,70

2,37

Берилий

9

1285

1,80

1,69

Бор

10,8

2075

2,34

Ванадий

51

1720

5,90

5,73

Висмут

209

271

9,80

10,00

Вольфрам

184

3400

19,20

17,60

Железо

56

1539

7,87

7,00

Золото

197

1063

19,30

17,35

Кобальт

59

1492

8,90

8,30

Кремний

28

1430

2,35

2,53

Литий

7

180

0,53

0,50

Магний

24

650

1,70

1,59

Марганец

55

1240

7,40

6,75

Медь

64

1083

8,92

8,0

Молибден

96

2620

10,20

9,30

Никель

59

1455

8,90

7,90

Олово

119

232

7,30

7,00

Платина

195

1769

21,40

19,77

Ртуть

201

–39

13,55

13,70

Свинец

207

327

11,35

10,60

Сурма

122

630

6,70

6,79

Серебро

108

960

10,50

9,35

Титан

48

1670

4,50

4,10

Хром

52

1875

7,20

6,30

Цинк

65

419

7,10

6,60

Цирконий

91

1850

6,50

5,80

Сварка и плавка цветных металлов

Сварка меди. Температура плавки металла Cu, почти в шесть раз превышает температуру плавки стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064°С) ниже температуры плавления меди (1083°С). При затвердевании жидкой меди эвтектика располагается по границам зерен, делает медь хрупкой и склонной к образованию трещин. Поэтому основной задачей при сварке меди является защита его от окисления и активное раскисление сварочной ванны.

Наиболее распространенное газовое сварки меди ацетиленокисневим пламенем с помощью горелок, которые в 1,5…2 раза мощнее горелки для сварки сталей. Присадочным металлом есть медные прутки, содержащие фосфор и кремний. Если толщина изделий более 5…6 мм, их сначала подогревают до температуры 250…300°С. Флюсами при сварке является прожаренная бура или смесь, состоящую из 70% буры и 30% борной кислоты. Чтобы повысить механические свойства и улучшить структуру наплавленного металла, медь после сварки проковывают при температуре около 200…300°С. Потом ее снова нагревают до 500-550°С и охлаждают в воде. Медь сваривают также электродуговым способом электродами, в струе защитных газов, под слоем флюса, на конденсаторных машинах, способом трения.

Сварка латуни. Латунь – это сплав меди с цинком (до 50%). Основное загрязнение при этом – испарение цинка, в итоге чего шов теряет свои качества, в нем возникают поры. Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, при котором на поверхности ванны создается пленка тугоплавкого оксида цинка, уменьшающая дальнейшее выгорание и испарение цинка. Флюсы используют такие же, как и при сварке меди. Они создают на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь сваривают также в защитных газах и на контактных машинах.

Сварка бронзы. В большинстве случаев бронза – это литейный материал, поэтому

сварку применяют при исправлении дефектов или во время ремонта. Чаще всего применяют сварку металлическим электродом. Присадочным металлом является прутки того самого состава, что и основной металл, а флюсами или электродным покрытием – хлористые и фтористые соединения калия и натрия.

Сварка алюминия. Основными факторами, затрудняющими сварку алюминия, является низкая температура его плавления (658°С), большая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, которые имеют температуру плавления 2050°С, поэтому технология плавки цветных металлов, таких как медь или бронза, не подходит для плавки алюминия. Кроме того, эти оксиды слабо реагируют как с кислыми, так и основными флюсами, поэтому плохо удаляются из шва.

Чаще всего используют газовую сварку алюминия ацетиленовым пламенем. В последние годы значительно распространилось также автоматическая дуговая сварка металлическими электродами под флюсом и в среде аргона. При всех способах сварки, кроме аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят фтористые и хлористые соединения лития, калия, натрия и других элементов. Как присадочный металл при всех способах сварки используют проволоку или стержни того же состава, что и основной металл.

Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.

Сварка сплавов алюминия. Сплавы алюминия с магнием и цинком сваривают без

особых осложнений, так же как и алюминий. Исключением является дюралюминий – сплавы алюминия с медью. Эти сплавы термически упрочняются после закалки и следующего старения. Когда температура плавки цветных металлов свыше 350°С в них происходит снижение прочности, которое не восстанавливается термической обработкой. Поэтому при сварке дюралюминия в зоне термического влияния прочность уменьшается на 40…50%. Если дюралюминий сваривать в защитных газах, то такое снижение может быть восстановлено термической обработкой до 80…90% по отношению к прочности основного металла.

Сварка магниевых сплавов. При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами через низкое качество сварных швов до настоящего времени не применяется. При сварке магниевых сплавов наблюдается значительный рост зерна в около шовных участках и сильное развитие столбчатых кристаллов в сварном шве. Поэтому предел прочности сварных соединений составляет 55…60% предела прочности основного металла.

Таблица 2. Физические свойства промышленных цветных металлов

Свойства

Металл

Ве

Mg

А1

Тi

Ni

Сu

Атомный номер

4

12

13

22

28

3,29

Атомная масса

9,013

24,32

26,981

47,88

58,7

63,54

Густота

при температурте

20 °С, кг/м3

1847

1737

2698

4507

8897

8940

Температура плавления, °С

1287

650

660,24

1668

1455

1083

Температура кипения, °С

2450

1107

2520

3169

2822

2360

Атомный диаметр, нм

0,226

0,32

0,286

0,29

0,248

0,256

Скрытая теплота плавления, кДж/кг

1625

357

389,37

358,3

302

205

Скрытая теплота испарения,

кДж/кг

34395

5498

10885

9790

6376

6340

Удельная теплоемкость при температуре 20 °С, Дж/(кг.°С)

1826

1047,6

961,7

521

450

385

Удельная теплопроводность, 20 °С, Вт/(м°С)

2930

167

221,5

21,9

88,5

387

Коэффициент линейного расширения при температуре 25 °С, 106°С1

12

26

23,3

9,2

13,5

16,8

Удельное электросопротивление при температуре 20°С, мкОмм

0,04

0,045

0,02767

0,58

0,0684

0,0172

Модуль нормальной упругости, ГПа

311,1

44,1

70,6

103

203

125

Модуль сдвига, ГПа

140

17,854

27

39,2

73

46,4

 

Тигельная плавка

Неотъемлемой составляющей производства металла и металлических изделий, является использование во время производственного процесса тиглей для производства, выплавки и переплавки как черного, так и цветного металла. Тигли — это неотъемлемая часть металлургического оборудования при отливании разнообразных металлов, сплавов, и тому подобное.

Керамический тигель для плавки цветных металлов используется для плавки металлов (меди, бронзы) с древнейших времен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *