Хлор фтор: Фторид хлора(i) — Википедия – Фтор. Хлор | АЛХИМИК

Содержание

Фтор. Хлор | АЛХИМИК

Фтор

Фтор – газ светло-зеленого цвета (tпл = — 220оС  tкип = — 188оС). По поводу истинного цвета фтора возникало немало разногласий: из-за необычайно высокой реакционной способности редко кто осмеливался получать его в достаточном количестве в прозрачном сосуде. Но последующие исследования подтвердили окраску фтора, о которой сообщал ещё Муассан.

Фтор в запаянной ампулеФтор в запаянной ампуле

Фтор взаимодействует почти со всеми простыми веществами, включая тяжелые инертные газы (Kr, Xe). В его атмосфере загорается даже стекловата (SiO2 + 2F2 = 4HF + O2) и вода (2H2O + 2F2 = 4HF + O2). При этом наряду с кислородом в продуктах реакции присутствуют фториды кислорода OF2, O2F2 и озон O3.

Фтор используют для получения некоторых ценных фторпроизводных углеводородов, обладающих уникальными свойствами, как, например, смазочных веществ, выдерживающих высокую температуру, пластической массы, стойкой к химическим реагентам (тефлон), жидкостей для холодильников (фреонов).

В организме человека фтор содержится в виде нерастворимых фторидов, главным образом фторапатита, и входит в состав костной ткани и зубной эмали. Для укрепления эмали рекомендуют использовать специальные фторсодержащие зубные пасты. С этой же целью фторируют питьевую воду, доводя концентрацию фторид-ионов примерно до 1 мг/л. Однако следует помнить, что в больших количествах растворимые в воде фториды ядовиты.

Фториды – соли слабой плавиковой кислоты HF, представляющей собой водный раствор фтороводорода. Молекулы HF в плавиковой кислоте связаны друг с другом настолько прочными водородными связями, что ее состав правильнее было бы передать формулой (HF)n. Поскольку эта кислота (наряду с газообразным фтороводородом) обладает уникальной способностью разъедать стекло, её хранят в полиэтиленовой, свинцовой или парафиновой посуде.

Применение фтористого водорода довольно разнообразно. Безводный HF используют, главным образом, при органических синтезах, а плавиковую кислоту – при получении фторидов, травления стекла, удалении песка с металлических отливок, при анализах минералов и т.д.

Хлор
ХлорХлор

Физические свойства

При обычных условиях хлор – газ жёлто-зеленого цвета с резким запахом. Он в 2,5 раза тяжелее воздуха, ядовит. Вдыхание даже небольших количеств хлора вызывает раздражение дыхательных путей и кашель. В одном объёме воды при 20оС растворяется 2,5 объема хлора. Раствор хлора в воде называется хлорной водой.

Нахождение в природе

Хлор в природе в свободном состоянии практически не встречается. Широко распространены его соединения: каменная соль NaCl, сильвинит KCl ∙ NaCl и карналлит KCl ∙ MgCl

2. Большое количество хлоридов содержится в морской воде. Хлор входит в состав зеленого вещества растений – хлорофилла.

Минерал сильвинитМинерал сильвинит

Получение

В промышленности хлор получают электролизом водного раствора или расплава хлорида натрия:

2NaCl + 2H2O → Cl2↑ + H2↑ + 2NaOH

2NaCl → Cl2↑ + 2Na

В лаборатории хлор можно получить действием концентрированной соляной кислоты (при нагревании) на различные окислители, такие как оксид марганца (IV) MnO2, перманганат калия KMnO4, бертолетова соль KClO3 и др.:

4HCl + MnO2 = MnCl2 + Cl2↑ + 2H2O

2KMnO4 + 16HCl = 2KCl + 2MnCl

2 + 5Cl2↑ + 8H2O

KClO3 + 6HCl = KCl + 3Cl2↑ + 3H2O

Химические свойства

Хлор – химически активное вещество, взаимодействует с простыми и сложными веществами.

Взаимодействие с простыми веществами

Как сильный окислитель хлор реагирует:

а) с водородом:

Cl2 + H2 = 2HCl

б) с металлами:

Cl2 + Na = 2NaCl

3Cl2 + 2Fe = 2FeCl3

в) с некоторыми менее электроотрицательными неметаллами:

3Cl2 + 2P = 2PCl3

Cl2 + S = SCl2

С кислородом и азотом хлор непосредственно не взаимодействует.

Взаимодействие со сложными веществами

а) Реакция взаимодействия хлора с водой идет в две стадии. На первой стадии процесса образуются две кислоты – соляная HCl и хлорноватистая HClO:

Cl2 + H2O ⇄ HCl + HClO

Затем происходит процесс разложения хлорноватистой кислоты:

HClO = HCl + [O]→ атомарный кислород

Образованием атомарного кислорода объясняется окисляющее и отбеливающее действие хлора в воде. В хлорной воде погибают микроорганизмы. Органические красители, помещенные в хлорную воду, обесцвечиваются.

б) Обратите внимание, что с кислотами хлор не реагирует.

в) Взаимодействие хлора с растворами щелочей происходит по-разному в зависимости от условий протекания реакции:

на холоде: Cl2 + 2NaOH = NaCl + NaClO + H2O

при нагревании: 3Cl2 + 6KOH = 5KCl + KClO3 + 3H2O

г) Хлор взаимодействует с бромидами и йодидами металлов:

Cl2 + 2KBr = 2KCl + Br2

Cl2 + 2KI = 2KCl + I2

С фторидами металлов хлор не реагирует, так как его окислительная способность ниже окислительной способности фтора:

Cl2 + KF ≠

д) Хлор легко взаимодействует со многими органическими веществами, например с метаном, бензолом и др.:

Cl2 + CH4 → CH3Cl + HCl

C6H6 + Cl2 → C6H5Cl + HCl

Хлороводород и соляная кислота

Хлороводород HCl – бесцветный газ с резким запахом, в воде хорошо растворяется, при 0оС в 1 л воды растворяется около 400 л HCl. Раствор хлороводорода в воде имеет кислую реакцию и называется хлороводородной, или соляной кислотой. Соляная кислота является сильной кислотой, обладает всеми общими свойствами кислот.

Соляная кислота – активный химический реагент, она взаимодействует:

HCl + NaOH = NaCl + H2O

2HCl + Zn(OH)2 = ZnCl2 + 2H2O

2HCl + Mg = MgCl2 + H2O

2HCl + ZnO = ZnCl2 + H

2O

Минерал сильвинитРеакция соляной кислоты с цинком

Mg + 2HCl = MgCl2 + H2

2Al + 6HCl = 2AlCl3 + 3H2

2HCl + Na2CO3 = 2NaCl + CO2↑ + H2O

HCl + AgNO3 = AgCl↓ + HNO3

Последняя реакция является качественной реакцией на хлорид-ион.

Хлороводород можно получать:

а) прямым синтезом водорода и хлора;

б) действием концентрированной серной кислоты на твердые хлориды, например:

NaCl + H2SO4(конц) = HCl↑ + NaHSO4

(Отметим, что аналогичным способом можно получать HF, но нельзя получить HBr и HI, так как они являются сильными восстановителями и окисляются серной кислотой до свободных брома и йода).

Применение хлора и хлороводорода. Физиологическая роль соляной кислоты в организме человека

Хлор используется для отбеливания бумаги и тканей, в производстве пластмасс, для дезинфекции питьевой воды. Хлор является исходным веществом при получении таких важнейших продуктов, как хлорная известь, фосген, хлороформ, определенные виды моющих средств, ядохимикатов, каучуков и т.д. Огромное количество хлора используется для синтеза хлороводорода, растворением которого в воде получают соляную кислоту.

В организме человека соляная кислота вырабатывается клетками слизистой желудка. Она играет важную физиологическую роль, так как способствует перевариванию белков и убивает различные болезнетворные бактерии.

Скачать:

Скачать бесплатно реферат на тему: «Хлор»  Хлор.doc (30 Загрузок)

Скачать бесплатно реферат на тему: «Анализ хлорид-иона»  Анализ-хлорид-иона.docx (25 Загрузок)

Скачать бесплатно реферат на тему: «Фтор»  Фтор.doc (37 Загрузок)

Скачать рефераты по другим темам можно здесь

*на изображении записи фотография сильвинитовой шахты

 

Похожее

Хлор — Википедия

Хлор
← Сера | Аргон →
Chlorine liquid in an ampoule.jpg

Жидкий хлор в запаянном сосуде

Название, символ, номер Хлор / Chlorum (Cl), 17
Атомная масса
(молярная масса)
[35,446; 35,457][комм 1][1] а. е. м. (г/моль)
Электронная конфигурация [Ne] 3s2 3p5
Радиус атома 99 пм
Ковалентный радиус 102±4 пм
Радиус иона (+7e)27 (-1e)181 пм
Электроотрицательность 3,16 (шкала Полинга)
Электродный потенциал 0
Степени окисления 7, 6, 5, 4, 3, 1, 0, −1
Энергия ионизации
(первый электрон)
 1254,9(13,01) кДж/моль (эВ)
Плотность (при н. у.) 3,21 г/л;
(жид. при −35 °C) 1,557 г/см3;
(тв. при −105 °C) 1,9 г/см³
Температура плавления 172,2К; −100,95 °C
Температура кипения 238,6К; −34,55 °C
Критическая точка 416,9 К, 7,991 МПа
Уд. теплота плавления 6,41 кДж/моль
Уд. теплота испарения 20,41 кДж/моль
Молярная теплоёмкость 21,838[2] Дж/(K·моль)
Молярный объём 18,7 см³/моль
Структура решётки орторомбическая
Параметры решётки a=6,29 b=4,50 c=8,21 Å
Теплопроводность (300 K) 0,009 Вт/(м·К)
Номер CAS 7782-50-5
Chlorine spectrum visible.png

Хлор (от греч. χλωρός — «жёлто-зелёный») — химический элемент с атомным номером 17[3]. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в третьем периоде таблицы. Атомная масса элемента 35,446…35,457 а. е. м.[1] [комм 1]. Обозначается символом Cl (от лат. Chlorum). Химически активный неметалл. Входит в группу галогенов.

Простое вещество хлор при нормальных условиях — ядовитый газ желтовато-зелёного цвета, тяжелее воздуха, с резким запахом и сладковатым, «металлическим» вкусом. Молекула хлора двухатомная (формула Cl2).

Соединение с водородом — газообразный хлороводород — был впервые получен Джозефом Пристли в 1772 г. Хлор был получен в 1774 г. шведским химиком Карлом Вильгельмом Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl+MnO2→MnCl2+Cl2↑+2h3O{\displaystyle {\mathsf {4HCl+MnO_{2}\rightarrow MnCl_{2}+Cl_{2}\uparrow +2H_{2}O}}}

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства. Однако Шееле, в соответствии с господствовавшей в химии того времени теорией флогистона, предположил, что хлор представляет собой дефлогистированную муриевую (соляную) кислоту. Бертолле и Лавуазье в рамках кислородной теории кислот обосновали, что новое вещество должно быть оксидом гипотетического элемента мурия. Однако попытки его выделения оставались безуспешными вплоть до работ Г. Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор, доказав элементарную природу последнего.

В 1811 г. Дэви предложил для нового элемента название «хлорин» (chlorine). Спустя год Ж. Гей-Люссак «сократил» название до хлора (chlore). В том же 1811 г. немецкий физик Иоганн Швейгер предложил для хлора название «галоген» (дословно солерод), однако впоследствии этот термин закрепился за всей 17-й (VIIA) группой элементов, в которую входит и хлор[4].

В 1826 году атомная масса хлора была с высокой точностью определена шведским химиком Йёнсом Якобом Берцелиусом (отличается от современных данных не более, чем на 0,1 %)[5].

В природе встречаются два изотопа хлора 35Cl и 37Cl. В земной коре хлор самый распространённый галоген. Хлор очень активен — он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений в составе минералов: галита NaCl, сильвина KCl, сильвинита KCl·NaCl, бишофита MgCl2·6Н2О, карналлита KCl·MgCl2·6Н2O, каинита KCl·MgSO4·3Н2О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов (содержание в морской воде 19 г/л[6]). На долю хлора приходится 0,025 % от общего числа атомов земной коры; кларковое число хлора — 0,017 %. Человеческий организм содержит 0,25 % ионов хлора по массе. В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37. Доли их содержания соответственно равны 75,78 % и 24,22 %[7]. Свойства стабильных и некоторых радиоактивных изотопов хлора перечислены в таблице:

ИзотопОтносительная масса, а. е. м.Период полураспадаТип распадаЯдерный спин
35Cl34,968852721Стабилен3/2
36Cl35,9683069301 тыс. летβ-распад в 36Ar0
37Cl36,96590262Стабилен3/2
38Cl37,968010637,2 минутыβ-распад в 38Ar2
39Cl38,96800955,6 минутыβ-распад в 39Ar3/2
40Cl39,970421,38 минутыβ-распад в 40Ar2
41Cl40,970734 cβ-распад в 41Ar
42Cl41,973246,8 cβ-распад в 42Ar
43Cl42,97423,3 cβ-распад в 43Ar
{\mathsf  {4HCl+MnO_{2}\rightarrow MnCl_{2}+Cl_{2}\uparrow +2H_{2}O}}

При нормальных условиях хлор — жёлто-зелёный газ с удушающим запахом. Некоторые его физические свойства представлены в таблице.

СвойствоЗначение[8]
Цвет (газ)Жёлто-зелёный
Температура кипения−34 °C
Температура плавления−100 °C
Температура разложения
(диссоциации на атомы)
~1400 °C
Плотность (газ, н.у.)3,214 г/л
Сродство к электрону атома3,65 эВ
Первая энергия ионизации12,97 эВ
Теплоёмкость (298 К, газ)34,94 Дж/(моль·K)
Критическая температура144 °C
Критическое давление76 атм
Стандартная энтальпия образования (298 К, газ)0 кДж/моль
Стандартная энтропия образования (298 К, газ)222,9 Дж/(моль·K)
Энтальпия плавления6,406 кДж/моль
Энтальпия кипения20,41 кДж/моль
Энергия гомолитического разрыва связи Х—Х243 кДж/моль
Энергия гетеролитического разрыва связи Х—Х1150 кДж/моль
Энергия ионизации1255 кДж/моль
Энергия сродства к электрону349 кДж/моль
Атомный радиус0,073 нм
Электроотрицательность по Полингу3,20
Электроотрицательность по Оллреду — Рохову2,83
Устойчивые степени окисления−1, 0, +1, +3, (+4), +5, (+6), +7

Газообразный хлор относительно легко сжижается. Начиная с давления в 0,8 МПа (8 атмосфер), хлор будет жидким уже при комнатной температуре. При охлаждении до температуры в −34 °C хлор тоже становится жидким при нормальном атмосферном давлении. Жидкий хлор — жёлто-зелёная жидкость, обладающая очень высоким коррозионным действием (за счёт высокой концентрации молекул). Повышая давление, можно добиться существования жидкого хлора вплоть до температуры в +144 °C (критической температуры) при критическом давлении в 7,6 МПа.

При температуре ниже −101 °C жидкий хлор кристаллизуется в орторомбическую решётку с пространственной группой Cmca и параметрами a = 6,29 Å, b = 4,50 Å, c = 8,21 Å[9]. Ниже 100 К орторомбическая модификация кристаллического хлора переходит в тетрагональную, имеющую пространственную группу P42/ncm и параметры решётки a = 8,56 Å и c = 6,12 Å[9].

Растворимость[править | править код]

РастворительРастворимость г/100 г
БензолРастворим
Вода[10] (0 °C)1,48
Вода (20 °C)0,96
Вода (25 °C)0,65
Вода (40 °C)0,46
Вода (60 °C)0,38
Вода (80 °C)0,22
Тетрахлорметан (0 °C)31,4
Тетрахлорметан (19 °C)17,61
Тетрахлорметан (40 °C)11
ХлороформХорошо растворим
TiCl4, SiCl4, SnCl4Растворим

Степень диссоциации молекулы хлора Cl2 → 2Cl при 1000 К равна 2,07⋅10−4%, а при 2500 К — 0,909 %.

Порог восприятия запаха в воздухе равен 2—3 мг/м³.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 1022 раз хуже серебра. Скорость звука в газообразном хлоре примерно в полтора раза меньше, чем в воздухе.

Строение электронной оболочки[править | править код]

На валентном уровне атома хлора содержится 1 неспаренный электрон: 1s2 2s2 2p6 3s2 3p5, поэтому валентность, равная 1 для атома хлора, очень стабильна. За счёт присутствия в атоме хлора незанятой орбитали d-подуровня атом хлора может проявлять и другие степени окисления. Схема образования возбуждённых состояний атома:

Также известны соединения хлора, в которых атом хлора формально проявляет валентности IV и VI, например, ClO2 и Cl2O6. Однако оксид хлора(IV) является радикалом, то есть у него есть один неспаренный электрон, а оксид хлора(VI) содержит два атома хлора, имеющих степени окисления +5 и +7.

Взаимодействие с металлами[править | править код]

Хлор непосредственно реагирует почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании):

2Na+Cl2→2NaCl{\displaystyle {\mathsf {2Na+Cl_{2}\rightarrow 2NaCl}}}
2Sb+3Cl2→2SbCl3{\displaystyle {\mathsf {2Sb+3Cl_{2}\rightarrow 2SbCl_{3}}}}
2Fe+3Cl2→2FeCl3{\displaystyle {\mathsf {2Fe+3Cl_{2}\rightarrow 2FeCl_{3}}}}

Взаимодействие с неметаллами[править | править код]

C неметаллами (кроме углерода, азота, фтора, кислорода и инертных газов) образует соответствующие хлориды.

5Cl2+2P→2PCl5,{\displaystyle {\mathsf {5Cl_{2}+2P\rightarrow 2PCl_{5}}},}
2S+Cl2→S2Cl2{\displaystyle {\mathsf {2S+Cl_{2}\rightarrow S_{2}Cl_{2}}}}

или

S+Cl2→SCl2.{\displaystyle {\mathsf {S+Cl_{2}\rightarrow SCl_{2}}}.}

На свету или при нагревании активно реагирует (иногда со взрывом) с водородом по радикально-цепному механизму. Смеси хлора с водородом, содержащие от 5,8 до 88,3 % водорода, взрываются при облучении с образованием хлороводорода. Смесь хлора с водородом в небольших концентрациях горит бесцветным[11] или жёлто-зелёным пламенем. Максимальная температура водородно-хлорного пламени 2200 °C.

h3+Cl2→2HCl.{\displaystyle {\mathsf {H_{2}+Cl_{2}\rightarrow 2HCl}}.}

С кислородом хлор образует оксиды (см. статью Оксиды хлора), в которых он проявляет степень окисления от +1 до +7: Cl2O, ClO2, Cl2O5, Cl2O7. Они имеют резкий запах, термически и фотохимически нестабильны, склонны к взрывному распаду. Напрямую хлор с кислородом не реагирует. При реакции с фтором образуется не хлорид, а фториды:

Cl2+F2→2ClF,{\displaystyle {\mathsf {Cl_{2}+F_{2}\rightarrow 2ClF}},}
Cl2+3F2→2ClF3,{\displaystyle {\mathsf {Cl_{2}+3F_{2}\rightarrow 2ClF_{3}}},}
Cl2+5F2→2ClF5.{\displaystyle {\mathsf {Cl_{2}+5F_{2}\rightarrow 2ClF_{5}}}.}

Известны фторид хлора(I), фторид хлора(III) и фторид хлора(V) (ClF, ClF3 и ClF5), Могут быть синтезированы из элементов, степень окисления хлора меняется в зависимости от условий синтеза. Все они представляют собой при комнатной температуре бесцветные ядовитые тяжёлые газы с сильным раздражающим запахом. Сильные окислители, реагируют с водой и стеклом. Используются как фторирующие агенты.

Другие свойства[править | править код]

Хлор вытесняет бром и иод из их соединений с водородом и металлами:

Cl2+2HBr→Br2+2HCl{\displaystyle {\mathsf {Cl_{2}+2HBr\rightarrow Br_{2}+2HCl}}}
Cl2+2NaI→I2+2NaCl{\displaystyle {\mathsf {Cl_{2}+2NaI\rightarrow I_{2}+2NaCl}}}

При реакции с монооксидом углерода образуется фосген:

Cl2+CO→COCl2{\displaystyle {\mathsf {Cl_{2}+CO\rightarrow COCl_{2}}}}

При растворении в воде или щелочах, хлор диспропорционирует, образуя хлорноватистую (а при нагревании хлорноватую) и соляную кислоты, либо их соли:

Cl2+h3O⇄HCl+HClO{\displaystyle {\mathsf {Cl_{2}+H_{2}O\rightleftarrows HCl+HClO}}}
Cl2+2NaOH→NaCl+NaClO+h3O{\displaystyle {\mathsf {Cl_{2}+2NaOH\rightarrow NaCl+NaClO+H_{2}O}}}
3Cl2+6NaOH→5NaCl+NaClO3+3h3O{\displaystyle {\mathsf {3Cl_{2}+6NaOH\rightarrow 5NaCl+NaClO_{3}+3H_{2}O}}} (при нагревании)

Хлорированием сухого гидроксида кальция получают хлорную известь:

Cl2+Ca(OH)2→CaCl(OCl)+h3O{\displaystyle {\mathsf {Cl_{2}+Ca(OH)_{2}\rightarrow CaCl(OCl)+H_{2}O}}}

Действием хлора на аммиак можно получить трихлорид азота:

4Nh4+3Cl2→NCl3+3Nh5Cl{\displaystyle {\mathsf {4NH_{3}+3Cl_{2}\rightarrow NCl_{3}+3NH_{4}Cl}}}

Окислительные свойства хлора[править | править код]

Хлор — очень сильный окислитель:

Cl2+h3S→2HCl+S{\displaystyle {\mathsf {Cl_{2}+H_{2}S\rightarrow 2HCl+S}}}

Раствор хлора в воде используется для отбеливания тканей и бумаги.

Реакции с органическими веществами[править | править код]

С насыщенными соединениями:

Ch4-Ch4+Cl2→C2H5Cl+HCl{\displaystyle {\mathsf {CH_{3}{\text{-}}CH_{3}+Cl_{2}\rightarrow C_{2}H_{5}Cl+HCl}}}
Ch5+Cl2→Ch4Cl+HCl{\displaystyle {\mathsf {CH_{4}+Cl_{2}\rightarrow CH_{3}Cl+HCl}}} (получение хлороформа, реакция идет многоступенчато с образованием тетрахлорметана CCl4)

Присоединяется к ненасыщенным соединениям по кратным связям:

Ch3=Ch3+Cl2→Cl-Ch3-Ch3-Cl{\displaystyle {\mathsf {CH_{2}{\text{=}}CH_{2}+Cl_{2}\rightarrow Cl{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}Cl}}}

Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов (например, AlCl3 или FeCl3):

C6H6+Cl2→C6H5Cl+HCl{\displaystyle {\mathsf {C_{6}H_{6}+Cl_{2}\rightarrow C_{6}H_{5}Cl+HCl}}}

Химические методы[править | править код]

Химические методы получения хлора малоэффективны и затратны. На сегодняшний день имеют в основном историческое значение.

Метод Шееле[править | править код]

Первоначально промышленный способ получения хлора основывался на методе Шееле, то есть реакции пиролюзита с соляной кислотой:

MnO2+4HCl→MnCl2+Cl2↑+2h3O{\displaystyle {\mathsf {MnO_{2}+4HCl\rightarrow MnCl_{2}+Cl_{2}\uparrow +2H_{2}O}}}
Метод Дикона[править | править код]

В 1867 году Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха. Процесс Дикона в настоящее время используется при рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений.

4HCl+O2→2H

Хлорфторуглероды — Википедия

Хлорфторуглероды — органические соединения, состоящие исключительно из атомов хлора (Cl), фтора (F) и углерода (С). Различают низшие хлорфторуглероды (CFC) — низкокипящие органические соединения на основе метанового, этанового и пропанового рядов, а также высшие хлорфторуглероды, являющиеся высокомолекулярными соединениями.

Хлорфторуглероды — токсичны, Поражают сердечно-сосудистую и нервную системы, вызывают развитие спазмов сосудов и нарушение микроциркуляции крови. Поражают печень, а в следствие развития отравления и почки. Разрушают лёгочные мембраны, особенно при наличие примесей органических растворителей и четырёххлористого углерода — развиваются эмфиземы и рубцевание.

Хлорфторуглероды — запрещается образование смесей с воздухом под давлением, стабильность преувеличена. Распадаются при нагревании в смеси с воздухом с образованием галоген-водородов и фосгенов.

Хлорфторуглероды — флегматизируют горение углеводородов (???)

Считается, что толчком в промышленном использовании хлорфторуглеродов послужило предложение Томаса Миджли, американского химика и инженера-механика по их применению в холодильниках вместо используемых ранее токсичных и взрывоопасных хладагентов (аммиака и сернистого газа). Впоследствии низшие хлорфторуглероды (CFC) стали широко использоваться в качестве пропеллентов в аэрозольных баллонах, вспенивающих агентов, взрывобезопасных растворителей.

Высшие хлорфторуглероды нашли широкое применение в качестве манометрических и запорных жидкостей, находящихся в контакте с агрессивными средами (концентрированные кислоты, галогены, жидкий кислород и другие окислители), в качестве жидких негорючих диэлектриков, в качестве смазочных материалов.

Наиболее распространенным представителем является дифтордихлорметан (Фреон R 12, Фреон-12, Хладон-12, CFC-12, R-12). Многие хлорфторуглероды широко используются в качестве хладагентов, пропеллентов (в аэрозольных системах) и растворителей. Поскольку хлорфторуглероды способствуют истощению озонового слоя в верхних слоях атмосферы, производство таких соединений было прекращено в соответствии с Монреальским протоколом, и они заменяются другими продуктами, такими как гидрофторуглероды[en] (ГФУ)[1], включая R-410A и R-134a[2][3].

Низшие хлорфторуглероды (CFC)[4]
Хлорфторуглерод (CFC)Химическая формулаТехническое обозначение

по ISO № 817-74

Температура кипения,

°C

ТрифторхлорметанCF3ClR-13
ДифтордихлорметанCF2Cl2R-12
ФтортрихлорметанCFCl3R-1123,65
ПентафторхлорэтанCF3CF2ClR-115
1,1,2,2-ТетрафтордихлорэтанCF2ClCF2ClR-1143,5
1,1,1-ТрифтортрихлорэтанCF3CCl3R-113a45,9
1,1,2-ТрифтортрихлорэтанCF2ClCFCl2R-11347,5
1,2-ДифтортетрахлорэтанCFCl2CFCl2R-11292,8
1,2-ДихлоргексафторпропанCF3CFClCF2ClR-21635,7
Высшие хлорфторуглероды — хлорфторуглеродные жидкости, масла и смазки[4]
НаименованиеХимическая формула
X(CF2CFCl)nX, X=F или Cl; n
Средняя относительная
молекулярная масса
жидкость 11ф1-4339
жидкость 11фД1-4364
жидкость 12ф3-7383
жидкость 13ф3-7518
жидкость 13фм4-8625
масло 4лф5-10715
масло 4ф
смазка 3ф
5-10985
Масло 4ф с добавкой 3-5% политрифторхлорэтилена в качестве загустителя

Основным методом получения хлорфторуглеродов является реакция обмена атомов хлора в исходном соединении на фтор действием фтористого водорода в присутствии хлорида сурьмы (V) — реакция Свартса[5][6]:

CCl4+HF→SbCl5CCl3F+HCl;{\displaystyle CCl_{4}+HF{\xrightarrow {SbCl_{5}}}CCl_{3}F+HCl;}
CCl3F+HF→SbCl5CCl2F2+HCl;{\displaystyle CCl_{3}F+HF{\xrightarrow {SbCl_{5}}}CCl_{2}F_{2}+HCl;}
CCl2F2+HF→SbCl5CClF3+HCl.{\displaystyle CCl_{2}F_{2}+HF{\xrightarrow {SbCl_{5}}}CClF_{3}+HCl.}
CCl3CCl3+HF→SbCl5CCl3CCl2F+HCl{\displaystyle CCl_{3}CCl_{3}+HF{\xrightarrow {SbCl_{5}}}CCl_{3}CCl_{2}F+HCl}
CCl3CCl2F+HF→SbCl5CCl2FCCl2F+HCl{\displaystyle CCl_{3}CCl_{2}F+HF{\xrightarrow {SbCl_{5}}}CCl_{2}FCCl_{2}F+HCl}
CCl2FCCl2F+HF→SbCl5CCl2FCClF2+HCl{\displaystyle CCl_{2}FCCl_{2}F+HF{\xrightarrow {SbCl_{5}}}CCl_{2}FCClF_{2}+HCl}

Гексахлорэтан может быть заменён перхлорэтиленом и хлором[7]:

CCl2=CCl2+Cl2+2HF→SbCl5CCl2FCCl2F+2HCl{\displaystyle CCl_{2}=CCl_{2}+Cl_{2}+2HF{\xrightarrow {SbCl_{5}}}CCl_{2}FCCl_{2}F+2HCl}

Хлорфторуглероды возможно получить фторированием перхлоролефинов[8]:

CCl2=CCl2+UF6→CCl2FCCl2F+UF4{\displaystyle CCl_{2}=CCl_{2}+UF_{6}\rightarrow CCl_{2}FCCl_{2}F+UF_{4}}

И хлорированием перфторолефинов или фторуглеводородов[4]:

CF3CF=CF2+Cl2→CF3CFClCF2Cl{\displaystyle CF_{3}CF=CF_{2}+Cl_{2}\rightarrow CF_{3}CFClCF_{2}Cl}
CF3H+Cl2→CF3Cl+HCl{\displaystyle CF_{3}H+Cl_{2}\rightarrow CF_{3}Cl+HCl}

Высшие хлорфторуглероды получают теломеризацией трихлорфторэтилена или деструкцией политрифторхлорэтилена (фторопласта 3) при 400—600 °C с последующим фторированием продуктов деструкции фторидом хлора (III), фторидом кобальта (III) или фторидом сурьмы (V) для стабилизации неустойчивых группировок в молекуле[4].

Химические свойства хлорфторуглеродов[править | править код]

Гидрирование хлорфторуглеродов идёт при высокой температуре с образованием фторуглеводородов[4]:

CF3Cl+h3→500−7000CCF3H+HCl.{\displaystyle CF_{3}Cl+H_{2}{\xrightarrow {500-700^{0}C}}CF_{3}H+HCl.}

При повышенной температуре на катализаторе имеет место диспропорционирование хлорфторуглеродов[4]:

2CFCl3→CF2Cl2+CCl4.{\displaystyle 2CFCl_{3}\rightarrow CF_{2}Cl_{2}+CCl_{4}.}

В присутствии катализатора — хлорида алюминия хлорфторуглероды алкилируют галогенолефины[4]:

CFCl3+CF2=CF2→CF2ClCF2CFCl2.{\displaystyle CFCl_{3}+CF_{2}=CF_{2}\rightarrow CF_{2}ClCF_{2}CFCl_{2}.}

Хлорфторуглероды этанового и пропанового ряда подвергаются дегалогенированию цинком в среде полярного растворителя:

CClF2CCl2F+Zn→h3OCF2=CFCl+ZnCl2{\displaystyle CClF_{2}CCl_{2}F+Zn{\xrightarrow {H_{2}O}}CF_{2}=CFCl+ZnCl_{2}}

По этой реакции организованно промышленное производство трифторхлорэтилена[4].

Практически бесконтрольное использование низших хлорфторуглеродов в качестве пропеллентов аэрозольных упаковок, вспенивателей, растворителей и хладагентов привело к накоплению хлорфторуглеродов в атмосфере. С помощью электронного детектора Лавлока обнаружено присутствие хлорфторуглеродов в верхних слоях атмосферы.

Шервуд Роуланд предсказал, что хлорфторуглероды, произведённые человеком, под действием солнечной радиации разлагаются в атмосфере, образуя хлор и монокись хлора, которые способны эффективно разрушать молекулы озона

CFCl3 + hν → CFCl2 + Cl,
Cl + O3 → ClO + O2,
ClO + O → Cl + O2.

Марио Молина и Пауль Крутцен показали истощающий эффект галогеналканов на озоновый слой стратосферы, являющийся природным защитным экраном Земли от губительного жёсткого ультрафиолетового излучения Солнца.

Венской конвенцией 1985 г. и Монреальским протоколом 1987 г. по защите озонового слоя были запрещены производства низших хлорфторуглеродов.

В 1995 году Паулю Джозефу Крутцену, Шервурду Роуланду и Марио Молине присуждена Нобелевская премия по химии с формулировкой «За работу в атмосферной химии, особенно в части процессов образования и разрушения озонового слоя».

  1. ↑ «Climate Change.» The White House. 6 August 2014.
  2. Mironov, O. G. Hydrocarbon pollution of the sea and its influence on marine organisms (англ.) // Helgoländer Wissenschaftliche Meeresuntersuchungen : journal. — 1968. — Vol. 17, no. 1—4. — P. 335—339. — doi:10.1007/BF01611234. — Bibcode: 1968HWM….17..335M.
  3. ↑ Ozone layer treaty could tackle super polluting HFCs Архивировано 19 августа 2014 года.. rtcc.org. 15 July 2014
  4. 1 2 3 4 5 6 7 8 Промышленные фторорганические продукты: справ. изд / Б. Н. Максимов, В. Г. Барабанов, И. Л. Серушкин и др. — 2-е изд., пер. и доп.. — СПб.: «Химия», 1996. — 544 с. — ISBN 5-7245-1043-X.
  5. Гудлицкий М. Химия органических соединений фтора / под ред. А. П. Сергеева. — пер. с чешского Ю.И.Вайнштейн. — М.: Госхимиздат, 1961. — 372 с.
  6. Исикава Н., Кобаяси Е. Фтор. Химия и применение / под ред. А. В. Фокина. — пер. с японского М.В.Поспелова. — М.: Мир, 1982. — 280 с.
  7. Н. С. Верещагина., А. Н. Голубев., А. С. Дедов, В. Ю. Захаров. Российский химический журнал. Журнал Российского химического общества им. Д. И. Менделеева. — «Химия», 2000. — Т. XLIV, выпуск 2. — С. 110—114.
  8. Орехов В. Т., Рыбаков А. Г., Шаталов В. В. Использование обеднённого гексафторида урана в органическом синтезе. — М.: Энергоатомиздат, 2007. — 112 с. — ISBN 978-5-283-03261-0.
⛭
Фторуглероды
Фторуглеводороды
Фторхлоруглеводороды
Хлорфторуглероды
Фторбромуглероды,
фторбромуглеводороды
  • Трифторбромметан (R13B1)
  • Дифтордибромметан (R12B2)
  • Дифторбромметан (R22B1)
  • 1,1,2,2-тетрафтордибромэтан (R114B2)
  • 1,1,1,2-тетрафторбромэтан (R124B1)
  • 1,1,1,2,3,3-гексафтордибромпропан (R216B2)
  • 1,1,2,2,3,3,4,4-октафтордибромбутан (R318B2)
Фториодуглероды

Галогены. Элементы VIIA-группы. Хлор, фтор. Конспект по химии

Галогены. Элементы VIIA-группы. Хлор, фтор

Ключевые слова: галогены, VIIA-группа, хлор, фтор, бром, йод, характеристика элемента, строение галогенов, получение хлора.
Раздел ОГЭ: 3.1.2. Химические свойства простых веществ-неметаллов: водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния



Галогены (от греч. hals – соль и лат. genui – рождать, т. е. «рождающие соли») — это элементы VIIA-группы – фтор F, хлор Cl, бром Вг, йод I. Электронная конфигурация валентного слоя атомов галогенов в стационарном состоянии ns2np5. Радиусы атомов галогенов от фтора к йоду увеличиваются, энергия ионизации и электроотрицательности уменьшается, неметаллические свойства ослабляются.

ХАРАКТЕРИСТИКА ЭЛЕМЕНТА ХЛОР

Хлор Cl – элемент № 17, в Периодической системе химических элементов Д. И. Менделеева находится в 3–м периоде, в VIIA группе. Электронная конфигурация атома хлора в стационарном состоянии 1s22s22p63s23p5:хлор

В своих соединениях хлор проявляет валентности:хлор

Наиболее характерными степенями окисления хлора являются следующие:хлор

Высший оксид хлора – оксид хлора (VII) Cl2О7 – кислотный оксид, высшим гидроксидом хлора является хлорная кислота НСlO4 (сильная кислота).

Водородное соединение хлора – хлороводород НCl (газ при обычных условиях), его водный раствор – соляная кислота, сильный электролит.

ХАРАКТЕРИСТИКА ЭЛЕМЕНТА ФТОР

Фтор F – элемент № 9, находится во 2–м периоде, в VIIA группе. Электронная конфигурация внешнего электронного атома фтора 1s22s22p5:фтор

В атоме фтора нет вакантных орбиталей на втором энергетическом уровне для перехода атома в возбуждённое состояние. Переход на вакантные орбитали третьего энергетического уровня потребовал бы слишком больших затрат энергии, следовательно, фтор может быть только одновалентен.

Электроотрицательность фтора среди других элементов максимальна (∼4,0 по шкале Полинга). Следовательно, для фтора невозможны положительные степени окисления. Возможные степени окисления фтора: 0 (F2) и –1 (HF, KF и т. д.).

СТРОЕНИЕ ГАЛОГЕНОВ – ПРОСТЫХ ВЕЩЕСТВ

Галогенам не присуща аллотропия, каждому элементу – галогену (Hal) соответствует одно простое вещество Наl2. Галогены – вещества молекулярного строения.

При обычных условиях фтор F2 – зеленовато–жёлтый газ; хлор Cl2 – жёлто–зелёный газ; бром Вг2 – красно–бурая жидкость, примерно в 3 раза тяжелее воды; йод I2 – фиолетово–чёрные кристаллы с металлическим блеском. Все галогены обладают характерным запахом.

Хлор, бром, йод умеренно растворимы в воде, их растворы называются соответственно хлорной, бромной и йодной водой (фтор с водой реагирует).

фтор

фтор

ПОЛУЧЕНИЕ ХЛОРА

В промышленности хлор получают электролизом расплава поваренной соли.

Лабораторные способы получения хлора основаны на окислении хлора в соляной кислоте с помощью таких окислителей, как перманганат калия, дихромат калия или диоксид марганца. Приведём примеры этих реакций:

получение хлора


Конспект урока по химии «Галогены. Элементы VIIA-группы. Хлор, фтор «. Выберите дальнейшее действие:

История открытия галогенов — фтор | хлор | бром | йод

Галогены буквально означает «солерождающие» (от лат. «галос» – соль и «генус» – рождать). Это название элементы получили за способность взаимодействовать с металлами с образованием типичных солей, например, хлорида натрия.

Открытие фтора

О его существовании догадывались многие химики конца XVIII – начала XIX века. «Фторос» – разрушение, гибель (греч.). В 1771 г. Карл Шееле получил HF. Сам фтор был открыт в 1886 г. французским химиком А. Муассаном электролизом безводного фтороводорода:

2HF → H2 + F2, -23 °C, эл. ток.

Однако в присутствии комиссии фтор получить не удалось из-за слишком тщательной очистки фтороводорода. Дело в том, что сам фтороводород не электропроводен (связь ковалентно-полярная), электропроводность обеспечивается присутствием KF, который образует с HF комплекс KF + HF → KHF2. Ион HF2 достаточно устойчив, поэтому расплав HF, содержащий KF, содержит ионы K+ и HF2, которые и обеспечивают электропроводность. Через 20 лет за открытие фтора А. Муассан получил Нобелевскую премию.

Фердинанд Фредерик Анри Муассан

Открытие хлора

Впервые хлор был получен и описан К. Шееле в 1774 г. Получен он был действием концентрированной соляной кислоты на пиролюзит (MnO2·H2O):

MnO2 + 4HCl(конц.) = MnCl2 + 2H2O + Cl2

Однако ни сам Шееле, ни его современники не считали этот газ самостоятельным химическим элементом. После победы кислородной теории А. Лавуазье над теорией флогистона хлор стали считать оксидом еще неоткрытого элемента мурия (А. Лавуазье, К. Бертолле, Г. Дэви). После 3-х лет попыток получить мурий Г. Дэви пришел к выводу, что это – простое вещество (1810 г.), которое назвал хлорином («хлорос» – желто-зеленый, греч.). В 1811 г. Ж. Л. Гей-Люссак назвал его хлором. Считается, что первооткрыателем хлора был К. Шееле.

Карл Вильгельм Шееле

Открытие брома

Впервые был получен Ю. Либихом, но он «проглядел» открытие, приняв бром за смесь хлора и йода. Поэтому открытие принадлежит французу А. Балару (30 ноября 1825 г.).

А. Балар при обработке хлорной водой щелока из золы морских водорослей выделил красно-бурую жидкость с резким, неприятным запахом. Балар предположил, что это вещество хлорид иода и тщетно пытался обнаружить иод. Однако ему не удалось разложить это вещество. Изучив физические и химические свойства нового вещества, Балар пришел к выводу, что обнаружил новое простое вещество, очень пoхожее на хлор и иод по его химическим свойствам, образующее аналогичные соединения, но имеющее различия в физических свойствах и химическом поведении.

Антуан Жером Балар

А. Балар назвал новое вещество муридом (от латинского слова muria — рассол). 15 ноября 1825 г. исследователь отправил сообщение об открытии в Парижскую Академию наук, которое было заслушано 3 июля 1826 г. Специальная комиссия, в состав которой вошли знаменитые химики Ж. Гей-Люссак, Л. Теннар и Л. Воклен, 14 августа 1826 г. подтвердила открытие Балара. Комиссия, получив новое вещество согласно методам Балара и изучив его свойства, пришла к единодушному выводу, что бром является новым простым веществом. Комиссией было предложено для этого вещества другое название — бром (от греческого слова «бромос» — зловонный, дурно пахнущий). В то время соляная кислота называлась муриевой, а соли ее — муриатами, так что название, предложенное А. Баларом, могло привести к недоразумениям.

Открытие йода

Открыт в 1811 г. французским химиком-селитроваром Б. Куртуа.

Согласно легенде, на заводе, где вырабатывалась селитра, рабочие как-то погнались за кошкой. Убегая от преследователей, кошка случайно опрокинула сосуд с серной кислотой на остатки солей от выработки селитры, и тогда вдруг из образовавшейся смеси выделились густые фиолетовые пары.

Н24 + 2НI = 2Н2О + SО2 + I2

Куртуа заинтересовался этим явлением и внимательно стал изучать новое вещество. Он нашел, что фиолетовые пары при охлаждении оседают в виде черных с металлическим блеском кристаллов, новое вещество соединяется с водородом, фосфором, металлами, а с аммиаком образует крайне взрывчатое вещество.

О своих наблюдениях и выводах Куртуа сообщил двум своим друзьям из Дижона – Н. Клеману и Ш. Б. Дезорму. Клеман проделал все эксперименты, о которых ему рассказал Куртуа, убедился в полной справедливости его выводов и в январе 1813 г. сделал небольшое сообщение ученым Парижа о загадочном веществе.

Новое вещество привлекло внимание двух знаменитых ученых – французского Ж. Л. Гей-Люссака и английского Г. Дэви, которые независимо друг от друга принялись изучать его свойства. Ученые пришли к выводу, что открытое Куртуа вещество новый элемент. Гей-Люссак назвал его йодом, а Дэви – йодином («йоэйдэс» – «фиолетовый», древнегреч.). Во всем мире прижилось первое название и лишь в Англии йод называют йодином.

Жозеф Луи Гей-Люссак

Открытие астата

Второй после технеция элемент. Получен в 1940 г. американскими учеными Т. (Д.) Корсоном, У. (К.) Макензи и Э. Сегре:

209Bi + α → 211At + 2n0

“Астатос” – “неустойчивый, нестабильный”, греч.

Унунсептий — Uus был получен в 2009-2010 годах в Объединённом институте ядерных исследований в Дубне (Россия). Это 117-й элемент с периодом полураспада — 78 миллисекунд.

фтор хлор — Справочник химика 21


    Электрохимические методы получения простых веществ. Процессы электрохимического окисления и восстановления осуществляются на электродах при электролизе расплавов или растворов соединений. Электрохимическим (анодным) окислением получают фтор, хлор и кислород. Электрохимическим (катодным) восстановлением расплавов соответствующих соединений получают щелочные и щелочноземельные металлы, алюминий и некоторые другие. [c.245]

    Электронные аналоги. Рассмотрение размещения электронов по уровням и подуровням оболочек атомов, выражаемого электронными формулами, показывает нам, что независимо от числа энергетических уровней размещение электронов по подуровням в наружных уровнях может быть аналогичным. Эта аналогия выражается одинаковыми электронными формулами наружных уровней. Так, например, размещение электронов на наружных уровнях атомов бора, алюминия, галлия, индия и таллия выражается соответственно электронными формулами 2s 2p 35 3p 4s 4p 5s 5,o и б5 6р а в атомах фтора, хлора, брома, иода и астата — формулами 25 2р 35ЧрЧзЧр» 58 5р и б5 6р Элементы, в атомах которых одинакова электронная конфигурация наружного уровня, называются электронными аналогами. У атомов ряда элементов понятие электронной аналогии распространяется и на преднаружный уровень. Так, например, электронная конфигурация атомов титана, циркония и гафния выражается формулами 4з 4р 4с1 5з и а атомов марганца, технеция и рения — 45 Чр 4 552 5s 5p 5d» 6s . Таким образом, электронные аналоги отличаются друг от друга числом энергетических уровней и сходны но конфигурации наружных уровней. [c.32]

    Рассуждая таким образом, можно сказать, что щелочноземельные элементы (магний, кальций, стронций и барий) похожи друг на друга также по этой причине у каждого из них на внешней оболочке по два электрона. На внешних оболочках атомов галогенов (фтора, хлора, брома и иода) по семь электронов, а на внешних оболочках инертных газов (неона, аргона, криптона и ксенона)— по восемь. [c.158]

    В химической промышленности методом электролиза получают различные продукты к числу их относятся фтор, хлор, едкий натр, водород высокой степени чистоты, многие окислители, в частности, пероксид водорода. [c.301]

    Тип связи Фтор Хлор Бром Иод [c.201]

    Начнем с группы элементов, которые называют галогенами. Четыре самых важных члена этой группы — фтор, хлор, бром и иод. Фтор — газ бледно-зеленого цвета, очень ядовитый и очень активный это самое активное из известных нам веществ. Он взаимодействует почти со всеми молекулами, с которыми приходит в соприкосновение, вытесняя из них те или иные атомы и занимая их место. Хлор — тоже газ, желто-зеленого цвета, тоже активный и ядовитый, но несколько меньше фтора. Бром — темно-красная жидкость, а иод — твердое вещество серого цвета.  [c.67]


    Чтобы определить стадии процесса, кинетику замещения водорода на галоген сравнивали с кинетикой взаимодействия галоидов с водородом. Энергия активации при образовании галоидоводородных кислот в результате взаимодействия галоидов с водородом была рассчитана с точки зрения бимолекулярного механизма и механизма образования через свободные радикалы. Сопоставление полученных результатов с экспериментальными показало, что в случае фтора, хлора и брома промежуточно образуются свободные радикалы, в то время как реакции иода с водородом протекают по бимолекулярному механизму. [c.264]

    При обычных температурах в основном стандартном состоянии водород, кислород, азот, фтор, хлор и элементы подгруппы гелия являются газообразными, бром и ртуть — жидкими, а остальные элементы — кристаллическими. [c.24]

    Фторо, хлоро, бромо и иодо [c.218]

    Предскажите, как изменяется константа ди социации уксусной кислоты при замене атома вод рода в группе СНз на атомы фтора, хлора или бром [c.74]

    Hal (F, l) галогены -фтор, хлор. .. (галогениды)  [c.102]

    Набивка из стружки фторопласта-4 со смазкой (Ф4с) Кислотные и щелочные среды различной концентрации, органические жидкости, жидкое топливо, фтор, хлор, бром, хлористая сера, растворители Для сальников центробежных и поршневых насосов, аппаратов с перемешивающими устройствами, регулирующей аппаратуры и арматуры с прокладками между отформованными кольцами уплотнителя из листового фторопласта-4 или полиэтилена [c.266]

    Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Технеций Титан Торий Тулий Углерод Уран Фосфор Фтор. Хлор Хром [c.649]

    Реакции замещения атомов водорода на фтор, хлор п бром экзотермические и необратимые. То же относится и к присоединению этих

Галогены в природе. Применение галогенов и их соединений — урок. Химия, 8–9 класс.

Галогены в природе

Галогены — химически активные вещества, поэтому в природе они находятся только в виде соединений.

 

Фтор встречается в виде флюорита CaF2, криолита Na3AlF6  и некоторых других минералов.

 

2595.jpg

Флюорит

 

46c28dba395e06290dd5f2f792f1b43d.jpg

Криолит

 

Наиболее распространённые соединения хлоракаменная соль (галит) NaCl и сильвинит KCl⋅NaCl.

 

Halite_J1.jpg

Галит

 

IMG_1584.jpg

Сильвинит

  

Бром и иод собственных минералов не образуют. Их соединения содержатся в морской воде и накапливаются водорослями.

 

i.jpgБурые водоросли

Галогены в живых организмах

Все галогены ядовиты, но их соединения жизненно необходимы живым организмам, в том числе и человеку.

 

Соединения фтора входят в состав костной ткани и эмали зубов. При недостатке фтора зубная эмаль разрушается, и появляется кариес.

 

Хлор относится к макроэлементам и необходим для нормального функционирования организмов. Хлорид натрия входит в состав плазмы крови, поддерживает деятельность всех клеток. Из него образуется соляная кислота, содержащаяся в желудочном соке.

 

Соединения брома регулируют процессы торможения и возбуждения нервной системы.

 

Иод обязательно должен поступать в организм, так как участвует в образовании гормонов щитовидной железы, контролирующих обмен веществ. При его недостатке развивается зоб — заболевание щитовидной железы. Для профилактики зоба используют иодированную соль (в поваренную соль добавляют иодид калия).

 

Применение галогенов и их соединений

Фторид кислорода применяется как окислитель ракетного топлива. Тефлон (фторосодержащий полимер) используется для термостойких покрытий.

Соединения фтора входят в состав зубных паст для профилактики кариеса.

 

 

Молекулярный хлор применяется для обеззараживания воды, для отбеливания тканей, бумаги, древесины.

Большое количество хлора расходуется при производстве соляной кислоты, а также пластмасс, каучуков, растворителей, красителей.

 

tarpaulins-tarps-colors-of-pvc-tarpaulin.jpg

 

Поваренная соль добавляется в пищу, а калийную соль (хлорид калия) вносят в почву в качестве калийного удобрения.

 

Соединения брома и иода используются в медицине для лечения и профилактики некоторых заболеваний. Спиртовой раствор иода применяется при обработке ран и царапин.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *