Сварка высоколегированных сталей: особенности и технология
Легированными считают стали, которые содержат элементы, которые придают сплавам особенные свойства. Элементы называются легирующими. Чаще всего это никель, хром, молибден, вольфрам и т. д. процесс легирования необходим для повышения стойкости, гибкости, прочности, устойчивости к коррозии металла.
Выделяется три вида легированных сталей:
- низколегированные — содержат легирующих элементов до 2,5%;
- среднелегированные — содержат легирующих элементов до 10%;
- высоколегированные — содержат легирующих элементов более 10%.
Каждый из видов подразумевает свои особенности сварки легированных сталей. Для краткого обозначения присутствующего элемента стали называются по его названию. Например, хромистыми, вольфрамовыми, никелевыми. Компоненты отмечаются буквами — Ю — алюминий, Ф — ванадий, Р — бор, Н — никель; Г — марганец.
Для определения назначения отдельного вида стали выделяются такие группы:
- нержавеющие;
- жаростойкие;
- кислотостойкие;
- окалиностойкие.
Низколегированные стали
От низколегированных сплавов требуется пластичность, хорошая свариваемость, высокая устойчивость к деформации. Наилучшие свойства такие стали приобретают после закаливания. В некоторых видах такие свойства достигаются низким содержанием углерода. Также для улучшения свойств добавляются дополнительные присадки, например, хром, кремний.
Такие виды металла отлично свариваются, имеют низкую степень ломкости при холоде ниже сорока градусов. Основным минусом низколегированного сплава считается слабая вибрационная устойчивость.
Сварные соединения сталей хорошо сопротивляются холодным трещинам и деформационному разрушения. Для сварки низколегированных сплавов используются специальные электроды, имеющие слабое водородное фтористо-кальциевое напыление. Технология сварки легированных сталей подразумевает быструю сварку определенных участков, чтобы не допустить охлаждение шва ниже температуры предварительного нагрева.
Сварка низколегированных сталей под флюсом проводится при помощи постоянного тока, который имеет обратную полярность. При сварке металлов в углекислом газе в качестве электродов используется порошковая проволока. Таким образом достигается большая прочность и холодоустойчивость, особенно швам изделия.
Низколегированные металлы не стоит варить газом, так как это серьезно ухудшает качество изделия — при выгорании легирующих элементов соединения склоны к коррозии и механическим разрушениям.
Среднелегированные стали
Для таких сплавов характерно более чем в два раза увеличенное содержание углерода. В качестве присадок чаще всего используются Ni, Mo, Cr, V, W. Идеальные характеристики металла достигаются закалкой и низким отпуском. Такие виды сталей тщательно очищают от различных видов неметаллических примесей. Для достижения оптимальных свойств используются переплавки, термомеханическая обработка.
Для надежности и износостойкости сварных швов необходимо получить идеальные химические показатели соединений. Сварочные материалы должны содержать меньший объем легирующих элементов, чем основной металл. С помощью правильно подобранного материала можно получить отличную прочность и другие качества шва при сварке легированных сталей.
Среднелегированные сплавы с высокой прочностью и уровнем прокаливания необходимо сваривать с помощью материалов, которые придадут соединениям максимальную возможность деформации. Для таких целей используются низколегированные электроды, не содержащие органических веществ, которые прокалили при высоких температурах. При сварке следует обеспечить оптимальные условия работы — не допускать наличия влажности, появления ржавчины в сварочной ванне, чтобы не повысить уровень водорода.
Оптимальным методом для легированных и углеродистых сталей является аргоновая сварка с неплавящимися электродами. Такой вид оптимален для механизированного проплавления, обеспечивая оптимальную глубину и равномерность процесса.
Газовая сварка легированных сталей осуществляется ацетиленом и кислородом, который обеспечивает высококачественный шов. Газы-заменители в данном случае применять не следует. Однако даже ацетилен и кислород не дает полной гарантии качественного шва. Этого можно добиться только путем использования дуговой сварки.
Высоколегированные стали
В состав высоколегированных сплавов входят Cr и Ni в повышенном содержании. Эти элементы придают металлам особенную структуру и свойства. Высоколегированные сплавы обладают большей устойчивостью к коррозии, низким и высоким температурам, более жаропрочные. В зависимости от сферы применения стали различаются на жаростойкие, жаропрочные, коррозионностойкие.
После пройденной специфической термической обработки высоколегированные сплавы становятся очень прочными и эластичными. При закалке пластичность данных металлов только повышается. На структуру сталей существенно влияет их химический состав и разновидности легирующих компонентов.
Технология сварки высоколегированных металлов
Высоколегированные сплавы имеют множество положительных характеристик, что позволяет использовать их для самых разнообразных изделий. Поэтому технология сварки высоколегированных сталей для каждого изделия могут быть отдельной. Эта особенность определяет разность в выполнении сварки для получения шва определенного типа и состава.
Особенности сварки легированных сталей
Особенности сварки легированных сталей регламентируются тепловыми особенностями сплава. Понижение тепловой проводимости может серьезно изменить температурное распределение температуры в области шва. При неправильной сварке такие показатели могут привести к деформации изделия. Для того чтобы избежать подобной проблемы сварка должна проходить с наибольшими температурами.
Ручная дуговая сварка допускает применение электродов с фтористо-кальциевым покрытием, таким образом возможно получение шва с оптимальным содержанием химических веществ. Для предотвращения перфорации при сварке высоколегированных сталей и сплавов в швах следует прокаливать электроды с особой тщательностью.
Газовая сварка не особенно подходит для такого типа металлов по причине нередких внутренних коррозий. Такой вид работ допустим для температуроустойчивых сплавов толщиной не более 2 мм. В швах может возникать заметная деформация.
Для более толстых пластин оптимальным вариантом является флюсовая сварка. Таким образом по всей поверхности соединения состав и характеристики металла остаются стабильными. Причиной явления является отсутствие сварных промежутков, связанных с заменой электродов, равномерностью плавки металла по поверхности шва.
Кроме того, место на котором проводятся работы надежно защищается от окисления легирующих компонентов. Что имеет особенно важное значение при сварке высоколегированных сталей.
Интересное видео
Сварка высоколегированных сталей: выбор расходников
Легированная сталь — это разновидность стали, в состав которой принудительно добавляют особые примеси, изменяющие физико-химические свойства такого металла. Такие примеси называют легирующими, отсюда и название — легированная сталь. Существуют свои особенности сварки легированных сталей и зависят они от степени легированности: бывает низко-, средне- и высоколегированная сталь.
Тема нашей статьи — сварка высоколегированной стали. То есть, стали с высоким содержанием легирующих примесей. Мы кратко расскажем, как настроить режим сварки, какие электроды, защитные газы и флюсы использовать, чтобы добиться хорошего результата.
Содержание статьи
Режим сварки
Соединение высоколегированных сталей и сплавов требует правильной настройки режима сварки. От этого во многом зависит качество готового шва. Мы рекомендуем устанавливать небольшую величину сварочного тока и формировать узкие швы. Этого можно добиться, используя сварочную проволоку или электроды диаметром 2-3 миллиметра. Также рекомендуем уменьшить вылет электрода в 2 раза больше обычного. Так вы упростите себе сварку. Ведь сварка высоколегированной стали во многом затруднена благодаря большому электросопротивлению и пониженной электропроводностью. А уменьшив вылет электрода вы нивелируете эти недостатки.
Выбор электродов
При сварке высоколегированных сталей рекомендуется использовать электроды с основным покрытием, в составе которого должны быть защитно-легирующие элементы. Сам стержень должен тоже быть высоколегированным. Схожие по составу электроды и металл будут работать в связке друг с другом, формируя качественный шов.
Если вам нужно сварить высоколегированную аустенитную сталь, то рекомендуем использовать электроды марки ЦТ-15. Они отлично подходят для стали марки Э-08Х19Н10Г2Б, поскольку содержат до 5% ферритной фазы. А это очень хорошо.
Читайте также: Популярные электроды для сварки
Также рекомендуем использовать электроды марки ЦТ-15 в сочетании с электродами марки ЦТ-15-1. Сначала сделайте первый слой шва с помощью электродов ЦТ-15-1, а затем сделайте второй слой электродами ЦТ-15. Так вы еще больше увеличите содержание ферритной фазы, улучшив качество шва, если того требует работа.
Следите, чтобы в составе электродов был ниобий. Он выступает как стабилизатор, защищая титан (который тоже есть в составе электродов) от излишнего окисления. Смотрите, чтобы в составе не было много кальцита. Особенно, если вы собираетесь варить сталь с низким содержанием углерода. Дело в том, что электроды с избытком кальцита при горении выделяют углекислый газ, который увеличивает количество углерода в металле в сварочной ванне. А это плохо сказывается на качестве шва.
Если вам все же не удалось найти электроды без кальцита, то можете выбрать стержни с окислительным покрытием, в составе которого будет немного кремния. Так у металла в сварочной ванне не будет увеличиваться показатель углеродности. Также можно купить электроды, у которых покрытие рутил-карбонатно-фтористое. Это электроды марки ОЗЛ-14, широко известной и продающейся в каждом специализированном магазине.
Избегайте диоксида кремния в составе электродов, если собираетесь варить высоколегированную аустенитную сталь. Рекомендуем электроды марки ЦТ-22, их состав оптимален. Но есть недостаток — самое покрытие очень хрупкое и часто осыпается, так что позаботьтесь о грамотной транспортировке и хранении электродов.
Выбор флюсов
Сварка легированных и углеродистых металлов может выполняться и с помощью флюса. Но здесь, как и в случае с электродами, нужно использовать особые флюсы и правильно сочетать их со сварочной проволокой. Сами флюсы должны быть фторидными, а проволока должна быть высоколегированной, как и металл. Мы рекомендуем флюс АНФ-5, он хорошо справляется со своей защитной функцией и улучшает качество шва, если выполняется сварка высоколегированной стали.
Благодаря использованию флюса АНФ-5 шов не будет подвержен образованию пор, трещин и прочих дефектов сварных швов. По этой причине такой флюс часто используют не только в домашней сварке, но и на крупном сварочном производстве. Кстати, вы можете использовать и другие флюсы на основе оксидов. Их свойства не будут сильно отличаться от АНФ-5.
В качестве альтернативы предлагаем использовать флюс марки АН-26. Он тоже изготовлен на основе оксидов и в его составе мало кремния, так что шов будет формироваться качественно и быстро. Но обратите внимание, что велика вероятность сильного окисления титана и алюминия, и даже хорошо подобранная проволока не поможет, кремний будет активно переходить в шов. Из-за этого наверняка могут появиться горячие трещины и поры, да и в целом шов будет хрупким. Так что используйте данный флюс на менее ответственных объектах.
Также обратите внимание флюс марки АН-292. Он изготовлен на основе высокоустойчивых оксидов и хорошо зарекомендовал себя в работе. Но нужно следить за количеством водорода, если его будет слишком много, шов может оказаться пористым после окончания сварки.
Выбор защитного газа
Также можно использовать защитный газ. Зачастую применяется гелий, аргон и углекислота. А в некоторых случаях применяется смесь из этих газов. Технология сварки высоколегированных сталей с применением защитных газов хорошо зарекомендовала себя. Но помимо газа нужно будет приобрести еще электроды. Мы рекомендуем неплавящиеся вольфрамовые. Сварку нужно проводить на постоянном токе, установив обратную полярность. Если в составе стали много алюминия, то можно варить на прямой полярности, чтобы быстрее разрушить оксидную пленку, мешающую формированию шва.
Иногда при сварке аустенитных сталей с применением защитных газов наблюдается нестабильное горение дуги. Чтобы исправить эту проблему можно смешать аргон и кислород или аргон и углекислоту. Так дуга будет гореть стабильно и шов не будет пористым.
Что касается углекислого газа, то он обладает множеством положительных свойств. Благодаря ему вероятность образования пор минимальна. А в сочетании с аргоном углекислота показывает наилучшие результаты. Так что если у вас есть возможность использовать смесь двух этих газов, то обязательно испробуйте ее в своей практике.
Но есть и недостаток. При сварке в углекислоте металл разбрызгивается намного сильнее, а это ухудшает антикоррозийные свойства стали. Да и технология сварки легированных сталей с применением углекислоты связана еще с одной неприятностью — это активное формирование оксидной пленки на поверхности металла, которую тяжело удалить. И если при однослойной сварке этот недостаток не так существенен, то при сварке многослойной оксидная пленка просто не дает шву сформироваться.
В целом, применение защитных газов при сварке высокоуглеродистых сталей зарекомендовало себя, как вполне эффективное. Не нужно мучиться с подбором электродов и их покрытий, не нужно подбираться состав флюса. Ведь газ отлично защищает сварочную ванну и позволяет сформировать качественный прочный шов. Если вы, конечно, соблюдаете технологию сварки.
Вместо заключения
Мы кратко рассказали вам о том, какие комплектующие нужно использовать, чтобы сварить высоколегированную сталь. Вообще сварка легированных сталей — это не такая уж сложная задача, как думают многие новички. Главное — правильно настроить режим сварки и много практиковаться. Со временем вы поймете все нюансы стали с легирующими добавками и будете выполнять работу не только быстро, но и качественно.
Отдельно хотим сказать про выбор и покупку электродов, флюсов и газов. Не стоит экономить и покупать расходники от неизвестных производителей. Велика вероятность, что такие расходники только ухудшат качество ваших работ, устроив вам лишнюю головную боль. И не нужно покупать электроды в каком-то непонятном полуподвальном магазине, поскольку там наверняка нарушены все условия хранения. Вы заплатите деньги и получите просто испорченные сырые электроды, которые не позволят сформировать качественный шов. Желаем удачи в работе!
[Всего: 0 Средний: 0/5]как и чем выполняется, оборудование, инструменты, расходники
Бывают случаи, когда свойств обычной стали не хватает для достижения надежности конструкции. Тогда используют легированную сталь. Чтобы её получить, добавляют легирующие элементы.
Это специальные примеси, которые улучшают физические и химические свойства стали. По сравнению с обычным металлом, легированный при сварке ведет себя иначе.
Существует ряд особенностей, которые проявляются зависимо от уровня легирования: низкого, среднего или высокого.
В этом разделе разберемся в особенностях наладки режима сварки высоколегированной стали, применения электродов, флюсов и защитных газов. Зная эти нюансы, вы получите качественный результат.
Содержание статьиПоказать
Настройка режима сварки
Надежность сварочного соединения напрямую связана с правильной настройкой режима сварки. Это правило также распространяется на сваривание сталей и сплавов высокого легирования.
Если вы настроите небольшое значение силы тока, то сможете выполнять узкие швы. Для этого понадобятся электроды 2-3 мм или проволока для сварки высоколегированной стали.
Работать с высоколегированной сталью бывает сложновато, за счёт высокого сопротивления и сниженной электропроводимости. Чтобы сгладить эти показатели и сделать процесс более простым, можно вдвое снизить вылет электрода.
Электродные стержни
Для сварки высоколегированных сталей, электроды тоже должны содержать легирующие примеси. Прежде всего — в стержне и покрывающем слое. Однородные составы стали с электродными стержнями обеспечивают слаженную работу и образуют прочный шов.
Для сварки аустенитной стали высокого легирования, марки Э-08Х19Н10Г2Б, советуем взять электроды с количеством ферритной фазы не более 5%. Это электроды ЦТ-15.
Их можно сочетать с электродными стержнями ЦТ-15-1. Сформируйте базовый шов с электродами ЦТ-15-1, а следующий, используя ЦТ-15. Проделав эти манипуляции, вы повысите количество ферритной фазы, тем самым усовершенствуете качество соединения.
Обратите внимание на состав электродов. Хорошо, если содержится ниобий. Он регулирует процесс окисления титана. В составе не должно быть высокого содержания кальцита.
Потому что стержни, в которых кальцита много, сгорая, производят углекислый газ. Повышается уровень углерода в стали, такой шов не может быть надежным.
Если найти такие стержни не получается, выберите те, в окислительном покрытии которых содержится кремний. Даже небольшого количества кремния достаточно, чтобы удерживать уровень углеродности в сварочной ванне.
Это могут быть электроды с рутил-карбонатно-фтористым покрытием, марки ОЗЛ-14. Они широко распространены и доступны на полках любого специализирующегося магазина.
Однако, выбирайте стержни без содержания диоксида кремния. Для сварки аустенитной высоколегированной стали подойдут электродные стержни марки ЦТ-22.
Они годятся для поставленной задачи, но имеют очень нежное, легко осыпающееся покрытие. Поэтому будьте осторожны при перевозке и хранении.
Флюсы
Флюсы, в сочетании с проволокой для сварки, вполне могут заменить электроды. Но и их нужно уметь выбирать. Подойдут фторидные флюсы и проволока высокого легирования.
Хорошо подходит флюс марки АНФ-5. Он способен улучшить прочность сварного соединения, так как отлично выполняет защитную функцию.
Следовательно, шов сможет избежать появления трещин, пор. Поэтому его широко применяют в быту и на производстве. Помимо АНФ-5 можно применять другие, на оксидной основе. Их характеристики имеют минимальные отличия.
Флюс марки АН-26 может быть неплохой альтернативой АНФ-5. Он на оксидной основе, содержит минимальное количество кремния, что обеспечит ровное и быстрое формирование шва. Но такую марку лучше использовать при сварке изделий из высоколегированных сталей несложных конструкций.
Высокий шанс окисления титана с алюминием, как следствие – проникание кремния в шов. При таком раскладе соединение быстро растрескается, утратив прочность. Даже идеально подобранная проволока не спасет положение.
Флюс марки АН-292 произведен на базе высокоустойчивых оксидов. С использованием флюса этой марки, получается качественный шов, но есть нюанс.
Необходимо отслеживать состояние водорода, при повышении уровня его содержания, рискуете получить пористость сварного соединения.
Защитный газ
Наряду с электродами и флюсами используют аргон, гелий и углекислоту. Это защитные газы, которые в определенных ситуациях можно смешивать.
Такой метод оправданно распространен среди мастеров. Для сварки высоколегированной стали с применением защитного газа, потребуются электроды из вольфрама. Они хороши тем, что не плавятся даже при самых высоких температурах сварки.
Работу следует выполнять при постоянном токе и обратной полярности. Вариант сварки при прямой полярности возможен, если в металле содержится большое количество алюминия.
Так получится разрушить пленку, которую образуют оксиды. В свою очередь, она мешает образованию шва.
Если при использовании способа сварки с защитным газом замечаете непостоянное горение дуги, можно сочетать газы. Это могут быть аргон с углекислотой или кислородом.
Такое смешение газов обеспечат стабильное горение дуги и способствуют образованию шов ровным и не пористым.
Сам по себе углекислый газ имеет большинство достоинств. Он снижает вероятность пористости шва, а, совместно с аргоном, проявляется максимально. Рекомендуем обязательно испробовать это сочетание на практике. Результат более, чем достойный.
Но, тут есть ложка дегтя. Во время сваривании в углекислоте, высоколегированная сталь разбрызгивается в разы сильнее. В этом главный недостаток такого метода – снижаются антикоррозийные свойства стали.
Помимо этого, происходит появление оксидной пленки, которую сложно снять с поверхности металла. При сварке в 1 слой это несущественно, а вот при многослойной – важный момент. Повторный шов просто не может сформироваться из-за мешающей ему пленки.
В принципе, такая технология достаточна эффективна. Нет нужды тщательно подбирать электроды, флюсы и вникать в их составы. Газ вполне справляется с защитной функцией, позволяет сварить красивый прочный шов.
Заключение
Процесс сварки высоколегированных сталей на практике – вполне посильная задача. Многие неопытные мастера и новички избегают такой работы.
Но на самом деле, только практикой вы сможете добиться приемлемого результата. Самое важное – наладить режим и выбрать подходящие комплектующие.
Приобретайте электроды в проверенных, качественных местах, где соблюдаются все условия хранения. Иначе вы просто выбросите деньги на ветер, получив сырые, непригодные стержни.
То же касается флюсов и газов. Не берите дешевый расходной материал, выбирайте надежного производителя и ответственного продавца. Успешной работы!
Высоколегированная сталь: особенности, маркировка, сварка сталей
Целью внесения легирующих компонентов является изменение физических свойств стали — повышение прочности, противодействие коррозии, повышение гибкости. В зависимости от концентрации легирующих элементов различают три вида — низколегированная (дополнительных компонентов менее 2,5%), среднелегированная (от 2,5 до 10%) и высоколегированная сталь (от 10 до 50%).
Какими основными отличиями обладает высоколегированная сталь? Какие марки высоколегированных сталей существуют? И о чем нужно помнить при проведении сварочных работ? Ниже мы узнаем ответы на эти вопросы.
Основные особенности
Высоколегированная сталь помимо углерода и железа содержит большое количество легирующих добавок (от 10 до 50%). В качестве дополнительных компонентов: хром, никель, кремний, марганец, вольфрам, молибден, ванадий, алюминий, кобальт, титан, а также различные редкоземельные металлы.
Чаще всего в качестве дополнительных компонента выступает хром и никель — остальные компоненты обычно содержатся в небольших количествах. Хотя есть и некоторые исключения: простой пример — аустенитные марки высоколегированных сталей могут содержать марганец в концентрации от 1 до 15%.
Причины внесения легирующих добавок очень простые — они изменяют структуру и физические свойства стального сплава, что позволяет человеку получить металл с нужными свойствами.
Категории
Категории высоколегированных сталей в зависимости от их физических свойств:
- Окалиностойкие (жаростойкие) высоколегированные стали. Основная особенность подобных сплавов — полная устойчивость к умеренно-высоким температурам (до 550 градусов по Цельсию) окружающей среды в ненагруженном состоянии. Иными словами, подобные стали хорошо выдерживают перегрев в течение длительного времени в том случае, если им не нужно держать какой-либо тяжелый вес. Обратите внимание, что помимо высоких температур окалиностойкие стали также хорошо переносят длительное воздействие химических реагентов средней степени токсичности.
- Жаропрочные высоколегированные стали. По названию можно подумать, что жаропрочные и жаростойкие сплавы — это одно и то же, однако это не совсем так. Жаропрочные сплавы выдерживают высокие температуры (до 800 градусов и выше) в состоянии высокой нагрузки, но в течение короткого времени. Иными словами, подобные сплавы выдерживают большой нагрев в течение небольшого срока (тогда как жаростойкие сплавы выдерживают средний нагрев в течение долгого времени). Кратковременная устойчивость также распространяется и на высокотоксичные химические реагенты.
- Антикоррозийные (нержавеющие) стальные сплавы. Обладают полной устойчивостью ко всем основным видам коррозии (поверхностная, кристаллическая, электрохимическая и так далее). Обратите внимание, что в состав подобных сплавов легирующие компоненты равномерно распределяются по всему стальному сплаву, что делает материал равномерно устойчивым ко всем антикоррозийным воздействиям. Почему это так важно? Простой пример: при хромировании формируется только внешнее антикоррозийное покрытие, которое может повреждаться или стираться по естественным причинам — высоколегированные сплавы содержат антикоррозийные добавки по всему металлу, что делает подобные сплавы более устойчивыми.
Применение
Высоколегированные стали нашли свое широкое применение в быту. Из них делают различные детали — для автомобилей (грузовых, легковых, электрических и так далее), кораблей, самолетов, танков. Также высоколегированные стали очень часто используются в строительстве для создания несущих конструкций балочного типа.
Легирующие компоненты в таком случае могут играть множество ролей — они делает материал более жаростойким, они улучшают его антикоррозийные свойства и так далее. Также из высоколегированной стали делают посуду, медицинские инструменты, домашнюю утварь и так далее.
Маркировка легированной стали
Согласно ГОСТ для маркировки легированной стали (низко-, средне- и высоколегированной) используются специальные шифры, которые отображают примерный состав той или иной марки. В техническом смысле шифры имеют вид буквенно-числовой последовательности, которая имеет следующую структуру: XXXYYYZZZ (все символы пишутся слитно и без отступлений). Расшифровка кода следующая:
- XXX — специальный буквенный префикс, отображает тип стального сплава (расшифровку мы дадим ниже).
- YYY — этот фрагмент представляет собой число, которое отображает количество углерода в сплаве. Если стоит два числа — это значит, что содержание углерода выражается в сотых долях процента. Если стоит одно число — содержание углерода в десятых долях процента.
- ZZZ — буквенно-числовая последовательность, которая отображает легирующие компоненты и их приблизительное количество (расшифровку мы тоже дадим ниже).
Расшифровка
Давайте теперь разберемся с префиксом XXX — этот код указывает на особые свойства стали. В техническом смысле он представляет собой одну или несколько букв (чаще всего одну), которая обозначает то или иное свойство. Префикс XXX практически вышел из употребления и на практике он используется редко. Основные значения, которые может принимать префикс, представлены в таблице ниже:
Символ префикса XXX | Расшифровка префикса |
Э | Электротехническая сталь |
А | Автоматная сталь |
Р | Режущая сталь |
Л | Сталь, полученная методом литья |
Последовательность ZZZ показывает наличие в стальном сплаве дополнительных легирующих компонентов. Если какой-либо компонент в стальном сплаве содержится в концентрации более 1%, то в таком случае рядом с буквой указывается процентное содержание этого элемента. Буквы расшифровываются следующим образом:
Значение ZZZ | Расшифровка |
Х | Хром |
Н | Никель |
С | Кремний |
В | Вольфрам |
М | Молибден |
Ф | Ванадий |
Ю | Алюминий |
Г | Марганец |
К | Кобальт |
Т | Титан |
Все это звучит достаточно устрашающе, однако ничего сложного в этом нет. Давайте попробуем расшифровать несколько популярных марок высоколегированной стали:
- А10Х13СЮ — автоматная сталь, которая содержит 0,10% углерода, 13% хрома, а также кремний и алюминий в концентрации менее 1%
- Л12Х17 — литая сталь, которая содержит 0,12% углерода и 17% хрома.
- 12Х18Н12Т — сталь, которая содержит 0,12% углерода, 18% хрома, 12% никеля, а также титан в концентрации менее 1%.
Виды и марки высоколегированной стали
Категория сталей | Основные особенности | Марки соответствующей категории |
Мартенситные марки | Содержат углерод в приличных количествах (до 0,7%), содержание хрома среднее (от 8 до 19%), в незначительных количествах содержат кремний и/или марганец | 07Х16Н4Б, 13Х11Н2В2МФ, 30Х13 |
Ферритные марки | Низкое содержание углерода (до 0,15%), высокое или среднее содержание хрома (от 12 до 30%), в очень небольших количествах может содержать кремний, титан и/или марганец | 12Х17, 08Х13, 15Х25Т |
Аустенитные марки | Низкое содержание углерода (до 0,2%), умеренное или среднее содержание хрома (от 10 до 18%), никель в различных концентрациях (от 3 до 25%), марганец в различных концентрациях (от 1 до 14%), в небольших количествах может содержаться кремний, азот | 20Х25Н20С2, 12Х25Н16Г7АР |
Композитные мартенситно-ферритные марки | Низкое содержание углерода (до 0,2%), большое или среднее содержание хрома (от 10 до 16%), в небольших количествах — ванадий, марганец, кремний | 12Х13, 15Х12ВНМФ |
Композитные аустенитно-ферритные марки | Низкое содержание углерода (не более 0,18%), высокое содержание хрома (в среднем 23%), марганец в различных концентрациях (есть сплавы как с низким содержанием 0,5%, так и с высоким содержанием 9%), возможны небольшие вкрапления кремния, алюминия, титана | 15Х18Н12С4ТЮ, 12Х21Н5Т |
Композитные аустенитно-мартенситные марки | Углерод в различных концентрациях (от 0,1 до 1%), высокое содержание хрома (в среднем около 16%), в небольших концентрациях — алюминий, кремний, титан | 08Х17Н6Т, 09Х15Н8Ю1 |
Сварка высоколегированных сталей
Сварка высоколегированных сталей отличается от сварки обычных сортов стали. Дело все в том, что большинство высоколегированные сплавы обладают повышенной теплопроводностью и увеличенным линейным расширением металла, что вынуждает вносить в процедуру сварки ряд важных изменений:
- Повышенная теплопроводность приводит к тому, что на поверхности металла собирается лишнее тепло, которое значительно легче проплавяет сталь в глубину. Поэтому при проведении сварки нужно снизить величину сварочного тока на 15-25%, чтобы избежать повреждения детали.
- Из-за увеличенного коэффициента расширения металла при нагреве также происходит более серьезная деформация металла. В случае работы с объемными жесткими объемными конструкциями также увеличивается риск образования трещин. Поэтому при осуществлении сварки нужно соблюдать повышенную осторожность.
Советы
Помимо этого существует и масса других особенностей сварки высоколегированных сталей. При работе со сплавами, которые не содержат титан или ниобий, нужно помнить о температуре нагрева сварочной дуги. При нагреве металла до температуры выше 500 градусов такие сплавы теряют свои антикоррозийные свойства.
Если же во время сварки вы по какой-либо причине довели фрагмент металла до температуры выше 500 градусов, то в таком случае необходимо выполнить закалку либо нагреть фрагмент до температуры 850 градусов. В таком случае легирующие скопления растворяются и равномерно распределятся по всему сплаву.
Из-за наличия легирующих добавок значительно повышается риск растрескивания стали во время сварки. Чтобы этого избежать, нужно использовать электроды с покрытием на основе молибдена, марганца или вольфрама. В случае применения таких инструментов место шва приобретает мелкозернистую структуру, которая препятствует образованию трещин.
Также снижает риск растрескивания шва предварительный нагрев стали до температуры 100-300 градусов по Цельсию. В таком случае тепло будет равномерно распределяться по всей толщине металла и препятствовать образованию трещин.
Стальные сплавы с содержанием углерода в концентрации менее 0,12% перед сваркой нужно обязательно нагревать. Если этого не сделать, то с большой долей вероятности после сварки на месте шва образуются трещины и коррозионные наросты.
Заключение
Подведем итоги. Высоколегированная сталь — это особая разновидность стального сплава, в котором содержится большое количество дополнительных компонентов. Общее количество легирующих добавок должно составлять не менее 10%. Чаще всего в качестве подобных добавок выступают хром, никель и марганец.
Остальные элементы (кремний, титан, алюминий, вольфрам) обычно входят в состав высоколегированных сталей в небольших количествах. Легирующие компоненты позволяют изменить физические и химические свойства стального сплава. Они делают материал более жаростойким, упругим, устойчивым к коррозии.
Из высоколегированной стали делают различные детали: для авто и пароходов, элементы несущих конструкций, посуду, медицинское оборудование.
Высоколегированная сталь проходит специальную маркировку согласно государственным требованиям ГОСТ. Маркировка представляет собой специальный код, которые имеет вид буквенно-числового значения.
Для удобства высоколегированная сталь разбивается на 6 классов — мартенситные сплавы, ферритные, аустенитные и 3 композитных сплава. Сварка высоколегированных сталей должна выполняться с учетом некоторых специальных правил. Сварку следует проводить аккуратно, чтобы избежать образования трещин.
Используемая литература и источники:
Сварка углеродистых и легированных сталей
Сварка низколегированных и среднелегированных конструкционных сталей
Свариваемость таких сталей зависит от содержания углерода и легирующих компонентов и ухудшается с ростом содержания углерда и легирующих компонентов. Стали кремнемарганцевой группы 15ГС, 18Г2С и 25Г2С сваривают электродами типа Э60А марки УОНИ-13/65. Перед сваркой кромки тщательно зачищают от грязи, ржавчины и окалины.
Сварку выполняют предельно короткой дугой. Изделие перед сваркой подогревают до температуры 200 С, электроды перед сваркой прокаливают при 400°С в течение одного часа.
Кремнемарганцемедистые стали 10Г2СД, 10ХГСНД, 15ХСНД и 12ХГ сваривают электродами типа Э50А марки УОНИ-13/55. Изделие перед сваркой не подогревают.
Сварка низколегированных и среднелегированных конструкционных сталей
Особенности сварки высоколегированных сталей
К высоколегированным относят стали, суммарный состав легирующих элементов в которых составляет не менее 10%, при содержании одного из них не менее 8%. При этом содержание железа должно составлять не менее 45%. В основном это стали, обладающие повышенной коррозионной стойкостью или жаростойкостью. Легирование сталей выполняют углеродом, марганцем, кремнием, молибденом, алюминием, ванадием, вольфрамом, титаном и ниобием, бором, медью, серой и фосфором. Введение легирующих элементов меняет физические и химические особенности стали.
Так, углерод способствует повышению прочности стали и снижению ее пластичности. Окисление углерода в процессе сварки способствует появлению пор. Кремний является раскислителем и содержание его в стали более 1% приводит к снижению свариваемости. Хром также снижает свариваемость, способствуя созданию тугоплавких окислов. Никель повышает прочность и пластичность сварочного шва, не снижая свариваемость стали. Молибден увеличивает прочность и ударную вязкость стали, ухудшая свариваемость. Ванадий в процессе сварочных работ сильно окисляется, поэтому его содержание в стали предусматривает введение раскислителей. Вольфрам тоже сильно окисляется при повышенных температурах, ухудшает свариваемость стали.
Титан и ниобий предотвращают межкристаллитную коррозию. Бор повышает прочность, но затрудняет свариваемость. Медь повышает прочность, ударную вязкость и коррозийную стойкость стали, но снижает ее свариваемость. Повышенное содержание в стали серы приводит к образованию горячих трещин, а фосфор способствует образованию холодных трещин.
Содержание тех или иных легирующих элементов определяют по маркировке стали. Первые две цифры в маркировке означают содержание углерода в сотых долях процента; легирующие элементы обозначают буквенными символами, а стоящие за ними цифры указывают на примерное содержание этих элементов, при этом единицу и меньше не ставят. Символ «А», установленный в конце маркировки, указывает, что сталь высококачественная, с пониженным содержанием серы и фосфора. Наиболее широкое применение получили коррозионно-стойкие хромоникелевые стали (12Х18Н10Т, 10Х23Н18 и некоторые другие).
Из вышесказанного видно, что, как правило, легирование стали приводит к снижению ее свариваемости, а первостепенную роль при этом играет углерод. Поэтому доля влияния каждого легирующего элемента может быть отнесена к доле влияния углерода. Повышенное содержание углерода и легирующих элементов способствует увеличению склонности стали к резкой закалке в пределах термического цикла, происходящего во время сварки. В результате этого околошовная зона оказывается резко закаленной и теряет свою пластичность.
Поэтому при сварочных процессах высоколегированных сталей, происходящих в зоне плавления металла и околошовной области, возникают горячие трещины и межкристаллитная коррозия, проявляющаяся в процессе эксплуатации. Основной причиной появления трещин является образование крупнозернистой структуры в процессе кристаллизации и значительные остаточные напряжения, полученные при затвердевании металла. Легирование влияет на вязкость металла и коэффициент поверхностного натяжения, поэтому у большинства высоколегированных сталей сварочный шов формируется хуже, чем у низколегированных и даже углеродистых сталей.
Межкристаллитная коррозия характерна для всех видов высоколегированных сталей, имеющих высокое содержание хрома. Под действием нагрева образовавшиеся карбиды хрома выпадают по границам зерен, снижая их антикоррозийные свойства.
Препятствует образованию карбидов хрома легирование стали титаном, ниобием, танталом, цирконием и ванадием. Положительное влияние на качество сварочного шва оказывает дополнительное легирование сварочной проволоки хромом, кремнием, алюминием, ванадием, молибденом и бором.
Для сварки высоколегированных сталей используют как ручную дуговую, так механизированную сварку под флюсом и в среде защитных газов. Сварка выполняется при минимальном тепловложении с использованием термообработки и применением дополнительного охлаждения. Введение легирующих элементов меняет и технологические особенности стали. Так, система легирования снижает теплопроводность стали и повышает ее электрическое сопротивление. Это оказывает влияние на скорость и глубину плавления металла, что требует меньшего вложения энергии, и увеличения скорости подачи сварочной проволоки.
Ручную дуговую сварку высоколегированных сталей выполняют при пониженных тока обратной полярности. Сварку ведут короткой дугой ниточными валиками без поперечных колебаний.
Проволока, применяемая для изготовления электродов, должна соответствовать марке стали с учетом ее свариваемости. Защитное покрытие электродов должно иметь состав, снижающий отрицательное действие повышенной температуры. К примеру, для сварки кислотостойкой стали 12X18HI0T электроды типа Э-04Х20Н9 (марки ЦЛ-11) препятствуют образования горячих трещин и межкристаллитной коррозии. Предварительный и сопутствующий подогрев снижает опасность возникновения трещин. Для защиты сварочной ванны используют инертный газ или аргон и его смеси с гелием, кислородом и углекислым газом.
Сварку в среде углекислого газа можно выполнять только в случаях, когда отсутствует опасность возникновения межкристаллитной коррозии. Сварка плавящимся электродом выполняется при значениях тока, обеспечивающих струйный перенос электродного металла.
При сварке возникает опасность коробления и остаточных сварочных напряжений. Поэтому после сварки часто возникает необходимость в термообработке.
Сварка среднелегированных и высоколегированных сталей. Сварка
Сварка среднелегированных и высоколегированных сталей
Сваривание этих видов сталей затруднено по ряду причин. В процессе сварки происходит частичное выгорание легирующих примесей и углерода. Вследствие малой теплопроводности возможен перегрев свариваемого металла. Эти стали отличает повышенная склонность к образованию закалочных структур, а больший, чем у низкоуглеродистых сталей, коэффициент линейного расширения может вызвать значительные деформации и напряжения, связанные с тепловым влиянием дуги. При этом, чем больше в стали углерода и легирующих примесей, тем сильнее проявляются эти свойства.
Для устранения влияния перечисленных причин на качество сварного соединения рекомендуется:
1. Тщательно подготавливать изделие под сварку.
2. Вести сварку при больших скоростях с малой погонной энергией, чтобы не допускать перегрева металла.
3. Применять термическую обработку для предупреждения образования закалочных структур и снижения внутренних напряжений.
4. Применять легирование металла шва через электродную проволоку и покрытие с целью восполнения выгорающих в процессе сварки примесей.
Изготовление электродов для сварки высоколегированных сталей осуществляется из высоколегированной сварочной проволоки. Для них применяют покрытие типа Б. Обозначения типов электродов состоят из индекса Э и следующих за ним цифр и букв. Две или три цифры, следующие за индексом, указывают на количество углерода в металле шва в сотых долях процента. Следующие затем буквы и цифры указывают примерный химический состав металла. Сварку производят постоянным током обратной полярности, сварочный ток выбирают из расчета 25–40 А на 1 мм диаметра электрода. Длина дуги должна быть возможно короткой. Рекомендуется многослойная сварка малого сечения при малой погонной энергии.
Хромистые стали относятся к группе нержавеющих коррозионно-стойких и кислотостойких сталей. По содержанию хрома они делятся на среднелегированные (до 14 % хрома) и высоколегированные (14–30 % хрома). Во время сварки хромистых сталей возникают следующие затруднения. Хром при температуре 600–900 °C легко вступает во взаимодействие с углеродом, образуя карбиды, которые, располагаясь в толще металла, вызывают межкристаллитную коррозию, снижающую механические свойства стали.
Чем выше содержание углерода в стали, тем активнее образуются карбидные соединения. Кроме того, хромистые стали обладают способностью к самозакаливанию (при охлаждении на воздухе), вследствие чего при сварке металл шва и околошовной зоны получает повышенную твердость и хрупкость. Возникающие при этом внутренние напряжения повышают опасность возникновения трещин в металле шва. Усиленное окисление хрома и образование густых и тугоплавких оксидов также являются серьезными препятствиями при сварке хромистых сталей.
Среднелегированные хромистые стали, содержащие углерода до 2 %, относятся к мартенситному классу. Они свариваются удовлетворительно, но требуют подогрева до 200–300 °C и последующей термической обработки. Высоколегированные хромистые стали ферритного класса сваривают с предварительным подогревом до 300–400 °C.
После сварки для снятия внутренних напряжений и восстановления первоначальных физико-механических свойств изделие подвергают высокому отпуску – нагреву до 650–750 °C и медленному охлаждению.
Электроды изготовляют из сварочной проволоки марок СВ01Х19Н9, СВ–04Х19Н9 и Св–07Х25Н13 с покрытием, содержащим плавиковый шпат и оксид марганца. Это обеспечивает получение жидкого шлака, хорошо растворяющего окислы хрома. Рекомендуются покрытия типов ПЛ–2, ЦТ–2 и УОНИИ–13/НЖ.
Хромистые стали, как и большинство легированных сталей, обладают малой теплопроводностью и легко подвергаются перегреву. Поэтому сварку их производят постоянным током обратной полярности при малых сварочных токах из расчета 25–30 А на 1 мм диаметра электрода.
Высоколегированные хромоникелевые аустенитные стали обладают рядом важных физико-химических и механических свойств: коррозионной стойкостью, кислотоупорностью, теплостойкостью, вязкостью, стойкостью против образования окалин. Важным качеством этих сталей является хорошая свариваемость.
Хромоникелевые стали марок 08Х18Н10 и 12Х18Н9 при нагреве до температуры 600–800 °C теряют антикоррозионную стойкость. Выделение карбидов хрома по границам зерен приводит к межкристаллитной коррозии стали. Поэтому сварку выполняют постоянным током обратной полярности при малых сварочных токах, сокращая продолжительность нагрева металла. Принимают также меры по отводу тепла при помощи медных подкладок или охлаждения. После сварки рекомендуется подвергнуть изделие нагреву до температуры 850–1100 °C и закалке в воде или на воздухе (для малых толщин металла).
Хромоникелевые стали марок 12Х18Н9Т и 08Х18Н12Б содержат титан и ниобий, которые, являясь более сильными карбидообразователями, связывают углерод стали, предупреждая образование карбидов хрома. Поэтому эти стали после сварки не подвергают термообработке.
Для сварки хромоникелевых сталей применяют электроды типов ОЗЛ–7, ОЗЛ–8, ЦТ–1 и ЦТ–7. Рекомендуются электроды из сварочной проволоки типа Св–01Х19Н9, Св–06Х19Н9Т или Св–04Х19Н9С2 с покрытием ЦЛ–2, ЦЛ–4 (содержат 35,5 % мрамора, 41 % плавикового шпата, 8,5 % ферромарганца и 15 % молибдена), УОНИИ–13/НЖ и др.
Тонколистовую сталь марки 12Х18Н19Т следует сваривать аргонодуговой сваркой, так как при сварке качественными электродами или под флюсом происходит науглероживание металла шва. Это снижает стойкость стали против межкристаллитной коррозии. Хромоникелевые аустенитные стали сваривают газовой сваркой при толщине металла не более 3 мм нормальным пламенем удельной мощности 75 л/(ч?мм). Присадочным материалом служат проволоки марок СВ01Х19Н9, СВ–04Х19Н9С2, Св–06Х19Н9Т и Св–07Х19Н10Б. Сварку следует вести быстро. Флюсом служат смесь буры (50 %) и борной кислоты (50 %) или плавиковый шпат (80 %) и двуоксид кремния (20 %).
Высоколегированная марганцовистая сталь, обладающая большой твердостью и износостойкостью, содержит 13–18 % марганца и 1–1,3 % углерода. Она применяется для изготовления зубьев экскаваторов, шеек камнедробилок и других рабочих органов дорожных и строительных машин, работающих при ударных нагрузках и на истирание. Для сварки применяют электроды со стержнями из углеродистой проволоки марок Св–08А, Св–08ГА, Св–10Г2 с покрытием, которое применяется для наплавочных электродов марки ОМГ, содержащим 23 % мрамора, 15 % плавикового шпата, 60 % феррохрома, 2 % графита, все компоненты замешаны на жидком стекле (30 % к общей массе сухих компонентов).
Рекомендуются покрытия, применяемые для наплавочных электродов типа ОЗН (45–49 % мрамора, 15–18 % плавикового шпата, 26–33 % ферромарганца, 3 % алюминия, 4 % поташа), все компоненты замешаны на жидком стекле.
Применяют также стержни электродов из проволоки марок СВ04Х19Н9 и Св–07Х25Н13 с покрытием ЦЛ–2, состоящим из 44 % мрамора, 51 % плавикового шпата, 5 % ферромарганца, замешанных на жидком стекле (20–22 % к массе сухих компонентов). Хорошие результаты дает также покрытие УОНИИ–13/НЖ. Сварка выполняется постоянным током обратной полярности короткими участками. Сварочный ток определяется из расчета 30–35 А на 1 мм диаметра электрода. Для получения шва повышенной прочности и износостойкости следует проковать сварной шов в горячем состоянии. При этом металл шва нужно интенсивно охлаждать холодной водой.
Молибденовые, хромомолибденовые и хромомолибденованадиевые стали относятся к теплоустойчивым сталям перлитного класса. Эти стали применяют при изготовлении сварных паровых котлов, турбин, различной аппаратуры в химической и нефтяной промышленности, для работы при высоких температурах и давлениях. Эти стали свариваются удовлетворительно при выполнении установленных технологических приемов: предварительного подогрева до 200–300 °C и последующего отжига при температуре 680–780 °C или отпуска при температуре 650 °C. Температура окружающего воздуха должна быть не ниже 4–5 °C. Сварка выполняется постоянным током обратной полярности. Рекомендуются электроды типов ОЗС–11, ТМЛ–1,ТМЛ–2, ТМЛ–3, ЦЛ–38, ЦЛ–39 и др. Для автоматической и полуавтоматической сварки применяют сварочную проволоку марок Св–08ХМ, Св–10Х5М и Св–18ХМА. При сварке в углекислом газе применяют предварительный и сопутствующий нагрев до температуры 250–300 °C, присадочную проволоку типа Св–10ХГ2СМА. После сварки рекомендуется термообработка.
Газовая сварка выполняется нормальным пламенем при удельной мощности 100 л/(чмм). Присадочный материал – сварочная проволока типов Св–08ХНМ, Св–18ХМА и Св–08ХМ. Рекомендуется предварительный подогрев до 250–300 °C, а после, сварки – термообработка (нормализация от температуры 900–950 °C).
Высоколегированные стали с особыми свойствами успешно сваривают в защитных газах. Режимы сварки подобны тем, которые используются при ручной сварке и под флюсом (ток обратной полярности, малые токи, термообработка). Электродную проволоку и флюсы применяют с учетом повышенного выгорания марганца, титана, ниобия, молибдена, никеля, т. е. элементов, обеспечивающих сохранение свойств свариваемых сталей.
Данный текст является ознакомительным фрагментом.Читать книгу целиком
Поделитесь на страничкеОСОБЕННОСТИ СВАРКИ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ
СВАРОЧНЫЕ РАБОТЫ
К высоколегированным относят стали, суммарный состав легирующих элементов в которых составляет не менее 10%, при содержании одного из них не менее 8%. При этом содержание железа должно составлять не менее 45%. В основном это стали, обладающие повышенной коррозионной стойкостью или жаростойкостью. Легирование сталей выполняют углеродом, марганцем, кремнием, молибденом, алюминием, ванадием, вольфрамом, титаном и ниобием, бором, медью, серой и фосфором. Введение легирующих элементов меняет физические и химические особенности стали.
Так, углерод способствует повышению прочности стали и снижению ее пластичности. Окисление углерода в процессе сварки способствует появлению пор. Кремний является раскислителем и содержание его в стали более 1 % приводит к снижению свариваемости. Хром также снижает свариваемость, помогая созданию тугоплавких окислов. Никель повышает прочность и пластичность сварочного шва, не снижая свариваемость стали. Молибден увеличивает прочность и ударную вязкость стали, ухудшая свариваемость. Ванадий в процессе сварочных работ сильно окисляется, поэтому его содержание в стали предусматривает введение раскислитеЛей. Вольфрам тоже сильно окисляется при повышенных температурах, ухудшает свариваемость стали.
Титан и ниобий предотвращают межкристаллитную коррозию. Вор повышает прочность, но затрудняет свариваемость. Медь повышает прочность, ударную вязкость и коррозийную стойкость стали, но снижает ее свариваемость. Повышенное содержание в стали серы приводит к образованию горячих трещин, а фосфор способствует образованию холодных трещин.
Содержание тех или иных легирующих элементов определяют по маркировке стали. Первые две цифры в маркировке означают содержание углерода в сотых долях процента; легирующие элементы обозначают буквенными символами, а стоящие за ними цифры указывают на примерное содержание этих элементов, при этом единицу и меньше не ставят. Символ «А», установленный в конце маркировки, указывает, что сталь высококачественная, с пониженным содержанием серы и фосфора. Наиболее широкое применение получили коррозионно-стойкие хромоникелевые стали (12X18Н1 ОТ, 10Х23Н18 и некоторые другие).
Из вышесказанного видно, что, как правило, легирование стали приводит к снижению ее свариваемости, а первостепенную роль при этом играет углерод. Поэтому доля влияния каждого легирующего элемента может быть отнесена к доле влияния углерода. Повышенное содержание углерода и легирующих элементов способствует увеличению склонности стали к резкой закалке в пределах термического цикла, происходящего, во время сварки. В результате этого околошовная зона оказывается резко закаленной и теряет свою пластичность.
Поэтому при сварочных процессах высоколегированных сталей, происходящих в зоне плавления металла и околошовной области, возникают горячие трещины и межкристаллитная коррозия, проявляющаяся в процессе эксплуатации. Основной причиной появления трещин является образование крупнозернистой структуры в процессе кристаллизации и значительные остаточные напряжения, полученные при затвердевании металла. Легирование влияет на вязкость металла и коэффициент поверхностного натяжения, поэтому у большинства высоколегированных сталей сварочный шов формируется хуже, чем у низколегированных и даже углеродистых сталей.
Межкристаллитная коррозия характерна для всех видов высоколегированных сталей, имеющих высокое содержание хрома. Под действием нагрева образовавшиеся карбиды хрома выпадают по границам зерен, снижая их антикоррозийные свойства.
Препятствует образованию карбидов хрома легирование стали титаном, ниобием, танталом, цирконием и ванадием. Положительное влияние на качество сварочного шва оказывает дополнительное легирование сварочной проволоки хромом, кремнием, алюминием, ванадием, молибденом и бором.
Для сварки высоколегированных сталей используют как ручную дуговую, так и механизированную сварку под флюсом и в среде защитных газов. Сварка выполняется при минимальном тепловложении с использованием термообработки и применением дополнительного охлаждения.
Введение легирующих элементов меняет и технологические особенности стали. Так, система легирования снижает теплопроводность стали и повышает ее электрическое сопротивление. Это оказывает влияние на скорость и глубину плавления металла, что требует меньшего вложения энергии и увеличения скорости подачи сварочной проволоки.
Ручную дуговую сварку высоколегированных сталей выполняют при пониженных токах обратной полярности.
Сварку ведут короткой дугой ниточными валиками без поперечных колебаний.
Проволока, применяемая для изготовления электродов, должна соответствовать марке стали с учетом ее свариваемости. Защитное покрытие электродов должно иметь состав, снижающий отрицательное действие повышенной температуры. К примеру, для сварки кислотостойкой стали 12Х18Н10Т электроды типа Э-Ф4Х20Н9 (марки ЦЛ-1І) препятствуют образования горячих трещин и межкристаллитной коррозии. Предварительный и сопутствующий подогрев снижает опасность возникновения трещин.
Для защиты сварочной ваНны используют инертный газ аргон или его смеси с гелием, кислородом и углекислым газом.
Сварку в среде углекислого газа можно выполнять только в случаях, когда отсутствует опасность возникновения межкристаллитной коррозии. Сварка плавящимся электродом выполняется при значениях тока, обеспечивающих струйный перекос электродного металла.
При сварке возникает опасность коробления и остаточных сварочных напряжений. Поэтому после сварки часто требуется термообработка.
Любой сварочный аппарат это электрический прибор, который получая ток из сети, преобразует его до нужных параметров и выдает электрическую дугу постоянного тока с высокой его силой (сто – двести ампер). …
Сварочные работы могут стать причиной пожара, если не выполняются элементарные требования противопожарной защиты. Причиной пожара могут стать искры и капли расплавленного металла, небрежное обращение с огнем сварочной горелки, наличие на …
Суть кислородной резки заключается в сгорании разрезаемого металла под воздействием струи кислорода и удалении из разреза шлаков, образованием которых неизбежно сопровождается этот процесс (рис. 95). Рис. 95. Схема выполнения газовой …
Содержание углерода, классификации сталей и легированные стали
Как правило, углерод является наиболее важным коммерческим стальным сплавом. Увеличение содержания углерода увеличивает твердость и прочность, а также улучшает прокаливаемость. Но углерод также увеличивает хрупкость и снижает свариваемость из-за его тенденции к образованию мартенсита. Это означает, что содержание углерода может быть как благословением, так и проклятием, когда дело касается товарной стали.
И хотя есть стали с содержанием углерода до 2 процентов, они являются исключением.Большая часть стали содержит менее 0,35 процента углерода. Для сравнения, имейте в виду, что это 35/100 от 1 процента.
Теперь любая сталь с содержанием углерода от 0,35 до 1,86 процента может быть упрочнена с использованием цикла термо-закалка-отпуск. Большинство коммерческих сталей подразделяются на одну из трех групп:
- Простые углеродистые стали
- Низколегированные стали
- Высоколегированные стали
Простые углеродистые стали
Эти стали обычно представляют собой железо с содержанием углерода менее 1 процента, плюс небольшое количество марганца, фосфора, серы и кремния.Свариваемость и другие характеристики этих сталей в первую очередь зависят от содержания углерода, хотя легирующие и остаточные элементы оказывают незначительное влияние.
Обычные углеродистые стали подразделяются на четыре группы:
- Низкие
- Средние
- Высокие
- Очень высокие
Низкие . Часто называемые мягкими сталями, низкоуглеродистые стали содержат менее 0,30 процента углерода и являются наиболее часто используемыми марками. Они хорошо обрабатывают и сваривают и более пластичны, чем стали с более высоким содержанием углерода.
Средний . Среднеуглеродистые стали содержат от 0,30 до 0,45 процента углерода. Повышенное содержание углерода означает повышение твердости и прочности на разрыв, снижение пластичности и более сложную обработку.
Высокая . Эти стали с содержанием углерода от 0,45 до 0,75 процента могут быть трудными для сварки. Предварительный нагрев, последующий нагрев (для контроля скорости охлаждения), а иногда даже нагрев во время сварки становятся необходимыми для получения приемлемых сварных швов и контроля механических свойств стали после сварки.
Очень высокий . Высокоуглеродистые стали с содержанием углерода до 1,50% используются для изготовления изделий из твердой стали, таких как металлорежущие инструменты и пружины грузовых автомобилей. Как и высокоуглеродистые стали, они требуют термической обработки до, во время и после сварки для сохранения своих механических свойств.
Низколегированные стали
Когда эти стали предназначены для сварки, их содержание углерода обычно ниже 0,25 процента и часто ниже 0,15 процента. Типичные сплавы включают никель, хром, молибден, марганец и кремний, которые повышают прочность при комнатной температуре и повышают ударную вязкость при низких температурах.
Эти сплавы в правильном сочетании могут улучшить коррозионную стойкость и повлиять на реакцию стали на термическую обработку. Но добавленные сплавы также могут отрицательно влиять на склонность к растрескиванию, поэтому рекомендуется использовать с ними процессы сварки с низким содержанием водорода. Также может потребоваться предварительный нагрев. Это можно определить с помощью формулы эквивалента углерода, которую мы рассмотрим в одном из следующих выпусков.
Высоколегированные стали
По большей части мы говорим о нержавеющей стали, наиболее важной коммерческой высоколегированной стали.Нержавеющие стали содержат не менее 12 процентов хрома, и многие из них имеют высокое содержание никеля. Три основных типа нержавеющей стали:
- Аустенитная
- Ферритная
- Мартенситная
Мартенситная нержавеющая сталь составляет марки столовых приборов. Они имеют наименьшее количество хрома, обладают высокой способностью к закалке и требуют как предварительного, так и последующего нагрева при сварке для предотвращения растрескивания в зоне термического влияния (HAZ).
Ферритные нержавеющие стали содержат от 12 до 27 процентов хрома с небольшими количествами аустенитообразующих сплавов.
Аустенитная нержавеющая сталь обеспечивает отличную свариваемость, но аустенит нестабилен при комнатной температуре. Следовательно, для стабилизации аустенита необходимо добавлять специальные сплавы. Наиболее важным стабилизатором аустенита является никель, а другие включают углерод, марганец и азот.
Специальные свойства, включая коррозионную стойкость, стойкость к окислению и прочность при высоких температурах, могут быть приданы аустенитным нержавеющим сталям путем добавления определенных сплавов, таких как хром, никель, молибден, азот, титан и колумбий.И хотя углерод может повысить прочность при высоких температурах, он также может снизить коррозионную стойкость, образуя соединение с хромом. Важно отметить, что аустенитные сплавы нельзя упрочнить термической обработкой. Это означает, что они не затвердевают в зоне термического влияния сварки.
* Нержавеющие стали всегда имеют высокое содержание хрома, часто значительное количество никеля, а иногда содержат молибден и другие элементы. Нержавеющие стали обозначаются трехзначным числом, начинающимся с 2, 3, 4 или 5. Рисунок 1 |
Системы классификации сталей
Прежде чем мы рассмотрим несколько распространенных систем классификации сталей, давайте рассмотрим еще один высокоуглеродистый металл — чугун. Содержание углерода в чугуне составляет 2,1 процента и более. Существует четыре основных типа чугуна:
- Серый чугун , который относительно мягкий. Он легко обрабатывается и сваривается, и вы найдете его используемым для блоков цилиндров двигателя, труб и конструкций станков.
- Белый чугун , твердый, хрупкий и несвариваемый. Его прочность на сжатие составляет более 200 000 фунтов на квадратный дюйм (PSI), а после отжига он становится ковким чугунным литьем.
- Ковкий чугун , отожженный белый чугун. Его можно сваривать, подвергать механической обработке, он пластичный, обладает хорошей прочностью и ударопрочностью.
- Ковкий чугун , который иногда называют чугуном с шаровидным графитом или шаровидным графитом.Он получил такое название, потому что его углерод имеет форму маленьких сфер, а не чешуек. Это делает его одновременно пластичным и пластичным. Он также поддается сварке.
Теперь давайте взглянем на типичную систему классификации стали (см. Рисунок 1 ). И Общество автомобильных инженеров (SAE), и Американский институт черной металлургии (AISI) используют практически идентичные системы. Оба основаны на четырехзначной системе, где первое число обычно обозначает основной тип стали, а первые два числа вместе указывают серию в пределах основной группы сплавов.
Имейте в виду, что в группе основных сплавов может быть несколько серий, в зависимости от количества основных легирующих элементов. Последние две или три цифры относятся к приблизительному допустимому диапазону содержания углерода в баллах (сотых долях процента).
Эти системы классификации могут стать довольно сложными, и рисунок 1 является лишь основным представлением. Обязательно ссылайтесь на самые последние публикации AISI и SAE за последними изменениями.
Это обзор некоторых основ взаимосвязи железа, углеродистой стали и ее влияния на сварку и металлические сплавы.В следующий раз мы рассмотрим закалку и способы сделать металлы прочнее. Мы также рассмотрим влияние некоторых ключевых легирующих элементов и влияние сварки на металлургию.
.Что такое низколегированная сталь
Знание типа используемой низколегированной стали и подбор подходящего присадочного металла имеет решающее значение для обеспечения целостности сварного шва.
Благодаря добавлению определенных сплавов низколегированные стали обладают точным химическим составом и обеспечивают лучшие механические свойства, чем многие обычные мягкие или углеродистые стали. Эти сплавы обычно составляют от 1 до 5 процентов от содержания стали и добавляются в зависимости от их способности обеспечивать очень специфический атрибут.Например, добавление молибдена улучшает прочность материала; никель добавляет прочности; а хром увеличивает термостойкость, твердость и коррозионную стойкость. Марганец и кремний, другие распространенные легирующие элементы, обладают отличными способностями к раскислению.
К счастью, несмотря на добавление этих элементов, низколегированные стали не обязательно трудно сваривать. Тем не менее, точное знание того, какой тип низколегированной стали у вас есть, имеет решающее значение для достижения хорошей целостности сварного шва, как и правильный выбор присадочного металла.
Общие области применения низколегированной стали
Первый шаг к пониманию низколегированной стали — это узнать о ее распространенных применениях, которые сильно различаются во многих отраслях. Области применения низколегированной стали варьируются от военной техники, землеройного и строительного оборудования и судов до трубопроводов повышенной проходимости, сосудов и трубопроводов под давлением, нефтяных буровых платформ и конструкционной стали.
Несколько распространенных групп низколегированных сталей, начиная со сталей HY 80, HY 90 и HY 100, используются для строительства корпусов судов, подводных лодок, мостов и внедорожной техники.Эти низколегированные стали содержат никель, молибден и хром, которые повышают свариваемость материала, ударную вязкость и предел текучести. При сварке этих низколегированных сталей предварительный и последующий нагрев обычно не требуется. Всегда обращайтесь к процедуре сварки, чтобы определить требования.
Другой тип низколегированной стали — высокопрочная, низколегированная (HSLA) — отличается от других низколегированных марок тем, что каждый тип был создан для удовлетворения конкретных механических требований, а не определенного химического состава.Применения HSLA включают военные корабли, конструкционную сталь и другие, известные своей прочностью.
Разработанные для обеспечения прочности, вязкости при низких температурах и пластичности, стали ASTM A514, A517 и T1 закалены и отпущены и используются в таких областях, как производство тяжелого оборудования, изготовление котлов и сосудов высокого давления.
Погодостойкие стали, такие как ASTM A242, A588 и A709 Grade 50W, используют определенные сплавы для создания защитного, коррозионно-стойкого слоя. Этот слой также придает обветренный вид готовой стали и впервые был представлен как COR-TEN®.Износостойкая сталь популярна в произведениях искусства, в мостах, а также в качестве облицовочного материала зданий для достижения особого эстетического вида.
Поиск совпадения присадочного металла
Присадочные металлы, используемые для сварки низколегированных сталей (независимо от конкретного типа), обычно соответствуют химическому и механическому составу основного металла. Хотя присадочный металл может быть указан в технических требованиях к работе, все же важно знать, как разные проволоки взаимодействуют с различными низколегированными основными материалами.Затем вы можете выбрать подходящий низколегированный присадочный металл, сравнив имеющуюся информацию о основном металле со спецификациями AWS для каждой проволоки.
Как правило, низколегированные присадочные металлы классифицируются по их пределу прочности на разрыв в килограммах на квадратный дюйм (80 KSI или выше) и содержат легирующие элементы, такие как хром, никель или молибден. Эти присадочные металлы разработаны с учетом конкретных низколегированных базовых материалов, их химического состава, прочности металла сварного шва и требований к применению.
Чтобы обеспечить успешную сварку, присадочные материалы для низколегированных сталей должны соответствовать или превосходить основной металл по пределам прочности и текучести, а также по характеристикам удлинения и ударной вязкости (V-образный надрез по Шарпи). Однако идеальное совпадение не всегда возможно, поэтому необходимо найти наиболее близкое из возможных, за некоторыми исключениями, конечно.
Например, при сварке разнородных низколегированных сталей обычно рекомендуется согласовывать присадочные металлы с более низкопрочным основным материалом.И наоборот, чтобы получить меньшее поперечное сечение сварного шва, вы можете превзойти прочность основного материала. Превышение соответствия происходит, когда используемый присадочный металл имеет более высокую прочность, чем основной материал. Эта практика сложна, поскольку может привести к растрескиванию (особенно, если прочность металла сварного шва намного превышает прочность основного металла), например, когда используется низколегированный присадочный металл с более высоким содержанием хрома и молибдена, чем основной металл. Превышение соответствия следует выполнять только в том случае, если конкретная конструкция соединения указывает на то, что это лучшая процедура.
Еще один фактор, который следует учитывать при подборе низколегированных присадочных металлов, — это толщина низколегированной стали, которую вы планируете сваривать. Например, закаленные и отпущенные стали, такие как A514, обладают определенными характеристиками растяжения, текучести и удлинения до тех пор, пока их толщина не превышает 21/2 дюйма. Их механические свойства изменяются, если материал толще указанного. За это изменение ответственны процессы закалки и отпуска, поскольку более толстый материал закаливается медленнее и приводит к более низким минимальным пределам текучести и прочности на разрыв.Следовательно, для более толстого материала могут потребоваться присадочные металлы меньшей прочности.
Выбор низколегированного присадочного металла также определяется приложением. Например, соединение, которое требует термообработки после сварки (PWHT), выигрывает от присадочного металла, легированного молибденом, чтобы гарантировать, что материал сохраняет свою прочность. К таким применениям относится PWHT сосудов под давлением, которая помогает улучшить характеристики ударной вязкости и ударной вязкости и снизить любые остаточные напряжения в сварном шве, которые могут вызвать его преждевременный выход из строя.
Другим примером является применение в условиях высокой усталости, такое как землеройное оборудование, для которого требуется присадочный металл с более высокой вязкостью. Присадочный металл, легированный никелем, обеспечивает большее сопротивление циклическим нагрузкам и усталости в такой ситуации, а также более высокую прочность и лучшую ударную вязкость, чем низкоуглеродистая сталь, при низких температурах.
Классификация присадочных металлов
Как и другие присадочные металлы, низколегированные присадочные металлы классифицируются по AWS.
На рис. 1 показаны классификации AWS для низколегированной порошковой проволоки с защитным газом, в частности, для низколегированной порошковой проволоки с металлическим сердечником, а на рис. 2 — для низколегированной порошковой проволоки.
В обоих случаях первый пробел в классификации просто указывает «электрод». Следующие два поля относятся к пределу прочности на разрыв (x 10 KSI) и возможностям сварочного положения, за которыми следует, является ли это сплошной (S) или композитной (C) проволокой. Окончательный химический состав металла шва (также известный как его класс продукта) — это последнее место. В каждой из этих классификаций химический состав в сочетании с пределом прочности на разрыв указывает на правильный присадочный металл.
Буква в поле химический состав указывает на класс присадочного металла.Каждый класс продукции, в свою очередь, отвечает определенным химическим и механическим требованиям в зависимости от сплава, который содержится в присадочном металле. Эти сплавы определяют общую свариваемость и применимость присадочного металла, характеристики окончательного сварного шва и область применения, для которой он предназначен.
Например, низколегированные присадочные металлы, относящиеся к классу продукции B (B2, B3, B6 и B8 / 9), содержат различные количества хрома и молибдена, добавленные к ним для повышения их коррозионной стойкости.Эти присадочные металлы обычно используются при высоких температурах. Точно так же низколегированные присадочные металлы в классе изделий K (K2, K3 и K4) все имеют разное количество марганцево-никелево-молибденовой смеси для повышения прочности, что делает их идеальными для сварки сталей HSLA.
На рис. 3 приведены подробные сведения о других классах низколегированных присадочных металлов, а также их сплавах, характеристиках и рекомендуемых областях применения. Эта информация должна помочь вам выбрать подходящий низколегированный присадочный металл для низколегированной стали.
Как и в любом сварочном процессе, образование является ключом к пониманию низколегированных сталей и присадочных металлов, используемых для их сварки. Фактически, вооружение себя этими знаниями может означать разницу между существенными механическими отказами и продолжающимся успехом сварки. Кроме того, всегда внимательно ознакомьтесь с процедурами сварки для вашего конкретного применения. Наконец, помните, что обращение к проверенному дистрибьютору сварочного оборудования или производителю присадочного металла может помочь решить любые дополнительные вопросы, которые могут у вас возникнуть.п
.