Дроссель для чего нужен: Для чего нужен дроссель в блоке питания?

Содержание

Для чего нужен дроссель в блоке питания?

Катушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте — называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).

Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.

Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, — данное положение прямо следует из Правила Ленца. Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.

Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением.

Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.

В радиотехнике, в электротехнике, в СВЧ-технике, — используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон — до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.

Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.

Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.

Одна из широчайших сфер применения дросселей — это высокочастотные схемы. Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.

Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.

Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки. Единица измерения данного параметра — генри, а обозначение — Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).

Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, — крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.

Применение дросселей

Итак, по назначению электрические дроссели подразделяются на:

Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.

Дроссели для пуска двигателей — ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).

Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.

Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.

 

Что такое дроссель в электрике: устройство, назначение, проверка

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Содержание статьи

  • 1 Что такое дроссель, внешний вид и устройство
  • 2 Свойства, назначение и функции
  • 3 Виды и примеры использования
    • 3.1 Дроссель в лампах дневного света
    • 3.2 Зачем нужен дроссель в блоке питания
  • 4 Как проверить дроссель мультиметром

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала —  металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником  и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания —  сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения —  признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

зачем нужен прибор, принцип работы элемента и область применения

Электрический дроссель — элемент, применяющийся в различных электротехнических приборах и радиоустройствах. Он регулирует силу тока, разделяя при этом или ограничивая электрические сигналы разной частоты, устраняя пульсацию постоянного тока. Посредством прохождения тока по скрученному проводнику образуется магнитное поле, используемое в электро- и радиотехнике.

  • Принцип работы
  • Применение дросселя
  • Электронные аналоги

Принцип работы

Дроссель функционирует по принципу самоиндукции. По внешнему виду напоминает обычную катушку, работающую по типу электрического трансформатора, хотя конструкция состоит лишь из одной обмотки.

Дроссельная катушка имеет ферромагнитные или стальные пластины, изолированные одна от другой для исключения образования токов Фуко, характеризующихся большими помехами. Прибор выполняет функцию сдерживающего барьера при перепадах напряжения в электросети.

Но именно это устройство относится к низкочастотным. Переменный ток, идущий по сетям, характеризуется большим диапазоном колебаний: от 1 до 1 млрд Герц.

Условно они делятся на такие виды:

  1. Низкие частоты (их ещё называют звуковыми) имеют границы колебаний 20−20000 Гц.
  2. Ультразвуковые: от 20 до 100 кГц .
  3. Сверхвысокие: свыше 100 кГц .

У приборов, работающих на высоких частотах, сердечник заменяется

каркасами из пластика или резисторами, служащими основой для обмотки медным проводом. В этом случае дроссельный трансформатор оснащён в несколько слоёв или секционной обмоткой.

Главной технической характеристикой дроссельной катушки является индуктивность (принятые единицы измерения — Генри (Гн), сопротивляемая способность постоянному электрическому току (амплитуда колебаний приближается к нулю) изменением напряжения в требуемых пределах, номинальным подмагничиванием тока.

Используя магнитные сердечники, значительно уменьшаются размеры дросселей с теми же существующими значениями индуктивности. Применение ферритовых и магнитоэлектрических составов благодаря их небольшой ёмкости позволяет пользоваться ими при широких диапазонах.

По предназначению такого типа катушки делятся на три вида:

  1. Переменного тока — применяются для ограничения его в сети.
  2. Катушки насыщения
    — в стабилизаторах напряжения.
  3. Сглаживающие ослабевают пульсацию выравниваемого тока.

Магнитные усилители — дроссели работают с намагничивающимся сердечником под действием постоянного тока. При других его параметрах соответственно меняется индуктивное сопротивление.

Бывают ещё трёхфазные катушки, применяющиеся в определённых цепях. В наше время различные инженерные задачи решаются с использованием разнообразных типов дросселей.

Применение дросселя

Индуктивность нашла широкое применение в большом разнообразии приборов электротехники, автоматики, радиотехники. Дроссели работают в виде различных электрических фильтров, преобразователей электрической энергии, разных типов электромагнитных реле, а также трансформаторов. Если же конденсатор выполняет накопительную функцию электрического заряда, то индуктивность накапливает электромагнитную энергию.

Вот зачем нужен дроссель.

Посредством прохождения электричества по проводу происходит образование постоянного магнитного поля. Это зависит от количества витков: чем их больше на дросселе и больше проходящего через него количества тока, тем сильнее становится магнитное поле элемента. Чтобы увеличить мощность электрического магнита, в прибор следует встраивать ферромагнитный сердечник. Способность дросселя вырабатывать магнитное поле зачастую применяется в электромагнитах, имеющих большую мощность, в различных электромеханических реле, электродвигателях, а также генераторах.

Дроссельная катушка пропускает постоянный электроток с минимальным сопротивлением, но если проходит ток переменной частоты, оказывает большое сопротивление, то есть выступает в роли фильтра. Эта способность, которая называется индуктивностью, применяется для того, чтобы отделить цепь переменной частоты от цепи постоянной частоты тока. Дроссель с наличием стального сердечника применяется в фильтрах блоков питания сетевых выпрямителей, чтобы сглаживать пульсацию переменного тока.

Под воздействием на катушку переменного магнитного поля в ней происходит образование переменного электротока. Это индуктивное свойство применяется в электрических генераторах с постоянным и переменным током.

В них преобразуется механическая энергия в электрическую:

  • гидроэлектростанциями используется энергия падающей воды;
  • генераторы, работающие на жидком топливе, при сжигании бензина или дизеля вырабатывают электричество;
  • тепловые электростанции в качестве топлива используют уголь или же природный газ;
  • в атомных электростанциях механическая энергия получается благодаря нагреву воды.

При прохождении электричества через дроссель вокруг него возникает переменное магнитное поле, оказывающее действие на находящуюся рядом катушку и в ней тоже начинает образовываться переменный электроток.

В этом случае катушка выполняет функции трансформатора, который служит для выравнивания сопротивления нагрузки с внутренними сопротивлениями прибора, вырабатывающего электроэнергию. Трансформаторы применяются во всех отраслях электросвязи, всяческих автоматизированных системах, радиотехнике, различной электронике и т. д.

Электронные аналоги

Обычно индуктивные катушки имеют довольно большие размеры. Для их уменьшения без изменения каких-либо технических характеристик нужно сделать замену индуктивного элемента. Вместо него устанавливается полупроводниковый стабилизатор. Он выполняет функцию транзистора с достаточно высокой мощностью. Так элемент преобразуется в электронный дроссель.

Транзистор полностью компенсирует скачки напряжения в сети, сокращает его пульсацию. Но нужно учесть, что этот элемент выполняет всё-таки полупроводниковую функцию, поэтому в приборах, работающих на высоких частотах, его нерационально применять.

Дроссели маркируют в соответствии с их параметрами, поэтому перепутать тип устройства довольно трудно.

Для чего нужен дроссель в блоке питания

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Конструкция и принцип работы

Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:

Внешний вид изделия может быть таким, как на фото:

Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.

Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике. Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление. Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.

Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.

Интересное пояснение по данному вопросу вы также можете просмотреть на видео:

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Будет интересно прочитать:

Назначение сетевых и моторных дросселей

В данной статье мы рассмотрим сетевые и моторные дроссели — фильтры низких частот, которые устанавливаются на входе и выходе частотных преобразователей. Простейшая схема подключения ПЧ выглядит следующим образом: три фазы на входе, три фазы на выходе, электродвигатель.

Однако здесь возникает одна проблема. Дело в том, что частотный преобразователь является генератором широкого спектра помех, которые могут оказывать значительное влияние на работу устройств, находящихся неподалеку или питающихся от одной сети. С другой стороны, ПЧ сам реагирует на помехи различного рода, поскольку в его состав входят слаботочные компоненты. Поэтому при применении преобразователя очень важным является вопрос электромагнитной совместимости.

Условно помехи можно разбить на два основных вида:

  1. помехи, передающиеся по электромагнитному полю
  2. помехи, передающиеся по питающим проводам

В первом случае наводки можно уменьшить, проведя качественное экранирование и заземление преобразователя частоты, его проводов и периферийных устройств. Высокочастотные помехи, распространяющиеся по проводам, значительно снижаются с помощью радиочастотных фильтров.

Назначение входного сетевого дросселя

Сетевой дроссель, который также называют входным реактором, подключается на входе питания частотного преобразователя (обычно это силовые клеммы R, S, T). Основными параметрами сетевого дросселя являются индуктивность и максимальный длительный ток. Индуктивность выбирается такой, чтобы при рабочей частоте и номинальном рабочем токе падение напряжения на дросселе составляло 3-5%. Рассчитать падение можно по формуле:

U=2πfLI, где f – рабочая частота (Гц), L – индуктивность дросселя (Гн), I – ток, А.

Рассмотрим основные плюсы применения сетевого дросселя.

1. Подавление высших гармоник, проникающих в питающую сеть от преобразователя частоты и обратно. Обычно в состав ПЧ входит радиочастотный фильтр, снижающий данные наводки. Подключение сетевого дросселя создает дополнительное подавление высокочастотных помех. В результате уровень высших гармоник питающего напряжения в значительной степени уменьшается, а действующее значение питающего тока стремится к величине тока основной гармоники (50 Гц).

2. В случае, когда источник питания расположен близко, и сопротивление питающей линии очень низкое, использование сетевого дросселя позволяет значительно уменьшить ток короткого замыкания и увеличить время его нарастания. Это позволяет защитить ПЧ при коротких замыканиях на выходе.

3. Если на одной шине питания расположены несколько мощных устройств, возможны ситуации, когда при их включении или выключении возникает скачок напряжения с большой скоростью нарастания. Сетевой дроссель значительно понижает этот эффект.

При выборе оборудования следует учитывать один нюанс. Чтобы избежать перегрева дросселя, его номинальный ток должен быть равен или больше максимального тока преобразователя.

Когда сетевой дроссель не нужен

Оснащение преобразователей частоты сетевыми дросселями лучше взять за правило. Многие компании увеличивают гарантию в 2 раза при покупке ПЧ в комплекте с дроселями. Однако в некоторых случаях данным оборудованием можно пренебречь:

  1. В питающей сети нет мощных электроприборов, имеющих большие пусковые токи.
  2. Питающая сеть имеет сравнительно высокое сопротивление (низкий ток короткого замыкания).
  3. Режим работы ПЧ исключает резкие изменения мощности, при которых скачкообразно растет потребляемый ток.
  4. В соответствии с рекомендациями производителя, для защиты ПЧ применяются полупроводниковые предохранители, либо защитные автоматы характеристики В.
  5. Имеется большой запас по мощности ПЧ по отношению к используемому двигателю.

Тем не менее, в целом использование сетевых дросселей значительно повышает срок службы и надежность работы частотных преобразователей.

Использование моторного дросселя

Моторный дроссель включается в цепи питания электродвигателя. Другие его названия – выходной реактор или синусоидальный фильтр.

Необходимость применения моторного дросселя обусловлена принципом работы ПЧ. На выходе преобразователя стоят силовые транзисторы, которые работают в ключевом режиме. При этом образуются прямоугольные импульсы, приближающие действующее напряжение по форме к синусоиде за счет изменения длительности. Моторный дроссель снижает высшие гармоники выходного напряжения ПЧ и делает ток питания двигателя практически синусоидальным, минимизируя высокочастотные токи. Это повышает коэффициент мощности и позволяет уменьшить потери в двигателе.

Кроме того, из-за высших гармоник на выходе ПЧ повышаются емкостные токи, которые могут привести к ощутимым потерям при длине кабеля более 20 м. Моторный дроссель существенно снижает этот эффект. Данные устройства также устанавливают там, где важно уменьшить помехи, создаваемые кабелем от ПЧ до электродвигателя.

Следует учитывать, что номинальный ток моторного дросселя должен быть больше максимального тока двигателя. Расчет падения напряжения на дросселе следует производить с учетом максимальной рабочей частоты двигателя, которая может достигать 400 Гц.

Другие полезные материалы:
Как выбрать мотор-редуктор
Выбор частотного преобразователя
Зачем нужен контактор байпаса в УПП
Схемы подключения устройства плавного пуска

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Содержание статьи:

  • Назначение и устройство дросселя
    • Назначение балласта в схеме включения
    • Из чего состоит пускорегулятор?
  • Схема + самостоятельное подключение
  • Перегрев дросселя и возможные последствия
  • Выводы и полезное видео по теме

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Галерея изображений

Фото из

Дроссель в импульсных схемах питания

Ограничитель в высокочастотных электрических схемах

Сердечник в виде кольца

Секционная намотка провода

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется , которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

Галерея изображений

Фото из

Сначала в корпус светильника ставят держатели для ламп – по 2 для каждой. И такие же механизмы для крепления 2 стартеров. Эти детали оснащены разъемами – клеммниками

В держатели нужно аккуратно поставить каждую из ЛЛ трубчатого типа, стараясь не разбить колбу. Все действия следует выполнять при отключении светильника от сети

Для сборки электроцепи потребуется запастись короткими и более длинными проводками. Короткую жилу предстоит вставить в разъем держателя, предназначенного для стартера

Второй конец подсоединяют в одно из отверстий крепления первой лампочки люминесцентного типа. Важно обеспечить надежный контакт при этом

Во второе гнездо держателя для первого стартера нужно вставить длинный проводок, хорошо его там зафиксировав. Чтобы жила не мешала, ее следует аккуратно уложить в полости светильника

Второй конец этого длинного проводка предстоит поместить и зафиксировать в одном из гнезд второго держателя первой ЛЛ. Причем разъем этот должен быть симметричным отверстию на противоположной стороне лампочки, в котором уже закреплена жила, идущая от стартера

Теперь предстоит соединить между собой первую ЛЛ со второй. Для этого нужно взять еще один короткий проводок – один его конец крепится в свободном разъеме первой лампочки, а второй подсоединяется в ближайшее отверстие второго держателя ЛЛ

У первой лампочки с обратной стороны остался еще один свободный разъем. Его предстоит использовать, чтобы запитать схему – нужно подключить жилу питающего кабеля, который в дальнейшем будет включаться в электросеть

Установка держателей для лампочек

Установка ламп в держатели

Подсоединение короткого проводка к держателю стартера

Проверка работоспособности собранной схемы

Соединение длинным проводом держателя стартера с ЛЛ

Второй конец жилы от стартера крепят ко второму держателю лампы

Соединение первой лампы со второй в одну цепь

Подключение питающего кабеля

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Галерея изображений

Фото из

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе

Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера

Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось

Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента

Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ

Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим

Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки

Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют

Фазную жилу питающего кабеля подсоединяют в дроссель

Соединение второй лампы со вторым стартером

Подсоединение в цепь второй стороны лампы

Соединение второй лампы с дросселем

По одному стартеру для каждой лампочки

Установка пускателей в держатели

Дроссель один на две лампочки

Проверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным , вмонтированном внутри корпуса изделия.

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно .

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы . Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и , с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.

7 Признаки неисправного или неисправного корпуса дроссельной заслонки

В современных автомобилях корпус дроссельной заслонки является важной частью системы впуска воздуха, которая регулирует количество воздуха, поступающего в двигатель, который затем сжигает топливо в цилиндрах. В любой момент времени, чтобы двигатель работал в оптимальном режиме, очень важно обеспечить поступление необходимого количества воздуха. Когда корпус дроссельной заслонки грязный, неисправный или засоренный, он останавливает подачу воздуха в двигатель, что вызывает проблемы с производительностью, а также направляет несгоревшее топливо через выхлопную систему. Вот 7 признаков плохого или неисправного корпуса дроссельной заслонки, которые помогут вам определить проблему, пока не стало слишком поздно.

Корпус дроссельной заслонки

Обычно, когда корпус дроссельной заслонки работает правильно, он синхронизируется с подачей топлива и педалью акселератора. Нажмите на педаль акселератора, и поток топлива в двигатель увеличится, а корпус дроссельной заслонки втянет дополнительный воздух, чтобы сжечь дополнительное топливо, что позволит вашему автомобилю работать должным образом и плавно.

Симптомы следующие,

  1. Отсутствие питания
    Недостаток мощности

    Когда корпус дроссельной заслонки работает неправильно, в смесь попадает больше или меньше воздуха, что приводит к недостатку мощности, и автомобиль не разгоняется должным образом. Когда вы нажимаете на акселератор, в идеале он должен пропускать больше воздуха для сжигания поступающего избыточного топлива, но если он неисправен, воздуха будет недостаточно, и из-за этого не будет скачка мощности.

  2. Проблемы при разгоне
    Проблемы при разгоне

    Так как не хватает мощности, то при разгоне автомобиля точно будут проблемы. У автомобиля либо будет неравномерное ускорение, либо он не будет ускоряться после определенного момента, и оба они вызывают проблемы не только с мощностью и пробегом, но и с долговечностью двигателя.

  3. Повышение или понижение холостого хода
    Высокий или низкий холостой ход

    Когда дроссельная заслонка работает неэффективно, одним из контрольных признаков является плохой или низкий холостой ход. Это включает в себя остановку двигателя после остановки, очень низкие холостые обороты после запуска или остановку при резком нажатии на педаль акселератора. Собранная грязь вызывает турбулентный поток воздуха в систему и приводит к колебаниям скорости холостого хода.

    Обслуживайте свой автомобиль в GoMechanic.

    Запишитесь на техническое обслуживание автомобиля с GoMechanic уже сегодня!

  4. Грязь или скопление грязи
    Грязь или нагар

    Одной из основных причин засорения корпуса дроссельной заслонки является накопление грязи внутри детали, что также известно как нагар. Это создает шероховатую поверхность, которая мешает воздушно-топливному потоку и снижает эффективность вашего двигателя. Нагар вызывает аналогичную проблему, создавая неровную поверхность внутри детали.

  5. Плохой пробег
    Плохой пробег

    На топливную экономичность автомобиля сильно влияет засорение корпуса дроссельной заслонки. Идеальным способом измерения пробега является метод от полного бака до полного бака. Сначала вы заправляете полный бак топлива, записываете показания одометра или обнуляете один из счетчиков пройденного пути, а затем проезжаете несколько сотен километров. Снова заполните бак и запишите общее количество израсходованного топлива. Расстояние, деленное на количество израсходованного топлива, даст вам четкое представление о пробеге вашего автомобиля. Если разница составляет более 15%, то высока вероятность того, что проблема с корпусом дроссельной заслонки.

  6. Проблемы с электричеством
    Проблемы с электрикой

    Поскольку в наши дни автомобили становятся все более зависимыми от датчиков и электроники, электропроводка действует как нервная система. Если электронный датчик дроссельной заслонки покрыт грязью, это приведет к ненужным корректировкам воздушно-топливной смеси. Это может перевести автомобиль в режим вторичного пониженного энергопотребления, пока его не увидит сервисный механик. Для некоторых автомобилей, у которых нет этого режима, есть такие методы, как снижение мощности, ограничение оборотов двигателя и т. д.

  7. Индикатор проверки двигателя
    Индикатор Check Engine

    Если есть проблема с работой корпуса дроссельной заслонки, он предупредит электронный блок управления дроссельной заслонкой. Это, в свою очередь, загорается контрольной лампой двигателя. Существует множество причин, по которым загорается это предупреждение, и неисправность корпуса дроссельной заслонки — лишь одна из них. Следовательно, было бы лучше, если бы вы вручную проверили, не скапливается ли вокруг детали грязь.

При рассмотрении этих отдельных симптомов можно увидеть множество причин, по которым они могут возникнуть. Но когда некоторые или все из них происходят одновременно, то, скорее всего, проблема связана с неисправным корпусом дроссельной заслонки и определенно потребует вашего немедленного внимания.

Очистка корпуса дроссельной заслонки является наиболее распространенным решением этой проблемы, и ее можно выполнить самостоятельно. Даже в этом случае всегда лучше проверить это у эксперта, подобного тем, которые доступны в GoMechanic, и продолжать сохранять душевное спокойствие.

Сообщите нам, о какой другой проблеме или решении вы хотели бы узнать больше. Мы будем более чем рады помочь и направить вас в правильном направлении.

Следите за блогом GoMechanic в Новостях Google

Информационный бюллетень GoMechanic

Признаки неисправного или неисправного корпуса дроссельной заслонки

Современные электронные системы впрыска топлива являются одними из самых простых в обслуживании систем вашего автомобиля и редко вызывают проблемы. Но как только ваш автомобиль проедет более 75 000 миль, систему необходимо будет настроить.

Двумя наиболее распространенными работами по техническому обслуживанию этой системы являются очистка топливных форсунок и очистка корпуса дроссельной заслонки. В этой статье мы подробно рассмотрим корпус дроссельной заслонки и то, что происходит, когда что-то идет не так.

Наука, стоящая за деталью

Корпус дроссельной заслонки является важной частью системы впуска воздуха. Это регулирует количество воздуха, поступающего в двигатель. Когда водитель нажимает на педаль акселератора, датчик положения дроссельной заслонки получает сигнал, указывающий, где находится ваша нога, в диапазоне от полного подъема (нулевое ускорение) до полного опускания (полное ускорение). Этот датчик передает информацию на главный компьютер автомобиля, постоянно обновляя информацию о положении дроссельной заслонки. Компьютер воспринимает всю информацию и знает, как отрегулировать систему впрыска топлива, подавая больше или меньше топлива в зависимости от положения педали.

Признаки и симптомы проблемы

Если ваш автомобиль работает с перебоями на холостом ходу, причиной может быть грязный корпус дроссельной заслонки. Как только вы заглянете внутрь корпуса дроссельной заслонки, вы, вероятно, будете удивлены грязью, смолой и лаком, которые скопились там с течением времени. Корпус дроссельной заслонки контролирует количество воздуха, всасываемого двигателем, и, когда он загрязняется, двигатель не может работать на холостом ходу. По мере того, как пары нагреваются от тепла двигателя, они образуют черные отложения сажи внутри корпуса дроссельной заслонки. Вот наиболее распространенные признаки неисправности корпуса дроссельной заслонки, которые мы видели в нашем магазине:

1. Скопление грязи
Грязь и грязь могут скапливаться внутри корпуса детали (некоторые механики называют это «закоксовыванием»), вызывая прерывание потока воздуха-топлива. Это приводит к тому, что нежная смесь воздуха и топлива, поступающая в систему, прерывается шероховатой поверхностью, вызывая дисбаланс в потоке. Подобно грязи и копоти, нагар также может создавать неровную поверхность внутри стенок корпуса дроссельной заслонки, что нарушает распыление воздушно-топливной смеси.

2. Проблемы с электричеством
Проблемы с электрическим подключением могут привести к тому, что на компьютер автомобиля будет передаваться неточная или прерывистая информация. В случае корпуса дроссельной заслонки (и связанного с ним датчика) задержка ложной информации может привести к тому, что компьютер сделает ошибочные поправки к воздушно-топливной смеси. Вы можете заметить переключение в режим «безделья», когда мощность двигателя автомобиля заметно снижается, мощность снижается независимо от того, насколько сильно вы нажимаете на педаль.

3. Нарушение воздушного потока
Плохо отрегулированный ограничитель дроссельной заслонки также может вызвать несбалансированный поток воздуха, что, в свою очередь, может вызвать проблемы с давлением в корпусе дроссельной заслонки. Ограничитель дроссельной заслонки служит привратником и помогает компьютеру определять, когда пластина корпуса дроссельной заслонки «открыта» или «закрыта». При неправильном расположении стопор может протечь или застрять, препятствуя прохождению необходимого количества воздуха и топлива.

4. Плохой или высокий холостой ход
Когда корпус дроссельной заслонки работает неправильно, вы обычно заметите отчетливо плохой или очень низкий холостой ход. Если проблема действительно серьезная, вы можете даже начать глохнуть при остановке или при резком нажатии на педаль газа. Это неизбежно приведет к ухудшению работы двигателя, и, если дойдет до этого момента, это должно привести к тому, что загорится индикатор проверки двигателя.

5. Зловещая лампочка Check Engine.
В более современных автомобилях электронное управление дроссельной заслонкой (ETC) постоянно контролирует работу корпуса дроссельной заслонки. Если система обнаружит проблему, она включит индикатор проверки двигателя.

Хотя очистка дроссельной заслонки является хорошим профилактическим средством при обслуживании автомобиля, она также улучшает управляемость двигателя. Когда этот процесс регулируется должным образом, в двигатель вашего автомобиля вводится идеальный баланс воздуха и топлива, что позволяет ему работать плавно и работать на оптимальном уровне.

В V&F

Рекомендуемое техническое обслуживание может показаться незначительным, особенно если кажется, что ваш автомобиль работает нормально. Но это не то, что владельцы транспортных средств должны игнорировать. Зная типичный срок службы каждой детали, которую они используют, производители могут оценить эти критические точки и рекомендовать проверки на основе использования, чтобы помочь обеспечить производительность и надежность автомобиля. Соблюдение рекомендаций завода-изготовителя по техническому обслуживанию помогает продлить срок службы вашего автомобиля и может предотвратить дорогостоящий ремонт в будущем.

На самом деле, если вы заметили неровный холостой ход, спотыкание при начальном ускорении или даже остановку — и все это при полностью прогретом двигателе — виновником может быть грязный корпус дроссельной заслонки. V&F предлагает регулярное плановое техническое обслуживание на заводе, включая обслуживание пробега 30/60/90/120 тыс. миль, где это применимо, для обеспечения оптимального состояния автомобиля. Если вашему автомобилю требуется плановое техническое обслуживание, позвоните нам по телефону , или , запишитесь на прием онлайн.

Очистка корпуса дроссельной заслонки — Автомобиль и водитель

Очистка корпуса дроссельной заслонки является необходимой частью технического обслуживания автомобиля, так как корпус дроссельной заслонки играет важную роль в бесперебойной работе двигателя. Целью дроссельной заслонки является управление подачей воздуха в двигатель. Когда корпус дроссельной заслонки не работает на 100 процентов из-за скопившейся грязи и углеродистых отложений, производительность автомобиля снижается.

Поездка на завод по производству карбюраторов Edelbrock


Berryman Products B-12 0110 Очиститель карбюратора, воздушной заслонки и корпуса дроссельной заслонки Chemtool В некоторых штатах не соответствует требованиям

Berryman Products B-12 0110 Очиститель карбюратора, дроссельной заслонки и корпуса дроссельной заслонки Chemtool Не соответствует требованиям VOC в некоторых штатах

4 доллара США на Amazon

CRC CRC 05078 Корпус дроссельной заслонки и очиститель воздухозаборника — 12 унций.

10 долларов на Amazon

WD-40 WD-40 Специалист по очистке карбюратора/дросселя и деталей, 13,5 унций [6 шт.]

WD-40 WD-40 Specialist Carb/Drosal Body & Parts Cleaner, 13,5 унций [6 шт.] из 12)

Johnsen’s Johnsen’s 4720-12PK Очиститель корпуса дроссельной заслонки и воздухозаборника — 10 унций, (упаковка из 12 шт.)

Загрязнение корпуса дроссельной заслонки напрямую влияет на плавность работы двигателя. Признаки, указывающие на проблему, включают неровный холостой ход, резкое или вялое ускорение, плохую экономию топлива и остановку двигателя. С помощью чистящего средства для корпуса дроссельной заслонки грязь и мусор легко удаляются.

Процесс включает в себя несколько шагов, чтобы добраться до точки, где можно безопасно применять мощный спрей. Если двигатель вашего автомобиля работает с перебоями, проверка состояния корпуса дроссельной заслонки на наличие грязи и грязи является жизнеспособным способом действий. Чтобы предотвратить проблемы, возникающие из-за грязного корпуса дроссельной заслонки, частая очистка детали может поддерживать работу автомобиля на более высоком уровне.

Типы очистителей корпуса дроссельной заслонки

Аэрозольный очиститель Berryman’s B-12 Chemtool создан на основе технологии высокоэнергетического растворителя, который растворяет различные отложения топливных остатков, поддерживая чистоту карбюратора, воздушной заслонки и корпуса дроссельной заслонки.

Очиститель корпуса дроссельной заслонки и воздухозаборника CRC растворяет вредные отложения, влияющие на работу автомобиля. После использования устраняет неровный холостой ход и облегчает запуск.

Содержите корпус дроссельной заслонки и карбюратор в чистоте с помощью универсального спрея WD-40 Special Cleaner. Распылитель двойного действия разбивает остатки и нагар, а затем распыляет отходы. Продукт поддерживает плавную работу двигателя и постоянный холостой ход.

Следите за тем, чтобы корпус дроссельной заслонки и воздухозаборник не загрязнялись и не скапливались отложения, а также устраняли колебания при работе на холостом ходу с помощью очистителя корпуса дроссельной заслонки и воздухозаборника Johnsen. Спрей можно использовать на всех автомобилях.

Как выбрать чистящее средство для корпуса дроссельной заслонки

Существует множество вариантов выбора чистящего средства для корпуса дроссельной заслонки. Эти спреи разработаны для выполнения сложной работы, а это означает, что они содержат ядовитые химические вещества, легко воспламеняются и летучи. Использование этих спреев потребует мер безопасности при использовании продукта. При поиске продуктов для корпуса дроссельной заслонки убедитесь, что тот, который вы выбираете, специально предназначен для очистки корпуса дроссельной заслонки, и это указано на этикетке или в инструкции по применению.

Как использовать очиститель корпуса дроссельной заслонки

Отказ от ответственности: рекомендации в этой статье носят общий характер и не заменяют инструкции для вашего конкретного автомобиля. Прежде чем приступать к ремонту, обратитесь к руководству пользователя или руководству по ремонту.

Ниже приведены общие сведения о корпусе дроссельной заслонки, а также основные шаги по очистке корпуса дроссельной заслонки. Обратитесь к руководству пользователя для получения информации, относящейся к вашему автомобилю. Если у вас есть вопросы о самостоятельной очистке дроссельной заслонки, обратитесь к дилеру или в местный автомобильный магазин.

Корпус дроссельной заслонки расположен между впускным коллектором и воздухоочистителем. Другой способ найти корпус дроссельной заслонки — попросить кого-нибудь нажать на педаль газа при выключенном двигателе. Корпус дроссельной заслонки имеет прямое соединение с педалью газа через кабель или связь. Когда педаль газа нажата, это вызывает движение вала дроссельной заслонки, что вы можете видеть.

В целях собственной безопасности при работе с очистителем корпуса дроссельной заслонки надевайте резиновые перчатки и защитные очки. Средство для очистки корпуса дроссельной заслонки может вызвать раздражение кожи, а его пары вредны. Воздержитесь от курения во время выполнения этого проекта, так как чистящие средства легко воспламеняются. Припаркуйте автомобиль на ровной открытой площадке с хорошим освещением. Не выполняйте этот проект в закрытом помещении, например, в гараже, из-за паров, выделяемых спреем.

  1. В целях безопасности автомобиля перед началом очистки отсоедините клемму заземления от аккумуляторной батареи.
  2. Шланги, прикрепленные к корпусу дроссельной заслонки или воздуховодам, должны быть помечены перед снятием, чтобы вы знали, куда они идут после завершения очистки.
  3. Воздуховод, прикрепленный к корпусу дроссельной заслонки, необходимо снять. Воздуховоды могут крепиться с помощью хомута, который можно снять с помощью отвертки, а может потребоваться только быстрый поворот, прежде чем снять его. Не отсоединяйте никакие электрические провода. На этом шаге может потребоваться отвертка Torx или Phillips для удаления зажимных винтов.
  4. Если удаление воздуховодов невозможно, не продолжайте проект. Отнесите свой автомобиль к обученному механику, чтобы справиться с работой.
  5. Чтобы получить доступ к корпусу дроссельной заслонки, снимите достаточное количество воздуховодов, чтобы у вас был доступ к корпусу дроссельной заслонки.
  6. Перед нанесением аэрозольного очистителя наденьте резиновые перчатки и защитные очки. Как только вы защититесь, распылите очиститель в воздуховод. Используйте небольшую щетку, чтобы разрыхлить грязь и другие отложения, а затем удалите грязь бумажными полотенцами.
  7. Повторяйте шаг 6, пока все поверхности не будут чистыми. Проверьте наличие оставшейся грязи с помощью фонарика.
  8. С помощью ватного тампона нанесите небольшую каплю масла общего назначения на вал дроссельной заслонки. Это способствует плавному вращению дроссельной заслонки. Сделайте это перед заменой воздуховодов.
  9. Очистите область вокруг корпуса дроссельной заслонки и двигателя, используя бумажные полотенца, чтобы вытереть пролитую жидкость или остатки грязи.
  10. Подсоедините воздуховоды и затяните хомуты до того же уровня, на котором они были.
  11. Удалите инструменты и расходные материалы из-под капота, а затем снова подключите аккумулятор. Запустить двигатель. Перенастройка автомобиля может занять несколько минут.
  12. Дайте автомобилю поработать на холостом ходу две-три минуты, чтобы он прогрелся.
  13. Последний шаг — пробный запуск автомобиля. Может быть заметна разница в поведении автомобиля, или вы не заметите никаких изменений. Степень изменения производительности зависит от того, сколько остатков было удалено с корпуса дроссельной заслонки.
  14. Очистите все используемые инструменты. Безопасно утилизируйте резиновые перчатки и бумажные полотенца или другие материалы, используемые для удаления грязи и опасных брызг.

Дроссель | Тракторно-строительный завод Wiki

в: Технология двигателя, технология топливной системы двигателя, компоненты двигателя

Посмотреть источник

Эта статья о контроле мощности двигателя. Чтобы узнать о других значениях, см. Дроссель (значения).

Дроссель — это механизм, с помощью которого поток жидкости регулируется за счет сужения или препятствия. Мощность двигателя можно увеличить или уменьшить за счет ограничения впускных газов ( , т. е. с помощью дросселя), но обычно уменьшалась. Термин дроссельная заслонка стал неофициально и неправильно относиться к любому механизму, с помощью которого регулируется мощность или скорость двигателя. То, что часто называют дроссельной заслонкой (в контексте авиации), правильнее называть рычагом управления двигателем. Для парового двигателя паровой клапан, который устанавливает скорость / мощность двигателя, часто называют регулятором.

Содержимое

  • 1 Двигатели внутреннего сгорания
  • 2 Корпус дроссельной заслонки
  • 3 Другие двигатели
  • 4 Каталожные номера
  • 5 Внешние ссылки

Двигатели внутреннего сгорания

Поперечное сечение дроссельной заслонки

В бензиновом двигателе внутреннего сгорания дроссельная заслонка представляет собой клапан, который непосредственно регулирует количество воздуха, поступающего в двигатель, косвенно контролируя заряд (топливо + воздух) сжигается в каждом цикле из-за того, что топливная форсунка или карбюратор поддерживают относительно постоянное соотношение топливо/воздух. В автомобиле элемент управления, используемый водителем для регулирования мощности, иногда называют педалью газа или педалью акселератора.

Дроссель обычно представляет собой дроссельную заслонку. В инжекторном двигателе дроссельная заслонка расположена на входе во впускной коллектор или в корпусе дроссельной заслонки. В карбюраторном двигателе он находится в карбюраторе.

Когда дроссельная заслонка полностью открыта, впускной коллектор обычно находится под атмосферным давлением окружающей среды. Когда дроссельная заслонка частично закрыта, создается разрежение в коллекторе, поскольку давление на впуске падает ниже атмосферного.

Обычно дроссельная заслонка управляется педалью газа или рычагом через прямую механическую связь. В автомобилях с электронным управлением дроссельной заслонкой ручное управление дроссельной заслонкой посылает сигнал на блок управления двигателем (ECU), который затем непосредственно управляет положением дроссельной заслонки. Это означает, что оператор не имеет прямого контроля над дроссельной заслонкой; ECU может точно управлять клапаном, чтобы уменьшить выбросы или максимизировать производительность.

В самолетах с поршневыми двигателями управление дроссельной заслонкой обычно представляет собой ручной рычаг или ручку. Он управляет мощностью двигателя, которая может отражаться или не отражаться в изменении оборотов в зависимости от установки гребного винта (фиксированный шаг или постоянная скорость). [1]

Выходная мощность дизельного двигателя регулируется путем регулирования количества топлива, впрыскиваемого в цилиндр. Поскольку двигателям не нужно контролировать объемы воздуха, у них нет дроссельной заслонки во впускном тракте. Исключением из этого общего правила являются более новые дизельные двигатели, соответствующие более строгим стандартам выбросов, в которых дроссельная заслонка используется для создания вакуума во впускном коллекторе, что позволяет подавать выхлопные газы (см. EGR) для снижения температуры сгорания и, таким образом, минимизации образования NOx.

Корпус дроссельной заслонки

Компоненты типичного корпуса дроссельной заслонки

В двигателях с впрыском топлива корпус дроссельной заслонки является частью системы впуска воздуха, которая регулирует количество воздуха, поступающего в двигатель, в ответ на нажатие водителем педали акселератора ввод в основной. Корпус дроссельной заслонки обычно расположен между коробкой воздушного фильтра и впускным коллектором и обычно прикреплен к датчику массового расхода воздуха или рядом с ним.

Самой большой деталью внутри корпуса дроссельной заслонки является дроссельная заслонка, представляющая собой дроссельную заслонку, которая регулирует поток воздуха.

На многих автомобилях движение педали акселератора передается через трос дроссельной заслонки, чтобы активировать рычаги дроссельной заслонки, которые перемещают дроссельную заслонку. В автомобилях с электронным управлением дроссельной заслонкой (также известным как «управление по проводам») электродвигатель управляет тягами дроссельной заслонки, а педаль акселератора соединяется не с корпусом дроссельной заслонки, а с датчиком, который передает положение педали в двигатель. Блок управления (ЭБУ). ЭБУ определяет открытие дроссельной заслонки на основе положения педали акселератора и данных от других датчиков двигателя.

Корпус дроссельной заслонки с датчиком положения дроссельной заслонки. Трос дроссельной заслонки крепится к изогнутой черной части слева. Катушка медного цвета, видимая рядом с ней, возвращает дроссельную заслонку в положение холостого хода, когда педаль отпущена.

Когда водитель нажимает на педаль акселератора, дроссельная заслонка вращается в корпусе дроссельной заслонки, открывая дроссельный канал и пропуская больше воздуха во впускной коллектор. Обычно датчик воздушного потока измеряет это изменение и связывается с ЭБУ. Затем ECU увеличивает количество топлива, подаваемого на топливные форсунки, чтобы получить желаемое соотношение воздух-топливо. Часто датчик положения дроссельной заслонки (TPS) подключается к валу дроссельной заслонки, чтобы предоставить ЭБУ информацию о том, находится ли дроссельная заслонка в положении холостого хода, в положении широко открытой дроссельной заслонки (WOT) или где-то между этими крайностями.

Корпуса дроссельных заслонок могут также содержать клапаны и регуляторы для контроля минимального расхода воздуха на холостом ходу. Даже в тех устройствах, которые не имеют «привод по проводам», часто будет небольшой клапан с приводом от электродвигателя, клапан управления подачей воздуха на холостом ходу (IACV), который ECU использует для управления количеством воздуха, который может обходить основной. открытие дроссельной заслонки.

Изображение BMW S65 из BMW M3 e92 с восемью отдельными дроссельными заслонками

Многие автомобили имеют один дроссельную заслонку. В других используется более одного, соединенных вместе рычагами для улучшения отклика дроссельной заслонки. В крайнем случае, высокопроизводительные автомобили, такие как E9.2 BMW M3 и высокопроизводительные мотоциклы, такие как Yamaha R6, используют отдельный корпус дроссельной заслонки для каждого цилиндра, который часто называют «индивидуальным корпусом дроссельной заслонки» или ITB.

Корпус дроссельной заслонки несколько аналогичен карбюратору в двигателе без впрыска топлива. Карбюраторы объединяют в себе функциональность корпуса дроссельной заслонки и топливных форсунок, чтобы регулировать количество воздушного потока и объединять воздух и топливо вместе. В автомобилях с впрыском топлива в корпус дроссельной заслонки (называемых General Motors TBI и Ford CFI) топливные форсунки расположены в корпусе дроссельной заслонки, что позволяет преобразовать старый двигатель с карбюратора на впрыск топлива без значительного изменения конструкции двигателя.

Другие двигатели

Большинство двигателей имеют какой-либо регулятор дроссельной заслонки, хотя конкретный способ регулирования мощности часто отличается.

Жидкостные ракеты дросселируются за счет управления насосами, которые подают жидкое топливо и окислитель в камеру сгорания.

Твердотопливные ракеты становятся неуправляемыми после воспламенения их твердого топлива.

Гибридные ракеты, подобные той, что используется в «Космическом корабле-1», используют твердое топливо и жидкий окислитель; таким образом, дросселирование возможно через кислородные насосы, как в полностью жидкостном ракетном двигателе.

В реактивном двигателе мощность двигателя также напрямую регулируется путем изменения количества топлива, поступающего в камеру сгорания, обычно с помощью автомата тяги. В некоторых случаях «дроссель» известен как «рычаг тяги» (как в большинстве самолетов Airbus и Boeing). В основном это связано с тем, что «дроссель» ассоциируется с традиционными бензиновыми двигателями. [2]

Ссылки

  1. ↑ «Глава 6: Самолетные системы» (PDF). Справочник пилота по авиационным знаниям . Федеральное авиационное управление (2008 г.). Проверено 9 февраля 2009 г.
  2. ↑ «Генеральный директор кабины № 84: Условия повышения квалификации» . Avweb.com (30 июня 2008 г.). Проверено 10 сентября 2009 г.

Внешние ссылки

На этой странице используется некоторый контент из Википедии . Оригинальная статья была на Throttle. Список авторов можно увидеть на странице истории . Как и в случае с Tractor & Construction Plant Wiki, текст Википедии доступен по лицензии Creative Commons по лицензии Attribution и/или GNU Free Documentation License. Пожалуйста, проверьте историю страниц, чтобы узнать, когда исходная статья была скопирована в Wikia.

Контент сообщества доступен по лицензии CC-BY-SA, если не указано иное.

6 Симптомы плохого корпуса дроссельной заслонки (и стоимость замены в 2022 году)

от Адама Манна

20 Акций

Последний газа вы ожидаете, что ваша машина будет двигаться. И хотя вы можете не понимать, что именно происходит, корпус дроссельной заслонки запускает весь этот процесс. Но со временем корпус дроссельной заслонки может изнашиваться или просто пачкаться.

Итак, как узнать, что пришло время почистить или заменить дроссельную заслонку? Мы разберем здесь все, что вам нужно знать. И кто знает, может быть, мы просто поможем вам вернуть к жизни этот старый корпус дроссельной заслонки и сэкономим вам несколько долларов.

Нужна помощь в решении проблемы с автомобилем ПРЯМО СЕЙЧАС?

Щелкните здесь , чтобы пообщаться в онлайн-чате с проверенным механиком, который ответит на ваши вопросы.

Содержание

Что такое корпус дроссельной заслонки?

Корпус дроссельной заслонки — это компонент вашего двигателя, который контролирует количество воздуха, поступающего в коллектор двигателя и в камеру сгорания. Это относительно простой компонент, который просто открывается под разными углами, чтобы пропускать нужное количество воздуха в зависимости от положения дроссельной заслонки.

На старых автомобилях корпус дроссельной заслонки соединялся с педалью газа с помощью механической связи, в то время как в современных автомобилях для достижения того же результата используются датчики.

Признаки неисправного или грязного корпуса дроссельной заслонки

Хотя корпус дроссельной заслонки является механическим компонентом, это не означает, что он не изнашивается со временем. Мало того, поскольку углерод накапливается на корпусе дроссельной заслонки, он может перестать реагировать должным образом, что приводит к целому ряду проблем.

Ниже мы выделили шесть наиболее распространенных симптомов, которые сообщают вам, что вам нужно взглянуть на корпус дроссельной заслонки вашего автомобиля.

№1 — индикатор «Проверьте двигатель»

Наиболее распространенным признаком неисправности корпуса дроссельной заслонки является индикатор «Проверьте двигатель». Индикатор проверки двигателя может указать вам прямо на корпус дроссельной заслонки или на любой из различных компонентов, которые сообщаются и приводят в действие корпус дроссельной заслонки, например датчик положения корпуса дроссельной заслонки.

Просто имейте в виду, что индикатор проверки двигателя говорит вам, с чего начать устранение неполадок, но не говорит вам точно, в чем проблема.

#2 – Грубый холостой ход

Если у вашего автомобиля неровный холостой ход, вполне возможно, что есть проблема с корпусом дроссельной заслонки. У него могут быть проблемы с пребыванием в нужной точке, или он может не открываться или закрываться после определенной точки.

В любом случае, если у вашего автомобиля неровный холостой ход, стоит проверить корпус дроссельной заслонки.

#3 — Двигатель глохнет

Если корпус дроссельной заслонки вашего автомобиля достаточно дефектен, вы можете обнаружить, что ваш автомобиль не может продолжать работать. Это происходит из-за того, что двигателю не хватает воздуха, а поскольку корпус дроссельной заслонки не может открываться дальше, он не может поднять воздухозаборник, чтобы двигатель не заглох.

#4 – Грубый разгон

Поскольку корпус дроссельной заслонки контролирует поток воздуха к двигателю, неудивительно, что если он неисправен или загрязнен, это может повлиять на ускорение. Мало того, что ускорение может быть немного грубым, оно также может удерживать ваше ускорение от превышения определенной точки или замедления после определенной точки.

#5 – Низкая топливная экономичность

Когда все работает так, как должно, ваш двигатель представляет собой точно настроенную машину, которая обеспечивает максимальную производительность при минимальном расходе топлива. Но когда ваш двигатель не может обеспечить правильное соотношение воздуха и топлива, он заставляет ваш двигатель тратить больше топлива, чтобы добраться туда, куда вы направляетесь.

Это может быть небольшая разница или значительное падение в зависимости от того, что именно происходит с корпусом дроссельной заслонки. Но одно можно сказать наверняка, в конечном итоге вы потратите больше денег на топливо. № 6 – Плохая работа двигателя Он может ускоряться слишком быстро, или у него может не быть силы, к которой вы привыкли. В любом случае производительность двигателя будет страдать.

Что вызывает проблемы с дроссельной заслонкой?

Большинство проблем с корпусом дроссельной заслонки возникают из-за того, что со временем на корпусе дроссельной заслонки накапливается грязь и грязь. По мере того, как эта грязь и копоть накапливаются, это может привести к залипанию корпуса дроссельной заслонки, влияя на общую производительность.

Хорошей новостью является то, что, поскольку большинство проблем связано с грязью и грязью, если вы сможете удалить мусор, вы можете обнаружить, что ваш корпус дроссельной заслонки работает как новый!

И если вы в первую очередь предотвратите накопление грязи и копоти, вы сможете продлить срок службы дроссельной заслонки и уберечь себя от дорогостоящего ремонта.

Как долго служит корпус дроссельной заслонки?

Несмотря на то, что вы должны чистить дроссельную заслонку не реже одного раза в 75 000 миль, при правильном уходе за дроссельной заслонкой можно легко прослужить 150 000 или даже 200 000 миль. Это связано с тем, что это механический компонент, а для износа механических компонентов требуется время.

Большое предостережение заключается в том, что вам нужно заботиться о корпусе дроссельной заслонки, чтобы получить от него максимальную отдачу. Потому что, когда вы не заботитесь о своем корпусе дроссельной заслонки должным образом, вы можете обнаружить, что вам нужно заменить его ближе к отметке в 100 000 миль или даже раньше.

Можно ли ездить с неисправной дроссельной заслонкой?

Хотя вы можете ездить с неисправным корпусом дроссельной заслонки, вы определенно не должны этого делать. Этому есть две причины. Во-первых, это забота о безопасности. Когда ваш корпус дроссельной заслонки не работает должным образом, ваш автомобиль может ускоряться или не ускоряться в самый неподходящий момент.

Это резко увеличивает шанс попасть в аварию, что очень важно. Вторая проблема может быть не так важна, как безопасность, но она может повлиять на ваш банковский счет. Это потому, что вождение с неисправным корпусом дроссельной заслонки может привести к дальнейшему повреждению вашего двигателя.

Неправильное соотношение топлива и воздуха не только влияет на производительность и снижает топливную экономичность вашего автомобиля, но и увеличивает его износ. Этот дополнительный износ может привести к повреждению различных компонентов, и это означает еще больше в счетах за ремонт, когда вы все же успеете его починить.

Стоимость замены корпуса дроссельной заслонки

Хотя корпус дроссельной заслонки не является самым дорогим компонентом вашего автомобиля, он не совсем дешевый. Если вы обнаружите, что вашему автомобилю нужен новый корпус дроссельной заслонки, вы можете рассчитывать на то, что потратите от 450 до 600 долларов на запчасти и работу.

И если вы думаете сделать работу самостоятельно, вы не сэкономите тонну. Это потому, что подавляющее большинство затрат приходится на запчасти, а не на работу. Если вы планируете выполнять работу самостоятельно, вы все равно можете рассчитывать на то, что потратите от 400 до 500 долларов на новый корпус дроссельной заслонки.

Из-за высокой цены на детали рекомендуется посмотреть, не сможете ли вы почистить существующий корпус дроссельной заслонки и сэкономить несколько долларов.

Очистка и замена

Поскольку замена корпуса дроссельной заслонки является более дорогостоящим компонентом, стоит тщательно проверить различные очистители корпуса дроссельной заслонки. А поскольку большинство проблем с корпусом дроссельной заслонки возникает из-за грязного корпуса дроссельной заслонки, это может быть даже долгосрочным решением.

Просто убедитесь, что вы тратите время на очистку корпуса дроссельной заслонки каждые 50 000–75 000 миль, чтобы грязь не скапливалась слишком далеко.

И если по какой-то причине вы читаете это руководство и ваш корпус дроссельной заслонки еще не работает, вы все равно должны чистить его каждые 50 000–75 000 миль, чтобы предотвратить возникновение проблемы в будущем.

Благодаря этим недорогим и эффективным очистителям, которые могут очищать корпус дроссельной заслонки несколько раз, вы можете сэкономить сотни долларов на будущем ремонте, просто почистив корпус дроссельной заслонки, а не заменяя его!

Рубрики Двигатель Теги корпус дроссельной заслонки

Задайте вопрос, получите ответ как можно скорее!

8 Признаки неисправности корпуса дроссельной заслонки (и стоимость замены)

Корпус дроссельной заслонки является важным механическим компонентом автомобилей с впрыском топлива, который контролирует и регулирует количество воздуха, поступающего в двигатель.

Когда корпус дроссельной заслонки находится в надлежащем состоянии, двигатель получает идеальное соотношение воздуха и топлива и обеспечивает оптимальную производительность. Однако процесс сгорания не будет происходить должным образом, если корпус дроссельной заслонки поврежден из-за несовершенной воздушно-топливной смеси.

В этой статье мы обсудим общие симптомы неисправности корпуса дроссельной заслонки, местонахождение и стоимость замены. Начнем с признаков, которые нужно искать.

8

Признаки неисправности корпуса дроссельной заслонки

Наиболее распространенным признаком неисправности корпуса дроссельной заслонки являются проблемы с работой двигателя, а также индикатор проверки двигателя на приборной панели вашего автомобиля.

The main symptoms of a bad or failing throttle body include:

  • Check Engine Light
  • Rough Idling
  • Rough Acceleration
  • Misfires
  • High RPM Idle
  • Остановка на холостом ходу
  • Плохая работа двигателя
  • Измененный расход топлива

Если вы все еще заинтересованы в более глубоком знании каждого симптома, вот более подробный список наиболее распространенных симптомов неисправности корпуса дроссельной заслонки:

Индикатор Check Engine

В корпусе дроссельной заслонки установлены датчики угла поворота и другие датчики. Как только бортовой компьютер автомобиля обнаружит проблему с сигналом корпуса дроссельной заслонки, загорится индикатор проверки двигателя.

Индикатор проверки двигателя также загорается по нескольким другим причинам, поэтому мы рекомендуем посетить автоспециалиста и проверить автомобиль на наличие кодов неисправностей, когда он появляется на приборной панели.

Неровный холостой ход

Если вы заметили, что холостой ход вашего автомобиля прыгает вверх и вниз и издает странные звуки, это может быть связано с загрязнением или повреждением корпуса дроссельной заслонки.

Автомобильный двигатель наиболее чувствителен на холостом ходу, когда вы в первую очередь заметите признаки загрязнения или неисправности дроссельной заслонки.

Резкое ускорение

Корпус дроссельной заслонки также регулирует топливовоздушную смесь, поступающую в двигатель. Это означает, что неисправный корпус дроссельной заслонки может испортить топливно-воздушную смесь, что вызовет проблемы при ускорении.

Если вы заметили, что ваш автомобиль имеет очень неравномерное ускорение – то быстрое, то медленное, возможно, у вас неисправен дроссельный узел.

Пропуски зажигания

Пропуски зажигания возникают либо при очень неправильном составе топливовоздушной смеси, либо при слабой искре от свечи зажигания. Другими словами, это неполное сгорание внутри камеры сгорания.

Как мы уже говорили, неисправный корпус дроссельной заслонки может испортить топливно-воздушную смесь, а также привести к пропуску зажигания в двигателе. Пропуски зажигания легче всего распознать по небольшим ударам, когда вы увеличиваете обороты двигателя.

Высокий холостой ход

Корпус дроссельной заслонки регулирует холостой ход двигателя, чтобы убедиться, что он всегда поддерживает стабильные обороты. Если есть проблема с корпусом дроссельной заслонки, это может привести к слишком высокому уровню.

Не откалиброванная дроссельная заслонка также может быть причиной этого. Вы можете откалибровать корпус дроссельной заслонки с помощью большинства диагностических сканеров.

Остановка на холостом ходу

Корпус дроссельной заслонки может влиять на число оборотов и в обратном направлении. Это может привести к настолько низким оборотам на холостом ходу, что двигатель заглохнет. Это часто происходит, когда на заслонку корпуса дроссельной заслонки попадает много сажи и грязи, из-за чего в двигатель поступает меньше воздуха, что приводит к низким оборотам холостого хода.

Обычно эту проблему решают чистка корпуса дроссельной заслонки и калибровка корпуса дроссельной заслонки с помощью диагностического прибора.

Плохая работа двигателя

Для эффективной работы двигателя требуется адекватная подача воздуха и топлива. Если двигатель не получает надлежащую подачу воздуха из-за поврежденного корпуса дроссельной заслонки, двигатель пострадает, и в результате водитель испытает снижение производительности.

Если ваш автомобиль чувствует, что теряет половину своей мощности при ускорении, это может быть вызвано неисправностью корпуса дроссельной заслонки.

Измененный расход топлива

Вы уже знаете, что неисправная дроссельная заслонка вызывает странную топливную смесь. Это также может увеличить расход топлива, если вы заметили, что вам приходится заправляться чаще или реже; это может быть вызвано плохим корпусом дроссельной заслонки.

Редкая заправка может показаться хорошей вещью, но в долгосрочной перспективе ваш двигатель не думает так же!

Что такое корпус дроссельной заслонки?

Корпус дроссельной заслонки вашего автомобиля представляет собой дроссельную заслонку. Основная функция корпуса дроссельной заслонки заключается в регулировании и контроле количества воздуха, поступающего в двигатель.

Входные данные определяются по давлению водителя на педаль акселератора автомобиля.

Следовательно, в двигатель внутреннего сгорания может поступать больше топлива, чтобы обеспечить большее сгорание и большее ускорение, когда в систему поступает больше воздуха.

В большинстве автомобилей имеется только одна дроссельная заслонка, за редким исключением специальных, более крупных автомобилей. Функция корпуса дроссельной заслонки также зависит от других частей, таких как воздушный фильтр.

Очистка корпуса дроссельной заслонки

Даже если на вашем автомобиле установлен воздушный фильтр, грязь и сажа исходят от турбонагнетателя, клапана рециркуляции отработавших газов и вентиляции картера и застревают на клапане корпуса дроссельной заслонки. В конце концов, он настолько закроет клапан, что это повлияет на обороты.

Грязный клапан корпуса дроссельной заслонки вызывает много проблем с корпусом дроссельной заслонки; поэтому его часто можно очистить. Чтобы узнать больше о его очистке, вы можете ознакомиться с нашим руководством здесь: Очистка корпуса дроссельной заслонки. Не забудьте потом пересчитать дроссельную заслонку с помощью диагностического сканера.

Расположение корпуса дроссельной заслонки

Корпус дроссельной заслонки чаще всего расположен на впускном коллекторе у большого шланга от турбонагнетателя или воздушного фильтра.

Обычно для изготовления корпуса дроссельной заслонки используется алюминий. Расположение корпуса дроссельной заслонки может немного отличаться для разных автомобилей.

Однако, согласно назначению дроссельной заслонки, она должна располагаться где-то между воздушным фильтром и впускным коллектором.

Стоимость замены корпуса дроссельной заслонки

Средняя стоимость замены корпуса дроссельной заслонки составляет от 250 до 650 долларов США в зависимости от модели автомобиля и трудозатрат. Корпус дроссельной заслонки стоит от 200 до 500 долларов, а стоимость рабочей силы составляет от 50 до 150 долларов.

Корпус дроссельной заслонки может иметь разную цену в зависимости от различных автомобилей, моделей и компании-производителя. По сути, основные затраты, связанные с заменой корпуса дроссельной заслонки, — это стоимость деталей, которые необходимо заменить.

Регулярное техническое обслуживание может эффективно продлить срок службы деталей корпуса дроссельной заслонки, и вам может не потребоваться их замена в течение длительного времени.

Стоимость рабочей силы, связанная с заменой, может быть экономичной или высокой, в зависимости от того, в каком автосервисе вы будете производить замену.

Помните, что нужно сделать перерасчет дроссельной заслонки после замены диагностическим сканером.

Часто задаваемые вопросы о корпусе дроссельной заслонки

Могу ли я самостоятельно заменить корпус дроссельной заслонки?

Замена корпуса дроссельной заслонки на большинстве моделей автомобилей часто бывает довольно простой задачей при наличии некоторых базовых знаний. Однако для некоторых моделей автомобилей после замены требуется сброс/калибровка дроссельной заслонки с помощью диагностического сканера, которого у большинства людей дома нет.

Имеет ли значение очистка корпуса дроссельной заслонки?

Очистка корпуса дроссельной заслонки может иметь значение, но это зависит от того, насколько он загрязнен. Корпуса дроссельных заслонок со временем могут загрязняться из-за остатков масла, нагара и других загрязнений, которые могут накапливаться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *