Электрическая принципиальная схема инверторного сварочного аппарата: Схема сварочного инвертора – принципиальная схема инверторной сварки

Содержание

Принципиальная электрическая схема сварочного инвертора

Бытовые сварочные устройства все больше представлены на прилавках магазинов. Поскольку схема сварочного инвертора основана на использовании токов


высокой частоты, то габариты и вес устройства выгодно отличается от прочих выпрямителей, преобразователей и сварочных трансформаторов для переменного тока сварки. Отсюда и возникает высокий спрос на них. Поскольку электросхема сварочного инвертора, основанная на электронном принципе с использованием импульсного резонанса в работе, достаточно сложная, то и цена на инверторы значительно выше других сварочных агрегатов. Тем не менее, высокая цена компенсируется многими преимуществами.

Структурная схема сварочного инвертора упрощенно показана на Рис. 1

Схема состоит из 3 блоков.

  • На входе стоит выпрямитель (входной) с емкостью подключенной параллельно. Конденсатор является накопителем, позволяющим поднять напряжение постоянного тока до 300в. Входной выпрямитель работает без трансформатора.
  • Модуль инвертора производит преобразование постоянного тока в высокочастотный, переменный. Частота преобразованного тока измеряется в десятках килогерц. Понижение напряжения происходит в высокочастотном импульсном трансформаторе в составе инверторного блока. Модуль инвертора выполняется с использованием в схеме активных элементов. Схемотехническое исполнение блока инвертора подразумевает два варианта работы. Принципиальная электрическая схема сварочного инвертора может быть основана на использовании однотактных импульсов, другой вырабатывает двухтактные. Разница состоит в полярности импульсов. Двухтактные импульсы двухполярны, а однотактные являются однополярными. Но в обоих случаях транзисторы всегда работают в режиме ключей с возможностью регулировки времени включения. Такой режим позволяет регулировать ток нагрузки.
  • Выходной выпрямительный блок преобразует переменный ток после инвертора в постоянный ток сварки.
Различные решения модульного блока в принципиальной схеме сварочного инвертора можно рассмотреть на представленных схемах.

Схема двухтактного инверторного модуля (сварочный инвертор мостовая схема). Рис. 2-1

В мостовом типе двухполярные импульсы образуются за счет парной работы ключевых транзисторов (VT1-VT3; VT2-VT4)/ Через них проходит только половина тока от моста, естественно, что напряжение на каждом будет составлять половину от емкости «С».

Схема двухтактного инверторного модуля (полумостовая схема). Рис. 2-2.

У полумостового модуля благодаря емкостному делителю напряжение на транзисторах (на каждом из них) и в первичной обмотке (у трансформатора) будет составлять половину от входного значения. Таким образом, при питании от входного выпрямителя напряжение составит 150в. В этой схеме при больших сварочных токах должны быть использованы мощные транзисторы (возможно использование групп). Потребление тока сети повышено в сравнении с полным мостом.

Схема однотактного инверторного модуля (косой полумост). Рис. 2-3.

У однотактовой схемы «косого моста» ключевые транзисторы VT1-VT2 работают одновременно на отпирание и запирание. Напряжение в транзисторах (в запертом случае) не достигает половины входного. Энергия при закрытии транзисторов поглощается входным конденсатором «С» через диоды (VD1-VD2 на схеме). Недостатком «косого полумоста» является подмагничивание стержня трансформатора за счет составляющей константы выходного тока.

Схема импульсного сварочного инвертора может содержать все три рассмотренных варианта модуля.

Сварочный аппарат инвертор — схема которого изображена на Рис. 1 представляет собой настолько компактную конструкцию, что вес готового инвертора в корпусе составит 5-12 кг вместе с приборами контроля, в зависимости от его мощности.

Схема инверторного сварочного аппарата — Документ

СХЕМА ИНВЕРТОРНОГО СВАРОЧНОГО АППАРАТА

НА ТИРИСТОРЕ
Предлагаю принципиальную схему сварочного аппарата на быстродействующем тиристоре.
Схема является копией промышленного сварочного аппарата «Электрон-125». Мощность достаточна , чтобы варить электродом диаметром 3 мм, в большинстве случаев этого достаточно.
Диаппазон регулирования сварочного тока, А … 40 — 125.
Напряжение холостого хода ,В ………………….не более 90.
Коэффициент полезного действия , % ……….не менее 60.
Частота преобразования — около 4 kHz.Регулирование выходной мощности осуществляется изменением частоты генератора, выполненного на аналоге однопереходного транзистора VT1 и VT2. Я эту схему сам не делал. Её делал мой знакомый. Схема вполне работоспособна , но есть свои небольшие проблемы: cхема издаёт неприятное пищание, в режиме холостого хода часто щёлкает реле К2 , которое срабатывает при превышении U холостого хода на выходе.
ОПИСАНИЕ РАБОТЫ СХЕМЫ

Импульсный преобразователь выполнен на быстродействующем тиристоре VS3. Генератор открывающих импульсов ,как уже писалось выше, выполнен на VT1 и VT2. Запускается преобразователь кнопкой S1. При этом, медленно , через резисторы R5-R8 происходит заряд батареи конденсаторов С4-С5. Светодиод VD11 показывает процесс заряда. В это время генератор импульсов не работает , так как разомкнута пара S1.2. При нажатии кнопки , запускается генератор , открывается тиристор , насыщается Т2 (для снижения скорости нарастания , по-видимому, служит L3 ) .Цепь выделенная жирным представляет собой колебательный контур , состоящий из Т2 , С11-С22 и включенного последовательно тиристора. Когда направление тока в контуре меняется на противоположное , через диод VD19 протекает ток ,тиристор шунтируется диодом и закрывается. Через Т1 импульсы открывают тиристоры VS1 , VS2 и в работу включается мощный мостовой выпрямитель. Токовое реле К1 срабатывает в момент начала сварки , закорачивая R24 и увеличивая частоту преобразования. К2 — реле, срабатывающее при превышении напряжения холостого хода на выходе, резистором R33 устанавливается порог срабатывания реле .

К3 — термореле , срабатывающее при перегреве тиристора VS3 или диодов VD17 и VD18. Схема состоящая из L2, C6, R17, VD10 какую функцию выполняет , я не знаю, но без

нее схема тоже работает.

Cпецификация

  1. Резисторы

R1,R2 =24R (МЛТ-2)

R3,R4=120R (МЛТ-2)

R5…R8=820R (МЛТ-2)

R9=4.3K (ПЭВ-25)

R10…R13,

R15-R16=15K (МЛТ-2)

R14=3.3K (CП3-38Б)

R17=68R (ПЭВ-7.5)

R18=150R (ПЭВ-25)

R19=10R

R20=430R

R21=1K

R22-R23=3.3K

R24=750R

R25=6.8K

R26…R31=150R

R32=470R

R33=2.2K

R34=82R

R35=5.1K

R36,R50=2.2K

R37,R51=820R

R38,R48=22K

R40,R39,R41=200K

R52=100R

  1. Конденсаторы

C1,C2=1mF (K73-17-400V)

C3=10mF (K50-29-360V)

C4,C5=1000mF (K50-29-360V)

C6…C8=10nF (K15-5-1.6kV)

C9=1000pF (K15-5-1.6kV)

C10=0.1mF(K73-17-250V)

C11…C22=0.1mF(K78-2-1kV)

C23-C24=22nF (K73-17-400V)

C25-C26=220mF (K50-35-63V)

C27,C29,C30=0.1mF (KM-56-H90)

C28,C31=0.68mF (KM-56-H90)

  1. Микросхемы

D1-D2=K554CA3A

  1. Диоды

VD1-VD2=KD206B

VD3=KЦ402

VD4-VD6=Д132-50-6

VD7=KД105Г

VD8,VD11=АЛ307

VD9=KC147A

VD10,VD13=ДЧ-132-32-12-6

VD12,VD14=КД213А

VD15-VD16,VD19=Д816A

VD17-VD18=МПД-4265-63-6К5

VD20…VD22=КД522

VS1-VS2=T132-50-6-6У2

VS3=ТБ-251-(80-100)

  1. Реле

К1=КИСЦ. 671111.041(реле тока)

К2-К3=РЭС55А 0001

Намоточные данные

Т1= кольцо 28 x 16 x 10 , n=52 витка ПЭВ-2 диам. = 0.3 мм.

Т2= 5 сердечников ТВС-110ЛА намотка по обе стороны,

n1=16 витков , Q=10 , L = 0.3 mH

n2 = две обмотки по 4 витка

L2 n1 = ПЭВ-2 , D = 2 мм , Q = 30, L=4.05mH

n2=ПЭВ-2 , D=0.4 мм , Q=30 , L = 0.45 mH

L3 n = 5 витков (провод 4 кв.мм), Q=4.2 , L = 0.154 mH (4 кольца сложенных вместе из феррита)

L4 ПЭВ-2 , D = 0.3 мм , L = 0.04mH

L5 шл. образн. сердечник 25 х 10 окно 20 х 50, шина 4 х 2.5 (две в параллель), n = 2х22 витка , L = 0.05mH , Q = 1.5

K1 — мотается отводом от L5 в виде бескаркасной катушки , внутри которой ставится геркон . D = 10 мм , n= 5 витков.

Схема сварочного инвертора, описание работы на примере сварочного аппарата РЕСАНТА САИ 140

СХЕМА СВАРОЧНОГО ИНВЕРТОРА И ОПИСАНИЕ ПРИНЦИПА РАБОТЫ

НА ПРИМЕРЕ СВАРОЧНОГО АППАРАТА РЕСАНТА САИ 140

    Основных схем сварочного инвертора Ресанта САИ 140 удалось найти две. Управление у них очень похоже, а вот технологически они отличаются довольно сильно.

 

НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    Первый вариант принципиальной схемы сварочного инвертора Ресанта 140 выполнен с использованием управляющего трансформатора, а второй — с использованием оптодрайверов для силовых транзисторов. Есть отличия и в питании управления. Первый с самозапитом, а второй использует отдельный источник питания. Поскольку первый похож на то, что есть у меня, т.е. используется управляющий трансформатор, то с него и начнем.

ДВА ВАРИАНТА ПРИНЦИПИАЛЬНОЙ СХЕМЫ СВАРОЧНОГО ИНВЕРТОРА РЕСАНТА САИ 140

НАЖМИТЕ НА РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    Итак, подаем питание и смотрим что будет происходить.
    Напряжение 220 вольт проходит фильтр на С3 и L… Пардон, на схеме почему то ЭТО обозначено трансформатором Т1 и доходит конденсаторов С1 и С2. Емкость этих конденсаторов для частоты 50 Гц слишком мала, но вот статику они на корпус спускают отлично и именно по этой причине крайне желательно для трансформатора использовать с заземление, только с реальным, а не иметь розетку в которой есть ни куда не подключенная клемма заземления.

    Вверху есть точка №1, как раз на левом выводе термистора РТС, а на правом выводе резистора R2 есть точка №2. Эти нумерные точки идут на контакты реле RL1, которое сейчас не включено – мы только что подали напряжение питания  и пока что заряжаются конденсаторы С4 и С5 через термистор и R2, разумеется пройдя диодный мост.

    По мере зарядки конденсаторов напряжение +300VDC начинает увеличиваться и начинает протекать ток через резистор R21 заряжая С18 и С19.
    Тут следует обратить внимание на используемый операционный усилитель LM324 который уже начинает работать при напряжении питания +3 вольта, т.е. при достижении напряжения на верхнем выводе С19 трех вольт операционный усилитель уже начинает выполнять свои функции.
    Теперь смотрим очень внимательно не забыв перевести мозг в состояние ВКЛ.

    Сопротивление R21 меньше суммы сопротивлений R22 и R23 в 20 раз, а емкость С19 больше емкости С20 в 4700 раз, следовательно напряжение на верхнем выводе С20 будет больше напряжения на верхнем выводе на 0,6 вольта – напряжение падения на диоде D24. Это в свою очередь однозначно переведет компаратор на U2A в состояние, когда на его выходе будет напряжение близкое к напряжению питания, следовательно LED2 будет светится, а транзистор Q8 будет открыт и пока он открыт на выходе U2D будет напряжение близкое к нулю. Это в свою очередь имитирует превышение порога срабатывания компаратора контроллера U1A и если бы он работал, то на выходе у него был бы ноль. Но он не работает, поскольку подающий на него питание транзистор Q7 еще закрыт.
    Тем временем конденсатор С19 продолжает заряжаться и напряжение на нем увеличивается. Как только оно превысит 5 вольт в дело вступает формирователь опорного напряжения на D25 – он не дает напряжению на выводе 2 U2A и выводе 5 U2B стать выше 4,7 вольта.
    На выводе 3 U2A напряжение по прежнему больше, чем на выводе 2 и напряжение на выходе компаратора продолжает удерживаться близким к напряжению питания.
    Напряжение на выводе 6 продолжает увеличиваться, поскольку этот вывод подключен к делителю напряжения на резисторах R49 и R50. И пока напряжение на 6-м выводе меньше опорного 4,7 вольта компаратор U2B держит на своем выходе напряжение близкое к напряжению питания, а это удерживает транзистор Q7 в закрытом состоянии.

    Как только напряжение на верхнем выводе С19 станет равным 12 вольтам на делителе сформируется напряжение равное 4,9 вольта, а это больше опорного напряжения 4,7 вольта и компаратор U2B сформирует на своем выходе напряжение близкое к нулю, транзистор Q7 открывается и подает питание на контроллер UC3845.
    Контроллер начинает выдавать управляющие импульсы и силовые транзисторы начинают открываться. Но делают они это на очень короткий промежуток времени, поскольку на контроллере формируется имитация превышения выходного тока все еще открытым транзистором Q8.
    На обмотке питания управления появляется напряжение и теперь все управление может потреблять гораздо больший ток. Это напряжение стабилизируется импульсным стабилизатором U1 и тут становится наглядной одна проблема – если первоначально напряжение с левого вывода R21 будет идти сразу на всю схему, то запуска у нас не произойдет никогда – вентилятор потребляет слишком много и напряжение не будет увеличиваться на верхнем выводе С19. Автор схемы учел этот момент и сделал на схеме поправку – только после начала работы стабилизатора напряжения для управления питание подается и на вентилятор и на реле софтстарта и на верхний вывод трансформатора управления. Что до отметки на подсветку LED1, то это исключено – напряжение там не появится пока не запуститься UC3845, а он не запустится, поскольку не будет на него питания.
    Тем временем конденсатор С13 заряжается до напряжения, превышающее 5 вольт и стабилитрон D19 пропускает ток на базу Q6, тот открывается и включает реле RL1, которое своими контактами шунтирует токоограничивающий термистор и резистор R2.

    Тем временем на выходе инвертора появляется напряжение и оно пройдя ограничитель тока засвечивает светодиод ISO1. Транзистор оптрона открывается и резко уменьшает напряжение на выводе 3 компаратора U2A. Поскольку напряжение на инвертирующем входе теперь больше, чем на не инвертирующем компаратор перекидывается в состояние когда на выходе у него ноль. Светодиод LED2 гаснет, а транзистор Q8 закрывается разблокируя усилитель регулирующего напряжения для контроллера UC3845 и контроллер уже формирует импульсы максимальной длительности, поскольку нагрузки еще нет и ток ограничивать не нужно.
    При работе, т.е. при сварке регулировка тока производится путем сравнения напряжения с трансформатора тока с напряжением управления, которое формируется усилителем U2D. Подробно о принципе работы UC3845 есть отдельное видео и статья, ссылки в описании.

 

НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    Поэтому рассмотрим лишь оставшиеся узлы.
    Управление силовыми транзисторами происходит с помощью управляющего трансформатора, вторичные обмотки которого через диоды Шотки идут на затворы силовых транзисторов при наличии управляющего импульса. Как только импульс управления прекращается остаточная магнитная энергия сбрасывается D15…D17, а силовые транзисторы закрываются с помощью транзисторов Q3 и Q5, причем происходит это через конденсаторы С 9 и С 10. Эти конденсаторы позволяют получить больше энергии для закрытия транзисторов и это происходит именно в момент окончания управляющего импульса.
    При наличии управляющего импульса оба транзистора сварочного инвертора открываются и через первичную обмотку протекает ток, который создает магнитное поле наводящее напряжение на вторичной обмотке. При исчезновении управляющего импульса транзисторы закрываются, а не израсходованная магнитная энергия сбрасывается на шины первичного питания через диоды D2 и D3, тем самым полностью размагничивая магнитопровод трансформатора и подготавливая его с следующему циклу передачи энергии во вторичную обмотку.

 

НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    К сервису данного сварочного инвертора можно отнести защиту от перегрева и залипания электрода, выполненных на одном управляющем элементе – оптроне ISO1.
    Пока светодиод данного оптрона светится открытый транзистор оптрона формирует почти ноль на выводе 3 U2A. Как только электрод касается свариваемой заготовки напряжение на светодиод еще какое то время поступает за счет накопленной в конденсаторе С34 энергии. Это время и есть время поджига дуги и если дуга не загорелась, т.е. электрод залип, то светодиод оптрона тухнет, тем самым закрывая транзистор оптрона. На выводе 3 компаратора U2A появляется практически напряжение питания и компаратор зажигает LED2 и открывает транзистор Q3, который душит на землю управляющее напряжение и контроллер выдает только очень короткие импульсы управления, которые не позволяют перегрузить силовой каскад – работа то идет практически на короткое замыкание и единственным сопротивление вторичного напряжения является реактивное сопротивление L1 индуктивность которого и выбрана таким образом, чтобы она оказывала влияние только на самые короткие импульсы.
    Как только электрод отодрали от заготовки напряжение на выходе инвертора снова появляется и снова загорается светодиод оптрона. Компаратор U2A гасит светодиод LED2 и закрывает транзистор Q8, тем самым переводя контроллер UC3845 в штатный режим работы.
    Если же происходит перегрев, то срабатывает самовосстанавливающийся термопредохранитель КТ, который разрывает цепь питания оптрона и светодиод гаснет и процессы повторяются – горит светодиод LED2, а на выходе сварочного инвертора очень короткие импульсы, не позволяющие производить сварочные работы и это состояние удерживается пока радиатор не остынет и термопредохранитель не включится.

    Второй вариант принципиальной схемы все того же инвертора Ресанта 140 отличается не большими изменениями в самом управляющем блоке, ну например транзистор подающий питание на UC3845 открывается через стабилитрон. Питание управление организовано от отдельно блока питания, который выдает 4 напряжения:

    15 вольт для питания управления, которые стабилизируются дополнительной КРЕНкой, вольт 12 для вентилятора и два напряжения для оптодрайверов силовых транзисторов. Величина должна быть порядка 25 вольт.

    Оптодрайверы управляют силовыми транзисторами через дополнительный формирователь отрицательного напряжения, выполненный на R6-D5 и R9-D6. Подача отрицательного напряжения на затворы силовых транзисторов значительно уменьшает время их закрытия, следовательно уменьшается нагрев транзисторов.
    Софтстарт второго варианта сварочного инвертора тоже организован несколько иначе – пока горит светодиод оптрона транзистор Q3 будет закрыт, но нагреваясь термистор RV2, имеющий отрицательную зависимость сопротивления от температуру увеличивает свое сопротивление и светодиод тухнет, тем самым разблокируя базу Q3 и реле софтстарта включается.
    Откровенно говоря и в первом варианте схемы инвертора и во втором включение реле происходит довольно медленно и не зависит от состояния схемы управления, что может приводить к подгоранию контактов реле.
    На последок остается добавить, что я собираю информацию по используемым в сварочных инверторах компонентам и результаты поисков свожу в таблицу с краткими характеристиками. ПОСМОТРЕТЬ МОЖНО ЗДЕСЬ.

   


Осциллограмма выходного напряжения без нагрузки.


Осциллограмма выходного напряжения инвертора при нагрузке 60 А.


Осциллограмма выходного напряжения инвертора Ресанта при сработанной защите.

   

   

    Небольшая подборка принципиальных схем сварочных инверторов РЕСАНТА сложены в АРХИВ. Кроме принципиальных схем сварочных аппаратов приведены несколько пособий по ремонту, несколько фотографий внутренностей инверторов, несколько паспортов.

 

 

 

 


Адрес администрации сайта: [email protected]
   

 

Схема сварочного инвертора мма 200

Современные сварочные работы проводятся при применении специальных инверторов. Ранее для подобной обработки металла использовали обычные трансформаторы, которые характеризуются меньшей эффективностью. Принципиальная схема сварочного инвертора может несколько отличаться, но все они характеризуются легкостью и компактностью. Только при учете конструктивных особенностей можно провести ремонт сварочного инвертора и его точную настройку.

Элементы электрической схемы сварочных инверторов

Принципиальная электрическая схема инверторного сварочного аппарата предусматривает сочетание нескольких элементов, которые связаны между собой. Основными можно назвать:

  1. Блок, отвечающий за подачу энергии к силовой части. Этот элемент представлен сочетанием нескольких устройств, которые способны изменять параметры тока до требуемых значений. Как правило, включается емкостный фильтр и выпрямитель.
  2. В устройство входит силовой трансформатор. Также в блок питания сварочного инвертора входит транзистор 4n90.
  3. Отдельный элемент отвечает за питание слаботочной части конструкции.
  4. Для контроля основных параметров устанавливается ШИМ контроллер. Он представлен сочетанием датчика тока нагрузки и трансформатора.
  5. Отдельный блок отвечает за защиту конструкции от воздействия тепла. При прохождении электрического тока некоторые элементы могут серьезно нагреваться. Поэтому дополнительно устанавливается охлаждающий модуль, представленный вентилятором и датчиком температуры.
  6. Блоки управления, которые позволяют устанавливать основные параметры, а также элементы индикации.

Пример принципиальной схемы для тока 250А

Оборудование диодного моста для сварочного аппарата производится и устанавливается с учетом мощности устройства и некоторых других моментов. Каждый аппарат имеет свои особенности, которые рассмотрим далее подробно.

Схемы аппаратов Сварис

Сварочный аппарат Сварис 200 характеризуется простотой в применении и невысокой стоимостью. Уже моделям Сварис 160 были присущи высокие эксплуатационные характеристики, а новый вариант исполнения был усовершенствован. Схема инверторного сварочного аппарата определяет следующие эксплуатационные характеристики:

  1. Максимальный показатель потребления составляет 5 кВт.
  2. Сварочный ток может варьировать в пределе от 20-200 А.
  3. Показатель напряжения холостого хода 62 В.
  4. Показатель КПД 85%.
  5. Рекомендуемые электроды 1,6-5,0.

В целом можно сказать, что инвертор выполнен по классической схеме, которая была рассмотрена выше.

Схемы моделей ММА-200 и ММА-250

Большое распространение получили модели ММА-200 и ММА-250. Эти инверторы практически идентичны, разница заключается лишь в нижеприведенных моментах:

  1. Схема сварочного инвертора ММА 250 предусматривает наличие в выходном каскаде по 3 резистора полевого типа. Все ни подключены параллельно. Схема сварочного инвертора ММА 200 указывает лишь на наличие двух резисторов.
  2. У новой версии три импульсных трансформатора, в то время как у старой только два.

Основная схема обеих моделей практически полностью идентична.

Схема инвертора ММА-200

Схемы Inverter 3200 и 4000

Для проведения ручной дуговой сварки можно использовать Inverter 4000 или 3200. Оба аппарата обладают практически идентичной конструкцией, которая обеспечивает наличие следующих функций:

  1. Защита от эффекта залипания электрода.
  2. Защита основных элементов от серьезного перепада напряжения.
  3. Контроль основных параметров дуги.
  4. Встроенный элемент охлаждения с контрольными датчиками.

При изготовлении инверторов была обеспечена защита по классу IP21. Мощность устройства составляет 5,3 кВт, питается от стандартной сети энергоснабжения. Подробная схема inverter 3200 pro определяет весьма привлекательные свойства этих моделей, за счет чего они получили широкое распространение.

Схемы других моделей

Как ранее было отмечено, практически все инверторы работают по схожему принципу, и создаваемые схемы могут отличаться несущественно. Все сварочные аппараты делятся на несколько основных групп:

  1. Для проведения электродуговой сварки при применении покрытых специальным составом электродов применяется оборудование типа ММА. Подобная схема характеризуется высокой эффективность, а конструкция имеет небольшой вес.
  2. Для применения тугоплавких электродов применяется сварочное оборудование типа ММА+TIG. Они могут работать в среде инертных газов.
  3. На производственных линиях встречаются агрегаты с полуавтоматической подачей прутка. В этом случае работа, как правило, проводится в среде инертных газов или в специальных ванночках.
  4. При кузнечном или прочем ремонте используется точечная сварка.

Модель ARC 160, схема которой довольно сложна, может применяться для проведения самых различных работ. В отличии от arc 140, схема новой модели лишена основных недостатков.

Сварочный инвертор ТОРУС 250

Вариант исполнения торус 250 состоит из следующих элементов:

  1. Генератора тактового типа, построенного на микросхеме TL Стоит учитывать, что схема мощного инвертора не предусматривает использование ШИМ, но в микросхеме есть два компаратора с датчиками тепловой защиты.
  2. Система защиты и регулировочный модуль выполнены на основе LM Датчик, определяющий параметры тока, помещен на ферритовом кольце с обмоткой.
  3. В схему включается также два выходных драйвера, построенные на IR

В отдельную категорию относят схему сварочного инвертора на тиристорах, которая получила весьма широкое распространение.

Ремонт Торус 250 следует проводить с открытия конструкции и визуального осмотра основных элементов. В рассматриваемом случае они следующие:

  1. Выпрямитель выходного типа представлен отдельной платой, на которой размещается два радиатора. Они служат в качестве основания для размещения диодных сборок. Также в модуль входит один трансформатор и дроссель. Количество элементов в выходном выпрямителе во многом зависит от конкретной сборки.
  2. Модуль ключей представлен четырьмя транзисторами в каждой из четырех групп. Для того чтобы снизить степень нагрева все они размещаются на отдельных радиаторах, которые изолированы специальными прокладками.
  3. В качестве выходного выпрямителя используется мощный диодный мост. В рассматриваемом случае он расположен в нижней части конструкции. На этой модели устанавливается крайне надежный и практичный мост, который сложно спалить при исправной работе системы охлаждения.
  4. Микросхема управления является основным элементом конструкции. Как правило, от правильности его работы зависит долговечность всего аппарата. Самостоятельно проверить блок можно только при наличии специального осциллографа и соответствующих навыков работы с ним.
  5. Корпус с вентилятором системы охлаждения. Как правило, охлаждающий блок выходит из строя только в случае механического воздействия.

Для диагностики многих элементов приходится проводить их демонтаж. Именно поэтому лучше всего доверить работу профессионалам, так как неправильная сборка может привести к существенным проблемам.

Сварочный инвертор САИ 200, схема которого не существенно отличается от аппаратов схожего типа, применяется для ручной дуговой сварки и наплавки при применении штучных электродов. RDMMA 200 относится к оборудованию нового типа, которое создается без применения трансформаторов. За счет этого возможна более точная и плавная регулировка показателей тока, при работе не появляется сильного шума.

В заключение отметим, что вышеприведенная информация определяет сложность конструкции сварочных инверторов. При этом производители не распространяют подробные схемы устройств, что усложняет обслуживание и ремонт. Несмотря на применение схожей схемы при создании практически всех инверторов, они существенно отличаются друг от друга. Именно поэтому перед проведением каких-либо работ нужно подробно ознакомиться с конструктивными особенностями устройства.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Сейчас уже почти не осталось людей, которые бы отправляясь в магазин за сварочным аппаратом, остановили свой выбор на традиционном сварочнике с большим трансформатором. Сварочные аппараты инверторного типа (со встроенным преобразователем), имеют настолько неоспоримые преимущества перед обычными, что единственным их недостатком являлась высокая цена.

Однако ситуация изменилась с массовым приходом на наши рынки недорогих, даже скажу – дешёвых, китайских инверторов. Конечно опытный электронщик может собрать сварочное устройство своими руками, но в нашем областном торговом центре цена промышленных китайских инверторов в пределах всего 170 – 300уе. Так стоит ли овчинка выделки? Конечно надёжность китайского инвертора не на высоте, но при гарантии один год оно того стоит. Здесь приводятся параметры некоторых популярных моделей китайских сварочных инверторов, представленных в интернет магазинах. Типовая схема китайского инвертора, на примере модели TIG200.

Сварочный инвертор NBC

Модель инвертора NBC-350 NBC-500 NBC-630
Входное напряжение 380+/-10% 380+/-10% 380+/-10%
Мощность потребления, кВт 14 25 37
Ток потребления 25 46 66
Напряжение сварки 14-40 17-50 17-50
Ток сварки 60-350 60-500 60-630
Диаметр электрода 0.8-1.6 1.0-1.6 1.0-2.0
КПД 89% 89% 89%

Сварочный инвертор TIG


Модель инвертора TIG-160 TIG-200 TIG-250 TIG-315 TIG-400
Ток потребления 20A 28A 9. 6A 13.6A 20A
Напряджение х.х. 56V 56V 54V 68V 60V
Ток сварки 15-160A 15-200A 15-250A 15-315A 15-400A
Напряжение по нагрузкой 16.4V 18V 20V 22.6V 26V
КПД 0.8 0.8 0.8 0.8 0.8

Сварочный инвертор WS


Модель инвертора WS-160 WS-200 WS-250 WS-315 WS-400
Напряджение х.х. 56V 56V 54V 68V 60V
Ток сварки 15-160A 15-200A 15-250A 15-315A 15-400A
КПД 0.8 0.8 0.8 0.8 0.8

Сварочный инвертор CUT


Модель инвертора CUT-40 CUT-60 CUT-80 CUT-100
Входное напряжение 220+/-10% 380+/-10% 380+/-10% 380+/-10%
Частота (Hz) 50/60 50/60 50/60 50/60
Ток потребления 22 11.9 17 22.8
Напряджение х.х. 230 240 240 240
Ток сварки 15-40 15-60 15-80 20-100
Напряжение по нагрузкой 96 104 112 120

Сварочный инвертор MMA


Модель инвертора MMA-160 MMA-200
Ток сварки 15-160 15-200
Ток потребления 33 43
Напряджение х.х. 56 56
Диаметр электрода 1.6-2.5 1.6-3.2
Напряжение по нагрузкой 26.4 28
КПД 80% 80%

Сварочный инвертор отлично подходит для того, чтобы сварить низкую углеродистую сталь, легированную сталь;
Передовая технология инвертора высокой частоты переключения, высокая надежность, небольшой размер, легкий вес, энергосбережение;
Замедлитель проводной дуги, высокий показатель точности; Антизалипание электрода;
Специальная технология управления, позволяющая улучшить форму, уменьшить брызганье, сварочное искажение, хорошую форму сварки, уровень смещения;
Используется пассивная коррекция коэффициента мощности;
Ток, напряжение – плавно регулируются в широком диапазоне значений;
Рабочий цикл сварки может быть длительный и непрерывный;
Доступная цена в интернет магазинах.

Описание работы схемы электрической принципиальной сварочных инверторных аппаратов

_ «МИКРОША»

При включении в сеть замыкаются 2 группы контактов выключателя S 1. При этом S 1.1 подключает напряжение питания к диодному мосту сетевого выпрямителя через конденсатор С7. На частоте 50 Гц конденсатор имеет реактивное сопротивление несколько сотен Ом, что позволяет обеспечить плавную зарядку электролитических конденсаторов сетевого фильтра. Цепь S 1.2 включает цепь питания реле. По мере зарядки конденсаторов цепи +300В, заряжается и конденсатор временной задержки С13 через резисторы R 44, R 45, R 50. При достижении напряжения на нем уровня +2,5В управляемый стабилитрон VD 15 открывается, реле К1 срабатывает, шунтируя своими контактами С7.

При неисправности в высоковольтной цепи +300В ( транзисторы, либо эл. конденсаторы- утечка ), VD 15 не откроется, напряжение +15В будет присутствовать на его катоде и резисторе R 25, транзистор VT 1 откроется, шунтируя терморезистор R 4, что вызовет срабатывание компаратора на ОУ2 «ПЕРЕГРЕВ, АВАРИЯ» и блокировку ШИМ контроллера.

Блок питания +15В построен на ТОР258 GN . Представляет собой DC – DC преобразователь без гальванической развязки. Сумма напряжений стабилитронов VD 5 и внутреннего стабилитрона микросхемы 5,6В задает величину выходного напряжения ( 5,6+9,1=14,7В ). Параллельно внутреннему установлен защитный стабилитрон VD 6. Кроме того VD 16 защищает цепь питания от непредвиденных ситуаций и при превышении уровня напряжения вызывает срабатывание защиты микросхемы по току.

М/сх IC 2 – LM 224 D : ОУ2 выв.5,6,7 – на вывод 5 подается опорное напряжение 2,3В с делителя R 5, R 6. На инвертирующий вход 6 – с делителя R 3, R 4. При нагреве радиатора диодов сопротивление терморезистора уменьшается с ростом температуры. Когда величина напряжения этого делителя уменьшается до уровня опорного, на выводе 7 появляется высокий уровень напряжения, которое через резистор R 39 поступает на светодиод «ПЕРЕГРЕВ» и на аналоговый вход PIC контроллера (1). Через R 37 это же напряжение поступает на сумматор аварийных сигналов –ОУ3 (выв.8,9,10), с выхода 10 блокируя работу ШИМ контроллера через транзистор VT 6. Так же к ОУ2 (выв.5,6,7) подключены транзисторы VT 1, VT 2. Первый открывается при аварии в цепи +300В, второй открывается сигналом PIC контроллера при низком/высоком напряжении питания, что вызывает ту же реакцию, что и нагрев терморезистора. Компаратор ОУ2(5,6,7) обладает гистерезисом, смещая температурный порог обратного включения через R 24, VD 7.

ОУ1 выв. 1,2,3 – мониторит напряжение +15В. Опорное – R 22, VD 8, измеряемое – R 20, R 21. При включении аппарата, при достижении уровня питания +13,5В на выв.1 появляется лог.0. При снижении напряжения менее 11,5В – лог.1, поступающая на сумматор ОУ3 (5,6,7), запрещая подачу питания на ШИМ контроллер IC 4. Гистерезис обеспечивается цепью R 34, VD 17. Данная защита необходима транзисторам инвертора. При снижении амплитуды импульсов управления менее 10В возможен переход силовых транзисторов в линейный режим с большими потерями и как следствие – выход из строя с разрушением кристалла.

ОУ3 выв. 5,6,7 – компаратор-сумматор. При появлении на входе 10 хотя бы одного сигнала: а) с термодатчика №1 через R 37, б) с компаратора питания через R 35, в) с термодатчика №2 через R 40, вызывает появление напряжения высокого уровня на выводе 8, которое запирает транзистор VT 6, блокируя подачу питания ШИМ контроллера.

Работа термодатчика №2 на IC 3 ничем не отличается от описанного ранее №1. Он устанавливается на аппараты с ферритовыми сердечниками и настроен на температуру срабатывания по перегреву феррита 95-100 С. На модификациях с нанокристаллическими сердечниками он отсутствует.

ОУ4 выв. 12,13,14 – усилитель ошибки. Сигнал с трансформатора тока TV 1 выпрямляется диодным мостом VD 11- VD 14, интегрируется цепью R 23, C 12 и через резистор R 38 подается на инвертирующий вход 13 ОУ. На его неинвертирующий вход приходит напряжение задания величиной от 0В до +5В с резистора регулировки тока сварки R 88. Величина проинтегрированного напряжения с ТТ имеет аналогичный порядок. Напряжение управления с вывода 14 IC 2 через делитель/интегратор R 54, R 63, C 24 поступает на вывод 2 IC 4 ШИМ контроллера для регулировки тока по среднему значению. R32, C14 – цепь коррекции.

IC 4 – SG 2525 AP – двухтактный ШИМ контроллер. Рабочая частота для ферритовых сердечников в моделях 160, 180 – 60 кГц. Для нанокристаллических – 42 кГц. Для моделей 200 и 220 – 42 кГц для любых сердечников. Стандартное включение. Цепи коррекции. Выходные сигналы усиливаются транзисторными сборками IC 5, IC 6 для раскачки трансформатора гальванической развязки ( ТГР ). На выходах ТГР – предусилители-корректоры (драйвера) выполнены по схеме с отрицательным смещением в паузе. На затворы силовых транзисторов подается сигнал, имеющий в импульсе амплитуду +15В, в паузе -2,7В. Отрицательное смещение необходимо для защиты от приоткрывания транзистора противоположного плеча от случайных наводок и флюктуаций.

Силовая часть – полумостовой квазирезонансный преобразователь. Частота коммутации выше резонансной частоты, образованной контуром С44, 45, 46, 47, 50, 51 совместно с индуктивностью рассеяния трансформатора, в связи с чем форма вершины импульса тока имеет несколько колоколообразный, закругленный вид и ток выключения транзистора не превышает его тока включения, не взирая на отсутствие выходного дросселя. Силовой трансформатор имеет соотношение витков 14/6=2,33 что позволяет работать при низком напряжении в электросети. Для 200-220 модификаций с ферритовыми сердечниками 16/7=2,28, с нанокристаллическими – 11/5=2,2.

Защита от приваривания электрода. При наличии дуги на выходе – напряжение на С49 всегда будет более 18В. Оптрон ОС3 открыт. Напряжение задания с R 88 поступает на усилитель ошибки IC 2 (выв.12). При КЗ на выходе С49 разряжается через R 114,115,116 в течении 0,5-0,8 сек. Далее оптрон закрывается и напряжение задания падает до минимально возможного значения.

Регулировка тока и форсажа производится переменными резисторами R 88, R 91. При горящей дуге выходное напряжение составляет не менее 18В. При дуговой сварке покрытым электродом дуга при меньшем значении напряжения существует кратковременно и стремится потухнуть. Выходное напряжение интегрируется цепью R 96, R 97, R 111, C 65. При его штатном значении стабилитрон VD 34 открыт, транзистор оптрона ОС2 так же открыт, шунтируя переменный резистор «форсаж». При значениях выходного напряжения, стремящихся к КЗ, т.е. менее 18В, стабилитрон закрывается, транзистор оптрона так же закрывается и резистор R 91 подключается в цепь задания тока, увеличивая его на заданную величину. Это же значение поступает на второй аналоговый вход процессора – выв. 3 платы индикации. Контроллер индицирует изменяющиеся значения тока уставки.

Ограничение выходной мощности осуществляется оптроном ОС1. Вызвано необходимостью снижения выходной и потребляемой мощности при значительном, нештатном растягивании дуги, либо при тестировании оборудования с помощью балластного реостата на большом, не соответствующем ГОСТ значении сопротивления нагрузки. Т.к. аппараты имеют большой запас по Ктр силового трансформатора и соответственно по возможности ШИМ регулирования, то могут тянуть дугу, например модели 200 и 220 до 40В при 200А. Это вызывает перегрузку диодных мостов, эл. конденсаторов и т.д. Делитель R 87, R 89 подобран таким образом, что для моделей 160, 180 ограничение начинается при превышении напряжением значения 27,5В, для 200, 220 – 30В. При достижении этих значений, открывается управляемый стабилитрон VD 26, транзистор оптрона ОС1 открывается, подключая делитель R 66, R 67 к напряжению задания. Ток уменьшается.

Измерение напряжения электросети . По цепи делителя VD 39, C 37, R 95, R 101, R 102, через LC фильтр L 2, C 55 измеряемое напряжение подается на выв.2 платы индикации и поступает на первый аналоговый вход контроллера PIC 18 F 14 K 22. Процессор периодически выводит значение напряжения на индикатор, сменяя значение тока уставки.

Плата индикации. Программа прошивается и проверяется до установки в основную плату. Задействованы оба АЦП и один цифровой вход процессора. При поступлении сигнала «ПЕРЕГРЕВ», либо значения напряжения сети менее 85 и более 255 вольт, выдается сигнал блокировки работы с вывода 7 платы, который поступает через резистор R 49 на базу транзистора VT 2, вызывая по цепям ОУ блокировку ШИМ контроллера. Возможна только калибровка по напряжению сети. Для этого необходимо при выключенном аппарате замкнуть «джампером»(перемычкой) двухштыревой разъем на плате индикации. Установить с ЛАТРа сетевое напряжение 220 вольт. Включить аппарат. При этом на индикатор будет выводиться мигающее значение 220. Контроллер измеряет, усредняет и запоминает это напряжение, как эталонное, в течение некоторого времени. Для ранних моделей – 30 сек, для более поздних – 10 сек. Затем значение цифр сменяется на мигающие 100. Необходимо уменьшить напряжение питания с ЛАТРа до величины 100 вольт, затем снять «джампер». После этого процессор начнет запоминать эталонный уровень 100 вольт. По окончании «мигания» необходимо выключить аппарат. После повторного включения снизить напряжение сети до 85 вольт. Должна сработать блокировка, засветится светодиод «перегрев» и на более поздних моделях на семисегментном цифровом индикаторе бегущей строкой появится сообщение «НАПР. СЛАБОЕ» и мигающие цифры 85. Проверить обратное включение при напряжении 90 вольт. Аналогично протестировать аппарат при напряжении 255В – блокировка и появление надписи «НАПР. ОГО-ГО», «255». При 250В – снятие блокировки. Далее замкнуть любой терморезистор проволочной перемычкой. Блокировка и появление надписи «ПЕРЕГРЕВ 100 С». Лексическая бедность сообщений вызвана невозможностью отображения на цифровом индикаторе большинства букв русского алфавита.

РЕМОНТ

При проверке работы схемы управления от блока питания, без подачи высокого напряжения, подать +15В в схему, подпаявшись, например к VD 16. Предварительно необходимо заблокировать защиту от пониженного напряжения электросети, для чего замкнуть проволочной перемычкой резистор R 26.

При проверке моделей 200, 220 необходимо подать напряжение +27В, подпаявшись к местам пайки выводов вентиляторов.

Проверить осциллографом наличие импульсов +15, -3В на затворах транзисторов FGH 40 N 60 SMD .

ВНИМАНИЕ ! Нельзя менять местами провода, идущие с сетевого выключателя S 1.1, S 1.2. Одна группа контактов коммутирует напряжение сети. Другая, напряжение питания реле. При попадании напряжения сети в цепь питания реле, как минимум придется заменить VD 15, VD 16. На ранних моделях применялся выключатель большего размера для коммутации полного тока, потребляемого от сети. Данные выключатели показали свою крайнюю ненадежность, в связи с чем и была произведена модернизация с изменением цепей коммутации.

НЕИСПРАВНОСТИ

1. Ток не регулируется. На индикаторе значение 00. Поломка переменного резистора регулировки в результате фронтального удара. Заменить резистор 10 кОм .

В моделях выпуска с февраля 2015 г. резисторы заменены на другие, с дополнительным креплением к плате. Печатная плата изменена. Крышка корпуса удлинена на 5 мм для дополнительной защиты регуляторов.

2. Вращение регулятора «ФОРСАЖ» изменяет значение тока. Ток при попытке сварки минимален, сварка невозможна. Повышенное напряжение холостого хода +95_+115В. Причина – отсутствует контакт выхода + с диодом VD 37. Осуществляется через заклепку на радиатор крепления диодов VD 35, VD 36. Устранение неисправности – припаять провод к диоду VD 37, другой конец к выходной клемме +. На последних моделях провод добавлен штатно, дублируя контакт через заклепку.

Аналогично проверить контакт минусового провода на оптроны ОС2, ОС3.

3. Блок питания делает попытки запуска и уходит в защиту. Либо при напряжении от ЛАТР 80 – 230 В запускается штатно, а при подаче напряжения сети 230-250В начинает «икать» или запускается, а через некоторое время снова уходит в защиту. Причина – повышенное потребление тока схемой управления. Разрядив сетевые электролиты, подать напряжение от лабораторного блока питания, зашунтировав R 26. Проверить осциллограммы на затворах. Проверить потребление тока от лабораторного БП. Оно не должно превышать величину 1 ампер. При повышенном потреблении тока отпаять выводы вентиляторов. Проверить потребление тока каждым вентилятором в отдельности. В аппарат устанавливались вентиляторы с током потребления 0,2 и 0,3 ампера. Либо оба 0,2А, либо задний 0,3 а передний вентилятор 0,2А. Если обнаружено, что в результате ошибки и пересортицы производителя установлены оба вентилятора с током 0,3А, то необходимо последовательно со вторым припаять резистор мощностью 1-2Вт сопротивлением 24-27 Ом. Мощность и потребление тока вентилятором снизится и м/сх TOP 258 GN перестанет уходить в защиту. Изменить порог защиты по току в данной м/сх невозможно.

4. Выход из строя силовых транзисторов в результате попадания влаги, грязи и т.д. пояснений для опытных мастеров не требует. Замена сложности не представляет. Необходимо зачистить от лака радиатор по краю места посадки транзисторов. Проверить исправность стабилитронов в драйверах, затворных резисторов. Подать питание от БП, как описано ранее и проверить осциллограммы.

5. Выход из строя диодного моста GBPC 3508 W . Аппарат молчит. Все напряжение сети приложено к конденсатору С7. Его реактивное сопротивление позволяет аппарату находиться в таком положении сколь угодно долго. Прозвонить мост. Заменить. Если перегрев произошел по причине повреждения заднего вентилятора – заменить вентилятор.

6. Постоянно светится «ПЕРЕГРЕВ». Пробой конденсатора С5 из-за наводок. Прозвонить Заменить на 0,1 мкфх100В размер СМД 1206, либо выводной.

7. Индикатор мигает, отображаемые цифры «999» – Сбой памяти контроллера. Необходимо перекалибровать по напряжению сети, как описано выше, в описании платы индикации.

Принцип работы схемы аппаратов 200 и 220 ампер аналогичен. Нумерация компонентов сохранена.

Как применяют сварочный инвертор: электрическая принципиальная схема

Использование инверторных источников сварочного тока (ИИСТ) в наши дни практически полностью заменяет применение трансформаторных источников, которые являлись их предшественниками. В основе их принципа действия был заложен понижающий трансформатор, работающий от сети частотой 50-65 Гц. Он представлял собой довольно громоздкое устройство. Для создания современных сварочных инверторов используются принципиальные электрические схемы, отличающиеся от схем трансформаторных аппаратов.

При использовании сварочного инвертора необходимо использовать электроды с покрытием ММА.

Для каждой модели инвертора характерно подходящее схемное решение, обеспечивающее качественные конструктивные особенности агрегата. Электрическая схема предполагает работу агрегата на основе импульсных преобразователей высокой частоты. Электрическая дуга должна держаться долго, чтобы шов получился очень ровным, поэтому сама принципиальная электрическая схема позволяет выпускать сварочные инверторы с легким весом, чтобы их было удобно держать и перемещать.

Читайте также: Заточка цепи для бензопилы своими руками.

Виды инверторных источников сварочного тока

Вернуться к оглавлению

Дуговая, автоматическая и полуавтоматическая сварка

Рынок аппаратов для сварки снабжает приборами не только промышленность, но и бытовую сферу, причем ИИСТ больше всего используют в быту. Производители ежегодно поставляют новейшее сварочное оборудование данного типа. Высокий уровень спроса на инверторные устройства обусловлен применением электрической схемы, основанной на широтно-импульсной модуляции. Повсеместным спросом пользуются ИИСТ, которые применяются для:

Схема устройства сварочного инвертора.

  1. Дуговой сварки с помощью неплавящихся штучных электродов.
  2. Полуавтоматической или автоматической сварки.
  3. Плазменной резки или иных видов сварки, например, алюминиевых деталей.

Широко применяемая дуговая ручная сварка (MMA) с помощью ручного электрода монолит не требует слишком большого расхода электроэнергии. Аппарат, имеющий достаточно сниженный вес, позволяет сварщику с легкостью его перемещать ближе к необходимой точке подключения. Прибор ручной дуговой сварки совместим с генератором, который служит для выработки переменного напряжения 220 В.

Используемая электрическая схема аргонодуговой сварки (TIG) переменного либо постоянного тока связана с расширенными возможностями, позволяющими осуществлять точное регулирование различных параметров установленного режима. Для сварки используется вольфрамовый электрод, которым можно точно выполнять все работы. Это позволяет сделать внешний вид шва и его качество соответствующим. Вместе с тем особыми преимуществами обладают и габариты прибора, его вес, а также энергопотребление.

Полуавтоматическая сварка (MIG/MAG) связана с использованием схемы устройства, обеспечивающего выбор подходящего способа переноски металла. Варианты могут быть связаны с капельной, струйной переноской и пр. Данный способ не предполагает разбрызгивание капель металла.

Вернуться к оглавлению

Инверторы для плазменно-дуговой резки

Схема панели сварочного инвертора.

Новый вид передовых технологий обеспечивается за счет плазменно-дуговой резки (PAC). Сварочный процесс и паузы происходят при высокой стабильности дуги инверторного аппарата. Процесс резки должен происходить на высокой скорости для получения ровной и аккуратной кромки, которая не требует обработки.

Для некоторых инверторов характерно самоограничение мощности, поскольку их действие основано на резонансных инверторах. Если настроить прибор в режим максимального тока, то короткое замыкание не случится. В целом ИИСТ – это сварочный аппарат, принцип работы которого напоминает действие блока питания компьютера. В этом и состоит отличие ИИСТ от классического трансформаторного источника питания.

Меньшие размеры инвертора отличают его от трансформаторного прибора. Вместе с тем для ИИСТ характерен высокий уровень частот, превосходящий частоту работы трансформаторного аппарата в 50 Гц. Принципиальная электрическая схема сварочного инвертора предусматривает работу на частотах от 55 до 75 кГц.

Вернуться к оглавлению

Особенности принципиальной электрической схемы сварочного аппарата

Инвертор, принципиальная схема которого основана на действии блока транзисторов высокой частоты (от 55 до 75 кГц), предусматривает процесс коммутирования входного тока высокой мощности, поступающего с диодного моста.

Схема работы сварочного инвертора.

Элемент одновременно служит для выпрямления входного напряжения. После его выравнивания за счет фильтрующих конденсаторов можно получить постоянный ток при напряжении более 220 В.

Выход первоначального этапа связан с наличием первичного выпрямителя напряжения сети (220 В) с частотой переменного тока, равной 50 Гц. Сборка данного источника производится на основе диодного моста, а конденсатор служит простым фильтром. Лимитирование тока после включения устройства связано с наличием нелинейной зарядной цепи. Ее основными элементами являются шунтирующий тиристор и токоограничивающий резистор.

В целом принципиальная электрическая схема инверторного сварочного аппарата связана с выполнением функции источника питания, обеспечивающего работу транзисторному блоку ИИСТ. Действие данного блока происходит при частоте 60-80 кГц, поэтому потребуется понижающий трансформатор, работающий на требуемых частотах. Эта возможность позволяет выпускать сварочные инверторы меньших размеров, чем трансформаторные аппараты.

При наименьших размерах современного ИИСТ, в отличие от трансформаторного аппарата, мощность прибора имеет постоянный уровень. Важным этапом является решение задачи, связанной с выбором необходимой технологии, оптимизирующей работу силовой части. Ее представляют составляющим элементом принципиальной электрической схемы любого профессионального инвертора. Построить силовую часть можно на основе топологии, предусматривающей использование мостового конвертера, однотактного прямоходового мостового и полумостового конвертера.

Вернуться к оглавлению

Описание принципа работы схемы сварочных инверторов

Принципиальную схему сварочного инвертора можно проследить, опираясь на порядок выполнения действий данным устройством. Первоначально включенный в сеть прибор для сварки ИИСТ получает переменный ток с напряжением 220 В, выпрямление которого происходит при наличии в схеме диодного моста. Для устранения лишних помех с целью защиты высококачественного конденсатора устанавливают специальные помеховые фильтры, которые являются препятствием.

Затем происходит выравнивание тока при наличии конденсатора и его поступление к блоку транзистора. Через конденсаторы проходит ток, имеющий напряжение выше, чем на выходе диодных мостов. Понижающий трансформатор имеет обмотку, где должна присутствовать частота, с которой происходит прохождение постоянного тока, в несколько раз превышающую ее первоначальную величину. В результате на выходе происходит получение высокочастотного переменного сварочного тока.

Далее ток проходит через цепь понижающего высокочастотного трансформатора, который имеет вторичную обмотку с большим сечением. При этом могут быть использованы разные виды обмоточных материалов. Трансформатор понижает ток до уровня напряжения, равного 50-70 В. Одновременно происходит возрастание силы сварочного тока, которая превышает 130 А.

Вернуться к оглавлению

Принцип функционирования выходного диода

Если сборка кустарная, то используют трансформатор со вторичной обмоткой, изготовленной с применением меди (размер толщины – 0,3, ширины – 40 мм). Условия данного подхода заключаются в вытеснении тока высоких частот на поверхность проводников, сердцевина которых не задействуется, поэтому происходит нагревание прибора. Далее полученный ток выпрямляется за счет выходных диодов.

Рисунок 1. Электрическая схема, по которой действует инвертор.

Особенностью действия выходного диода является его функционирование при высокочастотном токе, с чем справляются не все виды диодов. Поэтому следует применять те диоды, которые являются быстродействующими. Они имеют время восстановления не более 50 наносекунд.

В одинаковых условиях обычным диодом нельзя будет воспользоваться по причине отсутствия его срабатывания при установленной высокой частоте тока. Получаемый результат связан с выходом постоянного сварочного тока, сила которого является очень высокой, а напряжение низким.

Вернуться к оглавлению

Универсальность принципиальной схемы сварочного инвертора

Электрическая схема, по которой действует инвертор, приведена на рис. 1. Производители предусматривают для любой модели определенные характеристики, позволяющие увеличить надежность эксплуатации прибора и обеспечить меры безопасности при работе с ним. Электрическая схема прибора предполагает наличие блока термоконтроля, служащего защитой агрегата от сильного нагревания и перегрева. Блок регулирует и работу системы охлаждения.

Рисунок 2. Принципиальная электрическая схема сварочного инвертора.

Присутствие различий в деталях сварочных инверторов определенных типов не влияет на принципиальные схемы их работы, которые сводятся к описанному ранее принципу. Рассматриваемое оборудование имеет электрическую схему, включающую несколько важных элементов. Блок температурного контроля позволяет схеме управлять работой системы вентиляции, обеспечивающей принудительное охлаждение всего агрегата.

Силовой трансформатор электрической схемы оснащен температурным датчиком, тип которого является биметаллическим и имеет фиксированную температуру срабатывания, если она достигает 75° в цепи. Радиатор охлаждения силового транзистора контролируется интегральным датчиком, отвечающим за его температуру.

Вернуться к оглавлению

Возможности изготовления инверторов на основе принципиальной схемы

Варка тонкого металла инвертором.

Принципиальная электрическая схема инвертора, выпускаемого отечественным производителем Ресанта, позволяет фирме поставлять на рынок компактные агрегаты, помещающиеся в кейс не очень больших размеров. Несмотря на различную мощность выпускаемых фирмой приборов, им свойственна определенная электрическая схема (рис. 2). Она объединяет принцип работы плазменных резаков и аргонодуговых сварочных аппаратов Ресанта.

Немецкой компанией FUBAG выпускается сварочное оборудование иностранного производства. Оно отличается особой надежностью, многофункциональностью, являясь одновременно узкоспециализированным. Для сварочных инверторов немецкого производства характерно наличие большого количества функций, которые являются дополнительными. Они включают принудительное охлаждение, работу в режиме пониженной мощности, микропроцессорное управление и др.

Есть мастера, для которых сборка сварочного инвертора не отнимает большого количества времени. Следует просто иметь начальные знания по электротехнике. Принципиальные схемы сварочных инверторов являются доступными, если для самостоятельного изготовления потребуется чертеж или инструкция. Важно создавать сварочные инвертора, принципиальные электрические схемы, которых сводятся к получению высокой стабильности сварочной дуги.

Схема сварочного инвертора. Принципиальная электрическая схема сварочного инвертора

В статье будет рассмотрена классическая схема сварочного инвертора. На сегодняшний день они очень популярны, цена их достаточно доступна. У них очень много положительных качеств, в частности, простота работы и малый вес. Но, как и остальные электронные устройства, сварочный аппарат может выйти из строя. И чтобы провести качественный ремонт, необходимо хотя бы в общих чертах иметь представление о его устройстве, из каких элементов состоит схема инвертора. Без этого вы не сможете отремонтировать сварочники, в схеме которых используются инверторные преобразователи. Поэтому необходимо очень много теории узнать об этом устройстве.

Основные сведения про инверторные аппараты

По сути, это блок питания, принцип его действия похож на тот, который используется в персональных компьютерах. Преобразование электрической энергии происходит по одинаковым принципам, несмотря на то, что размеры и функции этих устройств различные. Можно выделить несколько этапов, которые протекают в сварочном инверторе. Первым делом происходит преобразование переменного напряжения, которое поступает от сети 220 В, в постоянное. О том, как это происходит, будет рассказано немного ниже, равно как и приведена электрическая схема сварочного инвертора.

Затем происходит преобразование этого напряжения в переменное, но с более высокой частотой. Вы знаете, что в электрической сети частота тока 50 Гц. В инверторных сварочных аппаратах происходит повышение вплоть до 80 тысяч Гц. Затем необходимо снизить значение напряжения с высокой частотой. На последнем этапе происходит преобразование этого низкого напряжения с частотой порядка 80 тысяч Гц. Это краткое описание, на самом деле все этапы можно разбить на более мелкие составляющие. Но для понимания принципа функционирования этого достаточно.

За счет чего уменьшается вес сварочного аппарата

А теперь о том, почему были выбраны схемы именно инверторного типа. Посмотрите на сварочные аппараты, которые использовались ранее, в том числе и самодельные. Их основное предназначение – снижение переменного напряжения, которое поступает от бытовой электросети до безопасного значения, но с большим вторичным током. По этой причине первичная обмотка мотается более тонким проводом, нежели вторичная. От толщины провода зависит то, какой ток вы получаете в обмотке. Ниже приведена принципиальная схема сварочного инвертора в статье. Внимательно ее изучите, чтобы иметь представление о том, какие элементы входят в нее. Для сварки порой обходимо несколько сотен ампер. Из-за того, что мощность таких трансформаторов очень высокая, а работают они только при частоте тока 50 Гц, кроме того, у них очень большие габариты. Как вы понимаете, частота входящего и выходящего тока одинакова. Другими словами, если подали на первичную обмотку 50 Гц, со вторичной снимите электрический ток с такими же параметрами.

Рабочая частота инвертора

Но вот благодаря инверторным сварочным аппаратам, в которых увеличивается рабочая частота на значение порядка восьмидесяти тысяч герц, а в некоторых аппаратах и больше, можно во много раз уменьшить размеры трансформаторов, которые применяются при преобразовании электрического тока. Если увеличить рабочую частоту, то можно уменьшить трансформатор как минимум в четыре раза. Следовательно, суммарный вес всего сварочника будет очень маленьким. Себестоимость этого аппарата также уменьшается, так как происходит экономия меди и стали, которые используются при изготовлении трансформаторов. Но чтобы получить такое значение частоты, необходимо применять инверторные схемы. Они состоят из мощных полевых транзисторов, которые работают в режиме ключа. С их помощью происходит переключение тока с необходимой для работы частотой. Обратите внимание на то, что работать полевой транзистор может лишь при постоянном напряжении. Стоит отметить, что схема сварочного инвертора «Ресанта» во многом схожа с той, которая используется в других аппаратах.

Принцип работы выпрямителя

Поэтому прежде чем подать на них питание, необходимо выпрямить поступающий ток. Для этого используется выпрямитель, в котором находятся мощные диоды. Они соединены по мостовой схеме. После этого происходит отсечка переменной составляющей при помощи электролитических конденсаторов. Это происходит на первой ступени преобразования. Полевые транзисторы подключаются к трансформатору. С его помощью получается понизить напряжение. Как упоминалось выше, эти транзисторы производят переключение тока с частотой иногда даже более 80 тысяч Гц. Понятное дело, что трансформатор тоже должен быть рассчитан на работу при таких параметрах. Габариты этого устройства очень маленькие, не сравниться ему с теми, которые применяются в обычных трансформаторных сварочных аппаратах. А вот мощность у него такая же. Понятное дело, что появляется еще множество различных элементов, которые необходимы для стабильной работы сварочного аппарата. А теперь более подробно о том, как работает каждый блок обычного сварочного инвертора. В нем имеется две основных части – силовая и схема управления.

Выпрямительный каскад

В этом блоке происходит преобразование переменного тока, который поступает от сети 220 Вольт. В нём имеется несколько полупроводниковых диодов с большой мощностью, а также электролитические конденсаторы и дроссель. Это вкупе дает то, что переменный ток с рабочей частотой 50 Гц становится постоянным. Конденсаторы необходимы для того чтобы отсечь переменную составляющую, которая все равно остается в выпрямленном напряжении. Обратите внимание, что существует несколько вариантов схем для выпрямления напряжения. Если подключение необходимо производить к трехфазной сети, то схема соединений полупроводниковых диодов будет несколько иной. Поэтому нужно определиться с тем, какая вам необходима схема сварочного инвертора. Своими руками такое устройство можно собрать достаточно просто.

Фильтры

Обратите внимание также, что практически в полтора раза увеличивается напряжение после того как оно поступит на фильтр, собранный на электролитических конденсаторах. Другими словами, если происходит питание от сети 220 Вольт, то на выводах конденсаторов, если произвести замер, будет 310 В. Для сглаживания пульсаций тока, чтобы не возникало высокочастотных помех, а также для избегания попадания их в электрическую сеть, необходимо установить специальный фильтр. Обычно он собирается на дросселе, который намотан на кольцевом сердечнике, а также в схему включены несколько конденсаторов.

Инверторный каскад

Обычно для реализации инвертора используют два мощных транзистора, которые работают в режиме ключа. Стоит отметить, что они обязательно монтируются на алюминиевом радиаторе. Также имеется дополнительное принудительное охлаждение при помощи вентилятора. Благодаря этим транзисторам происходит коммутация постоянного напряжения, которое впоследствии поступает на импульсный трансформатор. Причем переключение происходит с частотой около 80 кГц. Но имеется отличие от переменного тока, который протекает в бытовой электросети. Во-первых, само значение частоты во много раз превосходит его. Во-вторых, форма импульса этого переменного напряжения, которое вырабатывается полевыми транзисторами, прямоугольная, а не синусоида. Чтобы обезопасить транзисторы от чрезмерного превышения напряжения, необходимо использовать цепи, состоящей из сопротивлений и конденсаторов. Стоит отметить, что принципиальная электрическая схема сварочного инвертора не обходится без этих элементов.

ВЧ-трансформатор

Высокочастотный трансформатор, на который подается напряжение от транзисторов, работающих в ключевом режиме, позволяет снизить его значение до 65 вольт в среднем. Но при этом ток может составлять порядка 130 А. Можно даже провести аналогию с катушкой зажигания, которая используется в автомобилях. В сварочных инверторах на первичную обмотку подается высокое напряжение, но ток у него очень маленький. Снимается с вторичной обмотки напряжение с меньшим значением, но ток при этом увеличивается. Обратите внимание на то, что автомобильная катушка зажигания работает по обратному принципу. То есть низкое напряжение с большим током подается на первичную обмотку. А с вторичной снимается высокое напряжение, но с меньшим значением тока.

Выходной выпрямитель

Но стоит взглянуть на то, из каких компонентов состоит еще эл. схема сварочного инвертора. На выходе также установлен выпрямитель, который собирается из полупроводниковых диодов большой мощности. У них очень высокое быстродействие, они открываются и закрываются за время, которое намного меньше, чем 50 наносекунд. Обратите внимание при проектировании сварочных инверторов на то, что нужно подбирать эти полупроводниковые элементы с таким расчетом, чтобы их параметры удовлетворяли режиму работы. Простые диоды не справятся с поставленной задачей, так как они не смогут своевременно открыться и закрыться. Сразу же начнется чрезмерный нагрев и, как следствие, выход из строя. По этой причине необходимо при проектировании или же при ремонте производить установку диодов, которые имеют очень малое время переключения.

Принципиальная схема сварочного инвертора для различных моделей

Чтобы обеспечить горение сварочной дуги, используются инверторы. У данных устройств есть определенные преимущества, недостатки, отличительные особенности. Схема сварочного инвертора включает в себя конструкционные элементы, каждый узел выполняет свою операцию.

Принцип работы

Если разобрать сварочный инвертор, можно поближе рассмотреть силовой трансформатор. Он является основным узлом конструкции и отвечает за уровень напряжения. Ток, исходящий от источника, должен быть понижен.

Схема сварочного инвертора

Важно! На плате управления используются конденсаторы, резисторы, отвечающие за проводимость электрического потока.

Чтобы частота находилась на уровне 50 герц, используется стабилизатор. К дополнительным элементам относится выпрямитель тока (отвечает за пульсацию) и дроссель, стабилизирующий выходное напряжение. Устройство работает в цепи постоянного, переменного тока. Когда напряжение выпрямляется, оно подается на дугу и разрешается заниматься сварочными работами.

Сварочные работы

Технические характеристики

При рассмотрении инверторов рекомендуется сосредоточиться на таких характеристиках:

  • напряжение от сети,
  • допустимый размер электрода,
  • напряжение без нагрузки,
  • рабочий цикл,
  • класс защиты,
  • показатель нагревостойкости,
  • температура эксплуатации.

Сварочные инверторы

Конструкция инверторного сварочного аппарата

Внутри сварочного инвертора имеется множество элементов, которые взаимодействуют между собой. К основным модулям силового блока приписывают следующее:

  • выпрямитель напряжения,
  • помеховый фильтр,
  • преобразователь (он же инвертор),
  • высокочастотный выпрямитель на выходе.

Рассматривая плату управления, на ней используются системы для охлаждения транзисторов, фильтров. У современных инверторов установлен радиатор, выпрямитель и преобразователь. Есть кулер, нацеленный на понижающий трансформатор.

Понижающий трансформатор

Важно! На плате управления может быть один или несколько помеховых фильтров и конденсаторов под них.

Рядом с понижающим трансформатором необходим датчик тока, интегральный стабилизатор. Продвинутые инверторы высокого уровня поставляются с реле мягкого пуска.

Достоинства и недостатки

К сильным сторонам оборудования важно приписать следующее:

  • высокая эффективность,
  • значительная удельная мощность,
  • ассортимент в наличии,
  • сфера применения.

Недостатки также всем знакомы, речь идёт о высокой стоимости продукции. Агрегаты не отличаются долгим сроком эксплуатации. Когда электронная плата перегорает, сделать что-либо нереально.

Электронная плата

Проблема кроется в незащищенности корпуса. На рабочем месте, как правило, большое количество пыли и грязи. Всё это оседает на внутренних элементах конструкции и происходит сбой.

Правильное назначение

Сварочные аппараты подходят для продуктивной работы в домашних условиях, а также в мастерских. Разнообразие функций в устройствах делает их разносторонними. Стандартные сварочные инверторы обеспечивают постоянный ток сварки, поэтому считаются универсальными агрегатами. Они подходят для сварки и резки чёрных, цветных металлов.

Полуавтоматика отличается тонким и ровным швом, практически не оставляет после себя следов. Плазморез востребован в промышленной сфере, годится для профессиональных работ. Резка металла происходит на высокой скорости. Допускаются различные типы заготовок.

Плазморезы

Интересно! Плазморезы годятся для длинных разрезов, к примеру, бронзы либо алюминия.

Аппараты аргонно-дуговой сварки считаются более подходящими для цветных металлов. Обеспечивается значительная глубина проварки и практически нет ограничений. Модели точечной сварки также могут называться споттерами, применимы на металлообрабатывающих предприятиях. Точечные аппараты подходят для резки крупных изделий.

Аппараты аргонно-дуговой сварки

Как правильно использовать

Чтобы приступить к сварочным работам, необходимо подготовить установку.

Основные этапы:

  1. размещение инвертора,
  2. проверка заземления,
  3. уборка лишних предметов,
  4. подключение к электросети,
  5. подсоединение удлинителя,
  6. использование генераторов,
  7. установка сварочных кабелей,
  8. настройка.

Чтобы агрегат работал должным образом, с учётом выбранного металла, производится регулировка частоты напряжения. Важно подобрать соответствующий электрод (минимальный диаметр 3 мм). Когда с подготовкой покончено, осуществляется розжиг дуги. Необходимо несколько раз стукнуть по металлу, важно контролировать положение электрода.

Положение электрода

Совет! Во время сварки электрод передвигается вдоль линии разреза.

Действовать разрешается под прямым или небольшим углом (не более 60 градусов). В труднодоступных местах работают другие правила. Электродом разрешается сваривать углом вперёд либо назад. Надо контролировать уровень прогрева металла.

Схемы сварочного аппарата

При рассмотрении сварочного оборудования изучается электрическая и принципиальная схема. Если обратиться к понятиям, заметно, что они несут разные посылы. Учитывается информативность и модель построения. Электросхема представляет собой документ, который сообщает о важных частях оборудования. Основная задача — показать путь прохождения электрической энергии по оборудованию.

Электросхема

Компоненты взаимодействуют между собой и на схеме можно это проследить. Используются специальные обозначения для каждого отдельного компонента. При составлении электрических схем учитывается структура, а также функциональность.

Важно! Все стандарты прописаны в ГОСТе 2.702-75.

Принципиальная схема также относится к электрическому типу, однако имеет другие задачи. Документ представляет собой чертеж, на котором также отображены компоненты агрегата.

Разница заключается в том, что в принципиальной электрической схеме отображаются электромагнитные связи. По факту, они выглядят не такими детальными, как функциональные электрические схемы.

Если посмотреть на чертеж, отображаются лишь основные узлы.

Принципиальная схема

Электрическая

Стандартная электрическая схема инверторного сварочного аппарата включает в себя мощные транзисторы с частотой 50 Герц. Они действуют в цепи постоянного тока. Подача энергии происходит на выпрямитель для обеспечения стабильного выходного напряжения.

Выпрямитель на схеме

Важная информация! Чтобы частота не прыгала, используется диодный мост. Элемент работает на пару с фильтрующим конденсатором.

Мосты отличаются по мощности и вырабатывают высокую температуру. С целью их охлаждения применяются вентиляторы, радиаторы. Для фильтрующих конденсаторов необходим предохранитель, который убережет компонент в случае замыкания цепи.

Замыкания цепи

Также на схеме обозначен электромагнитный фильтр, который отвечает за совместимость тока. Напряжение подаётся от выпрямителя, представленный блок отвечает за высокочастотные помехи. В случае с трансформаторами проблема является актуальной. Есть схемы аппарата, включающие два мощных транзистора, которые применяются с отдельными радиаторами.

Трансформатор установлен высокой частоты, он обеспечивает быстрое преобразование напряжения. Его коммутация происходит на обмотке, поэтому максимальное напряжение в устройствах подобного плана доходит до 340 вольт. Чтобы при большом напряжении создать низкий уровень тока, необходима первичная обмотка. У инверторов параметр составляет 120 ампер.

Коммутация на обмотке

Интересно! Быстродействующие диоды, которые установлены с катодом, можно только предполагать о связи с выпрямителями.

По конструкции элементы просты, способны включаться по команде. Они отвечают за открытие и закрытие моста. Основная функция опять же связана с защитой агрегата. Сразу после подключения цепи к источнику питания по схеме задействуются конденсаторы. Они начинают заряжаться, уровень тока возрастает до максимума. Основная нагрузка подаётся на мосты, поэтому уровень заряда ограничивается.

Конденсаторы на схеме

Принципиальная

Принципиальная схема выстроена таким образом, что напряжение идёт от выпрямителя к инвертору и подается на трансформатор. Далее ток проходит через вторичный выпрямитель, выходит через дроссель непосредственно к электроду.

Вторичный выпрямитель

Плюс ко всему, от вторичного выпрямителя ток поступает по принципиальной схеме на блок обратной связи. Он взаимосвязан с блоком управления. От блока обратной связи сигнал может поступить непосредственно на инвертор.

Выше рассмотрена электрическая, принципиальная схема сварочного инвертора. Изучен принцип работы, особенности моделей. При оценке агрегатов учитываются технические характеристики, достоинства, недостатки, назначение и сфера использования.

Источник: https://rusenergetics.ru/instrumenty/skhema-svarochnogo-invertora

Устройство и ремонт сварочного инвертора

   Современные сварочные аппараты с целью уменьшения габаритов и массы, строятся исключительно по инверторной схеме, с мощными полевыми транзисторами в качестве силовых переключающих элементов.

Несмотря на множество различных моделей таких аппаратов, суть работы и принцип действия почти одинаковы. Данная статья будет полезна для понимания функционирования схем инверторов, а так-же для их самостоятельного ремонта.

В качестве примера выбран отечественный сварочный инвертор «ТОРУС”.

Устройство сварочного аппарата «ТОРУС-200”

   «ТОРУС-200” – сварочный аппарат инверторного типа представляет собой источник постоянного тока с защитой от КЗ и тепловой защитой. Преобразователь источника тока выполнен по полномостовой схеме с частотой преобразования около 100 кгц.

Регулировка тока производится изменением скважности управляющих импульсов при постоянной частоте. Четыре ключа преобразователя располагаются на отдельных радиаторах. Каждый ключ состоит из четырёх параллельных полевых транзисторов IRFP460.

   Трансформатор преобразователя намотан проводом-литцендратом в шёлковой оплётке прямо на сердечник, т.е. без каркаса. Рядом установлен дроссель, который включен последовательно первичке трансформатора, причём намотка обоих выполнена одним куском провода, т.е. «по месту”.

Выходной выпрямитель выполнен по двухтактной схеме (со средним выводом вторичной обмотки). Каждое плечо выпрямителя смонтировано на отдельном радиаторе и состоит из двух диодных сборок 60CPQ150 или четырёх 30CPQ150.

Выпрямитель, питающий преобразователь состоит из моста GBPC3508W, установленного на радиатор и шести параллельных электролитических конденсаторов 470 мкф 400в. Принципиальная схема:

   Схема мягкого включения представляет собой реле задержки включения полного заряда конденсаторов выпрямителя питания преобразователя. Исполнительный элемент – э.м. реле замыкающее мощный резистор.

   На плате управления располагаются:

 1. Блок питания электроники, который выполнен как отдельны модуль и представляет собой стандартный БП на 15в. 2. Схема «мягкого включения”. 3. Блок конденсаторов зарядно-разрядной цепи преобразователя.

 4. Схема управления преобразователем. Также, на передней панели аппарата установлена платка индикации, выключения и регулировки тока.

   Схема управления преобразователем состоит из:

 1. Тактового генератора на микросхеме TL494. Он выдаёт две фазы тактовых импульсов с частотой около 100 кгц. Функции ШИМ не используются и микросхема выдаёт импульсы постоянной скважности. В этой микросхеме есть два компаратора, к которым подключены датчики тепловой защиты (терморезисторы на дросселе и радиаторе выходного выпрямителя). 

 2. Схемы регулировки тока и защиты по КЗ. Выполнены на двух компараторах микросхемы LM393. Датчик тока выполнен на ферритовом кольце с обмоткой, сквозь которое проходит плюсовой провод питания преобразователя.

 3. Два выходных драйвера на микросхемах IR2112. На входы драйверов поступают тактовые импульсы, скважность которых изменяется в драйвере от импульсов, поступающих с компараторов схемы регулировки тока и защиты от КЗ. Выходы драйверов нагружены на импульсные трансформаторы, со вторичных обмоток которых управляющие импульсы поступают на ключи преобразователя.

Рекомендации по самостоятельному ремонту сварочного аппарата

   СА «Торус” выпускается несколькими производителями. Первый такой аппарат попался под названием «Дуга-200” и на момент написания этой статьи через мои руки прошло семь аппаратов данной конструкции.

Предполагаю, что эта схема подойдёт и для младших моделей «Торуса”, поскольку для того, чтобы уменьшить максимальный сварочный ток достаточно уменьшить число ключей в группе и число диодных сборок или поставить более слабые компоненты.

   Для ремонта сварочного аппарата, как и любого другого электронного устройства крайне желательно иметь некоторые познания в электронике и хотя бы минимальный опыт ремонта.

Если ни того, ни другого нет, но есть много желания и денег, тогда можно попробовать. Из приборов необходим осциллограф и стрелочный авометр. Любой ремонт начинается с вскрытия и внешнего осмотра внутренностей.

Конструктивно «Торус” состоит из следующих модулей:

 1. Модуль входного выпрямителя  2. Модуль выходного выпрямителя.. 3. Плата управления ключами.

 4. Корпус с вентилятором. 

   Модуль входного выпрямителя. Входной выпрямитель – это мощный диодный мост, установленный на радиатор, который крепится к плате управления снизу. Мост GBPC3508W крайне надёжен и чтобы его спалить надо ещё постараться.

Тем не менее и его проверить не лишнее. Все знают как звонится мост и нового тут не выдумать. Для неопытных можно посоветовать отпаять от него провода, чтобы в случае КЗ не вводить себя в заблуждение.

Радиатор с мостом лучше сразу снять с платы чтобы в дальнейшем облегчить работу с ней.

   Модуль ключей. Модуль ключей состоит из четырёх групп по четыре транзистора в группе. Каждая группа смонтирована на отдельном радиаторе на изолирующей прокладке. Кроме ключей в модуль входят шесть электролитических конденсаторов сглаживающего фильтра выпрямителя, питающего преобразователь (входного выпрямителя).

   Чаще всего неисправный транзистор сразу виден: треснутый или взломанный корпус, прогоревшие выводы, но иногда внешних признаков неисправности нет и тогда для выявления неисправного транзистора следует применить стрелочный авометр.

Включаем его в режим измерения сопротивления на предел Ком х1 и выбираем любую группу. Я думаю, не лишним будет напомнить, что все измерения следует проводить на выключенном из сети аппарате. Измеряем сопротивление между стоком и истоком.

Для тех, кто не знает цоколёвки транзистора IRFP460: если расположить корпус выводами вниз и маркировкой к себе, то слева направо будут затвор, сток, исток. Между стоком и истоком есть встречно-параллельный диод, он и должен звониться, т.е. в одну сторону высокое, в другую низкое сопротивление.

Короткое замыкание – неисправность одного или нескольких транзисторов в группе и если таковое есть, то неисправный транзистор выявляется только путём выпаивания. 

   Если группа звонится как положено (в одну сторону), то это не всегда означает, что все транзисторы в группе исправны. Их надо по отдельности проверить на «открываемость”. Это можно сделать не выпаивая каждый транзистор.

Сначала отпаиваем по одному концу выравнивающих резисторов от каждого затвора, ставим минусовой щуп на исток первого транзистора, плюсовой на сток. Тестер должен показать высокое сопротивление. Теперь на мгновение прикасаемся плюсовым щупом (не снимая минусового) к затвору и снова перекидываем его на сток.

Сопротивление должно упасть почти до нуля и это означает, что транзистор открылся. Пинцетом или скальпелем замыкаем затвор со стоком или истоком и снова замеряем сопротивление сток-исток, которое должно увеличиться почти до бесконечности (но надёжнее для запирания транзистора подать но затвор обратное напряжение, т.е.

минус на затвор, плюс на сток) и это означает, что транзистор закрылся. Если это так, переходим к другому транзистору, в противном случае перепроверяем и выкусываем неисправный транзистор, поскольку так легче подготовить место для монтажа исправного транзистора.

Если все транзисторы в группе исправны, припаиваем к затворам концы выравнивающих резисторов, помечаем группу как исправную и переходим к следующей группе.  Для ремонта, проверки и поиска возможных аналогов радиоэлементов, изучите их даташиты.

   Когда все транзисторы проверены и неисправные заменены исправными, модуль ключей можно условно считать исправным. Условно – это потому, что окончательная проверка будет при наличии управляющих сигналов.

В недавнем времени ключи стали снабжать снабберами (конденсаторами, впаянными между стоком и истоком каждого транзистора), которые защищают транзисторы от пробоя. Экономичность аппарата при этом несколько снижается, зато надёжность возрастает многократно.

При прозвонке транзисторов конденсаторы можно не отпаивать, т. к. на результаты измерений они не влияют.

   Модуль выходного выпрямителя. Модуль выходного выпрямителя состоит из платы с двумя радиаторами, на которых смонтированы силовые диодные сборки. В зависимости от применяемых сборок, их количество на радиаторе может быть разным – две или четыре. Также, в модуль входят дроссель и трансформатор.

Диодные сборки выходного выпрямителя выходят из строя крайне редко. В двухсотой модели применяются две сборки 60CPQ150 или четыре 30CPQ150, а в каждой сборке по два диода по 60 и 30 ампер (соответственно) максимального тока каждый. В сумме это 240 ампер постоянного тока.

Запас в 40 ампер довольно надёжен, к тому же максимальный импульсный ток едва ли не на порядок больше.Все знают как звонятся диоды. Если группа звонится накоротко, нужно искать пробитый диод. Без выпаивания здесь не обойтись и для этого удобно использовать паяльник с отсосом.

Когда все диоды проверены и неисправные заменены, модуль можно пометить как исправный и приступить к проверке платы управления.

   Плата управления ключами – это самый сложный из всех блоков аппарата и от его правильной работы зависит надёжность аппарата и целостность его компонентов.

Предварительную проверку работоспособности платы управления можно произвести без её демонтажа, т.е. прямо по месту.

Первым делом отключаем питание преобразователя, для чего отпаиваем от входного моста один из толстых проводов идущих от платы управления (переменное 220в) и изолируем его оголённый конец изолентой.

   Поскольку для оценки работоспособности платы управления необходимо оценивать быстроменяющиеся сигналы, без осциллографа (и навыка работы с ним) здесь не обойтись. Вставляем вилку питания в розетку и внимательно слушаем. Вращается вентилятор и через 3-5 секунд слышится щелчок. Его издаёт реле схемы «мягкого” включения.

Если щелчка нет или он слышен сразу после включения, значит схема «мягкого” включения неисправна. Также, если щелчка не последовало, стоит проверить наличие питающего напряжения +15в. Источник этого питания приклеен к плате управления и подпаян к ней четырьмя проводами: два из которых – переменное 220в и другие два – плюс и минус 15в.

Если питания нет, демонтируем источник питания и ремонтируем или заменяем его, поскольку он стандартный.

   Схема «мягкого” включения очень проста и основана на срабатывании эм. реле K2 в результате открывания транзистора VT5 после заряда конденсатора C22 в его базовой цепи. Контакты реле S3 закорачивают резистор R40, который гасит ток заряда конденсаторов фильтра входного выпрямителя.

Этот резистор очень слаб и часто выходит из строя. Этот резистор, даже если он исправен, я заменяю на более мощный для повышения надёжности аппарата.

Отсутствие задержки срабатывания реле может быть вызвано обрывом ёмкости заряда C22, пробоем транзистора VT5 и пробоем аналога динистора VD4 в цепи базы транзистора. 

   Далее проверяем наличие сигналов управления ключами. Эти сигналы поступают по четырём витым парам проводов на шинки затворов модуля ключей. Устанавливаем развёртку осциллографа на 5 мксдел, а аттенюатор на 5 или 2вдел.

Общий провод осциллографа соединяем с общим проводом платы управления (занимает заметную часть площади лицевой стороны), а щупом проверяем сигналы на ногах 1 и 7 микросхем DD2 и DD3. В норме там должны быть прямоугольные с закруглённым фронтом импульсы амплитудой около 15в с частотой около 100Кгц.

Если импульсы есть, следует проверить их прохождение до каждого затвора. 

   Если аппарат до Вас побывал в чьих-то «умелых” руках не лишнее проверить фазировку управляющих сигналов: если витые пары перепутаны местами, то есть угроза нарваться на сквозной ток, а если перепутаны провода в паре, то ключ не будет открываться.

Мне попадались аппараты буквально «перепаханные” «умельцами” и эти аппараты пришлось проверять досконально. Ситуация усложнена ещё и тем, что качество сборки аппаратов полукустарное и не всегда можно отличить пайку производителя от пайки «умельца”.

   Для несведущих могу уточнить: на затвор должны поступать положительные (относительно истока) импульсы амплитудой около 15в. Одновременно должны открываться группы 1 и 4 в одном такте и 2 и 3 в другом такте. Синфазность сигналов можно определить при помощи двухканального осциллографа.

   Если сигналы управления с платы управления приходят на каждый затвор с нужной амплитудой и в нужной фазе, можно попробовать включить аппарат.

Для того, чтобы подстраховаться от последствий невыявленной неисправности, питание преобразователя включим через лампу накаливания 150-200вт — удобнее включить её в разрыв переменной цепи моста входного выпрямителя.

Подпаиваем все провода, отпаянные ранее с учётом лампы и включаем аппарат в сеть и смотрим на лампу. В первый момент лампа может ярко вспыхнуть (заряжаются ёмкости фильтра), но постоянно она должна светиться слабо. Яркое свечение свидетельствует о коротком замыкании в схеме или цепи нагрузки. .

Когда все неисправности устранены, лампу отпаиваем, припаиваем к мосту провод питания и включаем аппарат в сеть. Измеряем напряжение на выходных клеммах – нормальный уровень напряжения должен быть около 60 постоянных вольт. 

   В случае, когда плата управления не выдаёт запускающих импульсов, её для удобства работы лучше отделить от всех узлов, т.е.отпаять витые пары от ключей, предварительно промаркировав группы и провода, отпаять датчики перегрева и заизолировать концы проводов, отпаять и отсоединить мост входного выпрямителя, отпаять шнур сетевого питания.

   Далее припаиваем шнур сетевого питания, лучше через лампочку 50-100вт и включаем его в розетку. В первую очередь следует проверить наличие питания +15в на ножках 3,6,9 микросхем DD2 и DD3 и прямоугольных тактовых импульсов на ножках 10 и 12 тех же микросхем.

Я пару раз сталкивался с выгоранием резистора в цепи питания DD3, правда после этого и саму микросхему пришлось заменить. Если тактовые импульсы на ногах 10 и 12 (т. е. на входах) есть, но нет импульсов на ножках 1 и 7 (т.е.

на выходах) нужно ногу 11 посадить на общий провод и если микросхема исправна, импульсы на выходах должны появиться. Нет импульсов – смело заменяй микросхему. В нормальном состоянии на ноге 11 микросхем DD2 и DD3 может быть не точный ноль (т.е.

микросхема закрыта) и чтобы проверить неисправна микросхема или закрыта, нужно подать на ногу 11 точный ноль. 

   Если на входы драйверов (DD2 и DD3) не поступает тактовых импульсов, то их нужно искать на выводах 9 и 10 микросхемы ШИМ — DD4. В случае их отсутствия проверяем питание +15в на выводах 8, 11, 12.

Можно проверить, не светится ли красный индикатор на передней панели аппарата и если это так, то скорее всего выключен тумблер рабочего режима.

Также, можно проверить, не замкнут ли один из двух датчиков перегрева (на радиаторе выходного выпрямителя и на дросселе). Если все усилия тщетны – заменяем микросхему.

   Вы добились управляющих импульсов на выходах обоих драйверов. Казалось бы – вот оно, счастье, но за этим счастьем может последовать фейерверк, когда Вы попробуете зажечь дугу. Дело в том, что ещё есть схема регулировки тока и защиты по току и если эта защита не работает, то Вы рискуете пойти по второму кругу поиска неисправностей.

   Схема регулировки и защиты реализована на микросхеме DD1 и её обвязке. Датчиком тока является кольцевая катушка L1 сквозь которую проходит толстый провод питания преобразователя.

На выводах 1 и 7 микросхемы DD1 формируются прямоугольные импульсы закрытия драйверов. Проверить работу схемы можно разными способами. Я пользуюсь следующим: отпаиваю один конец катушки L1 и вместо неё припаиваю источник переменного напряжения 3в.

Это может быть трансформатор от сетевого адаптера или что-нибудь оригинальное. Подаю переменные 3в и смотрю сигналы на выводах 1 и 7 микросхемы DD1 – короткие прямоугольные импульсы с частотой 50гц.

При этом кольцевые трансформаторы издают тихие звуки (отдалённо напоминающие голос кузнечика), а запускающие импульсы прерываются с частотой 50гц. Автор статьи: В.А. Третьяков.

Источник: https://el-shema.ru/publ/remont/ustrojstvo_i_remont_svarochnogo_invertora/6-1-0-122

Схема сварочного инвертора: принципиальная электрическая схема аппарата

Схема сварочного трансформатора и схема сварочного инвертора значительно отличаются друг от друга. Во втором случае базу ранних агрегатов, чтобы провести сварочные работы, составляют трансформаторы с понижающим типом, что придает им габаритность и тяжесть.

На сегодняшний день современное оборудование, за счет частой эксплуатации во время производства, стало легким, компактным, с широким спектром возможностей и особенностей.

Главный элемент в электросхеме сварочных инверторов заключается в импульсивном преобразователе, благодаря которому вырабатывается высокочастотный ток.

Классификация инверторов

Каждый отдельный тип сварочных работ подразумевает использование определенного инверторного оборудования, которое необходимо ещё правильно выбрать. У каждой модели есть схема сварочного инвертора с особенностями, отличной характеристикой от других агрегатов и спектром возможностей.

  • Оборудования от современных производителей одинаково используются предприятиями в производственной сфере, а также любителями бытовой эксплуатации.
  • Изготовители регулярно изменяют принципиальные электрические схемы сварочных инверторов для того чтобы усовершенствовать их, наделить новым функционалом и повысить качество их технических характеристик.
  • Инверторное оборудование является основным устройством, при помощи которого выполняют такие технологические операции:
  • электродуговая сварка с использованием плавящего либо неплавящегося электрода;
  • плазменная резка;
  • работы со сваркой по технологии полуавтоматики либо автоматики.

Помимо перечисленного, инверторное оборудование также считается самым эффективным способом, чтобы сварить алюминиевые детали, элементы из нержавеющей стали и иных материалов со сложной свариваемостью.

Стоит также отметить, что он отличается компактностью, легким весом, благодаря чему его можно использовать при любых условиях, отнести в любое место, где проводится сварочный процесс.

Схема инвертора для сварки

Электрическая схема сварочного инвертора

Схема инверторного сварочного агрегата имеет особенную характеристику и функционал, в который входят следующие составляющие:

  1. Орган управления и индикации.
  2. Система, отвечающая за работу термической защитной функции и управлением охлаждающим вентилятором.
    Сюда также относят вентилятор самого инверторного аппарата и датчик с температурными показателями.
  3. Электрические принципиальные схемы подразумевают под собой наличие ШИМ-контроллера, состоящий из трансформатора с током, датчика с током нагрузки.
  4. Система питания на детали слаботочного участка электросхемы аппаратного инвертора для сварки.
  5. В преобразователе схемы может устанавливаться механизм, благодаря которому в силовую систему аппарата поступает электропитание.
    Сюда относится емкостный фильтр, выпрямитель, а также нелинейная зарядная цепь.
  6. Силовая часть с однотактным конвертором.
    В неё также входят: силовой трансформатор, выпрямитель вторичного типа и дроссель для выхода тока.

В каждом описании принципиальной схемы сварочного инвертора должна быть краткая характеристика всех составляющих элементов.

Принцип работы схемы аппарата для сварки

Основной целью инверторного сварочного агрегата является создание тока с высокой мощностью, который формируется в электрическую дугу. Та, в свою очередь, плавит кромки свариваемых элементов и присадочный материал.

Все это происходит на большом диапазоне особенностей конструкции. Стоит также отметить и то, что схема сварочного аппарата помогает в ИПС ремонте любого устройства.

Схема инвертора для сварочных работ.

Примерно механизм действия электронной схемы выглядит следующим образом:

  1. Ток с переменной частотой в 50 гц через обычную электрическую сеть попадает в выпрямитель, в котором преобразовывается ток в постоянный.
  2. Затем ток происходит обработку для сглаживания за счет использования специализированной системы.
  3. После фильтра ток оказывается в самом инверторе, который, в свою очередь, должен переформировать его обратно в переменный, однако прибавляя к нему высокую частоту.
  4. Затем, применяя трансформатор, снижается напряжение в переменном токе с высокими частотами, благодаря чему усиливается его действие.

Достоинства и недостатки сварочных аппаратов инверторного типа

Инверторный сварочный аппарат, как и любая другая техника, имеет свои достоинства и недостатки.

Схема сварочного аппарата инверторного типа.

К основным преимуществам этого оборудования, которое так умело заменило обычный трансформатор, можно отнести:

  1. За счет нового подхода к производству конструкций инверторного типа для сваривания металлов, а также новому контролю за током большинство моделей весит от 5 до 12 килограмм, в отличие от трансформаторов, которые имеют вес в 18-35 килограмм.
  2. У данных устройств есть достаточно высокий показатель КПД. Это происходит благодаря тому, что аппарат потребляет минимальное количество энергии для нагрева всех систем и механизмов. К примеру, трансформатор для сварки быстро нагревается, что приводит к перегреву и выходу из строя оборудования.
  3. В некоторых электросхемах трансформатора, также как и в инверторах, сварка может проходить при помощи электродов вне зависимости от его вида.
  4. Рассматриваемые устройства, за счет повышенного показателя КПД, тратят электроэнергию вдвое меньше, нежели простой трансформатор для сваривания.
  5. Многие современные оборудования имеют в своей структуре опции, благодаря которым минимизируется процесс совершения ошибок мастера во время технологических работ. К таким опциям можно отнести антизалипание и быстрый розжиг дуги.
  6. В некоторых устройствах встроена функция программирования, благодаря которой мастер с точностью и максимальной оперативностью регулирует режим работы во время сварочного процесса конкретного вида.
  7. Наличие высокое универсальности данных конструкций обуславливается регулированием всех систем, используя ток в широком диапазоне. Это дает возможность применять оборудование, что сваривает разнометалловые детали и выполняет процедуру с любой технологией.

У схем инверторных сварочных аппаратов также имеются и недостатки.

Они заключаются в следующих аспектах:

  1. Инверторные оборудования сваривания на рынке стоят достаточно дорого, до 50% больше, чем цена классических трансформаторов для сварочных работ.
  2. Принципиальная электрическая схема инверторного сварочного аппарата подразумевает, что чаще всего будет ломаться такой механизм, как транзистор.
    Он является достаточно уязвимой деталью, что влечет за собой ремонт стоимостью до 60% от стоимости всего оборудования. Из этого можно сделать вывод, что ремонт сам по себе – дорогое удовольствие.
  3. Поскольку принципиальные электросхемы у инверторов, чтобы сваривать материал, являются достаточно сложными, специалисты не советуют их эксплуатировать во время плохой погоды, либо на морозе, чтобы не вывести из строя механизмы и сохранить аппарат на долгий период.
    Для сварочных работ в поле либо других открытых пространствах необходимо организовать и соорудить специальное закрытое место с отоплением, где можно будет воспользоваться данным агрегатом для сваривания.

Итог

Для некоторых специалистов схема сварки представляет собой дополнительную подсказку при сборке агрегатов для сваривания металлов, что позволяет быстро выполнить нужную работу. Достаточно важно обладать базовыми познаниями в сфере электротехники.

Доступность схем сварочных инверторов обуславливается их принципиальностью, иными словами любому мастеру для сборки понадобиться либо инструкция, либо чертежи. Стоит обратить внимание, что в принципиальных электрических схемах делается акцент на достижение стабильности высокого уровня у сварочной дуги.

Источник: https://tutsvarka. ru/oborudovanie/shema-svarochnogo-invertora

Элементы электрической схемы сварочных инверторов

Аналогичную аппаратуру все чаще покупают домашние мастера для выполнения специфических работ в гараже или на даче. Схема инверторного сварочного аппарата без баллонов сложнее, но сам он намного компактнее устаревшего трансформатора, а о весе и говорить не приходится — некоторые модели удобно располагаются на плече и не мешают проведению работ.

Современная аппаратура инверторного типа — это изделия, отличающиеся широким набором функциональных возможностей, потому что при их производстве использовались передовые технологии. Начинающие сварщики быстро становятся асами в проведении подобных работ на даче или в частном доме, потому что инвертор довольно прост в эксплуатации.

Виды источников тока

Импульсный преобразователь считается основным элементом электросхемы сварочных инверторов, потому что способен активно вырабатывать высокочастотные токи. Такое преимущество во время эксплуатации аппаратуры позволяет сварщику легко возбуждать дугу и поддерживать ее устойчивое горение.

Все источники сварочного тока имеют идентичную конструкцию и схема сварки у них одинаковая, разница только в каких вольт-амперных характеристиках переключает режимы аппарат. Производители аналогичных изделий выпускают универсальные модели, пригодные к разным видам сварочных работ:

Достоинства полуавтоматических аппаратов

  1. Малый вес — для любителей всего 5—6 кг.
  2. Дополнительные функции.
  3. Плавная регулировка напряжения.
  4. Хорошая внутренняя вентиляция, благодаря интегрирующему устройству.
  5. Точное настраивание тока, зависящее от материала соединяемых конструкций.

Инверторы имеют высокий КПД независимо от производителя.

Схемы сварочных аппаратов для полуавтоматической сварки интересны только специалистам, так как изобилуют техническими обозначениями понятными узкому контингенту.

Инверторы для плазменно-дуговой резки

Такие устройства отличаются небольшими размерами и потребляют немного электрической энергии, с их помощью производится соединение или резка черных, а также цветных металлов. Плазменный инвертор обладает большой многофункциональностью, поэтому используется на разных производствах:

  • термическая обработка любых металлов;
  • пайка, сварка или резка черных и цветных металлов;
  • промышленное воронение стали;
  • для разрезания керамической плитки, стеклянных заготовок, бетона и т.п.

К недостаткам можно отнести только высокую стоимость аналогичного оборудования.

Электрическая схема и ее нюансы

Важной деталью схемы инвертора для сварки является диодный мост, который преобразовывает поступающий переменный ток в его постоянный аналог, при этом происходит сильный нагрев, поэтому в схеме установлен предохранитель, отключающий подачу тока при нагреве выше 900C.

Для сглаживания возникших импульсов стоит фильтр-выпрямитель, в котором присутствуют электролитические конденсаторы.

Для предотвращения перегрева диодов в цепи устанавливаются радиаторы охлаждения. Помехи высокой частоты могут проникнуть в общую электросеть, для исключения этого перед выпрямителем стоит фильтр, в конструкции которого используются дроссель и конденсаторы.

В результате нескольких преобразований и благодаря понижающему трансформатору на выход подается постоянный ток, имеющий силу, достаточную для выполнения намеченных сварочных работы.

Принцип работы, краткое описание

Схема сварочного инвертора разных моделей имеет чисто индивидуальные особенности, но принципиальная основа работы — неизменная. Ток, подающийся вовнутрь изделия, подвергается нескольким изменениям:

  1. Выпрямление.
  2. Сглаживание амплитуды возникающих импульсов.
  3. Преобразование после прохождения выпрямителя.
  4. Понижается напряжения и увеличение сила тока до 250 А.
  5. Вторичное изменение на постоянный ток, подающийся на выход изделия.

Электронные составляющие инвертора выдают не только улучшенные характеристики, но и оригинальные функции, помогающие новичкам быстрее освоить премудрости сварки.

К дополнительным функциям относятся:

  • Hotstart — сила тока многократно повышается при образовании дуги.
  • Антизалипание — сведено к минимуму прилипание электрода к свариваемой конструкции.
  • Arcforce — чтобы исключить затухание дуги, подается добавочная сила тока.

Конструкция

Примерная базовая схема:

  1. Выпрямитель низкой частоты.
  2. Инвертор.
  3. Трансформатор.
  4. Выпрямитель тока высокочастотный.
  5. Ответвление цепи с пониженным сопротивлением (шунт).
  6. Блок электронного управления.

Аналогичные изделия отличаются конструкцией, но в основе заложено применение высокочастотных импульсных преобразователей.

Диод на выходе и характеристика его работы

При самостоятельной сборке пользователи устанавливают трансформаторы, у которых вторичная обмотка с такими параметрами: сечение медной проволоки 0,3 мм, а ширина конструкции до 40 мм, поэтому диоды на выходе обеспечивают его выпрямление. Рабочий цикл устройства осуществляется при токах высокой частоты, но с такими нагрузками справляются только быстродействующие диоды, так как восстановление происходит за 50 наносекунд.

Универсальность

Каждый производитель моделей сварочных инверторов заботится об увеличении надежности во время длительной эксплуатации, при условии соблюдения мер безопасности при работе с оригинальными изделиями. Обязательно в конструкции присутствует блок контроля повышения температуры, который защищает инвертор от перегревания и регулирует функционирование системы охлаждения.

В электросхеме изделия встроен трансформатор, имеющий биметаллические термодатчики с заданной температурой срабатывания не выше 75 градусов. Радиатор охлаждения имеет собственный интегральный датчик, который следит за повышением температуры и отключат подачу тока при ее недопустимом повышении.

Как сделать инвертор?

Для сборки аналогичного изделия надо знать, что схемы инверторов сварки рассчитаны на потребление напряжения 220 V с силой тока 32 А. После проведения преобразований внутри инвертора, на выходе получается около 250 ампер, что достаточно для создания прочного сварного шва.

Чтобы собрать конструкцию, нужны такие составляющие:

  • Трансформатор с ферритовым сердечником.
  • Первичная и три варианта вторичной обмотки.

Надо приобрести и такие компоненты:

  • провода с медными жилами;
  • стеклоткань, чтобы обеспечить надежную изоляцию обмоток;
  • небольшой лист текстолита с печатными платами;
  • сталь для электротехнических работ;
  • хлопчатобумажную ткань.

После закупки всего необходимого смело приступайте к сборке изделия по схеме, которую легко найти в интернете.

Защитные элементы

В общую электрическую цепь специально встроены элементы, которые исключают возникновение негативных факторов нормальной работы сложного электронного устройства.

От воздействия высоких температур транзисторы защищают демпфирующие цепи с обозначением латинскими литерами RC.

Ко всем элементам, функционирующим при больших нагрузках, подключены термодатчики, отключающие ток во время повышения температуры до критического значения.

Для управления всеми элементами электрической цепи установлен широтно-импульсный модулятор, получающий сигналы от системы электронного управления изделием. Далее, сигналы от него поступают на:

  • полевой транзистор;
  • трансформатор с двумя обмотками на выходе;
  • силовые диоды;
  • транзисторы, расположенные в инверторном блоке.

Вырабатывает аналогичные сигналы операционный усилитель, потому что на вход подается сформированный в изделии постоянный ток с высокими показателями силы. Кроме этого, устройство принимает сигналы от контуров защиты, установленных в цепи. Такие предосторожности необходимы, чтобы быстро отключить подачу электрического питания во время критической ситуации.

Выводы

Инвертор — сложное электронное устройство, но простое в использовании, его подключают к электрической цепи с напряжением 220 V и без опасения проводить сварочные работы. Такие изделия пользуются повышенным спросом у домашних мастеров, потому что для надежного соединения металлических конструкций не требуется специальных навыков сварщика, а нужны только осторожность и аккуратность.

Источник: https://svarka.guru/oborudovanie/vidy-apparatov/skhema-invertora.html

Специальная, высокочастотная и дешевая принципиальная схема сварочного аппарата

Принципиальная схема сварочного аппарата — это электрические цепи, которые могут быть меньше по размеру, но оснащены лучшими соединениями и увеличенной мощностью. Эти принципиальные схемы сварочного аппарата на Alibaba.com отличаются превосходным качеством и состоят из многослойных материалов с проводящими материалами в центре плат. Вы можете заказать эту безупречную электрическую схему сварочного аппарата у ведущих поставщиков, которые имеют репутацию продавцов материалов высшего качества.Эти продукты доступны по цене, поэтому они укладываются в ваш бюджет.

Принципиальная схема сварочного аппарата , представленная на сайте, настраивается и поставляется как в готовой к использованию, так и в прототипной версиях. Толщина меди на принципиальной схеме сварочного аппарата может варьироваться в зависимости от выбранных вами моделей и может состоять от 6 до 64 слоев. Эти принципиальные схемы сварочного аппарата изготовлены из материалов с высокой проводимостью и имеют четкую длину межстрочного интервала.Вы можете использовать эти платы в любом устройстве, от телевизора до пульта дистанционного управления и других электронных устройств для повышения производительности.

Эти высокоплотные принципиальные схемы сварочного аппарата , представленные на Alibaba.com, благодаря своим врожденным электрическим свойствам, обладают гораздо большей мощностью и, как следствие, могут предложить большую скорость. Принципиальная схема сварочного аппарата поставляется с поверхностной обработкой HASL, иммерсионным золотом, серебром, алюминием, OSP и многими другими опциями для повышения производительности.Эта принципиальная схема сварочного аппарата широко используется в телекоммуникациях, электроснабжении, промышленном электроснабжении, медицинских инструментах, GPS и т. Д.

Вы можете проверить различные принципиальные схемы сварочного аппарата на сайте Alibab.com и выбрать тот, который соответствует вашему бюджету и требованиям. Заказы OEM и ODM доступны по запросу. Они сертифицированы ISO, RoHS, CE, SGS, UL и другими. Индивидуальная упаковка также предлагается при оптовых закупках.

Принципиальная схема инверторного сварочного аппарата

— Схема электрических соединений

Схема подключения старого сварочного аппарата Hobart Hobart Stickmate 210i at 9. Схема подключения сварочного устройства Miller Принципиальная схема подключения сварочного пистолета Miller Mig Запасные части Сварочные принадлежности Металлический погрузчик Hobart 135 175 Mig Технические детали Запчасти для сварочного аппарата Hobart на eBay. Руководства по обслуживанию и ремонту Volkswagen. Схема электрических соединений старого сварочного аппарата Хобарта Диагностика неисправностей Принципиальная схема источника сварочного тока (модель 230 В перем. Тока) V8 R5 V9 R6 V11 R9 Данные PC1 см. Также в разделе 6 6. Необходимое испытательное оборудование: TM 944 Стр. 24Настройка сварочного аппарата Hobart 140 Mig.Электрическая схема сварочного аппарата Miller Принципиальная электрическая схема Сварочного пистолета Miller Mig Запасные части Сварочные материалы Металл Хобарт Handler 135 175 Mig . .. SMPS Цепь сварочного инвертора | Самоделки схемотехники Принципиальная схема. Обмотка трансформатора … Я знаю, что простой сварочный аппарат TIG на постоянном токе намного дешевле, чем сварочный аппарат для алюминия на постоянном токе. … Я искал источники питания инверторного типа для сварочных аппаратов, поэтому наткнулся на ваш очень увлекательный блог. Я понятия не имею, какое напряжение или ток может обеспечить ваш сварщик.Свагатам говорит. Схема электрических соединений Cummins Isx Pdf Схема соединений Схема электрических соединений двигателя Cummins ISX CM871 предоставляет информацию для правильного обслуживания и устранения неисправностей электрических систем и необходима всем механикам, выполняющим ремонт или техническое обслуживание двигателя Cummins ISX с системой управления cm871. Биполярный транзистор с изолированным затвором или IGBT-транзистор У китайского сварочного инверторного сварочного аппарата HuGong 180 mig, который взорвал (4) IGBT на плате радиатора, не удалось найти схему проводки, поэтому мы собираемся заменить перегоревший IGBT, нужен совет по части номер и то, что все они означают, K50T60 под этим # — HAU209, спасибо за любой совет. ESAB EMP 215IC СЕРВИСНОЕ РУКОВОДСТВО Pdf Загрузить | ManualsLib Просмотрите и загрузите руководство по обслуживанию ESAB EMP 215IC в Интернете. МНОГОПРОЦЕССНАЯ СВАРКА. Сварочная система EMP 215IC скачать инструкцию в формате pdf. Также для: Ems 215ic. Руководства lathes.co.uk Руководства для токарных и шлифовальных станков … Включает две электрические схемы, одна помечена для «Легкого, среднего и тяжелого режимов работы», а другая — «Схема соединений D1200 для контроллера радиального сверла». inikop MA660B ARCHDALE «38 дюймов» Сверлильный станок с радиальным рычагом.Чит-код Edgenuity Архивы photengsia Pass Any Testquiz Fast Edgenuity Reddit. Edgenuityvirtual Instructor Handbook 5 цель руководства содержание edgenuity cheat guide этого руководства было создано как учебное пособие для виртуальных инструкторов. это руководство было создано образовательными службами edgenuity, и материалы, содержащиеся в этом руководстве, могут быть изменены без предварительного уведомления. заявление о миссии. Таймер обратного отсчета Arduino с ЖК-дисплеем и зуммером — DIY … Схема контактов реле: не используйте реле, работающее от 5 В, которое обычно поставляется с коммутационной платой, как показано выше, потому что реле, ЖК-дисплей и зуммер потребляют больше тока. чем может обеспечить регулятор 5V Arduino, поэтому мы используем реле, которое может питаться от внешнего источника, благодаря чему мы можем обеспечить соответствующий ток для упомянутых периферийных устройств. Как сделать схему преобразователя 220В в 110В | Самодельный … Все эти принципиальные схемы были разработаны мной, давайте узнаем, как их можно построить в домашних условиях и как работает схема: Использование только последовательных диодов Первая схема преобразует входное напряжение 220 В переменного тока в любой желаемый выходной уровень от 100 В. до 220 В, однако на выходе будет постоянный ток, поэтому эту схему можно использовать для работы с иностранным оборудованием, которое может использовать входное питание ИИП постоянного тока переменного тока … Заземление генератора с нейтралью Нет ~ Удар ~ Зона Инвертор запитан четырьмя батареями для гольф-каров 6В (подключенными к выходу 12В).Остальная часть переменного тока лодки питается либо от берегового сервиса, либо от дизельного генератора мощностью 8 кВт. Когда присутствует какой-либо из этих источников, инвертор обнаруживает его, переключается на внешний переменный ток и начинает заряжать аккумуляторную батарею инвертора. Архив знаменитостей | Голливуд Получите все списки лучших знаменитостей Голливуда, новости и многое другое. Вопросы авторского права | Голливуд Взять пик в фильмах, выходящих на этой неделе (8 12) 46 мыслей у меня возникло, когда я смотрел финал «Холостяка» в качестве суперфана; 46 мыслей, которые у меня возникли, когда я смотрел финал «Холостяка» как не фанат Doctor dalmacy brooklyn yeulg. aigabari.it доктор Далмаси Бруклин, Александра раньше жила по адресу 982 Cherrywood Dr, Болдуин, штат Нью-Йорк, 11510, начиная с сентября 2007 года. Возвращаясь назад, начиная с мая 2003 года, Александра жила по адресу 10044 222nd St, Jamaica NY 11429. Вполне вероятно что Александра Херард замужем за 46-летним Уильямом Л. Мендерсоном. Как рассчитать Номинал трансформатора в кВА Мы знаем, что трансформатор всегда номинал в кВА. Ниже приведены две простые формулы для определения номинальных значений однофазных и трехфазных трансформаторов.Номинальные характеристики однофазного трансформатора: P = V x I. Номинальные характеристики однофазного трансформатора в кВА кВА = (В x I) 1000 Номинальные характеристики трехфазного трансформатора: Конфигурации и информация последовательной и параллельной аккумуляторной батареи Прочтите о последовательной и параллельной аккумуляторной батарее конфигурации. При подключении аккумуляторных элементов повышается напряжение или улучшается токовая нагрузка. Ust 5500 Вт генератор конденсаторный кл. Квант. Сеть. UST Карбюратор и дроссель (с прокладками). При времени работы 10 часов при 50% нагрузке генератор мощностью 5500 Вт будет работать с холодильником, морозильной камерой, парой ламп и небольшим кондиционером с оконным блоком.Этот онлайн-калькулятор БП подскажет вам все, что вам нужно знать. Принципиальная схема фронтальной версии клеммной колодки ECC. ± 10% Конденсаторы. Ватты = мощность. Глоссарий по электротехнике и электронике Дуговый сварочный аппарат Устройство, используемое для … Инвертор мощности, позволяющий синхронизироваться с электросетью для экспорта излишков энергии на нужды предприятия. … однолинейная диаграмма Упрощенная принципиальная схема энергосистемы. Электропроводка в помещениях. Электромонтажная проводка в собственности заказчика. Международные сообщения в Латинской Америке | BLes | BLes … BLes Mundo Lea las últimas noticias internacionales y sobre América Latina, opinión, tecnología, ciencia, salud y cultura. Фото и видео. Автомобильные генераторы создают отличные электродвигатели; Вот как … Схема простого … платформенного испытательного стенда в качестве компрессора для плазменной резки сварочного аппарата и … как на этой диаграмме. Задайте вам задачу найти одну принципиальную схему из любого … LookWAYup определение смыслов, использования, синонимов, тезауруса.Онлайн-словари: Определение параметров | Варианты советов | Советы Блог Urteile & Gesetze — Блог zum juristischen … Entscheidungen zitieren stets Gesetze, Paragraphen oder andere Urteile, die für das Urteil релевантные слова. Unsere neue Verlinkungsfunktionalität erkennt diese juristischen Dokumente im Text und verlinkt direkt zu diesen Dokumenten. Словарь SpellCHEX people.dsv.su.se Это словарь SpellCHEX для онлайн-проверки орфографии. [CHEX% PARSER = 2,13% FLOATED = 19991204% GENERATED = DR ALL% BOUND = TRUE] Immobilien in Franken zur Miete oder zum Kauf | иммо… immo.inFranken.de — Ihre Immobiliensuche in Franken. Mit unserem Immobilienmarktplatz immo.inFranken.de, das Immobilienportal von inFranken.de, dem reichweitenstärkstem Nachrichten und Informationsportal in der fränkischen Region, steht Ihnen für Ihre Suche nach einer einer sturksemarket inFranken.de. Фотографии Veena Malik Turismo en Ecuador • La Bicok … Tenemos algunas fotos, ebavisen ikya asr llama a las acciones de las niñas por una cierta Historia islámica, salimos de una category loveris algunas algunre, tenemos algunas fotos лос jóvenes chwanz en otze y rsch und jede eutschsex sin ornofilme auf de u вокруг um die zugreifen kanst, las fotos de liaa agdy lmahdy se han convertido en gitanas. репозиториев Eclipse Git abs acos acosh addcslashes добавляет косые черты aggregate_info aggregate_methods aggregate_methods_by_list aggregate_methods_by_regexp aggregate_properties aggregate_properties_by CT Bauer College of Business, показанный слева в тексте с названием «50» в Хьюстонском университете3 (см. Он содержит 10 000 самых популярных паролей в порядке частоты использования, каждый из которых сопровождается запятой (кроме последнего). При нажатии кнопки «Выполнить p1» выполняется функция javascript p1.Эта функция: Philosophia perennis На главную | Facebook Philosophia perennis. 9.3 тысяч лайков · 939 говорят об этом. Facebookpräsenz zum Блог философия perennis Liberalkonservative Seite Beiträge zu Politik, Gesellschaft und Zeitgeschehen passman zxcvbn.js.map at master · nextcloud passman · GitHub 🔐 Диспетчер паролей с открытым исходным кодом с интеграцией Nextcloud в Twitter, более 9000 пользователей de site die u nu bekijkt staat dit niet toe. Veena Malik foto de desnudo Foto Invitado Turismo en … Salga de la cara de orno ategory wie, salga de orno ategory wie bubble, que apareció a mitad de camino en una image del libro deensayos, así como la actriz eena alik, ennah afez p witter escribe que la idea con las iniciales era suya, así que míranos, él ha escrito alguna vez, a una ama le encanta la oportunidad de un niño en otze y rsch y cada ornofilm oriental de eutschsex … 9 № 1 Zahnimplantate Unsere Dienstleistungen im Bereich Zahnimplantate.1zahnimplantate.de ist auch darauf spezialisiert, eine angemessene Beratung, Bewertung und Platzierung von Zahnimplantaten bei unseren Mund, Kiefer und Gesichtschirurgen anzubieten, die getestet und gesichtschirurgen anzubieten, die getestet und die vertrauenswüterdünsücke sindée. .. Boursorama Главная | Facebook Boursorama. 40 459 лайков · 951 говорят об этом. Bienvenue sur la page Boursorama, портал экономической и финансовой информации.Схема инверторного сварочного аппарата

Галерея


Новое обновление
стажировки в автомобилестроении, триггер для реле схемы, схема блока предохранителей 95 prelude, проводка поплавкового выключателя на баке, электропроводка на 12 В Великобритания, блок предохранителей Outlander 2007 года, солнечная тепловая энергия, концентрирующая солнечную неисправность, просто посмотрите на испанию, проводка лампу керета кансил, схема кабелета бристоля интернет, схема jeep wrangler для прицепа, электрическая схема переключателя сетки mk, расположение жидкости гидроусилителя honda fit кроме 2001 honda civic, 2015 chevrolet silverado 2500 custom fit проводка автомобиля hopkins, схема проводов suzuki k15, блок предохранителей suzuki intruder 1500, проводка john deere sx85 электрическая схема, однопроводной генератор переменного тока gm, схема блока предохранителей mercedes benz 190e 1988 года, электрические схемы двигателя схемы, электрические схемы а также электрические схемы форд грузовика 1956 года на джип 78, нейлоновые шкивы ремня ГРМ, 200 4 охлаждающая жидкость двигателя pontiac vibe, схема жгута проводов pioneer на схеме подключения для pioneer avic z1, жгут проводов фары tiffin phaeton, 2002 lexus sc430 custom, ibanez s570dxqm электрическая схема, электрическая схема полноволнового выпрямителя с использованием схемы двигателя cadillac northstar на топливопроводе cadillac northstar, электросхема м. v. ats, электрическая схема полюсного сарая, 2006 kia sportage стерео схема проводов, 73 powerstroke схема маслоохладителя, электрическая схема 2001 chevy silverado 3500, 2005 toyota camry электрическая схема, информационная схема диодный тестер электронная схема, nissan leaf электрическая схема 2015 великобритания, последовательная цепь конденсатора и падение напряжения омического сопротивления на, электрическая схема разъема rj11 с cat5, имитатор электронной схемы osx, электрический символ для реле, r1 c1 вместе с интегрирующей схемой для обеспечения ввода, как сделать электрическую схему дома , схема клавиатуры и ключевые определения avilchezj, щелчок блока предохранителей джип гранд чероки 2001 года, схема расположения внешнего блока предохранителей рис. 1, стандартная проводка tpa3110d2 в мостовом режиме, схема блока предохранителей, информационные табло третьего поколения, продолжение рис. 7, схема подключения воздушного компрессора e9 e10 blank, mitsubishi lancer 2012, электрическая схема, только блок предохранителей lincoln town 1989, 2006 honda civic ex fuel фильтр, схема подключения тахометра, схема подключения тахометра, схема подключения, схема подключения baja warrior, схема подключения стартера gmc topkick 1995 года, схема подключения балласта, люминесцентные лампы, ленточная светодиодная лампа, электрические схемы гитарного блога, схемы и советы gretschstyle, проводка гитары, схема подключения honda xr650r utype, военная схема подключения humvee, схема подключения 1995 lexus sc300, адаптеры адаптеров addonics adsaide44 sata to ide 44pin, печатная плата 2 трафарет для аэрографа краска для мотоцикла, схема предохранителей jetta 1999, схема предохранителей kenworth 2005 года wedocable, foton diagrama de cableado de serie de caravans , схема жгута проводов, кроме того, цветовой код проводки ртути, руководство по схемам Chrysler Voyager, электрическая схема стереосистемы mustang 93, жгут проводов для пикапа Toyota 1986 года, 3-проводная проводка 220 вольт, электрическая схема suzuki sp 250, части флейты коренных американцев передняя часть ноги, электрическая схема реле топливного насоса ford vauxhall astra h электрическая схема, блок предохранителей dodge stealth 91, седан ford focus rs 2016, электрическая схема для 85 пикапов chevy, фильтр cw переменной полосы пропускания, ultima diagrama de cableado de las luces, 1999 ford e250 econoline схема блока предохранителей 2016 дата выпуска автомобиля, nissan 2012 Страница раскраски эскиза схемы запчастей, электрическая схема вместе со схемой подключения 12-контактной вилки прицепа, электрическая схема dvc eclipse, talkdualbatteryisolators200ampbatteryisolatorrelaydiagram, 97 chevy 1500 схема подключения стоп-сигнала, схема дракона страница 2, электрическая схема iveco eurocargo, sv650 схема зажигания sv650 принципиальные схемы , схема подключения сабвуфера на параллельной проводке сабвуфер с двойной звуковой катушкой, схема подключения печи мобильного дома Coleman dgaa077bdta, схема подключения выходного разъема гитары на схеме подключения аудиоразъема RCA, схема подключения вентилятора E46, комплект для домашнего кинотеатра, ds26324gna3 maxim интегрированные интегральные схемы ics digikey, Схема двигателя dodge neon sxt 2004 года, основные электрические схемы фонаря swi tches wikimedia, электрическая схема адаптера переменного тока для ноутбука hp, электрическая схема mitsubishi 4g92 mivec, базовый обзор растений, электрическая схема ford msd, а также схема зажигания msd, электрическая схема прибора для Mustang GT 89, примечания по проводке дома, электрическая схема toyota tundra 2013 года изображение электрическая схема двигатель, электрическая схема 2000 chrysler cirrus, 1968 vw bug wiring, исправление 3-х позиционного переключателя проводки, электрическая схема грузовика 87 dodge, проводка розеток 240 в, схема проводки pontiac grand am 2003 года, нанесение макияжа глаз схема нанесения теней для век, схема внешней проводки кроме схем подключения подвесного двигателя suzuki, схема подключения usb для gopro, проводка 2 конденсатор3 провод установить реле низкого давления ls1lt1 forum lt1, схема внешних проводов yamaha, электрическая схема w115 , подключение двух переключателей к 4 лампам, электрическая схема toyota 86, электрические схемы электрических двигателей кузова, жгут проводов Firebird 1968 года, помощь с 3-сторонней проводкой диммера, электрическая страница 2 diy chatroom, схемы проводки western star 2013 года, аккумулятор джип гранд чероки 2012 года на прицепе chevy электрические схемы, электрические схемы для приборов ikea whirlpool book, электронная схема с использованием matlab, электрическая схема ford f 150 ecu, Принципиальная схема электронного сварочного аппарата

29 Pdf

Первый полюс — это первичная цепь, и она была спроектирована так, чтобы иметь четырехступенчатую катушку sa ab bc и ce с тремя петлями a b c для переменного выбора токовой нагрузки. Переключатель позволяет выбирать.

Газовая дуговая сварка металла Gmaw

Принципиальная схема инвертора мощности pdf красивые изображения синусоидальный инвертор с использованием цепи находит необходимую вам диаграмму изображения чудесного

Электрическая схема электронного сварочного аппарата pdf . Эта устарелая машина является первым поколением инверторных машин. Электронные схемы надежно защищены от нагретого воздушного потока. Мини сварочный аппарат схемы самодельные схемные проекты.

Схема зарядного устройства солнечного солнечного трекера электрическая схема pdf схема солнечной лампы pdf 12v вход 15 кВА принципиальная схема инвертора pdf принципиальная схема сварочного инвертора. Один — это установка переключателя ответвлений сварочного трансформатора, а другой — регулировка тока в процентах управления сваркой. Преимущество также в том, что выходной ток составляет постоянный ток.

2348036826053 реферат Был спроектирован и изготовлен двухполюсный сварочный аппарат переменного тока.Эта регулировка также называется контролем фазового сдвига тока или фазовым регулированием нагрева. Схема мини-сварочного аппарата для небольших сварочных работ в последний раз обновлялась 8 марта 2019 г., автор: swagatam 20 комментариев схема небольшого бестрансформаторного сварочного аппарата может быть построена с использованием нескольких высоковольтных конденсаторов высокой емкости и выпрямительного диода, в следующей статье подробно объясняется это.

Современные полупроводники позволяют заменить традиционный сетевой трансформатор импульсным блоком питания, который намного легче и позволяет легко регулировать ток с помощью потенциометра.Гарантия подкреплена 2-летней ограниченной гарантией на все компоненты, за исключением горелки TIG и расходных материалов, срок действия которой составляет 30 дней. Мини сварочный аппарат схемы самодельные схемные проекты.

Схемы электрические и электронные. Электрические и электронные схемы, утвержденные стандартом США y1415 1966 года, включают следующее. 3 — вид в перспективе с разнесением деталей основных компонентов однофазного устройства переменного тока в соответствии с изобретением, имеющего один модуль типа, представленного на фиг.

28 изображений контактный фильтр сабвуфера на корпусе сабвуфера и схема активного фильтра. Это базовое устройство для сварки покрытым электродом методом ММА или дуговой сварки вольфрамовым электродом в газовой среде. Силовые распределительные устройства и промышленное управление 15 7 принципиальные схемы общие 15 8 принципиальные электрические схемы электроника и связь 15 9 принципиальные электрические схемы силовые распределительные устройства и промышленное управление.

Тележка в сборе Тележка для тяжелых условий эксплуатации содержит баллон с газом блока питания блока питания и кабели.2 — электрическая принципиальная схема электронной схемы управления, подходящей для использования с изобретением. Это устройство обеспечивает только постоянный ток, что очень удобно для сварки большого количества металлов.

При контактной сварке используются два средства для изменения тепловой энергии на электродах. Сварочный инвертор до 100А Сварочный инвертор является альтернативой обычному сварочному трансформатору. С 1925 г. по сравнению с современным источником сварочного тока инверторного типа.

Основы дуговой сварки

Принципы дуговой сварки Substech

Как построить самодельный инвертор мощности

Электрическая схема для сварочного аппарата Принципиальная схема

Тест открытого цикла Википедия

Газовая дуговая сварка металла Википедия

Газовая сварка металла Обзор Научные темы

Простые шаги для ремонта сварочного аппарата в домашних условиях Что находится внутри инверторного сварочного аппарата

Определение типов дуговой сварки Преимущества рабочих температур Pdf

Electra Welding Machine Производители и поставщики

Схема принципиальной схемы Инверторный сварочный аппарат Полная версия Hd Диаграмма напряжения и тока для дуговой сварки

Pdf Zarta Innovations2019 Org

Сварка сопротивлением Обзор Научные темы

Как отремонтировать сварочный аппарат Amp Как это работает Сварочный аппарат क स क म करत और इस क स ठ क कर कर

Сварочная горелка

, схемы Книги электрических схем

Схема электрических соединений сварочного инвертора Блог

Инструкции по установке Weldmart Idler Upgrade Board для

Pdf Проектирование и изготовление сварочного аппарата с переменным током

Сварка сопротивлением Обзор Научные темы

Схема электрических соединений сварочного аппарата Airco 300 Цепь аппарата для дуговой сварки

Результаты Страница 7 О Vibrato Поиск цепей At Next Gr

Diy Аккумуляторная точечная сварка 8 шагов с изображениями Instructables

Газовая дуговая сварка металла Обзор Научные темы

Импульсная дуга Обзор Sciencedirect Topics

Диаграмма напряжения и тока дуговой сварки Pdf Zarta Innovations2019 Org

Отчет о проекте сварочного аппарата Электродуговая сварка

Библиотека электрических схем сварки TIG

Карта сайта


Принципиальная схема сварочного аппарата -Gm Power Antenna Wiring Diagram

представляет собой визуальное представление компонентов и кабелей, связанных с электрическим подключением. Эта графическая диаграмма показывает нам физическое соединение, которое намного легче понять в электрической цепи или системе. На электрической схеме могут быть обозначены все соединения с указанием их взаимного расположения. Использование этого массива может быть положительно признано в производственном проекте или при решении электрических проблем. Это может предотвратить большой ущерб, который даже подорвет электрические схемы. широко используются в производстве схем или других проектах электронных устройств.

Компоновка облегчает общение между инженерами-электриками, проектирующими электрические схемы и реализующими их.Фотографии также пригодятся при ремонте. Он показывает, была ли установка спроектирована и реализована надлежащим образом, подтверждая регуляторы безопасности. A обычно дает информацию об относительном положении и расположении устройств и клемм на устройствах, чтобы помочь в создании или обслуживании устройства. Это не похоже на схематическую диаграмму, где расположение соединений компонентов на схеме обычно не соответствует физическому расположению компонентов в готовом устройстве.На картинке будет отображаться больше деталей внешнего вида, тогда как в схеме соединений используются более символические обозначения, чтобы подчеркнуть взаимосвязи, а не внешний вид.

Принципиальная схема сварочного аппарата показывает схему цепи с ее оттиском, а не с подлинным изображением. Они предоставляют только общую информацию и не могут использоваться для ремонта или проверки цепи. Функции различного оборудования, используемого в схеме, представлены с помощью принципиальной схемы, символы которой обычно включают вертикальные и горизонтальные линии.Однако известно, что эти линии показывают поток системы, а не ее провода. A представляет собой исходную и физическую схему электрических соединений. Схема разводки на картинке с разными символами показывает точное расположение оборудования во всей цепи.
Принципиальная схема сварочного аппарата Это гораздо более полезно в качестве справочного руководства, если кто-то хочет узнать об электрической системе дома. Его компоненты показаны на картинке, чтобы их можно было легко идентифицировать.- наименее эффективная схема среди электрических схем подключения. Часто это фотографии, прикрепленные к подробным чертежам или этикеткам физических компонентов. Картинка даже не пытается быть четкой или эффектной. Человек, хорошо разбирающийся в схемах электропроводки, может понять только изображения. Принципиальная схема сварочного аппарата

— 73 Электрические схемы электродвигателя стеклоочистителя грузовика Chevy Переключитесь на

Принципиальная схема сварочного аппарата

Принципиальная схема сварочного аппарата — это визуальное представление компонентов и кабелей, связанных с электрическим соединением.Эта графическая диаграмма показывает нам физическое соединение, которое намного легче понять в электрической цепи или системе. На электрической схеме могут быть обозначены все соединения с указанием их взаимного расположения. Использование этого может быть положительно признано в производственном проекте или при решении электрических проблем. Это может предотвратить большой ущерб, который даже подорвет электрические схемы. широко используются в производстве схем или других проектах электронных устройств. Компоновка облегчает общение между инженерами-электриками, проектирующими и реализующими электрические схемы.Фотографии также пригодятся при ремонте. Он показывает, была ли установка должным образом спроектирована и реализована, подтверждая регуляторы безопасности.

Принципиальная схема сварочного аппарата показывает схему цепей с ее впечатлением, а не с ее подлинным изображением. Они предоставляют только общую информацию и не могут использоваться для ремонта или проверки цепи. Функции различного оборудования, используемого в схеме, представлены с помощью принципиальной схемы, символы которой обычно включают вертикальные и горизонтальные линии.Однако известно, что эти линии показывают поток системы, а не ее провода. представляет собой оригинальную и физическую схему электрических соединений. Схема разводки на картинке с разными символами показывает точное расположение оборудования во всей цепи. Это гораздо более полезно в качестве справочного руководства, если кто-то хочет узнать об электрической системе дома. Его компоненты показаны на картинке, чтобы их можно было легко идентифицировать.

Чтобы прочитать принципиальную схему сварочного аппарата , вы должны знать различные используемые символы, такие как основные символы, линии и различные соединения.Стандартные или основные элементы, используемые в электрической схеме, включают источник питания, заземление, провода и соединения, переключатели, устройства вывода, логический вентиль, резисторы, свет и т. Д.

Принципиальная схема сварочного инвертора -2011 Блок предохранителей Chevy Malibu

— это блок предохранителей. визуальное представление компонентов и кабелей, связанных с электрическим подключением. Эта графическая диаграмма показывает нам физическое соединение, которое намного легче понять в электрической цепи или системе. На электрической схеме могут быть обозначены все соединения с указанием их взаимного расположения.Использование этого массива может быть положительно признано в производственном проекте или при решении электрических проблем. Это может предотвратить большой ущерб, который даже подорвет электрические схемы. широко используются в производстве схем или других проектах электронных устройств.

Компоновка облегчает общение между инженерами-электриками, проектирующими электрические схемы и реализующими их. Фотографии также пригодятся при ремонте. Он показывает, была ли установка должным образом спроектирована и реализована, подтверждая регуляторы безопасности.A обычно дает информацию об относительном положении и расположении устройств и клемм на устройствах, чтобы помочь в создании или обслуживании устройства. Это не похоже на схематическую диаграмму, где расположение соединений компонентов на схеме обычно не соответствует физическому расположению компонентов в готовом устройстве. На картинке будет отображаться больше деталей внешнего вида, тогда как в схеме соединений используются более символические обозначения, чтобы подчеркнуть взаимосвязи, а не внешний вид.

Принципиальная схема сварочного инвертора показывает схему цепи с ее впечатлением, а не подлинным изображением. Они предоставляют только общую информацию и не могут использоваться для ремонта или проверки цепи. Функции различного оборудования, используемого в схеме, представлены с помощью принципиальной схемы, символы которой обычно включают вертикальные и горизонтальные линии. Однако известно, что эти линии показывают поток системы, а не ее провода.A представляет собой исходную и физическую схему электрических соединений. Схема разводки на картинке с разными символами показывает точное расположение оборудования во всей цепи.
Принципиальная схема сварочного инвертора Это гораздо более полезно в качестве справочного руководства, если кто-то хочет узнать об электрической системе дома. Его компоненты показаны на картинке, чтобы их можно было легко идентифицировать. — наименее эффективная схема среди электрических схем подключения. Часто это фотографии, прикрепленные к подробным чертежам или этикеткам физических компонентов.Картинка даже не пытается быть четкой или эффектной. Человек, хорошо разбирающийся в схемах электропроводки, может понять только изображения.

Как сделать простую принципиальную схему инвертора за 5 минут

Когда нам нужно использовать принципиальную схему инвертора. Иногда мы не можем его найти. Но вот как сделать инверторную схему за 5 минут. В двух простых схемах инвертора ниже. Всего лишь с использованием двух транзисторов, двух резисторов и одного трансформатора.

Они могут преобразовать батарею 12 В постоянного тока в 220 В переменного тока / 120 В переменного тока, чтобы использовать небольшую лампочку или лампу максимальной мощностью 10 Вт.

Они включают в себя две идеи схемы
1. Очень простая схема инвертора с использованием MJ2955 (транзисторы PNP)
2. Принципиальная схема микроинвертора с использованием TIP41 или 2N6121 (Чайяпол сделал его небольшой размер)

Принципиальная схема очень простого инвертора с использованием MJ2955

Это простая принципиальная схема инвертора. Мне нужно использовать небольшую лампочку на улице.Которого нет электричества, 220VAC.

Мой друг одолжил у меня инвертор на 150 ватт. Который я использовал в машине. Он так хорошо работает. Так что инвертора у меня нет. Таким образом, мне нужно срочно построить новый инвертор.

Основная идея принципиальной схемы инвертора

В данном случае мне не нужна большая мощность и длительное использование. Потому что я использую мощность 10 Вт только на короткое время (примерно 30 минут).

Затем я ищу все запчасти в своем магазине.У меня много силовых транзисторов MJ2955.

Итак, я выбрал принципиальную схему инвертора, как на рис. 1. Это так просто. Это два MJ2955, два резистора на 68 Ом и только один трансформатор.
Видите ли, это действительно возможно!

Принципиальная схема инвертора MJ2955

Оба транзистора и два резистора установлены в режим нестабильного мультивибратора. Силовые транзисторы приводят в действие трансформатор. Он преобразует импульс постоянного тока в высокое напряжение переменного тока.

Что выглядит как инвертор ниже .Но он использует транзистор PNP и большую мощность, чем один.

Мне рассказал мой друг, который является гуру в области энергетики. В этом типе схемы не будет конденсаторов. Но он может генерировать частоту. Вторичная обмотка трансформатора работает как нагрузка, которая может преобразовывать электрическое напряжение в высокое, в данном случае это 220 В, но не уверен, что это 50 Гц.

Однако частотный выход не нужно использовать с нагрузкой.

Построим эту схему.

Эта схема очень проста, но имеет крошечный размер. Я собираю их на радиаторе и подключаю все провода, как показано на видео ниже.

Тестирование

В качестве источника видео я использую аккумулятор 12 В, 2,5 Ач, во-вторых, измеряю выходное переменное напряжение 225 вольт. Далее прикладываю к схеме лампы. Напряжение ниже 190 вольт и может поддерживать мощность.


Рисунок 2 Применение этого проекта.

Необходимые детали
Q1, Q2 — MJ2955 или TIP2955 Силовые транзисторы PNP = 2 шт.
R1, R2 — резисторы 68 Ом от 2 Вт до 5 Вт = 2 шт.
T1— трансформатор 12В CT 12В / 220В или 110В = 1 шт.
Если вам нужна выходная мощность 20 Вт, используйте трансформатор на 1 А.
Радиатор, аккумулятор 12 В и т. Д.

Также вы можете использовать проект ниже, он отлично выглядит.

Принципиальная схема микро-инвертора с использованием TIP41 или 2N6121

Эта схема выглядит так, как показано выше. Кроме того, он преобразует аккумулятор 12 В в переменное напряжение в диапазоне от 180 до 220 В. На выходных частотах от 30 Гц до 65 Гц.

Можно использовать с бытовой техникой до 10 Вт. Например, маленькие люминесцентные лампы, светодиодные лампы, таймеры и т. Д.

Светодиоды экономят энергию, чем люминесцентные лампы, при той же легкости.

Кроме того, в этой схеме микро-инвертора используется обычный трансформатор и двойной NPN-транзистор. При сборке схемы вы просто соединяете части вместе только ногой к ноге. На прохождение этого круга у вас может уйти около 5 минут.

Примечание: пожалуйста, прочтите «Тестирование / применение» ниже для реального применения.

Описание схемы

В общей схеме инвертора используется генератор для управления трансформатором с силовым транзистором.

Использование сдвоенных транзисторов — двухтактная коммутация, попеременно включается и выключается. Оба транзистора должны иметь одинаковый коэффициент усиления. Но не надо же.
Как это работает
При подаче питания в цепь. Любой из транзисторов насыщается (замкнутая цепь) быстрее, чем один.

Предположим, что Q1 замкнул цепь первым.Ток коллектора Q1, поэтому он создает магнитное поле в катушке L2. Затем он получает большее базовое напряжение через R1. Q1 так быстро перешел в состояние замкнутой цепи. Кроме того, это делает Q2 разомкнутой цепью.


Принципиальная схема микропреобразователя

Состояние будет таким, пока сердечник трансформатора не достигнет точки насыщения. Таким образом, ток, протекающий к R1, уменьшается до тех пор, пока не перестанет переводить Q1 в состояние замкнутой цепи. Q1 — это разомкнутая цепь.

Напротив, в то время как Q1 медленно переходит из состояния замкнутой цепи в состояние разомкнутой цепи.Q2 начнет проводить больше токов. Ток будет протекать через R2, увеличивая ток смещения до Q2. Это позволяет быстро замкнуть Q2.

Теперь ток батареи будет течь в катушку L1 в обратном направлении. Это заставляет индукцию напряжения иметь противоположную полярность во вторичной обмотке трансформатора.
Q2 будет проводить ток, пока сердечник трансформатора не достигнет насыщения.

После этого процесс замкнутого-разомкнутого контура между Q1 и Q2 снова будет таким же.Пока в цепь подается постоянное напряжение.

Конденсатор в первичной обмотке трансформатора сглаживает выходное переменное напряжение или обеспечивает низкий уровень шума.

Как сделать инвертор

Для проекта используйте несколько компонентов. Итак, у него есть схема подключения ниже, без разводки печатной платы. Я предлагаю следующие техники изготовления.


Схема подключения этого проекта

1. Используйте слюдяной изолятор между корпусом и корпусом транзистора.Затем используйте пластиковый изолятор. Затем удерживайте корпус транзистора шестигранной гайкой и металлическим винтом, как показано на рисунке ниже.


Установка транзистора на радиатор

2. Помните! Не прикасайтесь никаким проводом транзистора к корпусу и не допускайте короткого замыкания между этими выводами.
3. С помощью омметра проверьте короткое замыкание различных устройств на отсутствие замыкания на корпус, как показано ниже.


Проверить короткое замыкание с помощью мультиметра

Тестирование / применение
Я выполняю тест, выполняя следующий шаг:

1.Возьмите аккумулятор на 12 В, 2,5 Ач. Или регулируемый источник питания 12 В постоянного тока, ток более 2 А. для тестирования.
2. Используйте измеритель переменного тока для измерения, установив диапазон 500 В переменного тока или цифровой измеритель напряжения переменного тока, как я использую.
3. Примените к этому проекту аккумулятор на 12 В.
4. Измерьте выходное напряжение. Напряжение должно быть от 220 до 330 В.

После этого попробуйте использовать этот проект схемы инвертора для нагрузки светодиодной лампы мощностью 3 Вт. Из-за низкого энергопотребления.

Эта схема имеет выходную мощность от 5 до 10 Вт.

Как и в видео выше, светодиодная лампа ярко светится в течение 3 часов. Потому что он использует только 0,5 А.

Собираю детали: 2 x TIP41 с радиатором, резисторы 1K на универсальной плате PCB.

Примечание: Поскольку у меня есть ограниченные части, используйте только части, расположенные рядом. Я использую трансформатор 0,75A, 9V CT 9V и два TIP41.

Если вы хотите использовать более высокую мощность. Вы можете изменить некоторые детали.

В случае добавления мощность составляет 20 Вт. Для этого требуется трансформатор, который обеспечивает ток более 2 А, а вместо этого изменения R1 и R2 составляют 100 Ом 5 ​​Вт.

Список компонентов

Полупроводники
Q1, Q2: TIP41 или 2N6121, транзистор NPN 40W 45V 4A
LED1: Красный светодиод или как вам нужно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *