Из чего состоит бронза сплав: Из чего состоит бронза: состав сплава бронзы, основные свойства и виды, области применения и маркировка

Содержание

Бронзовые сплавы

Сплавы цветных металлов, Баббит, Припой/Бронзовые сплавы

 

По вопросам цены и наличия обращайтесь 

по телефонам: +7 (3435) 48-50-92;  92-26-99 +7-922-109-57-42 

или отправьте Вашу заявку на E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. 

ООО ТД «Нижнетагильский металлургический завод» поставляет следующие бронзовые сплавы:

Наименование Марка сплава Стандарт Вес одной чушки
Алюминиево-железная бронза в чушках БрА9Ж4 ГОСТ 493-79 массой не более 35кг.
БрА10Ж3Мц1.5 ТУ 1733-00195430-88-97
Оловянно-цинково-свинцовая бронза в чушках БрО5Ц6С5 ГОСТ 613-79
Оловянно-цинково-свинцовая бронза литейная в чушках БрО5Ц5С5 ТУ 1733-00195430-88-97
БрО5Ц6С5 ТУ 1733-00195430-96-98
Оловянно-фтористая бронза литейная в чушке БрО10Ф1 ГОСТ 613-79

Бро́нза — сплав меди, обычно с оловом как основным легирующим элементом, но применяются и сплавы с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка и никеля.

При маркировке деформируемых бронз на первом месте ставятся буквы Бр, затем буквы, указывающие, какие элементы, кроме меди, входят в состав сплава. После букв идут цифры, показывающие содержание компонентов в сплаве. Например, марка БрОФ10-1 означает, что в бронзу входит 10 % ол Маркировка литейных бронз также начинается с букв Бр, затем указываются буквенные обозначения легирующих элементов и ставится цифра, указывающая его усредненное содержание в сплаве. Например, бронза БрО3Ц12С5 содержит 3 % олова, 12 % цинка, 5 % свинца, остальное – медь.

 При сплавлении меди с оловом образуются твердые растворы. Эти сплавы очень склонны к ликвации из-за большого температурного интервала кристаллизации. Благодаря ликвации сплавы с содержанием олова выше 5 % имеют в структуре эвтектоидную составляющую Э(α + β), состоящую из мягкой и твердой фаз. Такое строение является благоприятным для деталей типа подшипников скольжения: мягкая фаза обеспечивает хорошую прирабатываемость, твердые частицы создают износостойкость. Поэтому оловянные бронзы являются хорошими антифрикционными материалами.

Оловянные бронзы имеют низкую объемную усадку (около 0,8 %), поэтому используются в художественном литье. Наличие фосфора обеспечивает хорошую жидкотекучесть.

Оловянные бронзы подразделяются на деформируемые и литейные.

В деформируемых бронзах содержание олова не должно превышать 6 %, для обеспечения необходимой пластичности, БрОФ6,5-0,15. В зависимости от состава деформируемые бронзы отличаются высокими механическими, антикоррозионными, антифрикционными и упругими свойствами, и используются в различных отраслях промышленности. Из этих сплавов изготавливают прутки, трубы, ленту, проволоку.

БрО3Ц7С5Н1, БрО4Ц4С17, применяются для изготовления пароводяной арматуры и для отливок антифрикционных деталей типа втулок, венцов червячных колес, вкладышей подшипников.

По назначению бронзы оловянные делят на следующие группы:

  • Литейные стандартные бронзы марок Бр05Ц5С5, Бр04Ц7С5, Бр04Ц4С17, БрОЗЦ7С5Н1, БрОЗЦ12С5.
  • Литейные бронзы ответственного назначения марок Бр010Ц2, БрОбЦбСЗ, Бр08Ц4, БрОФ, Бр05С25.
  • Деформируемые бронзы марок БрОЦС4-4-2,5, БрОЦ4-3, БрОФ8-0,3, БрОФ6,5-0,15, БрОФ4-0,25, БрОФ6,5-0,4. 

БрАЖ9-4, БрАЖ9-4Л, БрАЖН10-4-4. Бронзы с содержанием алюминия до 9,4 % имеют однофазное строение α–твердого раствора. При содержании алюминия 9,4…15,6 % сплавы системы медь–алюминий двухфазные и состоят из α– и γ–фаз.

Оптимальными свойствами обладают алюминиевые бронзы, содержащие 5…8 % алюминия. Увеличение содержания алюминия до 10…11 % вследствие появления λ–фазы ведет к резкому повышению прочности и сильному снижению пластичности. Дополнительное повышение прочности для сплавов с содержанием алюминия 8…9,5 % можно достичь закалкой.

Положительные особенности алюминиевых бронз по сравнению с оловянными:

  • меньшая склонность к внутрикристаллической ликвации;
  • большая плотность отливок;
  • более высокая прочность и жаропрочность;
  • меньшая склонность к хладноломкости.

Основные недостатки алюминиевых бронз:

  • значительная усадка;
  • склонность к образованию столбчатых кристаллов при кристаллизации и росту зерна при нагреве, что охрупчивает сплав;
  • сильное газопоглощение жидкого расплава;
  • самоотпуск при медленном охлаждении;
  • недостаточная коррозионная стойкость в перегретом паре.

Для устранения этих недостатков сплавы дополнительно легируют марганцем, железом, никелем, свинцом.

Из алюминиевых бронз изготавливают относительно мелкие, но высокоответственные детали типа шестерен, втулок, фланцев литьем и обработкой давлением. Из бронзы БрА5 штамповкой изготавливают медали и мелкую разменную монету.

БрКМц3-1, БрК4, применяют как заменители оловянных бронз. Они немагнитны и морозостойки, превосходят оловянные бронзы по коррозионной стойкости и механическим свойствам, имеют высокие упругие свойства. Сплавы хорошо свариваются и подвергаются пайке.

Благодаря высокой устойчивости к щелочным средам и сухим газам, их используют для производства сточных труб, газо- и дымопроводов.

БрС30, используют как высококачественный антифрикционный материал. По сравнению с оловянными бронзами имеют более низкие механические и технологические свойства. 

БрБ2, являются высококачественным пружинным материалом. Растворимость бериллия в меди с понижением температуры значительно уменьшается. Это явление используют для получения высоких упругих и прочностных свойств изделий методом дисперсионного твердения. Готовые изделия из бериллиевых бронз подвергают закалке от 800oС, благодаря чему фиксируется при комнатной температуре пересыщенный твердый раствор бериллия в меди. Затем проводят искусственное старение при температуре 300…350oС. При этом происходит выделение дисперсных частиц, возрастают прочность и упругость. После старения предел прочности достигает 1100…1200 МПа.

Сплавы цветных металлов, Баббит, Припой/Бронзовые сплавы

Оловянистая бронза

Классическая бронза – это сплав меди и олова, вероятно, самый древний сплав, известный человеку.


Первая, удачная в отношении состава, бронза была получена эмпирически литейщиками древнего Египта, которым бронза стала известна на рубеже 2500-3000 лет до нашей эры. Они практически определили оптимальные составы для бронзовых изделий различного назначения. Процентное содержание меди и олова в египетской бронзе таково:

В технологическую эпоху этим составам было найдено серьезное обоснование. Холодной обработке давлением подлежит бронза с содержанием олова до 6%, горячей обработке давлением – до15%. Значит, египтяне нож могли упрочнять в холодную, кинжал ковали в горячую, наконечник стрелы получали литьем.

В настоящее время мы знаем, почему это так, а не иначе, потому что умеем определять механические свойства (рис.1). При 5-6% олова бронза наиболее пластична и имеет достаточно высокую прочность.

Рисунок 1. Механические свойства бронзы: 1 – предел прочности (в кг/мм2), 2 – относительное удлинение (в %).

Это понятно при анализе диаграммы состояния. Диаграмма состояния медь-олово достаточно сложна (рис.2). Она представляет собой комбинацию нескольких перитектических диаграмм. Поэтому в системе Cu-Sn существует довольно много различных фаз.
1. α-твердый раствор олова в меди;
2. Олово, поскольку растворимости меди в олове меньше 0,01%;
3. -твердый раствор на базе электронного соединения Cu5Sn;
4. δ -- электронное соединение Cu31Sn8;
5.  — твердый раствор на базе химического соединения меди и олова. Кристаллическая структура его не установлена;

6. ε – электронное соединение Cu3Sn;
7.  — химическое соединение CuSn.

Рисунок 2. Диаграмма состояния медь-олово

При 5-6 % олова бронза состоит из твердого раствора; он наиболее пластичен. При 15% олова есть не так много δ – эвтектоида, и бронзу можно обрабатывать давлением в горячую. Ну а если олова больше, то сплав становится слишком хрупким, и ковать его нельзя никак. Значит, изделие можно получить только литьем.

Самая простая литая бронза имеет фазовые составляющие: α-твердый раствор и эвтектоид α+ δ (Cu31Sn8). На рис. 3 показана структура бронзы с 14,87% Sn и структура эвтектоида.

   
                                         а
                                            б 

Рисунок 3. Структура бронзы с 14,87% Sn (а), эвтектоид α+ δ (б)

Бронза БрОФ10-1 содержит 10% олова и 1% фосфора. Фосфор вводится в бронзу в количестве до 1% как раскислитель, чтобы не дать образоваться оксиду олова SnO, который охрупчивает сплав. Макроструктура литой бронзы БрОФ10-1 представлена на рис.4; видны макрозерна и дендриты внутри них.

Рисунок 4. Макроструктура бронзы при увеличении 100.

При небольшом увеличении (рис. 5, а-в) видны разнотравящиеся дендриты α-твердого раствора и (α+ δ) — эвтектоид. Все, что имеет цвет оранжевый, синий, желтый – это участки дендритов. Просто они травятся по-разному из-за дендритной ликвации; об этом явлении написано на этом сайте в разделе «О металлах и неметаллах». Сам эвтектоид выглядит белым или голубым; но есть и еще кое-что. На рис. 5 г стрелкой обозначено включение соединения Cu3P (фосфид меди), имеющее голубую окраску, которое формируется в данных сплавах при содержании фосфора более 0,2%. На рис.6 показано более крупное включение эвтектоида с включением фосфида меди. На рис. 7 показаны дендриты фосфида меди, лежащие сверху на включении эвтектоида. Резкость наведена на фосфид.

                                           а                                             б
                                           в                                             г

Рисунок 5. Структура бронзы

Рисунок 6. Фазы в бронзе БрОФ10-1.

Рисунок 7. «Скелетик» фосфида меди

особенности и технические характеристики сплава

Бронза – один из первых сплавов, который научился добывать человек. Первые упоминания о бронзе датируются ещё 3 веком до н.э. и с тех пор материал применяется во многих отраслях. Благодаря современным технологиям специалисты научились обрабатывать бронзу и изготавливать из неё различные предметы.

Из чего состоит бронза?

Бронза состоит из сплавов меди и различных легирующих компонентов, металлов или неметаллов. Состав этих компонентов, их концентрация в меди, определяет природные свойства бронзы.

Бронза имеет привлекательный внешний вид и массу других достоинств, поэтому сплав всегда пользовался большой популярностью. Чтобы полноценно оценить все преимущества бронзы, необходимо более подробно рассмотреть её состав и особенности на сайте https://keramet.ru/priem-bronzy-v-moskve/.

В чём особенности сплава? 

Олово и медь – основные компоненты бронзовых сплавов, остальные вещества присутствуют в нём в небольших количествах. Для обозначения бронзы используют специальную маркировку, в которой процент меди не указывается. Но эту величину легко вычислить самостоятельно, если знать процентное соотношение других веществ.

Цвет бронзы зависит от концентрации меди и других веществ. Сплав может существенно отличаться оттенками. Чем больше в составе сплава меди, тем краснее оттенок бронзы. Но цвет далеко не самая главная характеристика сплава, намного важнее его техническими характеристики.

Сплавы с низким содержанием олова всегда более пластичные. Бронза с большой концентрацией олова – твёрдая и тугоплавкая, тяжело поддаётся обработке. Эти свойства обязательно нужно учитывать, выбирая подходящие для работы сплавы.

Благодаря своим свойствам и прочности бронзу издавна использовали в искусстве и в военной отрасли. Из мягкой бронзы изготавливали предметы быта, различные скульптуры, а из твёрдых сплавов делали оружие. Состав современной бронзы имеет ряд отличий. Теперь в производстве сплава используют различные добавки, чтобы влиять на природные свойства бронзы.

Преимущества и недостатки бронзы.

Популярность бронзы, как одного из самых древних сплавов, вполне объяснима, потому как материал имеет массу преимуществ, бронза:

  • Производится широким ассортиментом. В продаже есть различные сплавы, отличающиеся своим внешним видом, характеристиками, которые можно использовать для производства разных предметов быта.
  • Производится учётом её дальнейшей эксплуатации и предназначения. Специалисты применяют различные технологии обработки, благодаря которым сплав обладает всеми необходимыми свойствами и может использоваться в разных отраслях.
  • Практически не подвергается усадке, этот процент достигает всего 1,5 %, поэтому бронза может десятилетиями сохранять свою первоначальную форму и не подвержена деформации. Некоторые бронзовые скульптуры древности отлично сохранились до наших дней.
  • Может использоваться неоднократно. Материал не относят к одноразовым сплавам, бронзу можно переплавлять сколько угодно раз, меняя её состав и используя для различных нужд.
  • Относится к экологически чистым и безопасным для организма материалам. В составе сплава нет никаких токсичных веществ.
  • Не подвержена коррозии и стойко переносит влажность. По этим свойствам бронзе нет равных, поэтому область применения материала очень обширная.
  • Упругий материал, поэтому часто используется для производства различных материалов и пружин.

Из недостатков бронзы можно выделить только её себестоимость. Хотя в производстве сплава используются вполне доступные материалы, стоит олово и медь дорого, поэтому доступны не всем.

В остальном сплав считается одни из самых прочных и долговечных, поэтому бронзу используют уже не одно тысячелетие.

 

Сплав медь — олово (бронза)

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал — бронзу. Медные предметы были найдены [c.446]
    Пушечные бронзы представляют собой сплавы меди, олова и цинка (со свинцом или без свинца), используемые для литья. Наиболее широко распостранены сплавы 105п—22п и 55п—52п—5РЬ. [c.92]

    Цель работы — ознакомление с процессом электроосаждения сплавов медь — цинк (латунь) и медь — олово (бронза) выяснение условий совместного осаждения металлов и влияния отдельных факторов на состав и свойства сплавов. [c.60]

    Бронзы — сплавы меди (кроме латуней и медно-никелевых оплавов) с оловом (оловянные бронзы) и сплавы меди с алюминием, бериллием, кремнием, марганцем и другими компонентами, которые являются главными и в соответствии с которыми бронзы получают название. Как и латуни, бронзы подразделяются на литейные и деформируемые. Обозначение бронз начинается с букв Бр. [c.237]

    Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]

    Благодаря хорошим противокоррозионным свойствам, важную роль начинают играть оловянные сплавы [12]. Испытания показали, что они могут служить хорошей заменой никелевых покрытий. Составы электролитов и свойства сплавов, которые могут применяться также для декоративных покрытий, достаточно известны. Подробно описаны следующие сплавы медь — олово (бронзы [69] [c.707]

    СПЛАВ МЕДЬ —ОЛОВО (БРОНЗА) [c.216]

    Оловянистые бронзы представляют собой сплавы медь—олово, отличающиеся высокой прочностью. Сплавы, содержащие более 5 % 5п, особо устойчивы к ударной коррозии. По сравнению с медью сплавы медь—кремний, содержащие 1,5—4 % 51, имеют лучшие физические свойства и идентичны по стойкости к общей коррозии. При содержании 1 % 51 стойкость сплавов к КРН недостаточна, но у сплава с 4 % 51 она становится вполне удовлетворительной [2]. Проведенные в Панаме испытания в морской воде показали, что наиболее стойкими из всех медных сплавов является сплав А1—Си с 5 % А1. Потеря массы этого сплава при испытаниях в течение 16 лет составила 20 % от соответствующей потери меди [15]. [c.330]


    Из цветных сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 55 и 56. Для определения олова обычно пользуются йодометрическим методом, подробно описанным ниже. Подготовка сплава меди к определению олова состоит в растворении навески в смеси азотной и соляной кислот и отделении олова от меди двукратным осаждением гидроокисью аммония в присутствии хлорного железа (коллектор). Осадок гидроокисей железа и олова (и др.) растворяют затем в соляной кислоте, восстанавливают четырехвалентное олово до двухвалентного каким-нибудь металлом (железом, свинцом или др.) и титруют рабочим раствором йода. [c.456]

    Порошки легкоплавких металлов, оксидов и сплавов свинца, меди, олова, бронзы и пр. [c.159]

    Медь Си (0,0055% массы) — один из первых металлов, известных человеку. С доисторических времен ее сплав с оловом — бронза — применялся для изготовления оружия и [c.219]

    Бронзы подразделяются на простые (сплавы меди и олова) и специальные. Специальные бронзы бывают оловянистые (сплавы меди, олова и других элементов) и безоловянистые (сплавы меди с другими элементами, кроме олова и цинка). [c.61]

    В древнем Египте, Китае, Индии, Греции и Риме уже широко применяли красители, дубители, изделия из меди, олова, бронзы (сплава олова и меди), серебра, свинца, железа. [c.18]

    Медь. Известна с глубокой древности в чистом виде и как сплав с оловом — бронза. Бронзовый век — эпоха в развитии человечества, характеризующаяся применением бронзы для изготовления домашней утвари, орудий труда и оружия. По-видимому, в доисторическое время человеку случайно удалось получить этот сплав (прокаливанием меди с минералами олова), более легкоплавкий и лучше поддающийся обработке, чем сама медь. [c.22]

    Медь и ее сплавы с цинком (латунь, желтая и зеленая медь), оловом (бронза), свинцом и сурьмою, в штыках, лому, порошке, стружка.х, а также в продуктах переделки руд в металл, с пуда два рубля восемьдесят копеек 2.80 1 8 1 35% [c.309]

    Несмотря на то что оловянистая бронза успешно наносится в качестве подслоя для 18. покрытия хромом из-за дефицитности никеля [41, 42], основное ее назначение — декоративная отделка, поскольку это покрытие имитирует по цвету красное зо- 19. лото. Однако, как и для латуни, покрытие сплавами медь — олово должно быть защищено бесцветным лаком от потускнения. 20. [c.434]

    Широко распространены такие сплавы меди, как бронза и латунь. Бронза содержит олово и цинк и применяется при изготовлении отливок, так как она не подвержена коррозии и механически прочна. Латунь состоит из меди и цинка она не так прочна и ковка, как медь, но легко отливается и обрабатывается латунь не подвержена коррозии. Латунь, содержаш ая около 30% цинка, применяется для изготовления патронных гильз и радиаторов. Латунь, в состав которой входит около 40% цинка и небольшое количество олова, применяется в судостроении она очень устойчива по отношению к морской воде и хорошо полируется. Другим важным сплавом меди является так называемое никелевое серебро, содержаш,ее 20% цинка и 15% никеля. Этот сплав выглядит как серебро и используется для изготовления столового серебра и ключей. [c.192]

    Задолго до возникновения современной химии и химической технологии люди уже владели многими химическими реакциями. Горение древесины — первая химическая реакция, использованная человеком. Возможность обогреться у костра в холодную погоду, приготовить на огне пищу сыграла огромную роль в развитии человеческой культуры. Огонь дал возможность возникновения первых ремесел, керамического и металлургического. Вылепленные из глины изделия обжигались при высокой температуре, в пламени костров плавились самородные металлы, а позднее и восстанавливались металлы из окисленных руд углеродом топлива. Человек овладел искусством изготовления прозрачных стекол. У древних египтян, китайцев, индийцев, у греков и римлян существовали уже разнообразные химические ремесла, применялись неорганические и природные органические красители, дубители, изделия из железа, меди, олова, бронзы (сплава олова и меди), серебра, свинца. [c.10]

    Первыми используемыми металлами были, вероятно, золото и серебро, поскольку их можно было найти в природ в свободном состоянии. Применяли их в основном в декоративных изделия . Медь начали использовать около 8000 лет до нашей эры для изготовления орудий труда, оружия, кухонной утвари и украшений. Около 3800 лет до нашей эры была изобретена бронза — сплав меди и олова. В результате человечество перешло из каменного в бронзовый век. Затем был найден способ выплавки железа, и начался железный век. По мере того как люди накапливали свой химический опыт, расширялся и круг полезных материалов, которые человек научился получать путем переработки самых разнообразных руд. [c.150]

    Сплавы цветных металлов. К сплавам цветных металлов относятся сплавы меди (латуни, бронзы), олова и свинца (баббит), а также сплавы олова, сурьмы и свинц (типографские сплавы). [c.90]

    Здесь следует остановиться на одном очень важном обстоятельстве. Всякая теория играет в науке важную роль постольку, и только постольку, поскольку она обеспечивает более ясное понимание свойств реального мира. Описание бронзы как сплава замещения олова и меди лучше, чем ее описание как слияние Юпитера и Венеры, согласно алхимической терминологии, поскольку теория,- рассматривающая сплав олова с медью, предполагает постановку экспериментов, которые позволят объяснить свойства бронзы, предсказать их и даже улучшить, тогда как теория небесного су- [c. 280]

    Оловянистые бронзы. Оловянистыми бронзами на-з-ывг ют сплавы меди с содержанием олова не свыше 20%. Си- [c.249]

    Бронза представляет собой сплав меди с оловом. Олово обеспечивает повышенную прочность и твердость сплава, но резко снижает его пластичность. [c.32]

    Особый тип химической связи наблюдается в металлах. Металлические кристаллы характеризуются большим числом весьма полезных свойств, которые сделали их незаменимым материалом для человечества. К ним относятся высокая отражательная способность, высокая пластичность (способность вытягиваться в проволоку), ковкость, высокие теплопроводность и электропроводность. Эти свойства обусловлены особенностями металлического типа химической связи. Одна из них, как уже упоминалось, обязана высокой подвижности электронов, которая, по-видимому, приводит к тому, что кристаллические решетки металлов не являются такими жесткими, как у типичных ионных или ковалентных кристаллов. Отметим также важную особенность металлов — их способность образовывать сплавы, т. е. давать однородные твердые растворы, отличающиеся новыми, полезными свойствами. Например, сталь — главный конструкционный материал современной техники — представляет собой в основном твердый раствор углерода в железе. Огромную роль на начальных этапах истории человечества сыграли плавящиеся при относительно низкой температуре сплавы меди и олова, т. е. бронза (бронзовый век). [c.163]

    Сплав меди с оловом, содержащий 10% 5п, характеризуется прочностью, твердостью, ковкостью, способностью легко поддаваться штамповке. Количество олова в сплаве с медью можно варьировать в довольно широких пределах. При этом получают колокольную бронзу или орудийную бронзу. [c.398]

    Сплав медь—олово (бронза). Покрытие сплавом медь—олово, или бронзирование, применяют как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловянистьш сплавом (10—20% олова) золотисто-желтого цвета используют также в качестве подслоя взамен медного и никелевого покрытий перед хромированием. Высоко-оловянистый сплав (40—45 % олова), так называемая белая бронза, в некоторых случаях может служить заменой серебра. Несмотря на то, что значение удельного электрического сопротивления сплава Си—5п значительно выше, чем у серебра, в промышленной атмосфере, где есть примеси сернистых соединений, оно остается стабильным, в то время, как у серебра, возрастает в десятки раз. По этой причине покрытия белой бронзой рекомендуют для нанесения на электрические контакты. [c.60]

    Иногда, обладая защитными свойствами, продукты могут иметь плохие противокоррозионные свойства, т. е. могут быть коррозионно агрессивными. Так, составы на основе синтетических жирных кислот, кубовых остатков синтетических жирных кислот, продуктов их взаимодействия с триэтаноламином (например, смазка ЖКБ), ингибиторы коррозии типа МСДА-1 — соли синтетических жирных кислот и дицнклогексиламина, защищая в тонкой пленке черные металлы от коррозии, вызывают или усиливают химическую коррозию цветных металлов и сплавов (свинца, меди, олова, бронзы), особенно при высоких температурах. Возможны и противоположные действия, когда присадки или продукты, обладая хорошими противокоррозионными свойствами, не обладают защитными свойствами или даже усиливают электрохимическую коррозию. Так, многие серо- и серофосфорсодержащие противокоррозионные присадки, улучшающие противокоррозионные свойства нефтепродуктов, не улучшают или ухудшают их защитные свойства [20]. Некоторые маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов (жирные кислоты, амины, алке-нилсукцинимиды и др.), ухудшают их противокоррозионные свойства по отношению к цветным металлам [15—20]. [c.34]

    Медь была известна еще в древние времена о ней упоминается и в Илиаде и старинных персидских рукописях. В Египте, Ассирии, Финикии и на Американском материке были найдены изделия из меди, возраст которых превышает 6000 лет. Самые древние предметы были изготовлены из почти чистой медп, а неско.лько позднее появляются изделия из бронзы (сплав медь — олово) — наступает бронзовый век, из которого до наших дней дошли многие изделия из этого металла.[c.681]

    Медь — олово. Покрытие сплавом медь — олово, или бронзирование, применяется как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловяни-стым сплавом (10—20% Sn) золотисто-желтого цвета применяют также в качестве подслоя -взамен медного и никелевого покрытий перед хромированием. Высокооловянистый сплав (40—45% Sn), так называемая белая бронза, может служить заменой серебра. [c.440]

    Сплав медь — олово (бропза). Покрытия желтой бронзой содержат 40% Sn. Покрытия желтой бронзой применяют в основном для защиты стальных изделий от коррозии в среде холодной и кипящей водопроводной воды. При толщине покрытия > 20 мкм даже после 30 суток непрерывного испыта- [c.130]

    Бронзы, употреблявшиеся в Древней Руси, были подобны византийским и корсунским они содержали 8—10% олова. Позднее бронзовые отливки в Древней Руси производились из так называемой спруды (сплава меди, олова и цинка). Этот сплав был распространен в XII—XIV вв. Впоследствии (в XV—ХУП вв.) на Руси применялись отливки из красной меди, а с ХУП1 в. начали окончательно внедряться сплавы латуни (медь с Цинком) (65). [c.127]

    Цинк, олово, никель, алюминий добавляются в медь обычно в качестве легирующих присадок при этом получаются основные сплавы меди медпоникелевые, бронза, латунь. Присутствуя в меди в небольших количествах, эти элементы обычно полностью растворяются в ней, не ухудшая при этом ее механических свойств. [c.176]

    Свойства электроосажденных сплавов медь—олово в значительной степени определяются их структурой, которая зависит, в первую очередь, от состава электролита. Наиболее распространенным электролитом является цианистый электролит [1, 2]. Для получения гальванических осадков бронзы использовались пиро- [c.18]

    Показано, что при осаждении сплавов медь—олово из различных электролитов образуются сильно пересыщенные твердые растворы. По данным Д. И. Лайнера [10, 11], при осаждении из цианистого электролита однофазный твердый раствор на основе меди сохраняется до 14% Зп. При получении сплавов медь—олово из хлорно- и сернокислых электролитов однофазный твердый а-раствор сохранялся до 22% 5п и период элементарной ячейки был равен 3,75 А. По данным Рузалеппа [14], максимальное значение периода решетки а-раствора было равно 3,72 А. Ю. Е. Ге-ренрот и др. [15] при изучении фазового состава осадков бронзы, полученных из сернокислых электролитов с добавками, установили, что максимальная величина периода элементарной ячейки а-раствора равна 3,6825 А. При содержании олова 16—20% была обнаружена новая фаза б. Во многих работах отмечается появление известных фаз в неравновесных условиях. [c.19]

    Бронза является другим наиболее распространенным сплавом меди. Оловянистыми бронзами называются сплавы меди с оловом, в них содержится до 20% Sn, однако большей частью применяются бронзы, в которых имеется не более 10% Sn. Широко применяются алюминиевые бронзы (5—10% А1). Часто в эти бронзы вводят в небольшом количестве марганец, никель, свинец, железо и т. д. Кроме этих наиболее распространенных бронз, существует много других, напимер кремнистая бронза (4% Si и 1% Мп), бериллиевые бронзы (до 3% Ве) и т. д. [c.81]

    Из цвегнь1х сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 56 и 57. Для определения олова обычно [c.447]

    Применение. Около 50% добываемой меди идет на изготовление проводоз (другим материалом для проводов является алюминий, однако его электропроводность меньше, чем у меди, он менее прочен и трудно паяется). Широко используют различные сплавы меди/ Наиболее применяемы латуни (сплавы, содержащие кроме меди 20—507о Zn, а также другие металлы), бронзы [сплавы меди с оловом (10—20%), бериллием, алюминием и другими металлами] и медноникелевые сплавы.[c.589]

    Бронзы. Бронзами пазьгваются литейные сплавы меди с оловом, алюминием, марганцем и другими элементами. Наиболее широко известны оловянистые бронзы. [c.249]

    Применение оловянистой бронзы ограничивается изготовлени ем деталей для отдельных узлов оборудования. В настоящее время оловянистые бронзы заменяются более экономичными и прочными алюминиевыми бронзами — сплавами меди с алюминием. Промышленность выпускает также специальные бронзы, в которых не содержится олово, но имеются добавки алюминия, марганца, кремния и др. [c.32]

    Бронзовый век начался 6 тыс. лет тому назад и его протяженность во времени составляет 3 тыс. лет. Бронзовый век характерен тем, что оружие, домашняя утварь, предметы искусства изготовлялись из металла, главным образом пз бронзы. Выбор бронзы определялся условиями выплавления этого сплава пз руды так как сплавы на основе меди п олова, как правило, нпзкоплавки, они могут быть получены прокаливанием соответствующих руд с углем при температуре горения дерева. Еслп в кострах древних людей случайно среди камней попадались минералы меди, олова, цинка и др., под действием раскаленного угля происходило восстановление руды до металла. При этом образовывалась быстро застывающая при охлажденпи капля. Разогретый металл легко ковался, пз него можно было приготовить изделия различной формы и назначения. [c.251]


Признаки древности китайских бронзовых сплавов

Нона Дронова, Александр Портнов
«Природа» №11, 2017

Об авторах

Нона Дмитриевна Дронова — доктор технических наук, профессор кафедры ювелирного искусства Высшей школы народных искусств (Санкт-Петербург). Область научных интересов — обработка каменных и металлических изделий, история ювелирного дела.

Александр Михайлович Портнов — доктор геолого-минералогических наук, профессор кафедры минералогии и геохимии Российского государственного геологоразведочного университета имени Серго Орджоникидзе (Москва). Круг научных интересов охватывает вопросы минералогии и геохимии. Постоянный автор «Природы».

Китайская бронза благодаря качеству и масштабности литья и сложности отливок представляет собой уникальное явление в мировой культуре. Начиная с XVIII в. бронзовые изделия Древнего Китая вызывают повышенный интерес коллекционеров, что связано с «закрытостью» китайской истории и культуры. Западный мир открыл искусство Поднебесной и увлекся им в то время, когда в самом Китае еще не было систематических археологических раскопок. Они стали регулярно проводиться только с середины XX в.

История возникновения китайской бронзы

Самородную медь в Китае начали использовать прежде, чем научились выплавлять ее из руды. Местные археологи исследовали 252 вертикальные шахты по добыче меди глубиной до 50 м, с многочисленными горизонтальными штольнями и лазами. Бронзовый век в Китае начался в конце династии Ся (XVII в. до н. э.) и продолжался при династиях Шан (1600–1046 до н.  э.), Западный Чжоу (1046–771 до н. э.) и Восточный Чжоу (770–221 до н. э.).

Изготовление бронзовых изделий достигло расцвета в эпоху Шан. В то время преобладала посуда для вина. Особый интерес для музеев и коллекционеров представляют сосуды в виде животных и птиц, а также треногие, квадратные, круглые, на подставках (ножках). Они использовались и для подогрева вина. Литые бронзовые сосуды применялись в государственных ритуалах при «общении» с предками или богами. Вера в то, что духи умерших влияют на земные события, была очень сильна. Духов следовало задабривать жертвоприношениями и приглашать участвовать в ритуальных трапезах.

Драгоценные бронзовые сосуды, отличаясь художественно-декоративными качествами, служили фамильными ценностями и передавались по наследству.

Древняя металлургия

Особый интерес при анализе признаков древности бронзовых сосудов представляет изучение технологий самых ранних выплавок металлов и особенностей руды и месторождений, где она добывалась. Такие исследования связаны с большими трудностями из-за скудности археологических доказательств (редких находок печей, тиглей и древнего шлака).

Тем не менее известно, что в древности изготавливались специальные литейные формы, состоящие из трех или более симметричных частей, которые сначала сушили и обжигали. Затем их собирали вместе с наружным кожухом, оставляя зазор, соответствующий толщине бронзового изделия. Расплав заливали в пресс-форму, а когда металл остывал, ее разбивали.

Древние пресс-формы обладали малой усадкой во время высыхания, стойкостью к высоким температурам, низкой теплопроводностью и хорошей вентиляцией во время заливки металла. Их изготовляли из глины, перемешанной с илом, песком и золой растений. Пластичность и прочность форм увеличивалась при добавлении природных органических клеев, таких как навоз и мед.

Применяя статистический анализ составов древних сплавов, удалось установить главные направления эволюции в технологии выплавки бронзы. Исходной медной рудой древности, скорее всего, была легкоплавкая окисленная руда, состоящая из малахита, но также использовались и сульфидные руды, о чем говорит присутствие в выплавленном металле включений сульфидов.

Основным способом получения бронзы в древности, по-видимому, была цементация, т.е. восстановление касситерита (SnO2) древесным углем на поверхности расплавленной меди с одновременным насыщением ее оловом. Для производства бронзы применялся и станин (Cu2FeSnS4), в котором одновременно присутствуют медь и олово. Из него сразу получалась оловянистая бронза.

Выплавка бронзы из руды осуществляется легче, чем выплавка меди. Мы провели экспериментальные работы по моделированию древних технологий плавки. Результаты подтвердили нашу гипотезу: в отдельных случаях древние литейщики занимались не столько подбором компонентов сплава, сколько использованием природных руд с разным набором минералов.

Бронзы могут выплавляться при более низкой температуре, так как большинство примесей (мышьяк, сурьма, олово и др.) значительно понижают температуру плавления. Например, у бронзы с 20% мышьяка точка плавления почти на 400°С ниже, чем у чистой меди (1085°С).

Оловянистой бронзе предшествовала мышьяковистая. Мышьяк присутствует во многих медных рудах и при плавке частично переходит в металл. Его примесь ухудшает качество сплава, но именно с мышьяковистой начинается век древней бронзы.

Историки древней металлургии в качестве своеобразного репера между естественной и искусственной бронзой принимают содержание As в 0,5%. Самые древние бронзовые изделия содержат мышьяка заметно больше. Это говорит о том, что еще на заре металлургии мастера целенаправленно добавляли в шихту мышьяковую руду — арсенопирит (FeAsS).

На тысячелетие позже, в эпоху развитой бронзы, стали выплавлять чистое олово. Появились оловянистые бронзы. Принято считать, что бронза, содержащая более 1% олова, — искусственно полученный сплав. Но это не совсем так. Бронза из станиновой руды может сдержать до 10–15% олова. Случайными примесями в бронзовых сплавах считаются цинк, свинец, сурьма, железо, серебро, иногда никель, кобальт и золото.

Научное исследование китайской металлургии, металлообработки и изделий из металлов началось лишь во второй половине XX в. Были определены характерные рецептуры сплавов, техника литья, приемы обработки поверхности. Также изучались особенности разрушения металла и состав продуктов коррозии.

Раннюю китайскую бронзу можно уверенно датировать, только когда ее находят в профессиональных, хорошо документированных археологических раскопках [1]. Для подтверждения подлинности изделий должны применяться современные инструментальные методы. При изучении состава древних материалов надо решать следующие вопросы: является ли данный состав сплава преднамеренным или случайным и какова технология того или иного производственного процесса?

Изучение признаков древности бронзовых артефактов

Техническая экспертиза металлических изделий в современной антикварной практике базируется на сравнении состава металла (включая микропримеси) с известными образцами, принятыми за эталонные для данного времени и места производства, и на соответствии способа изготовления предмета эталонной исторической технологии.

Метод определения древности изделия, опирающийся лишь на состав и тип коррозионной пленки (патины), во многих случаях не работает ввиду многообразия и изощренности искусственного патинирования. Вместе с тем знание основных типов и структуры естественной патины, которая образуется на металлах разных композиций, — полезный дополнительный признак для экспертов [2].

Образцы сплава и патины мы собирали вручную с поверхностей древних бронзовых сосудов из частной коллекции. Для получения более точных результатов патина счищалась, металл зашлифовывался и с таких мест снималась стружка. Всего было проанализировано около 1,5 г металлической бронзовой стружки, 2,5 г патины и 4,0 г продуктов ее разрушения.

Проведенное нами рентгеновское картирование позволило определить элементный состав бронзы и продукты коррозии, а также оценить влияние технологических факторов на процессы вторичного изменения поверхности древних сплавов. Для исследований использовался настольный сканирующий электронный микроскоп Phenom ProX — уникальный инструмент, в котором объединены функции оптического и электронного микроскопов с возможностью анализа химического состава. Разрешение данного микроскопа при ускоряющем напряжении 15 кВ составляет 14 нм. Интегрированная система энергодисперсионной спектрометрии позволила провести элементный анализ материала в конкретной точке, вдоль профиля и по площади.

При определении состава наших образцов мы придерживались общепринятых критериев классификации сплавов, когда любой элемент, составляющий по весу более 2%, должен быть обозначен в названии бронзы [3]. Для изучения мы взяли бронзовый сосуд, изготовленный в Китае предположительно в конце периода правления династии Западный Чжоу. Изделие симметричной формы и с декором, выполненным в высоком рельефе, было покрыто толстым слоем патины зеленовато-голубого и бежевого цвета. В некоторых местах обнажались красно-коричневые слои оксида меди (куприта). Первым этапом исследований стало изучение особенностей металлической стружки, снятой с края (точки 1–1, 1–2, 1–3, 1–4) и с обода (точки 2–1, 2–2, 2–2, 2–4) крышки сосуда (рис. 1, 2).

Анализ результатов показал вариацию состава в отдельных точках, что говорит о существенной гетерогенности сплава (табл. ). Три анализа отвечают медно-свинцовому сплаву и по одному — легированной свинцом меди, медно-оловянисто-сурьмяному, медно-оловянисто-мышьяковому и медно-оловянисто-сурьмяно-мышьяковому сплавам. Еще в одной точке определена двухкомпонентная (Pb—Cu) система, в которой зафиксировано высокое содержание свинца (около 90%), что свидетельствует о примитивной технологии плавки.

Таблица. Элементный состав бронзового сплава древнего китайского сосуда

Обнаруженные количества меди, свинца, олова, мышьяка находятся в хорошем соответствии с информацией, полученной из исторического обзора [3]. Как мы уже говорили, наиболее древняя — мышьяковистая бронза, причем сплавы меди с мышьяком были естественными. Мышьяк присутствует во многих медных рудах и при плавке частично переходит в сплав, который при высокой концентрации мышьяка становится более легкоплавким и хорошо заполняет все выемки литейной формы, что не присуще вязкой, быстро остывающей меди. Текучесть металла важна при отливке изделий сложной формы.

Руда из каждого месторождения обладает специфическим, свойственным только данному источнику, набором микропримесей. При выплавке состав и количество примесей несколько меняется, но это поддается учету. Таким образом, можно получить определенные метки, которые характеризуют сплавы, полученные из руды того или иного месторождения или определенных горнорудных центров.

Выплавка бронзы в основном, видимо, шла из карбонатно-оксидных легкоплавких руд зон окисления сульфидов. Именно для них характерно накопление меди, никеля, платиноидов, теллура, а также свинца и цинка. Обнаружение необычных по химическому составу бронзовых предметов указывает на возможность существования богатых сульфидных полиметаллических месторождений в районе археологических находок древней бронзы.

В состав руд входит стандартный набор минералов кор выветривания месторождений или рудопроявлений одного типа. При выветривании происходит не только разрушение первичных минералов, но и возникновение новых. Большая часть глинистых минералов, многочисленные сульфаты, карбонаты, минералы оксидов железа, алюминия, марганца, титана и многие другие приурочены к зонам разломов или контактам толщ разного состава.

Образование продуктов выветривания находится в тесной зависимости от физико-географических условий, и в первую очередь — от теплого и влажного климата, характеризующего местность царств Шан и Чжоу в Древнем Китае.

В продуктах коррозии некоторых древних бронзовых сосудов обнаружены следы осмия. Этот элемент платиновой группы очень тугоплавок, тяжел и образует природные сплавы с иридием и платиной. Он может содержать и другие элементы платиновой группы. При исследовании структуры древнего сосуда мы обратили внимание на присутствие в бронзовом сплаве мелких зерен твердых минералов, содержащих осмий и родий, которые имеют очень высокую температуру плавления. Эти не растворенные в расплаве включения, отличающиеся по цвету и химическому составу, служат индикаторами древних бронз. Содержание осмия в рудах, как правило, не превышает 10−5%. Бронза из них выплавляется лишь при 700–800°С.

Изучение древних патин

В течение длительного времени (0,3–2,5 тыс. лет) своего существования древние бронзы подвергаются коррозии, в результате которой образуется пленка, называемой патиной [4]. Патина служит показателем древности данного изделия.

Цвет древних патин чаще всего зеленоватый, но встречаются и другие: голубые, черные, серые, коричневые, розовые, красные. Иногда на одном изделии можно наблюдать пленки нескольких цветов. Патина бывает матовая и глянцевая.

Цвет и состав патины сильно зависят не только от компонентов первоначального сплава, но и от места нахождения и времени и условий хранения найденного изделия [5]. Влияет на внешний вид патины и технология выплавки металла.

Чаще всего патина состоит из оксидов и карбонатов (малахита и азурита) меди. Встречается также и оксид олова. Кроме того, если в бронзовом сплаве присутствовали другие металлы (цинк, свинец и др. ), то и их оксиды или карбонаты также могут входить в состав патины. К наиболее распространенным минералам коррозии бронзы относят: тенорит CuO, куприт Cu2O, халькозин Cu2S, малахит Cu2(OH)2[CO3], азурит Cu3(OH)2[ CuCO3]2.

Особенности морфологии малахитового продукта коррозии (рис. 3) мы изучали на поверхности бронзового сосуда из династии Шан [6].

Для того чтобы понять, какие зоны и почему подвергаются коррозии и образованию патины, остановимся на некоторых технологических характеристиках древних бронз.

Бронзовые сплавы затвердевают в некотором интервале температур, т.е. кристаллизация начинается при одной температуре, а заканчивается при другой. При этом и кристаллы, образованные в разное время, различаются по составу: те, что затвердевают в начальный момент кристаллизации, богаты металлом, который имеет более высокую температуру плавления, а затвердевающие в конце процесса обогащены легкоплавкими элементами [7].

Микропримеси в исходном сырье играют особую роль при плавке. Места их локализации могут служить центром коррозионных разрушений.

Выделяются благородные и неблагородные (дикие) патины. Устойчивые (благородные) патины растут сравнительно медленно. Например, при образовании благородной малахитовой патины сначала возникает красная или черная пленка, состоящая из оксидов и сульфидов. Затем она постепенно преобразуется в карбонатное соединение в виде эмалевидного зеленого слоя. Из-за того что этот процесс проистекает очень медленно, вновь сформированный слой передает все нюансы поверхности предмета. Благородная патина не накрывает детали изделия и не искажает его форму. Она распределяется по поверхности равномерно, не протравливая границы зерен сплава.

Любой коррозионный процесс многостадиен. В качестве первого слоя (примыкающего к металлу) в патине присутствует куприт. Вышележащие слои образованы малахитом и азуритом, а также брошантитом (гидратированным сульфатом меди).

В оловянистых бронзах в патину входит касситерит, а при высокой примеси свинца — некоторые его оксиды.

Неустойчивые, быстро развивающиеся (дикие) патины, как правило, включают хлориды меди (атакамит, паратакамит) и бромиды. Присутствие последних — особенно хороший признак при констатации древности изделий. Фальсификаторы обычно не используют соединения брома для искусственного патинирования. Поверхности древних бронз покрыты трехслойной коррозионной коркой, содержащей минералы зеленовато-голубого цвета, из-под которой в отдельных зонах выступают красновато-коричневые пятна куприта.

Иногда сплавы распадаются на составные элементы: медь, серебро, цинк. Эти металлы (в чистом виде) могут концентрироваться как внутри объекта, так и на поверхности.

На поверхности древних бронз развиваются различные минералы. Касситерит не образует самостоятельного слоя. Как правило, он расположен в массе куприта в виде небольших порошкообразных скоплений в трещинках. Однако на бронзах с высоким содержанием олова касситерит может формировать мелкозернистый сплошной зеленовато-серый слой.

Церуссит (карбонат свинца) образует прослойку зеленовато-серого цвета под наружным слоем малахита. Самородный свинец встречается в сплаве в виде глобул.

Малахит на поверхности изученного нами сосуда находится как в верхних, так и в нижних слоях. Его скопления локализованы в верхних частях зоны цементации и образуют землистые разности и тонкие корочки. Под микроскопом малахит обнаруживает тонкошестоватое и мелковолокнистое строение. Волокна группируются в конусы роста, радиально-лучистые пучки и субпараллельные агрегаты. Обычные формы выделения — плотные или порошковатые агрегаты, налеты, примазки, почки, сферокристаллы. От растворенных минералов в патине остаются поры и пустоты, которые малахит не всегда заполняет полностью. В таких случаях на поверхности образуется причудливая ноздреватая почковидная пленка. В зависимости от примесей некоторых минералов изменяется цвет малахита. Так, хризоколла придает ему синеватый оттенок.

Бронзовые предметы, будучи погребенными в земле более тысячи лет, под действием воды и солей почвы всегда подвергаются коррозии [8]. В отличие от искусственно наведенных патин, которые характеризуются неравномерным проникновением по границам зерен, коррозия древних изделий происходит медленно, и на их поверхности патина распределяется ровным слоем.

Современные имитационные изделия из медных сплавов

Большая часть бронзовых ритуальных предметов, изготовленных в Древнем Китае, была утрачена в X–XII вв. Это привело к необходимости воспроизведения «древних» бронз. Уже в то время существовал трактат Hsuan Ho Ku Tu Lu, который описывал приемы изготовления сложной патины. Искусственную патину получали, закапывая бронзовые изделия в землю, которую поливали соками растений [9]. Практика копирования древней бронзы продолжалась и в последующие периоды. Известен рецепт из рукописи Hsin-ju wei-tso времени династии Мин (1368–1644 гг.), где для создания патины рекомендуют хлористые соединения, крепкий уксус и нагревание [5].

На аукционах лоты с древними бронзовыми изделиями стоят несколько миллионов долларов США. В связи с этим антикварный рынок изобилует многочисленными подделками медных сплавов «под древность». Отлитые при помощи современных технологий копии древних китайских изделий пытаются искусственно состарить, чтобы получить эффект патины древности.

Некоторые имитации представляют определенный интерес. Например, в лондонском Музее Виктории и Альберта, который обладает прекрасными коллекциями китайской бронзы, в экспозицию включены и выявленные подделки.

Основная задача при диагностике признаков древности — обнаружение искусственных патин.

Особенно популярна патина была в эпоху Возрождения. Ее наносили на памятники и другие культурные объекты для создания эффекта старины и чтобы защитить металл от выцветания и коррозии. Такая патина могла быть прозрачной или матированной.

Зеленовато-голубую двухслойную патину можно получить из раствора нитрата меди Cu(NO3)2 концентрацией 200 г/л, который наносят кистью на экспонат и оставляют на 12–16 ч. После промывки холодной водой и осушки поверхность обрабатывают ветошью с тонким порошком пемзы, а затем еще три-четыре раза патинируют. Постепенно образуется зеленовато-голубая пленка, слегка просвечивающая внутренним темно-коричневым плотным слоем оксида меди.

Как же отличить благородную древнюю патину от современной, быстро наведенной?

Полезным для разработки таких методологий было знакомство с работами по изучению патины, механизм образования которой указывает на длительную историю [10]. При определении патины рекомендуется получать не только элементный, но и минеральный состав. Основные диагностические признаки — скорость, интенсивность и равномерность проникновения коррозионных процессов вглубь металла. Поскольку коррозия — достаточно длительный процесс, и образование природной патины схоже с процессами образования минералов в зонах окисления сульфидно-медных месторождений.

В последнее время для изготовления имитаций бронзовых сосудов чаще всего используется латунь — сплав меди и цинка. В изделиях 19-го столетия в состав латуни мог входить свинец. Сейчас для удешевления процесса и улучшения литейных качеств используются специальная легированная латунь, которая отличается и высокой коррозионной стойкостью. В ряде случаев она считается полноценным заменителем оловянистых бронз [11–13].

Мы провели элементный анализ стружки приобретенного на аукционе литого изделия (рис. 4), которое имитировало древний бронзовый кинжал в стиле карасукской культуры (950–800 лет до н. э). Сплав состоял из Cu (68,1%), Zn (29,9%) и Pb (0,9%). Присутствие цинка совершенно не характерно для древних китайских изделий. Близкий по составу сплав использовался при изготовлении скульптуры в XVIII в. (хотя содержание свинца там было больше). С высокой степенью вероятности мы датировали кинжал XIX–XX веками.

Следующим шагом стало исследование патины. В «новодельной» патине, которая получается при нагревании изделий с азотной кислотой, раствором нашатыря или уксусно-медной соли, под микроскопом видны «зоны вскипания» (см.  рис. 4). Микроскопическое изучение структуры патины позволяет практически однозначно отбраковывать подделки, изготовленные из современных сплавов. Определение элементного состава и анализ структуры патины помогают установить состав и технологии получения древних материалов.

***

Изучение китайских древних бронзовых изделий с помощью современных инструментальных методов дает возможность отличить их от копий и подделок нового времени. Данная процедура для сегодняшнего антикварного рынка необходима.

Таким образом, наше исследование показало, что признаками древности китайских бронзовых изделий могут служить: 1) сложный состав сплава и его неоднородность, присутствие в составе примесей свинца, сурьмы и мышьяка; 2) включения примесей редких элементов, в том числе осмия и других элементов платиновой группы; 3) локальная неоднородность патины по содержанию компонентов и особенности ее минерального состава; 4) присутствие вторичных минералов (куприта, малахита, азурита, брошантита и др. ) в составе патины.

Какие еще исследования можно использовать для датирования древних сплавов? Сейчас появилось много работ, посвященных изучению стабильных изотопов свинца, которые служат «паспортом» древних артефактов. Изотопный состав свинца (имеющего четыре стабильных изотопа с атомными весами 204, 206, 207 и 208) остается постоянным при горячей и холодной обработке, коррозии или сплавлении с другими металлами. Такой метод применяется для выявления самых искусных подделок древних бронзовых изделий.

Литература
1. Мартынов А. И., Шер Я. А. Методы археологического исследования: Учебное пособие для студентов вузов. М., 1989.
2. Wayman M. L. Archaeometallurgical contributions to a better understanding of the past // Materials Characterization. 2000; 45: 259–267.
3. Kunlong Chen, Thilo Rehren, Jianjun Mei, Congcang Zhao. Special alloys from remote frontiers of the Shang Kingdom: scientific study of the Hanzhong bronzes from southwest Shaanxi // China Journal of Archaeological Science.  2009; 36: 2108–2118.
4. Valenstein S. G., Hearn M. Asian Art, by M. Lerner, A. Murck, B. B. Ford. Recent Acquisitions. A Selection 1985/1986 (Metropolitan Museum of Art). 1985; 72–88.
5. Scott D. A. Copper and bronze in art: corrosion, colorants, conservation. Los Angeles, 2002.
6. Yang Lia, Zhirong Baoa, Taotao Wua et al. Specific corrosion product on interior surface of a bronze wine vessel with loop-handle and its growth mechanism, Shang Dynasty, China // Materials Characterization. 2012; 68: 88–93.
7. Ерусалимчик И. Г. Коррозионные свойства сплавов драгоценных металлов и их влияние на качество ювелирных изделий. М., 2002.
8. Ling He, Junyan Liang, Xiang Zhao, Baolian Jian. Corrosion behavior and morphological features of archeological bronze coins from ancient China // Microchemical Journal. 2011; 99: 203–212.
9. Hughes R., Rowe M. The Colouring, Bronzing and Patination of Metals. L., 1991.
10. Robbiola L. , Blengino J.-M., Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu—Sn alloys // Corrosion Science. 1998; 40(12): 2083–2111.
11. Metals Handbook. 1948 edition. Cleveland, 1952.
12. Смиpягин А. П. Промышленные цветные металлы и сплавы. М., 1956.
13. Справочник по машиностроительным материалам. Т. 2. М., 1959.

Все о марках бронзы: БрО5Ц5С5, БрО10Ф1, БрО8С12, БрАЖМц10-3-1,5, БрА10ЖЗМц2, БрА9ЖЗЛ

Наши изделия состоят из марок бронзы, которые соответствуют высшим стандартам качества, это одно из главных преимуществ ООО УЛМЗ. Чем отличаются и чем похожи различные марки бронзы?

Маркировка выпуска бронз определяется рядом стандартов. Мы предлагаем нашим клиентам высококачественные марки бронз: БрО5Ц5С5, БрО10Ф1, БрО8С12, БрАЖМц10-3-1,5, БрА10ЖЗМц2, БрА9ЖЗЛ. Бронзу этих марок используют для изготовления изделий для трущихся частей машиностроительного, карьерного, горного и другого оборудования в тяжёлой промышленности.

Чтобы разобраться в разнообразии различных марок бронзы, необходимо вспомнить, что исторически бронзы подразделяются на оловянистые и безоловянистые, так как первые сплавы состояли только из меди и олова. Со временем для повышения качества бронзы в сплавы стали добавлять различные элементы: алюминий, железо, бериллий, кремний, марганец, никель, свинец, цинк, фосфор.

Расшифровываем наименования марок

Наименования марок бронзы очень информативны для специалиста. Например, только глядя на название, можно понять, что бронза БрАЖМц10-3-1,5 не содержит олова, а бронза БрО10Ф1 – содержит. Цифры в наименовании марок указывают среднее процентное содержание элементов. Содержание основного компонента меди не указывается, а вычисляется по разностям. Цифры после букв, отделяемые друг от друга тире, указывают среднее содержание легирующих элементов; цифры, расположенные рядом с буквами без пробелов, указывают на легирование бронзы тем или иным компонентом. Например, содержание цинка не изменяет свойств бронзы, но делает её дешевле, свинец и фосфор улучшают антифрикционные свойства бронзы и её обрабатываемость резанием. Пример расшифровки состава марки: БрА9ЖЗЛ (Бр — бронза, А9 — 9% алюминия, Ж3 — 3% железа, буква Л в конце – литейная).

Наши марки бронзы

Теперь поговорим более подробно о тех марках бронзы, которые может предложить своему потребителю ООО «УЛМЗ». Специалисты ООО УЛМЗ строго следят за тем, чтобы сложное оборудование тяжёлой промышленности соответствовало требованиям ГОСТов.

Бронзы БрО5Ц5С5, БрО10Ф1 и БрО8С12 являются оловянистыми, литейными, где главным легирующим элементом является олово. Механические свойства этих марок бронзы достаточно высоки. С увеличением содержания олова возрастает твёрдость и прочность сплавов, но снижается пластичность. Они слабо чувствительны к перегреву и газам, свариваются и паяются, не дают искры при ударах, не магнитны, морозостойки и обладают хорошими антифрикционными свойствами. Добавки фосфора улучшают механические, антифрикционные и литейные характеристики. Из таких сплавов изготовляют детали, работающие на трение: втулки, сальники, которые необходимы даже для судостроительной и целлюлозно-бумажной промышленности.

Бронза БрО5Ц5С5 рекомендуется в качестве заменителя латуни. Она применяется для литья вкладышей и подшипников, производства отливок арматуры.

Бронза БрО10Ф1 называется оловянно-фосфористой бронзой и отличается низкой теплопроводностью, малой прочностью на растяжение. Из неё изготовляют трубные заготовки, втулки, детали шнековых приводов, работающих под нагрузкой, шпиндельные и нажимные гайки, венцы червячных шестерён, узлы трения арматуры.

БрО8С12 используется для ответственных подшипников, работающих при высоких давлениях, больших тяжёлых подшипников станов, дробилок и других деталей, подвергающихся трению при высоких давлениях и скоростях.

БрАЖМц10-3-1,5, БрА10ЖЗМц2 и БрА9ЖЗЛ относятся к алюминиевым бронзам. Добавление этого металла в сплавы делает их незаменимыми для судостроительной промышленности, криогенной техники.

БрА9ЖЗЛ отличается хорошей сопротивляемостью коррозии в морской воде, высокими механическими и технологическими свойствами, высокой пластичностью и плотностью отливок. Из бронзы марки БрА9ЖЗЛ изготовляют втулки и круги.

БрАЖМц10-3-1,5 применяется в транспортном машиностроении, её высокая электропроводность важна в электротехнике. Бронза БрАЖМц10-3-1,5 является коррозийно-стойкой, кроме того, в холодном состоянии она практически не деформируется. Также из бронзы БрАЖМц10-3-1,5 изготовляют детали для криогенной техники и химической аппаратуры. Бронза БрА10ЖЗМц2 используется для изготовления нескольких видов втулок.

Таким образом, вы видите, насколько многообразны возможности различных марок бронзы. Соблюдение правил ГОСТа позволяет нашим потребителям использовать детали, изготовленные на нашем предприятии по назначению и избежать неприятностей. Тяжёлое машиностроение требует высокой точности стандартов, и наше предприятие её вам гарантирует! Консультацию по свойствам и использованию любой из марок бронзы вы можете получить у наших специалистов.

Уральский литейно-металлургический завод производит бронзовые втулки, вкладыши, круги из бронзы, зубчатые венцы из бронзы, отливки из бронзы по чертежам заказчика, центробежное литье из бронзы, сплавы из бронзы следующих марок:

  • Алюминиевые бронзы марок БрА10ЖЗМц2, БрА9Ж3Л, БрАЖМц10-3-1,5 и др.
  • Оловянные бронзы марок БрО8С21, БрО5Ц5С5, БрО10Ц2Н2, БрО10Ф1.

Отзывы о нас

ОАО «Завод котельного оборудования»

В прошлом месяце нам срочно потребовались запасные детали для дробемета, обзвонили несколько компаний, но только в УЛМЗ нам пообещали быструю доставку. Команда УЛМЗ, большое спасибо за оперативность, благодаря вам удалось избежать простоев в работе. У нас осталось благоприятное впечатление: менеджер предварительно позвонил, уточнил все детали, а потом еще и сделал скидку. Также мы заказали изготовление модельной оснастки, в этом вопросе сотрудники УЛМЗ также продемонстрировали свой профессионализм. Все расчеты были выполнены очень качественно, технологи прояснили нам все казавшиеся не очень понятными моменты. Удобный способ оплаты выгодно выделяет УЛМЗ среди компаний, с которыми мы работали раньше.

ОАО «ВОЛГОЦЕММАШ»

Мы работаем с УЛМЗ уже 3 года, сотрудничество с УЛМЗ оставляет самые благоприятные впечатления. Мы благодарим команду УЛМЗ и особенно Панова С.В. за качественную работу, поставки цветного и чугунного литья точно в срок, оперативность реагирования на вопросы, грамотные консультации. В процессе работы не возникает никаких нареканий, вся продукция УЛМЗ полностью соответствует ГОСТ и ТУ. Поскольку достаточно часто возникает потребность получить консультацию технолога, отдельно хочется отметить высокий уровень экспертизы специалистов УЛМЗ. Также, конечно, приятно пользоваться скидками для постоянных клиентов.

ОАО «Машиностроитель»

Наша компания впервые обратилась к УЛМЗ, когда возникли серьезные проблемы с дробеметным оборудованием. Все проблемы были оперативно решены, за что мы хотим поблагодарить нашего менеджера Ксению Окотчик. Ксения внимательно выслушала нас, задала много вопросов и грамотно проконсультировала. Надо сказать, мы были приятно удивлены уровнем знаний и профессионализма в данной тематике. Большое спасибо за поставку запасных частей к дробеметному оборудованию точно в срок! Желаем Ксении, да и предприятию в целом развития и процветания. Планируем заказать в УЛМЗ еще несколько запасных деталей.

ОАО «НЬЮ ГРАУНД»

Выражаем благодарность Сергею Панову и всему коллективу УЛМЗ за качественно выполненный заказ на литье Лц38Мц2С2. Химический состав изделий полностью соответствует ГОСТу. С Сергеем очень приятно работать, даже в непростых ситуациях он сохраняет спокойствие, всегда стремится помочь, имеет отличное чувство юмора. Наша фирма обращается в УЛМЗ уже не в первый раз, потому было особенно приятно увидеть скидки для постоянных клиентов. Благополучия и процветания в Вашем деле.

ООО «МАН-техно»

Уважаемый Сергей Владиславович! Компания «МАН» выражает искреннюю признательность Вам и Вашему литейному производству «ТД УЛМЗ» в бесперебойной поставке бронзового литья. Мы очень ценим индивидуальный подход и благодарим Вас за грамотные технологические консультации. Качество продукции УЛМЗ и скидки для постоянных покупателей не перестают радовать нас! Желаем Вашему производству процветания и бурного роста. В следующем месяце закажем новую партию литья.

7.3. Бронзы. Материалы для ювелирных изделий

7.3. Бронзы

Сплавы меди со всеми металлами, кроме цинка, называют бронзами. В ювелирной промышленности в основном используются оловянистые бронзы (сплавы системы Си – Sn), обладающие высокими литейными свойствами (жидкотекучесть, малая усадка), достаточно высокой прочностью, коррозионной стойкостью и имеющие красивый желтоватый цвет. Применение находят сплавы меди, содержащие до 5 % олова. Кроме того, используются алюминиевые и кремниевые бронзы.

Оловянистые бронзы

Диаграмма состояния медь – олово приводится на рис. 6.3.

В сплавах системы Си – Sn образующие фазы следующие:

?-фаза – твердый раствор замещения олова в меди, имеющий гранецентрированную кубическую решетку;

?-фаза – твердый раствор на базе химического соединения Cu3Sn8;

?-фаза – твердый раствор на базе химического соединения Cu31Sng, образующийся при перитектической реакции между жидким сплавом и ?-фазой;

?-фаза – электронное соединение Cu3Sn;

?-фаза – химическое соединение Cu6Sn5.

Рис. 7.3. Диаграмма состояния Си – Sn.

Предельная растворимость олова в меди – 15,8 %. При содержании олова более 15,8 % в структуре сплавов образуется эвтектоид (а + ?), где ?-фаза – электронное соединение Gu3Sn8 со сложной кубической решеткой. Оно обладает высокой твердостью и хрупкостью, вызывает резкое снижение вязкости и пластичности. Практическое применение имеют бронзы с содержанием олова до 10 %. Двойные оловянистые бронзы применяются редко ввиду большой склонности к дендритной ликвации, низкой жидкотекучести, рассеянной усадочной пористости и в связи с этим невысокой герметичностью отливок. Деформируемые бронзы содержат до 6–8 % Sn. Они имеют в равновесном состоянии однофазную структуру ?-твердого раствора. В условиях неравновесной кристаллизации наряду с ?-твердым раствором может образовываться небольшое количество |3-фазы.

Для улучшения литейных свойств оловянистых бронз в них вводят цинк и свинец и как раскислитель фосфор. Кроме повышения жидкотекучести, уменьшения усадочной пористости замена части олова цинком и свинцом снижает стоимость сплава.

Кроме цинка и свинца в некоторые бронзы вводят никель. Это улучшает декоративные свойства бронзы, придавая ей красивый серебристый цвет. Ювелирные бронзы – многокомпонентные сплавы.

Алюминиевые бронзы

Диаграмма состояния Си – Al показана на рис. 7.4. Алюминиевые бронзы отличаются высокими механическими и антикоррозионными свойствами. Небольшой интервал кристаллизации обеспечивает алюминиевым бронзам высокую жидкотекучесть, концентрированную усадку и хорошую герметичность, а также малую склонность к дендритной ликвации. Однако из-за большой усадки из них редко получают фасонные отливки сложной формы.

Медь с алюминием образуют ?-твердый раствор, концентрация алюминия в котором при понижении температуры с 1035 до 565 °C увеличивается от 7,4 до 9,4 %.

Рис. 7.4. Диаграмма состояния Си – Al.

Фаза ?-твердый раствор на базе электронного соединения CugAl ?/2). При содержании алюминия более 9 % в структуре появляется эвтектоид ? + ?’ (?’ – электронное соединение Cu32Alig).

Фаза а пластична, но ее прочность невелика, ?’-фаза обладает высокой твердостью, но низкой пластичностью. Сплавы, содержащие до 4–5 % Al, обладают высокой прочностью и пластичностью. Двухфазные сплавы ? + ?’ имеют достаточно высокую прочность, но низкую пластичность. Прочность сплавов уменьшается при содержании алюминия более 10–12 %. Железо измельчает зерно, повышает механические и антифрикционные свойства алюминиевых бронз. Никель улучшает механические свойства до температур 500–600 °C. Сплавы алюминиевой бронзы, содержащие никель, хорошо деформируются в горячем состоянии.

Химический состав бронз, используемых при изготовлении художественных изделий, показан в табл. 7.3.

Таблица 7.3

Химический состав бронз

*1 Плюс 0,5–2,0 % (по массе) Ni.

*2 Кроме алюминия еще 2,0–4,0 % Fe.

*3 Кроме марганца еще 2,75-3,5 % (по массе) Si.

К материалам ювелирной техники можно отнести большую группу литейных сплавов, к которым относятся отливки из кремнистых и бериллиевых бронз. Приведенные сплавы обладают высокими литейными свойствами: высокой жидкотекучестью, малой усадкой, низким газонасыгцением, отсутствием горячеломкости.

В предыдущих разделах была приведена диаграмма состояния Си – Sn, соответствующая оловянистой бронзе. Сообщалось, что для улучшения литейных свойств (повышение жидкотекучести и уменьшения усадочной пористости), а также снижения стоимости сплава в них вводят цинк и свинец. Однако стоимость бронзы в основном зависит от наличия олова в сплаве, которое составляет до 10 %. В настоящее время для художественного и ювелирного литья используют кремнистую бронзу.

Кремнистые бронзы

Кремнистые бронзы, обладают высокой жидкотекучестью, имеют малую усадку, имеют малую склонность к дендритной ликвации и отсутствие усадочной пористости. Кроме того, кремнистые бронзы, обладая более высокими механическими свойствами в сравнении с оловянистыми, представляют значительный интерес как заменители дорогостоящих дефицитных оловянистых бронз в художественном литье. Диаграмма состояния Си – Si приведена на рис. 7.5.

Рис. 7.5. Диаграмма состояния Си – Si.

Бронзы, имея в своем составе 3 % кремния, лежат в области ?-твердого раствора. Однако в условиях длительного отжига граница ?-области несколько сдвигается в область меньших концентраций кремния, поэтому в богатых кремнием сплавах возможно появление гетерогенной структуры. При легировании кремнием с содержанием его до 3,5 % повышается прочность и пластичность. Кроме того, небольшие добавки кремния повышают жидкотекучесть. С увеличением содержания кремния до 5 % увеличивается интервал кристаллизации и жидкотекучесть снижается.

Небольшие добавки марганца и никеля, вводимые в некоторые сплавы (БрКМцЗ,5–1 и БрКН1-3), входят в твердый раствор, придавая ему декоративные свойства. Например, добавка 1 % марганца значительно увеличивает коррозионную стойкость кремнистой бронзы, повышает прочность и плотность. Никель, который улучшает декоративные свойства бронзы, придавая ей красивый серебристый цвет, так же как и марганец, растворяясь в меди, повышает твердость, прочность и коррозионную стойкость, но ухудшает жидкотекучесть, увеличивает газонасыщенность расплава и измельчает структуру. Поэтому легирование никелем производят только для промышленных деформируемых бронз (БрКН1-3, БрКН0,5–2). Эти сплавы термически упрочняются после закалки при температуре от 850 °C и старения при 450 °C в течение 1 ч. В результате указанной термообработки временное сопротивление разрыву составляет 700 МПа при относительном удлинении 8 %.

Как ранее сообщалось, бинарные сплавы системы Си – Si лежат в области ?-твердого раствора (заштрихованная область на рис. 7.5) и термически не упрочняются. Для снятия внутренних напряжений проводят отжиг при 800 °C. Микроструктура бронзы в литом отожженном состоянии показана на рис. 7.6.

Рис. 7.6. Микроструктура никель-кремнистой бронзы БрКН1-3, 75. Дендритные зерна ?-твердого раствора сложного состава.

При изготовлении замков сережек и клипс, сложных обручальных колец с ажурными кастами, крапаны должны быть выполнены из литейных сплавов, обладающих пружинными свойствами. Поэтому изготовление таких колец выполняется из бериллиевой бронзы. Бериллиевые бронзы

Бериллиевая бронза обладает высокими пружинными и литейными свойствами. Кроме того, в отливках из берил-лиевой бронзы практически не наблюдается усадочной пористости. Сплавы не склонны к ликвации, так как линии ликвидуса и солидуса очень близки.

Бронзы Бр. Б2 и Бр. Б2,5, согласно диаграмме состояния (рис. 7.7), кристаллизуются в одну стадию: L? ? + L1.

С понижением температуры вследствие уменьшения растворимости бериллия в меди происходит распад твердого раствора: ? ? ? + Ь, с выделением кристаллов ?-фазы переменного состава. Фаза Р является твердым раствором на основе химического соединения СиВе, относящегося к электронным соединениям. Оно имеет решетку объемноцентрированного куба с периодом а = 2,7 ? и характеризуется электронной концентрацией 3/2 электрона на атом.

Фаза ? устойчива только до температуры 608 °C, при которой происходит эвтектоидный распад: ? ? ? + ? (СuВе).

При дальнейшем охлаждении (ниже температуры эвтектоидного превращения) вследствие сильного уменьшения растворимости бериллия в меди происходит распад ?-твердого раствора, сопровождающийся выделением у-фазы. Бронза имеет высокие декоративные свойства – блестящий светло-желтый цвет.

Рис. 7.7. Диаграмма состояния Си – Be.

Наиболее высокие механические свойства данная бронза имеет после закалки при температуре от 800 °C и старения при 350 °C.

Широкому распространению бериллиевой бронзы препятствуют ее высокая стоимость и дефицитность. Для уменьшения стоимости в ее состав вводят различные добавки (Ni, Со, Mn, Ti и др.), которые частично заменяют бериллий и в то же время незначительно снижают свойства бронзы. В настоящее время широкое применение получили бронзы с содержанием 1,7–1,9 % Be с добавками никеля и титана. На основе изучения сплавов тройной системы Си – Mn – Be были предложены бериллиевые бронзы с еще меньшим содержанием бериллия, которыми в ряде случаев можно заменить стандартную бериллиевую бронзу. Эти сплавы называются низколегированными бериллиевыми бронзами. Химический состав: 0,6 % Be, 12,2 % Mn, остальное медь; 0,9 % Be, 7,3 % Mn, остальное медь. Сплавы не уступают по своим технологическим свойствам стандартным бериллиевым бронзам, и потому их стали широко применять при изготовлении ювелирных и художественных изделий.

В конце XIX в. в качестве заменителей драгоценных металлов стали активно использоваться декоративные латуни, сплав хризит (36,8 % Zn, 0,2 % Pb), сплав Вигольди (31 % Zn, 0,8 % Al, 0,2 % Pb), и в настоящее время при производстве украшений применяяются сплавы на основе меди, имитирующие золотые и серебряные сплавы. Как было отмечено, в качестве заменителя золота служит кремнистая латунь ЛК80-ЗЛ. Отливки, полученные из этого сплава, имеют красивый золотистый цвет. На рис. 7.8 показана микроструктура кремнистой латуни ЛК80-ЗЛ.

Рис. 7.8.

Микроструктура латуни АК80-ЗА после травления. Увеличение х 250. Светлые зерна – ?-фаза, между ними расположены включения эвтектоида (? + ?). Внутри островков эвтектоида – кремний.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Что такое алюминиевая бронза? | MetalTek

Алюминиевая бронза — это семейство сплавов на основе меди, в химическом составе которых используется железо и никель, но в качестве основного легирующего элемента используется алюминий. Алюминий значительно увеличивает прочность до такой степени, что он сравним со среднеуглеродистой сталью. Дополнительным преимуществом является то, что алюминиевая бронза также обладает отличной коррозионной стойкостью. Именно эта прочность и коррозионная стойкость послужили основанием для раннего использования алюминиевой бронзы.

Небольшая корректировка в металлургии вызывает значительные изменения в производительности. Это признание других свойств привело к использованию алюминиевой бронзы для различных деталей, требующих прочности, твердости, устойчивости к износу и истиранию, низкой магнитной проницаемости, устойчивости к кавитации, эрозии, размягчению и окислению при повышенных температурах. Эти свойства вместе с простотой свариваемости значительно расширили области применения алюминиевой бронзы.

В семействе алюминиевой бронзы есть две основные группы.Алюминиевая бронза содержит примерно 9-14% алюминия и 4% железа, в то время как никель-алюминиевая бронза содержит примерно 9-11% алюминия, 4% железа и 5% никеля. Это добавление никеля в последний дополнительно улучшает коррозионную стойкость материала, который уже является прочным в этой области.

Обычные алюминиевые бронзовые сплавы и некоторые типичные области применения:

  • C95200 — очень пластичный материал с хорошей коррозионной стойкостью. Он идеально подходит для втулок, подшипников, шестерен малой мощности, изнашиваемых пластин, трубопроводов низкого давления, насосных колонн и контейнеров.
  • C95400 предлагает высокий предел текучести и прочности на разрыв, исключительную вязкость и исключительную устойчивость к износу, усталости и деформации. Этот универсальный сплав широко используется в химической, морской, авиационной и машиностроительной промышленности в качестве шестерен, втулок и подшипников, насосов и клапанов.
  • C95500 — один из самых твердых сплавов цветных металлов. Он используется в тех же отраслях, что и C95400, с более высокой прочностью, твердостью и коррозионной стойкостью, хотя имеет немного более низкую ударную вязкость.
  • Как специальная никель-алюминиевая бронза, C95800 особенно подходит для морских применений с оптимальной устойчивостью к коррозии в морской воде. Сюда могут входить детали системы гребного винта, втулки, подшипники, трубопроводы, включая опреснитель, и другие коррозионные морские применения.
  • C95900 обеспечивает более высокую твердость и прочность на сжатие и используется для изготовления изнашиваемых пластин, формовочных валков, волочильных штампов, шестерен, направляющих клапанов, седел и вставок штампов.
  • MTEK 375 — чрезвычайно твердый материал превосходного качества, часто используемый для формования, волочения и гибки нержавеющей стали.

Чтобы получить рекомендации по выбору подходящей алюминиевой бронзы для вашего применения, свяжитесь с нами.

Латунь против бронзы: выбор лучшего сплава для моего применения

В чем разница между латунными и бронзовыми сплавами?

Может быть трудно определить, когда лучше выбрать латунный сплав, а не бронзовый, и наоборот, в зависимости от конечного использования вашей детали. Различить латунь и бронзу бывает сложно, так как они могут выглядеть примерно одинаково и часто обладают схожими качествами.На самом деле, разница между латунью и бронзой и латунью может быть весьма значительной — от цвета до свойств, которые проявляет каждый сплав. Детали, изготовленные из латунного или бронзового сплава, обладают рядом преимуществ, хотя вопрос о том, какой из них подходит для вашего применения или какой металл лучше, часто остается спорным. Так как же нам сделать выбор в дебатах о латуни и бронзе? Решение состоит в знании заметных различий между латунными сплавами и бронзовыми сплавами и их применимости к конечному использованию вашей отливки.

Латунные сплавы для декоративных деталей и приложений с низким коэффициентом трения

Латунь — это сплав, в основном состоящий из меди и цинка. Из-за своего сходства с золотом его часто используют в более декоративных целях и обычно используют при изготовлении музыкальных инструментов из-за его высокой обрабатываемости и долговечности. Гладкая поверхность и простота обработки позволяют снизить затраты на чистовую обработку.

Медь и цинк в различных пропорциях позволяют получать различные латунные сплавы с различными свойствами.Латунь может быть литой, кованной, экструдированной или холоднотянутой. Латунь также более пластична, чем бронза, но подвержена растрескиванию под действием аммиака. Важно учитывать конечное использование детали, так как высокие уровни хлора разрушают содержание цинка.

Бронзовые сплавы для промышленного литья и некоррозионных применений

Бронза, один из старейших сплавов, в основном состоит из меди и олова. С бронзового века человек использовал бронзовые сплавы для изготовления металлических инструментов, используемых во многих промышленных достижениях.Хотя формулы и области применения бронзового литья развивались и менялись с течением времени, свойства бронзы по-прежнему делают ее отличным выбором для множества промышленных применений, включая, помимо прочего: подшипники, втулки, шестерни, насосы, фитинги, корпуса, и клапаны

Использование бронзы для изготовления деталей, очень похожих на то, что мы используем сегодня, датируется еще римскими временами. Для получения более пластичного металла использовались комбинации меди, олова и свинца. По мере развития производства отливок из бронзовых сплавов и возрастания важности отказа от использования свинца литейные производства цветных металлов включают использование висмута в качестве альтернативы свинцу, отвечая стандартам и требованиям для деталей из бессвинцовой бронзы.Примерно так же, как латунные сплавы могут содержать другие элементы, бронзовые сплавы могут состоять из других элементов, составляющих дополнительные бронзовые сплавы, которые используются в производстве, такие как фосфор (фосфорная бронза), алюминий (алюминиевая бронза), марганец (марганцевая бронза), олово. (Оловянная бронза) или кремний (кремниевая бронза).

Бронза тверда и устойчива к усталости металла и коррозии, особенно к коррозионным веществам, таким как морская вода. Бронза стоит недорого, обладает искробезопасными характеристиками и отлично проводит тепло и электричество.Во многих отношениях отливки из бронзового сплава являются универсальным выбором, но выбор правильного поставщика отливок из бронзы для ваших нужд важен.

Разница между латунью и бронзой: состав, свойства и применение

бронза Латунь
Состав
  • Бронза — это металлический сплав, состоящий из меди с оловом в качестве основной добавки.
  • Также может иметь:
    • фосфор
    • Марганец
    • Алюминий
    • Кремний
    • Висмут
  • Латунь — это сплав меди и цинка.
  • Также может иметь:
    • Утюг
    • Алюминий
    • Кремний
    • Марганец
Недвижимость
  • Бронза противостоит коррозии (особенно коррозии в морской воде) и усталости металла больше, чем сталь.
  • Лучший проводник тепла и электричества, чем большинство сталей
  • Более высокая пластичность, чем у цинка или меди.
  • Низкая температура плавления (900 по Цельсию)
  • Восприимчивость к растрескиванию под воздействием аммиака
  • Не такой твердый, как сталь
Приложения
  • Лодки и принадлежности для судов
  • Гребные винты и погружные подшипники из-за устойчивости к коррозии в морской воде.
  • Подшипники, зажимы, электрические разъемы и пружины
  • Колокольчики и тарелки высшего качества
  • Компоненты клапана
  • Нефтегазовая промышленность
  • Декоративный; приложения с низким коэффициентом трения
  • Сантехника / электроника
  • Музыкальные инструменты

Erie Bronze & Aluminium — ведущий поставщик отливок из бронзы, поставляющий отливки 100% американского производства; мы гордимся качеством отливок из бронзы в песчаные формы для широкого спектра промышленных применений.Мы производим несколько типов бронзовых сплавов, включая алюминиевую бронзу, марганцевую бронзу, оловянную бронзу и кремниевую бронзу. Erie Bronze & Aluminium — ведущий поставщик отливок из бронзовых сплавов.

Обладая возможностями литья от 5 до 500 фунтов, мы являемся лидером отрасли, специализирующимся на литье из цветной бронзы. Рынки, которые мы обслуживаем, являются свидетельством качественного бронзового литья, которое мы предоставляем. Помимо нашего опыта в производстве бронзовых отливок, мы также являемся экспертами в производстве алюминиевых труб и колец.Наш опытный и знающий персонал найдет время, чтобы понять ваши требования и обеспечить высочайший уровень обслуживания клиентов.

Выбор подходящего металлического сплава, будь то латунный или бронзовый сплав, может быть сложной задачей, поэтому процесс выбора подходящего поставщика для вашего конкретного применения требует тщательного рассмотрения. Проведите внутренний аудит потребностей и желаний вашей компании и определите, что является наиболее важным. Посетите веб-сайт Erie Bronze & Aluminium и поговорите с торговым представителем или деловым партнером сегодня, чтобы получить истинное представление о том, что мы можем для вас сделать.

Свяжитесь с нами

сплавов меди и олова были первыми металлическими сплавами, разработанными человечеством

Оловянная бронза и фосфорная бронза

Эти сплавы меди и олова были первыми металлическими сплавами, разработанными человечеством около четырех тысяч лет назад и использовавшимися для изготовления монет, оружия, инструментов, украшений и украшений. Они произвели революцию в образе жизни человека, что привело к тому, что археологи назвали этот период бронзовым веком.

В наше время были разработаны кованые бронзы с 4-8% олова, которые тверже, прочнее и жестче, чем кованые латуни, и производятся в форме ленты и проволоки с сочетанием высокого предела текучести и хорошей коррозионной стойкости.Добавление небольших количеств (0,01-0,45%) фосфора увеличивает твердость, сопротивление усталости и износостойкость, что приводит к их использованию в таких приложениях, как пружины, сильфоны, гибкие трубки, крепежные детали, крепления к каменной кладке, валы, шпиндели клапанов, шестерни и т. Д. подшипники.

Легирование элементов медью, в данном случае оловом и фосфором, может привести к более низкой электропроводности по сравнению с чистой медью. Наиболее широко используемая фосфорная бронза для электрических целей содержит 0,2% фосфора и 5% олова и имеет электропроводность 15% IACS (медь — 100% IACS).Однако сочетание высокого предела текучести, обеспечивающего хорошее контактное усилие, и хорошей коррозионной стойкости делают эту бронзу идеальной для широкого спектра небольших электрических разъемов, переключателей, токоведущих пружин и стержней ротора. Эти свойства сохраняются при высоких рабочих температурах.

Кованые свинцовые фосфористые бронзы (3-4% свинца) сочетают в себе вышеуказанные свойства с превосходной обрабатываемостью и значительной самосмазкой, самосаживанием и центровкой в ​​подшипниках, а также превосходной устойчивостью к заеданию.Применения включают в себя упорные шайбы, втулки подшипников, кулачки, диски сцепления, сложные механически обработанные крепежные детали и другие токарные детали, детали часов и инструментов, шестерни, шестерни, шпиндели насосов и клапанов, а также гравированные компоненты.

Фосфорная бронза с более высоким содержанием олова доступна во всех обычных литых формах. Они содержат до 13% олова и 2,5% свинца (для обрабатываемости) и никеля (для прочности и твердости) и широко используются для подшипников и шестерен.

Металлический колокол
Фосфорная бронза с содержанием олова от 20 до 24% веками использовалась для литья в песок всех типов колоколов, таких как церковные колокола, ручные колокола и корабельные колокола.Колокольчики тщательно обработаны и отполированы, чтобы дать точные ноты. В атмосфере колокола будут медленно патинироваться, что защищает поверхность от дальнейшей коррозии, что приводит к очень долгому сроку службы.

Колокола в литейной мастерской Уайтчепела (любезно предоставлено литейной мастерской Уайтчепела)

Алюминиевая бронза

Это сплавы меди с 5-12% алюминия, некоторые с добавками железа, никеля, марганца и кремния, доступные в литой и деформируемой форме. Они прочнее латуни или оловянной бронзы и обладают лучшей коррозионной стойкостью благодаря твердой, прочной защитной пленке из оксида алюминия (Al 2 O 3 ).Они имеют привлекательный золотистый цвет и со временем почти не потускнеют. В основном алюминиевая бронза используется в морской воде, например:

  • Крепежные изделия
  • Насосы и детали клапанов
  • Фитинги
  • Теплообменники
  • Подшипники
  • Пропеллеры.
Дроссельная заслонка 1500 мм из алюминиевой бронзы (любезно предоставлена ​​компанией Severn Leeds Valve)

Для морских применений они соответствуют строгим спецификациям Def Stan (оборонный стандарт) (ранее — морской технический стандарт — NES) и широко используются для приложений MOD.

95-тонный бронзовый пропеллер

Долговечность и золотистый цвет делают алюминиевую бронзу привлекательной для архитекторов, например, в качестве литых вертикальных балюстрад на перекрестке Саклера в Кью-Гарденс, Лондон. В этом проекте использовался сплав CuAl8Fe3; балюстрады были отполированы до необходимой отделки и натерлись на месте воском.

Балюстрады из алюминиевой бронзы на перекрестке Саклер, Кью-Гарденс, Великобритания (любезно предоставлено Copper Alloys Ltd)

Никель-алюминиевая бронза
Из сплавов алюминиевой бронзы наиболее широко используется группа никель-алюминиевая бронза.Эти сплавы обладают высокой прочностью, устойчивостью к коррозии, износу и истиранию и со временем были адаптированы для оптимизации характеристик. Они могут обеспечить комбинацию свойств, предлагая экономичную альтернативу другим типам систем из сплавов, и их применение включает подшипники шасси в коммерческих самолетах.

Публикация CDA «Руководство по никель-алюминиевой бронзе для инженеров » предлагает практическое руководство для инженеров, желающих определить, спроектировать или произвести компоненты из никель-алюминиевой бронзы для морской, аэрокосмической и других отраслей.

Щелкните здесь, чтобы просмотреть страницу публикации с отдельными разделами, доступными для загрузки.

Щелкните здесь, чтобы загрузить его полностью.

Силиконовая бронза

Это сплав меди с 3% кремния и 1% марганца. Он имеет хорошее сочетание прочности, пластичности, коррозионной стойкости и свариваемости. Он используется в архитектурных приложениях, таких как:

  • Дверная фурнитура
  • Перила
  • Церковные двери
  • Оконные рамы
  • Петли
  • Стяжки
  • Крепежный материал для морского применения.

Сплав является неизменным фаворитом скульпторов и мастеров по металлу из-за его обрабатываемости, долговечности и привлекательного золотисто-бронзового цвета.

Силиконовая бронза

также широко используется для морского оборудования и крепежа, таких как болты, зажимы, винты, гайки, заклепки и U-образные болты.

Переключатель такелажа из кремниевой бронзы для опоры мачты

Марганцевая бронза и архитектурная бронза

По составу эти сплавы являются латунными, но получили название «бронза» из-за своего цвета.Марганцевая бронза CuZn40Mn1Pb1 (CW720R) — это латунь, используемая для архитектурных применений, где марганец приводит к образованию привлекательного шоколадно-коричневого цвета.

Термин «архитектурная бронза» иногда применяется к свинцовой алюминиевой латуни CuZn41Pb1Al (CW620N), которая из-за алюминия приобретает привлекательный золотистый блеск. Как и все латуни, этот сплав сочетает в себе долговечность с эстетической привлекательностью, которая со временем улучшается и придает ощущение роскоши и престижа любому зданию как внутри, так и снаружи.Он доступен в виде профилей и прямоугольных брусков и используется для оконных рам, облицовки, дверей и ненесущих стен. Обычно его обрабатывают воском, чтобы сохранить внешний вид.

Медные сплавы

Исторически бронза была сплавом меди и олова, обычно около 90% и 10% соответственно, латунь была медью и цинком в соотношении 60-40. Современная металлургия разработала множество специальных медных сплавов, каждый из которых обладает различными свойствами. Можно выбрать сплавы по таким характеристикам, как обрабатываемость, простота литья, коррозионная стойкость, способность к термообработке, пластичность, свариваемость и т. Д.К сожалению, наименования сплавов стали непоследовательными и сбивающими с толку, поэтому стандартная система нумерации стала стандартом. Например, архитектурная бронза и марганцевая бронза будут считаться «латунью» только на основе содержания цинка, в то время как красная латунь имеет содержание меди 85%, что ставит ее в тот же процентный класс меди, что и алюминиевая бронза, с 86% меди.
Вероятно, большинство людей думают о бронзовых статуях, когда слышат слово «бронза». Самая распространенная бронза, используемая при литье художественных произведений, — это силиконовая бронза.Двумя наиболее распространенными запатентованными сплавами являются Herculoy и Everdur. Эти сплавы содержат около 97% меди и выбираются для изготовления произведений искусства по четырем основным причинам: две из них связаны с эстетикой, а две связаны с удобоукладываемостью. Силиконовые бронзы с высокой степенью полировки, как правило, имеют легкий розовый оттенок, который нравится миру искусства. Во-вторых, очень высокое содержание меди позволяет создавать очень широкий спектр декоративной патины, что невозможно при использовании более смешанных сплавов. Силиконовые бронзы также легко свариваются кислородно-ацетиленовой смесью с соответствующим бронзовым стержнем, что позволяет собирать литые компоненты в законченные работы.Также они легко обрабатываются в холодном состоянии, что позволяет обрабатывать мелкие детали. Ни одно из этих качеств не является необходимым для дренажной системы, а использование силиконовой бронзы увеличивает стоимость более чем в три раза.

В первые годы IRONSMITH мы использовали общее понятие «бронза» для описания наших изделий из медного сплава. Тогда, как и сейчас, мы использовали профили из архитектурной бронзы C385 для изготовления рам и других готовых изделий. Мы использовали купленный лом меди и медных сплавов, полученный от торговцев ломом, которые мы сами смешали, чтобы получить подходящий литой продукт.В последние годы доступность медного лома упала почти до нуля, поскольку стоимость меди резко возросла. Сейчас крупным производителям металла выгоднее отделять лом и переплавлять его. Затем нам нужно было переключиться на закупку слитков из легированного сплава; Поэтому мы решили использовать официальное обозначение сплава, который мы покупаем, хотя оно не сильно отличается от того, что мы делали раньше.

Мы выбрали эти сплавы по нескольким причинам; они взаимно совместимы, легко доступны, очень подходят для предполагаемого использования и наиболее экономичны.У клиента могут быть другие важные для него критерии, для которых может потребоваться другой сплав. Мы можем предоставить практически любые доступные сплавы, включая силиконовую бронзу, но большинство других сплавов значительно дороже. Мы рады обсудить с ними конкретные потребности любого клиента, чтобы найти наиболее подходящее решение для их ситуации.

8.12: Сплавы — Химия LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Сплавы
  2. Резюме
  3. Авторы и авторство

Многие гитаристы очень дотошны, когда дело касается их струн.Существует множество вариантов на выбор, в зависимости от типа гитары и стиля музыки. Электрогитарам нужны стальные струны, чтобы магнитный датчик улавливал колебания струн. У акустических гитаристов есть несколько вариантов. Бронзовые струны (смешанные с разным количеством меди и цинка) имеют, пожалуй, самый яркий оттенок. Есть несколько комбинаций бронзовых сплавов на выбор. Для тех, у кого много денег, доступны титановые струны (но очень дорогие). Золотое покрытие также способствует жизни струн и вносит свой уникальный вклад в звучание.Химический состав сплавов в значительной степени повлиял на прочность, долговечность и качество звука гитарных струн.

Сплавы

Сплав представляет собой смесь, состоящую из двух или более элементов, по крайней мере, один из которых является металлом. Вы, вероятно, знакомы с некоторыми сплавами, такими как латунь и бронза. Латунь — это сплав меди и цинка. Бронза — это сплав меди и олова. Сплавы обычно используются в промышленных изделиях, потому что свойства этих металлических смесей часто превосходят свойства чистого металла.Бронза тверже меди и ее легче отливать. Латунь очень пластична, а ее акустические свойства делают ее полезной для музыкальных инструментов.

Рисунок \ (\ PageIndex {1} \): Бронза, сплав меди и олова, используется с древних времен. В бронзовом веке для изготовления оружия, инструментов и декоративных предметов стали чаще использоваться металлы, а не камень. Латунь, сплав меди и цинка, широко используется в музыкальных инструментах, таких как труба и тромбон.

Стали — очень важный класс сплавов.Многие типы сталей в основном состоят из железа с различным содержанием элементов углерода, хрома, марганца, никеля, молибдена и бора. Стали широко используются в строительстве из-за их прочности, твердости и устойчивости к коррозии. Большинство современных крупных сооружений, таких как небоскребы и стадионы, поддерживаются стальным каркасом (см. Рисунок ниже).

Рисунок \ (\ PageIndex {2} \): Уиллис-тауэр (ранее называвшаяся Сирс-тауэр) в Чикаго когда-то была самым высоким зданием в мире и до сих пор остается самым высоким в Западном полушарии.Использование стальных колонн позволяет строить более высокие, прочные и легкие здания.

Сплавы могут быть одного из двух основных типов. В одном типе, называемом сплавом замещения , различные атомы просто заменяют друг друга в кристаллической структуре. В другом типе, называемом межузельным сплавом , более мелкие атомы, такие как углерод, помещаются между более крупными атомами в структуре упаковки кристаллов.

Сводка

  • Сплавы — это смеси материалов, по крайней мере, один из которых является металлом.
  • Бронзовые сплавы широко применялись в оружии.
  • Латунные сплавы издавна используются в музыкальных инструментах.
  • Стальные сплавы прочные и долговечные.

Авторы и авторство

  • Фонд CK-12 Шарон Бьюик, Ричард Парсонс, Тереза ​​Форсайт, Шонна Робинсон и Джин Дюпон.

Таблицы сплавов бронзы

, свинцовые оловянные бронзы

Сплавы, имеющиеся в продаже

Эти графики носят исключительно информационный характер.Не в целях дизайна.

Центробежное литье — медно-висмутовая бронза

(C89320, C89325, C89831, C89833, C89835, C89836, C89837)

Новые правила, вступающие в силу в январе 2014 года, потребуют замены изделий из латуни, используемых в системах питьевого водоснабжения, на материалы, не содержащие свинца.

Примеры элементов, которые могут нуждаться в замене на бессвинцовую марку в установках питьевого водоснабжения:

  • Бессвинцовые втулки вала насоса
  • Щелевые кольца рабочего колеса, не содержащие свинца
  • Втулки, не содержащие свинца
  • Бессвинцовые адаптеры
  • Бессвинцовые муфты
  • Фланцы без свинца
  • Бессвинцовые манжеты
  • Безсвинцовые компенсационные кольца чаши
  • Безсвинцовые компенсационные кольца корпуса
  • Обратные клапаны из бессвинцовой латуни
  • Бессвинцовые устройства предотвращения обратного слива
  • Шаровые краны из бессвинцовой латуни
  • Фитинги из латуни с бессвинцовой резьбой
  • Арматура для бессвинцовой воды
Медь — висмут (альтернативные бессвинцовые сплавы)
Перекрестный индекс Номинальный химический состав Типичные механические свойства
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Олово Bi Цинк Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 500 кг
C89320 89 6 5 40 000 20 000 30 70
C89325 86 10 3.2 35 000 18 000 20 73
C89831 89 3,2 3,2 3 34 000 15 000 20 55
C89833 89 5 2.2 3 37 000 17 000 28 60
C89835 Федерально III-932 87 6,7 2,2 3 35 000 18 000 20 65
C89836 89 5.5 2,5 3 37 000 19 000 30 65
C89837 86 3,5 0,9 8 37 000 17 000 32 60

Центробежное литье — оловянные бронзы с высоким содержанием свинца

(C932, C934, C935, C936, C937, C938, C943, C945)

Оловянная бронза с высоким содержанием свинца содержит наиболее широко используемый сплав подшипниковой бронзы C932 (также известный как SAE 660).Широко доступный и несколько менее дорогой, чем другие сплавы подшипников, он известен своими непревзойденными характеристиками износа от стальных цапф. Его можно использовать против незакаленных и не идеально гладких валов. Свинец ослабляет эти сплавы, но придает способность выдерживать прерывистое смазывание. Он также сочетает в себе благоприятные антифрикционные свойства с хорошей грузоподъемностью и выдерживает небольшие перекосы валов.

Типичное использование:

  • Втулки общего назначения
  • Подшипники
  • Шайба
  • Приложения без давления
  • Высокоскоростные — втулки малой нагрузки
  • Применение слабой кислоты
  • Подшипники и втулки с обрабатываемостью и противозадирными свойствами
  • Высокоскоростные — тяжелые втулки давления
  • Детали моста
  • Подшипник
  • Низкое трение — втулки среднего давления
  • Железнодорожные приложения
Олово бронза с высоким содержанием свинца
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Олово Свинец Цинк Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 500 кг
C93800 319 67 (E6) 3D 78 7 15 25 000 16 000 5 60
C94000 296 (E2) 72 13 15 50
C94100 325 (E5) 75 5 20 25 000 17 000 7 50
C94300 322 (E1) 3E 70 5 25 21 000 15 000 7 48

Центробежно-литые — оловянные бронзы с содержанием свинца

(C922, C923, C926, C927)

Оловянная бронза с содержанием свинца используется аналогично оловянной бронзе, но указывается, когда требуется лучшая обрабатываемость и / или герметичность.

Типичное использование:

  • Гидравлический и пар среднего давления до 550 F
  • Морское и декоративное литье
  • Гидравлическое и паровое оборудование высокого давления
  • Конструкционные отливки
  • Гайка ходового винта
  • Подшипники для тяжелых условий эксплуатации
  • Поршни насоса
Олово из свинца, бронза
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Олово Свинец Цинк Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 500 кг
C83600 115 40 (B5) 4A 85 5 5 5 36 000 19 000 15 60
C84400 123 81 3 7 9 30 000 15 000 16 55
C92800 295 79 16 5 40 000 30 000 1 130
C93200 315 660 A-932 3B 83 7 7 3 35 000 20 000 10 65
C93400 310 (E8) 84 8 8 34 000 20 000 8 60
C93500 326 66 (E9) 3C 85 5 9 1 30 000 16 000 12 60
C93600 80 7 12 1 32 000 16 000 15 60
C93700 305 64 (E10) 3A 80 10 10 35 000 20 000 6 60

Центробежное литье — оловянные бронзы

(C903, C905, C907, C916)

Оловянная бронза обеспечивает отличную коррозионную стойкость, а также хорошую износостойкость и достаточно высокую прочность.Используемые в подшипниках скольжения, они особенно хорошо изнашиваются по стали.

Типичное использование:

  • Подшипники
  • Втулки
  • Крыльчатка насоса
  • Кольца поршневые
  • Корпуса насосов
  • Клапаны
  • Арматура паровая
  • Колеса червячные
  • Шестерни
  • Подшипники для высоких нагрузок и относительно низких скоростей
Олово бронза
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Sn Пб Zn Ni Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 500 кг
C

225 620 (D5) 88 8 4 44 000 22 000 18 70
C 210 62 (D6) 1A 88 10 2 44 000 25 000 10 75
C 205 65 89 11 40 000 25 000 10 80
C 199 87 13 40 000 20 000 15 90
C
197 (D2) 85 15 30 000 25 000 1 105
C 84 16 35 000 25 000 2 135 **
C 194 (D1) 81 19 35 000 30 000 0.5 160 **
C (F1) 88 10,5 1,5 35 000 17 000 10 65
C 86.5 12 1,5 35 000 17 000 10 65
C 245 622 (D4) 2A 88 6 1,5 4,5 38 000 19 000 18 65
C 230 621 (D3) 2B 87 8 1 4 40 000 19 000 16 70
C 250 640 87 11 1 2 1 40 000 24 000 10 80
C92700 206 63 88 10 2 38 000 20 000 8 77
C92900 206 Вт / Ni 84 10 2.5 3,5 45 000 25 000 8 75

** BHN @ 3000 кг


Центробежное литье — желтая латунь

Желтая латунь
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Sn Пб Zn Al Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 500 кг
C85200 400 A-852 B584-852 72 1 3 24 35 000 12 000 25 45
C85300 407 70 30 35 000 11 000 40
C85400 403 41 A-854 B584-854 67 1 3 29 30 000 11 000 20 50
C85700 405.2 A-857 B584-857 63 1 1 34,7 0,3 40 000 14 000 15 75

Центробежное литье — марганцевые бронзы

(C862, C863, C864, C865, C867)

Марганцевая бронза, самая прочная из литых бронз, используется в основном для механических изделий, работающих в тяжелых условиях.Они обеспечивают умеренно хорошую коррозионную стойкость.

Типичное использование:

  • Кронштейны
  • Валы
  • Шестерни
  • Конструкционные детали
  • Закрутите гайки
  • Тихоходные подшипники для тяжелых нагрузок
  • Шестерни
  • Упоры и кулачки
  • Бесплатные детали машин
  • Рычаг
  • Шестерни малой грузоподъемности
  • Морское оборудование
  • Штоки клапанов
  • Пропеллеры для соленой и пресной воды
  • Детали машин, заменяющие сталь и товарный чугун
Марганцевая бронза
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Zn Al Fe Mn Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 3000 кг
C86200 423 430A (B) и (E) 8B 64 26 4 3 3 90 000 45 000 18 180
C86300 424 430B (К) 8C 63 25 6 3 3 110 000 62 000 14 225
C86500 421 43 (А) 8A 58 39 1 1 1 70 000 25 000 25 130

Центробежное литье — этилированная марганцевая бронза

Свинцованная марганцевая бронза
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Sn Пб Цинк Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 3000 кг
864 420 C2 7A 59 1 40 60 000 20 000 15 105
867 422 58 1 41 80 000 32 000 15 155

Центробежное литье — алюминиевые бронзы

(C952, C953, C954, C955, C956, C958) и аэрокосмические стандарты AMS 4880, AMS 4881, AMS 4640

Алюминиевая бронза и никель-алюминиевая бронза содержат от 3% до 12% алюминия, который усиливает сплав.Они известны своей высокой стойкостью к коррозии и окислению в сочетании с исключительно хорошими механическими свойствами. Подшипники из алюминиевой бронзы используются в тяжелых условиях эксплуатации. Сплавы, такие как C954 или C955, можно закаливать и отпускать для достижения еще более высокой прочности при необходимости. Стойкость к коррозии с морской водой чрезвычайно высока у никель-алюминиевых бронз, таких как C955. Благодаря устойчивости к коррозии, эрозии и кавитации он широко используется в гребных винтах и ​​другом морском оборудовании.

Типичное использование:

  • Крепление пистолета и направляющие
  • Детали шасси
  • Емкость для травления и применение слабых щелочей
  • Судовой двигатель и гребные винты
  • Шестерни
  • Кулачки
  • Гайки съемника
  • Тапочки
  • Высокотемпературные приложения
  • Детали горных машин
  • Прямозубые и низкоскоростные — высоконагруженные червячные передачи
  • Орехи
  • Насосы
  • Втулки
  • Противооткатные механизмы танковой пушки
  • Направляющие и седла клапанов в авиационных двигателях
  • Кабельные соединители
  • Полюсное оборудование
  • Клеммы
  • Ступица гребных винтов
  • Лопасти и другие детали, включая клапаны, контактирующие с морской водой
Алюминий бронза
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Al Fe Ni Mn Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 3000 кг
C95200 415A 68A 9A 88 9 3 68 000 26 000 20 125
C95300 415B 68B G7 89 10 1 70 000 26 000 25 140
C95300HT G7-HT 80 000 40 000 12 174
C95400 415C A-954 9C 85 11 4 85 000 32 000 12 170
C95400-HT G5-HT 9C-HT 95 000 45 000 10 195
C95500 415D G3 9D 81 11 4 4 95 000 42 000 10 195
C95500-HT G3-HT 9D-HT 11 000 62 000 8 230
C95800 81 9 4 5 1 85 000 35 000 15 159
C95900 82 13 4 1 90 000 52 000 0.5 286

Центробежное литье — никель-серебристый

(C973, Mil C 15345 сплав 7, модифицированный C973)

Нейзильбер обладает отличной коррозионной стойкостью, высокой литейной способностью и очень хорошей обрабатываемостью. У них умеренная прочность и приятный серебристый блеск.

Типичное использование:

  • Оборудование для оборудования для обработки пищевых продуктов и напитков
  • Уплотнения и лабиринтные кольца паровых турбин
Нейзильбер
Перекрестный индекс Номинальный химический состав Минимальные механические требования
CDA Слиток Бывший SAE Бывший Федеральный Бывший ASTM Медь Sn Пб Zn Ni Растяжение (psi) Выход (фунт / кв. Дюйм) Относительное удлинение% BHN @ 3000 кг
C97300 410 56 2 10 20 12 30 000 15 000 8 50
C97600 412 64 4 4 8 20 30 000 17 000 8 75

О бронзах — Информация Европейского института меди

Бронзы

Это сплавы меди и олова, первые из которых были разработаны около четырех тысяч лет назад.Они были первыми металлическими сплавами, постепенно вытеснившими камень и кремень, и были настолько важны, что привели к временному периоду, получившему название бронзового века.

Оловянная бронза и фосфористая бронза

Деформируемые сплавы с 4–8% олова тверже, прочнее и жестче, чем кованые латуни, и в форме ленты и проволоки производятся с сочетанием высокого предела текучести и хорошей коррозионной стойкости, что делает их идеальными для использования в качестве пружин.

Добавление небольших сумм (0.01–0,45) фосфора дополнительно увеличивает твердость, сопротивление усталости и износостойкость, что приводит к таким применениям, как пружины, крепежные детали, крепления к каменной кладке, валы, шпиндели клапанов, шестерни и подшипники. Литые фосфорные бронзы с содержанием до 10% олова и 20% свинца широко используются для подшипников, работающих в тяжелых условиях.

Алюминиевая бронза

Это сплав меди с 5–12% алюминия с добавками железа, никеля, марганца и кремния, доступный в литом и деформируемом виде. Эти сплавы прочнее латуни или оловянной бронзы с лучшей коррозионной стойкостью благодаря твердой, прочной защитной пленке из оксида алюминия (Al 2 O 3 ).Они имеют привлекательный золотистый цвет и со временем почти не потускнеют. В основном алюминиевая бронза используется в морской воде, например:

  • Крепежные изделия
  • Насосы и детали клапанов
  • Фитинги
  • Теплообменники
  • Подшипники
  • , если они соответствуют строгим спецификациям и широко используются в оборонных приложениях.

Кремниевая бронза

Это сплавы меди с 3% кремния и 1% марганца.Кремниевая бронза обладает хорошим сочетанием прочности и пластичности, хорошей коррозионной стойкостью и легкой свариваемостью. Они используются в таких архитектурных приложениях, как:

  • Дверная фурнитура
  • Перила
  • Церковные двери
  • Оконные рамы
  • Петли
  • Стяжки
  • Крепежный материал для морского применения.

Этот сплав является неизменным фаворитом скульпторов и мастеров по металлу из-за его обрабатываемости, долговечности и привлекательного золотисто-бронзового цвета.

Марганцевая бронза и архитектурная бронза

Может возникнуть путаница, когда латунь неправильно называют бронзой. Марганцевая бронза CuZn40Mn1Pb1 (CW720R) — это латунь, используемая для архитектурных применений, где марганец приводит к образованию привлекательного шоколадно-коричневого цвета.

Термин «архитектурная бронза» иногда применяется к свинцовой латуни CuZn41Pb1Al, которая в процессе эксплуатации из-за алюминия приобретает привлекательный золотистый блеск.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *