Сварка постоянным током
Графики, поясняющие процесс сварки постоянным током (б) и переменным (а)
Сварка с использованием сварочных аппаратов, которые работают на постоянном токе, сегодня нашла гораздо большее применение, нежели сварка аппаратами, которые работают на переменном токе. В первую очередь это связано с тем, что особенности сварки постоянным током позволяют существенно уменьшить количество присадочного металла электродов в сварочном шве. Во-вторых, при использовании сварки постоянным током удается добиться существенно уменьшения уровня окалины в сварном шве. Это значит, что соединение, которое получается в результате, обладает повышенной прочностью.
Электроды – одна из основных статей расходов при любых сварочных работах. Сварка постоянным током позволяет достичь существенного уменьшения показателей разбрызгивания электродов, а это значит – сокращение издержки материалов. В целом сварка переменным током позволяет повысить доходность процесса, при этом снизить затраты на изготовление деталей.
Немаловажное преимущество сварки постоянным током – это повышение производительности труда. Работа с постоянным током делает работу сварщика значительно проще, а значит – эффективнее и производительнее.
Сварка постоянным током может быть прямой и обратной полярности. Прямая полярность – это когда ток идет от минуса к плюсу и тепло концентрируется на изделии. Этот тип зачастую используют в механизированной сварке. Сварка постоянным током обратной полярности предполагает концентрацию тепла на торце электрода (то есть, минус – на изделии, а плюс – на электроде).
Стоит заметить, что потребности сварочного шва предполагают использование сварочного выпрямителя. Он может быть разного типа конструкции. Большинство этих выпрямителей используются в промышленности, поэтому они чаще всего работают на трехфазном токе частотой 50-60 Гц.
Сварка постоянным током обратной полярности позволяет увеличить глубину провара на 50%, по сравнению со сваркой постоянным током прямой полярности. Это объясняется тем, что на аноде и катоде выделяется различное количество теплоты. А вот во время сварки переменным током, глубина провара по сравнению с постоянным током обратной полярности ниже на 20%.
Диаметр электрода при сварке постоянным током зависит от положения сварки, толщины металла, вида соединения и формы кромок под сварку. Если речь идет о сварке встык, то диаметр электрода должен быть равным толщине свариваемого листа. При сварке листов большей толщины используют электроды диаметром от 4 до 6 мм.
Напряжение – величина, которая главным образом определяет ширину шва. А на такой параметр как глубина провара, напряжение не оказывает значительного влияния. Но и это не обязательно. Например, если при увеличении напряжения постепенно увеличивать скорость сварки, то ширина шва будет уменьшаться. В основном сила тока зависит от диаметра электрода, от его рабочей длины, покрытия и положения сварки. Чем выше ток, тем больше производительность, поскольку увеличивается количество наплавляемого металла.
Переменный и постоянный сварочный ток
Переменный и постоянный сварочный ток, их отличия и особенности применения вызывают много вопросов у сварщиков-любителей. Рассмотрим основные отличия и сферу их применения на практике.
Что такое переменный сварочный ток
Переменный ток синусоидально изменяется по направлению через одинаковые промежутки времени. В бытовой электросети он имеет частоту 50 Гц, и если для сварки использовать сварочный трансформатор, то частота его сварочного тока также будет 50 Гц.
Что такое постоянный сварочный ток
Постоянный ток получают из переменного при помощи выпрямителей и стабилизаторов, которыми оборудованы сварочные аппараты, рассчитанные на работу постоянным током. Он бывает прямой и обратной полярности — об этом вы можете подробнее прочитать тут: http://www.elektrosvarka-blog.ru/polyarnost-svarochnogo-toka/.
Отличие и преимущества постоянного сварочного тока на практике
- Низкая степень отклонений сварочной дуги. Это позволяет снизить уровень окалины в сварном шве и добиться максимальной ровности и прочности шва.
- Высокий КПД и меньшая шумность работы.
- Меньшее количество присадочного материала (электродов), необходимого для сварки.
- Практически отсутствую брызги расплавленного металла в процессе работы.
Тем не менее, в некоторых ситуациях «постоянка» не годится, и нужно использовать «переменку».
Переменный и постоянный сварочный ток. Особенности применения
Переменный больше всего подходит для сварки тугоплавких металлов, содержащих оксиды. Также его используют для сварки алюминия, т.к. изменение направления движения электронов разрушает оксидную плёнку на поверхности алюминия. Аналогичная ситуация и со сваркой металлов с загрязнёнными поверхностями (если их невозможно очистить), поскольку изменение направления движения электронов разрушает и грязь.
Кроме того, аппараты переменного тока обычно выбирают для таких работ, где не требуется высокая точность шва, но при этом есть необходимость снизить затраты на сварку.
Однако если вам требуется сварить, например, тонкостенные детали, то лучше всего использовать «постоянку». Его также используют и в том случае, если прочность и долговечность конструкции играют ключевую роль.
Ещё по теме:
Каким должен быть сварочный ток на самом деле
Полярность сварочного тока — прямая и обратная
Полярность при сварке. Что означают названия полярности
Видеокурсы:
Как варить электросваркой
Как установить сварочный ток правильно
Как выбрать маску «хамелеон»
Как настроить маску «хамелеон» правильно
Как выбрать сварочный инвертор
Можно ли работать на постоянном токе электродами переменного тока
Многие сварщики, которые, возможно, работали уже долгое время по данной профессии, может быть, никогда не сталкивались со свариванием электродами переменного тока с использованием постоянного тока. Одни говорят, что такое нереально, а если и реально, то качество сваривания очень сильно пострадает. Другие сварщики доказывают, что производить сваривание электродами переменного тока можно и даже очень успешно. Как не затеряться во мнениях и получить ответ на вопрос?
Давайте разберем все по порядку и получим верный ответ.
Преимуществом сваривания электродами постоянного тока с использованием постоянного тока обратной полярности, является то, что Вы можете производить сварочный шов более высокого качества. Также преимуществом является возможность производить сваривание с использованием электродов переменного тока. Получается, что Вы можете производить сваривание, электродами переменного тока, используя постоянный ток.
Однако у электродов для сваривания с использованием постоянного тока есть одна особенность
У сваривания постоянным током есть еще много особенностей, поэтому, безусловно, сваривание электродами переменного тока с использованием постоянного тока – это допустимая возможность производить сварочные работы. Однако сварочный аппарат для произведения сваривания постоянным током имеет большую стоимость, чем инвертор для сваривания с использованием переменного тока. Поэтому многие сварщики решают использовать электроды переменного тока для сваривания переменным током.
Рекомендую почитать:
Отказавшись от возможности производить сваривание постоянным током, они теряют как качество сварочного шва, так и комфорт при сваривании вместе со скоростью произведения сварочных работ. Те, кто отказался от сваривания постоянным током, уверены, что приобрести сварочный аппарат для сваривания с использованием постоянного тока по выгодной цене практически нереально. Это означает, что они не знают популярных заводов-изготовителей электродов и сварочного оборудования, которые продают как раз такие инверторы по ценам, выгодным для сварщиков.
Найти магазины, которые продают продукцию таких заводов недорого, Вы можете на странице нашего сайта «Контакты». Там Вы сможете получить ссылки на сайты заводов-изготовителей сварочной продукции и оборудования. Перейдя на их сайт, Вы можете сделать покупку, не вставая со своего мягкого стула. Такую возможность не упускают многие сварщики, потому что, имея в своем распоряжении сварочный аппарат для сваривания постоянным током, Вы сможете делать свою работу быстрее.
Электроды постоянного тока: особенности и применение
Постоянный ток (или просто «постоянка») широко используется в любительской и профессиональной сварке. С его помощью можно получить качественные и прочные сварные соединения, даже если у вас недостаточно навыков. Для этого вам понадобится хороший сварочный аппарат и электроды для постоянного тока.
Содержание статьи
Особенности
Современные производители предлагают универсальные электроды, способные работать и при переменном, и при постоянном токе. Это неплохой вариант, если к шву не предъявляются повышенные требования по качеству и долговечности. Но, как вы понимаете, чтобы сварить по-настоящему надежный шов вам все же понадобятся специализированные электроды для работы с постоянным током. При их использовании металл практически не разбрызгивается и шов получается ровным.
Приобретаемые вами электроды должны быть качественными и изготовленными в соответствии с ГОСТом. Не экономьте и не покупайте стержни от неизвестных производителей. Ведь некачественными электродами можно испортить не только шов, но и свариваемую поверхность. Внешне электроды для постоянки не отличаются от любых других стержней, их отличия начинают проявляться во время работы. В работе с постоянным током состав электрода не так важен, как качество его изготовления, так что убедитесь, что выбранные вами материалы подходят для сварки нужных деталей и смело приступайте к работе.
Преимущества и недостатки
У специальных электродов для постоянки есть множество плюсов по сравнению с универсальными стержнями, вот некоторые из них:
- Высочайшее качество шва.
- Металл не разбрызгивается, благодаря чему электроды для сварки постоянным током можно использовать при работе в любом пространственном положении.
- Большой выбор диаметров и покрытий.
- Сварочный процесс под силу даже начинающих сварщикам.
- Сварное соединение получится надежным и ровным даже без применения флюса.
Но есть и недостатки:
- Стоят недешево, при этом позволяют работать только с постоянным током.
- Нужно учитывать все особенности металла, чтобы правильно подобрать электрод и не испортить работу.
Физико-химический состав
Здесь все просто. Большинство стержней для постоянки имеют основное покрытие. В составе может быть карбонат, магний, ферросплавы и прочие элементы. В таблице ниже приведены элементы, которые еще могут встречаться в составе. Кстати, состав может изменяться в зависимости от марки и диаметра электрода.
Технические характеристики
Электроды постоянного тока (вне зависимости от марки) имеют свои технические характеристики. Обычно они указываются на упаковке. Но большинству стержней для постоянки присущи одни и те же особенности. Ниже таблица с характеристиками электродов УОНИ 13/45.
Марки
Мы собрали несколько марок, пользующихся популярностью у начинающих и опытных мастеров. Все они не раз испытаны в работе и показали себя с наилучшей стороны:
- УОНИ 13/45. Это, пожалуй, самая популярная марка. Отлично подходит для сварки низколегированной и углеродистой стали. Обеспечивает высокую герметичность шва, поэтому широко используется при сварке деталей, которые должны в будущем работать под давлением. Подойдет и для сварки сложных металлических конструкций. Такие электроды выпускаются с основным покрытием. Перед поступлением в продажу проходят санитарно-эпидемиологическую проверку. Мы рекомендуем эту марку более опытным мастерам, уже имевшим дело с постоянным током.
- ОЗС 12. Еще одна популярная марка. С ее помощью так же сваривают сложные металлоконструкции, к которым предъявлены повышенные требования по качеству и долговечности. Подойдет для сварки стали с низким содержанием углерода. Можно варить в любом положении, кроме вертикального.
- ОЗС 4. Марка, которая спасет вас в плохих условиях сварки. Такие электроды отлично работают даже на неочищенных поверхностях, покрытых коррозией. Подходят для сварки низколегированных и углеродистых сталей.
- МР 3С. Хороший выбор для начинающего или домашнего сварщика. Наплавка осуществляется легко и быстро, шов получается ровных и красивым. Так же подходит для низколегированных и углеродистых сталей.
Выбор электродов
Многие начинающие сварщики часто спрашивают: «Какие электроды для сварки постоянным током лучше?». В этом вопросе уже кроется ошибка. Не бывает лучших или худших электродов, каждая марка имеет свои особенности и назначение. Мастер сам для себя решает, какие электроды предпочтительнее для выполнения его специфических задач. Но кое-что все же стоит учесть при выборе стержней.
Во-первых, посмотрите, из чего изготовлены выбранные вами электроды и для чего они предназначены. Некоторые марки могут быть рассчитаны на работу только с одним типом металла. Это нужно учитывать. Большинство стержней для постоянки изготавливаются для сварки сталей, так что придется потрудиться, чтобы узнать свойства детали и электрода. Не нужно варить низколегированную деталь электродом для углеродистой стали. Также не лишним будет запрос у продавца сертификатов качества. Некоторые магазины не стесняются торговать поддельной продукцией, качество которой оставляет желать лучшего.
Во-вторых, определитесь с диаметром электрода и толщиной металла. Помните золотое правило: чем толще деталь, тем больше диаметр стержня. Если не следовать этой рекомендации, то металл либо не проварится, либо деформируется. Допустимы отклонения не более одного миллиметра.
Обратите внимание! 50% результата — это правильный выбор режима работы. Вы можете выбрать нужный диаметр и состав электрода, но установить ошибочный режим тока, и вся работа пойдет насмарку. Отнеситесь к этому серьезно.
Режимы работы
Итак, как правильно выбрать режим, чтобы работа получилась качественной и долговечной? Сначала обратите внимание на пространственное положение. При сварке металл так или иначе стекает вниз, поэтому при вертикальном положении лучше установить минимальную силу тока, чтобы контролировать скорость плавления металла. По такой же логике выбирайте режим тока для других положений. Внизу вы можете видеть таблицу, в которой мы собрали основные режимы работы.
Вместо заключения
Теперь вы знаете, какие электроды лучше для сварки с постоянным током. Обязательно испробуйте стержни на практике и расскажите о своем опыте в комментариях, это будет полезно для многих начинающих сварщиков. Также делитесь этой статьей в социальных сетях. Желаем удачи!
особенности, как выбрать, основные виды и их характеристики
Постоянный ток часто используют как при домашней, так и во время профессиональной сварки.
Даже новичок справится с получением качественных и прочных соединений.
Чтобы это стало возможным, нужно выбрать аппарат для сварки и электроды для постоянного тока.
Содержание статьиПоказать
Характеристики
В последние 15 лет представлено много современных моделей универсальных механизмов. Они могут работать как при статичном, так и переменном токе. Такие варианты отлично подходят тем, для кого не играет большой роли высокое качество сварочных соединений.
Но для того, чтобы итоговый шов был крепким, необходимо приобретать специальные электроды, позволяющие работать с постоянным током. Если их применять, то можно избежать разбрызгивания металла и получить ровное соединение.
Когда покупаете электроды, не стоит на них экономить. Учитывайте, чтобы они были выполнены по Госстандарту. Также не выбирайте модели, чьих производителей вы не знаете. Работая с электродами низкого качества, вы рискуете получить неровную поверхность.
Это несмотря на то, что внешне такие электроды аналогичны высококачественным единицам. Но вы точно заметите разницу, когда начнёте сварочные работы.
Когда вы работаете с постоянным током, то материал электрода не имеет такого значения, как его качество. Стоит убедиться заранее, что материал отвечает вашим рабочим требованиям. Только после этого можно начинать сварку.
Электроды, используемые для работы с постоянным током, обладают некоторыми преимуществами, если сравнивать их с универсальным материалом. Список некоторых из них ниже:
- широкий выбор диаметра;
- большое разнообразие покрытий;
- возможность работы новичкам без опыта;
- итоговое сварочное соединение хорошего качества без использования флюса.
Механизмы имеют некоторые недостатки:
- работа только с постоянным током;
- высокая стоимость деталей;
- необходимость учета всех характеристик материалов.
Чтобы разобраться в этом вопросе, посмотрите на таблицу, прикрепленную ниже.
В 4 случаях из 5 при изготовлении применяют карбонат, также ферросплавы и магний. Начинка аппарата отличается по типу производителя, и зависит от размера механизма.
Технические особенности
Электроды обладают особыми характеристиками, на которые не влияет марка аппарата. Часто их указывают на пачках, в которых продают электроды.
Многие стержни постоянного тока обладают аналогичными характеристиками. Ознакомьтесь с таблицей характеристик механизмов УОНИ 13/45.
Производитель
Изучите техническую сторону марок, которые популярны последние 10 лет. Их выбирают как опытные, так и мастера-новички.
Такие механизмы проверены многолетней работой и разными режимами сварки:
- УОНИ 13/45. Считаются маркой, которую выбирают в 9 случаях из 10. Позволяет получить герметичный шов, а также работать с углеродистой и низколегированной стальной конструкцией. Подходит для тех деталей, которые в будущем будут подвергаться высокому давлению. Марку используют достаточно часто, если речь идет о сложных металлоконструкциях. У таких электродов предусмотрен выпуск с базовым покрытием. Перед тем, как материал идёт на продажу, он проходит проверку на соответствие санитарным требованиям. Эта модель подойдет, если опыт вашей работы более 5 лет.
- ОЗС 12. Эта марка также пользуется высокой популярностью. Идеальна для сложных соединений, которые должны быть качественными и служить долго. Ее используют, если сварка происходит с невысоким углеродным составом. Вы сможете варить в любом положении, избегая вертикального размещения.
- ОЗС 4. Инструмент позволит работать даже тогда, когда внешние условия мешают процессу. Электроды отлично себя ведут с грязными материалами и такими, которые подвержены коррозии. Если вам нужно варить низколегированную или углеродистую конструкцию – смело выбирайте эту модель.
- МР 3С. Этот вариант подойдет в том случае, если вы только начинаете сварочные работы. Шов по итогу получается ровным, без изъянов. Можно работать со сталью любого вида.
Как выбрать электроды
Это сложный вопрос, который нередко появляется у начинающих мастеров. Они сильно удивляются, когда узнают, что ответа на него нет. Каждая модель идеальна для отдельно взятого сварщика. То, что пригодилось вам, не всегда понравится вашему коллеге.
И наоборот. У всех марок для сварки постоянным током есть свои особенности, которые стоит учитывать при сварочных работах. Определите для себя, какие цели вы преследуете. Но есть базовые моменты, о которых не нужно забывать.
Как выбрать
Ищите электроды исходя из материала, который применяют для его изготовления. Некоторые виды могут служить для работы с определенным видом конструкции.
Учитывайте этот момент. Многие стержни для работы с постоянным током производят для металлообработки стали.
Нужно будет постараться, чтобы узнать подробности как о деталях, так и электроде для постоянного тока. Обязательно спрашивайте о сертификатах качества на продукцию. Бывают такие продавцы, которые не брезгуют торговать подделкой.
Стоит проверять этот момент очень тщательно, потому что продукция может быть не лучшего качества.
Выберите для себя, какой диаметр должен быть у электрода. Также не забывайте о размерах металлоконструкции. Следуйте простому правилу: чем больше толщина детали, тем выше окружность стержня.
Если не обращать внимание на этот момент, тогда металл или не доварится, или изменит свою форму. Отклонение – не больше одного миллиметра.
Определить правильный режим работы машины – значит сделать половину дела. Даже если диаметр электрода для сваривания постоянным током и характеристики материала подобраны правильно, вы рискуете ошибиться с режимом тока. Тогда вся работа не будет иметь смысла.
Режимы функционирования
Это момент, о котором не стоит забывать. Как выбрать режим работы? Первым делом посмотрите на размещение детали в пространстве. Во время металлообработки металл будет стекать вниз под силой притяжения.
Если вы варите вертикально – тогда установите силу тока на минимум. Это позволит следить за скоростью плавления конструкции. Следуя такой же логике, определите режим сварки для других размещений.
Вам поможет таблица, где рассказываем подробнее обо всех режимах работы.
Подведём итоги
В нашей статье описаны моменты о том, с какими электродами лучше работать при постоянном токе.
После того, как вы примените эту информацию на практике, обязательно поделитесь с нами в комментариях. Успехов в работе!
Обратный ток при сварке
Каждый сварочный инвертор имеет две клеммы для подключения. На одну подключают электрод или сварочную горелку, а другую замыкают на сварочном изделии. При этом на инверторах постоянного тока предусмотрены положительная и отрицательная клемма. Поэтому при сварке и наплавке постоянным током существуют понятия полярности: прямой и обратной.
Полярность определяется тем, к какой клемме подключают электрод. Ток обратной полярности при сварке появляется при подключении изделия к «минусу», а электрода – к «плюсу». Прямая подразумевает, что электрод подключен к отрицательной клемме, а изделие – к положительной.
Прямой и обратный ток при сварке имеют ряд существенных отличий, позволяющих использовать каждый тип тока для разных условий. Тип подключения влияет на особенности сварочного тока, характеристики процесса и его итоговый результат. С помощью советов нашей статьи вы сможете разобраться в отличиях типов подключения.
Рассмотрение понятия следует начать с основ – особенностей явления постоянного тока. На кончике электрода во время сварки появляется термическое пятно. Оно отличается высокой температурой, позволяющей расплавлять основной металла и сварочные материалы и с их помощью формировать шов.
Температура пятна зависит от его вида. В зависимости от подключения различают катодное и анодное пятно. Поэтому температура зависит от клеммы, к которой подключен электрод. Температура анодного пятна может достигать 4000oC, а катодного гораздо ниже – его температура обычно не превышает 3200oC.
При прямом подключении на конце электрода появляется катодное пятно. Заготовка при этом будет анодом, и основная температура будет фиксироваться на самом изделии.
Из-за подключения к положительной клемме обратный ток предполагает, что на электроде образуется анодное пятно. Выступающим катодом основной металл будет получать меньше тепла и будет меньше нагревается.
Помимо температуры есть и другие отличия:
- чтобы получить более глубокую сварочную ванну и более глубокий шов, используют прямое подключение, но при этом шов будет узким, а при обратном шов шире, но не такой глубокий,
- при прямой дуга горит стабильнее, а при обратном токе за ней нужно тщательно следить, чтобы избежать ее скачков и гашения, особенно на низких токах,
- расход электродов на прямом токе выше, потому что они быстрее плавятся, а за счет обратной полярности расход материалов можно снизить,
- из-за слабого нагрева обратный ток практически не способен прожечь металл, поэтому лучше подходит для работы с тонкими изделиями до 3мм, вот прямой ток нагревает сильнее и чаще применяется для более толстых деталей.
Итоговую схему подключения выбирают по роду металла, его толщине, а также по виду сварочных материалов. Например, многие высоколегированные стали и чувствительные металлы лучше варить обратным током, чтобы снизить вероятность перегрева. Электроды для переменного тока нельзя применять для прямой полярности. Для обратного не подойдут чувствительные к перегреву электроды. Независимо от подключения в каждом случае нужно соблюдать и другие рекомендации по сварочному процессу, особенно в вопросах предварительного нагрева или остывания заготовок.
Возможен ли
ток обратной полярности при сварке переменным токомОтвет на этот вопрос очень прост: нет. Суть переменного тока заключается в автоматическом изменении полярности с заданной частотой без переключения. Сварщик никаким образом не может влиять на это и не может самостоятельно менять полярность тока по желанию в принципе. Поэтому переменный ток обратной полярности при сварке не существует.
Постоянный ток обратной полярности при сварке. Сварка постоянным током.
Электродуговая сварка может осуществляться при помощи оборудования, вырабатывающего постоянный или переменный ток. Если работа на переменном токе не имеет нюансов в вопросе правильного подключения массы и держателя электрода, то при сварке на постоянном токе полярность сварочных электродов имеет большое значение.
Общие понятия
В зависимости от того какой полюс сварочного автомата подключен к держателю, определяется тип и особенности режима сварки:
- Сварка на прямой полярности предполагает подключение положительного полюса к соединяемым заготовкам (массе), и отрицательного к держателю электрода.
- Для выполнения работ при обратной полярности полюса меняются местами (плюс на держатель, минус на массу).
Несмотря на то, какая полярность электродов применяется, сварка на постоянном токе имеет общие особенности по сравнению с применением переменного напряжения:
Сварка на прямой полярности
При таком способе подключения электродов большему нагреву подвергается заготовка, а не электрод . Такой режим характеризуется выделением значительно большего количества тепла.
Поэтому сварка на прямой полярности рекомендована для выполнения следующих операций:
- Резка металла любым типом электродов.
- Сварка заготовок значительной толщины.
- Работа с металлами, имеющими более высокую температуру плавления.
Именно в этих случаях требуется разогрев обрабатываемых деталей до более высоких температур, для выполнения этих работ требуется значительное тепловыделение.
Сварка на обратной полярности
В данном случае большему разогреву подвергается электрод, поэтому на заготовку передается меньшее количество тепловой энергии.
Благодаря этому электроды обратной полярности позволяют выполнять работы в более мягком (деликатном) режиме.
Это актуально во многих случаях, например, сварка нержавеющей или тонкой листовой стали, сплавов, чувствительных к тепловому воздействию.
Так же такое подключение используется для работ в среде защитных газов или под флюсом.
Определение необходимой полярности
О том, как определить полярность электродов при сварке, существует множество споров, при этом каждая сторона приводит правильные, казалось бы доводы. Противники указанной выше версии ссылаются на учебники по технологии сварочного производства, изданные еще в середине прошлого века, считая, что сведения указанные в них наиболее правильные.
Но стоит учитывать то, что с тех пор произошло существенное усовершенствование сварочной техники и расходных материалов. Поэтому основываться на рекомендациях, касающихся устаревших технологий, все-таки не стоит. Наиболее правильным считается именно описанный выше выбор полярности.
Существует еще одна группа сварщиков, считающих, что любые работы лучше (вернее удобней) выполнять исключительно на обратной полярности. Это связано в первую очередь с тем, что в таком режиме электроды меньше липнут и отсутствует риск прожига металла. Но появление инверторной сварочной техники решило и эту проблему.
Стоит обращать внимание и на тип электродов. Существуют марки, которые могут применяться только при прямой или обратной полярности, нарушение рекомендаций производителя может не только усложнить процесс сварки, но и сделать ее невозможной в принципе.
На сегодняшний день производители уже предлагают электроды, способные работать при любом напряжении и различной полярности.
Правильный выбор полярности подключения электродов способствует упрощению сварочного процесса и повышению качества шва.
Появление инверторных сварочных аппаратов значительно расширило область их применения. Этот тип работ стал доступен каждому домашнему мастеру. Но не всегда владельцы моделей знают особенности использования. В частности — зачем нужна прямая и в каких случаях применяется обратная полярность при сварке инвертором.
Основы использования инверторного сварочного аппарата
Этот тип оборудования предназначен для выполнения электродуговой сварки, с помощью которой можно соединять или разрезать стальные заготовки. Для применения необходимо определиться с основными параметрами – выбрать сварочный ток и тип электродов. Затем можно приступать к работе.
Общий порядок использования инвертора
- Подготовка поверхности материала – очистка от ржавчины и обезжиривание. Это необходимо для формирования надежного шва.
- Выбрать режим сварочного тока и электроды. Они зависят от характеристик металла, параметров будущего сварочного шва.
- Клемму массы (плюс) нужно соединить с поверхностью металла. Важно, чтобы она не мешала выполнению основных операций.
- К электродному держателю подсоединяется «минус».
- Формирование дуги. Это можно делать чирканьем или постукиванием электродом об металл в районе шва.
- После формирования соединения с помощью молотка необходимо снять окалину.
Как правильно выбрать модель
Использование режимов прямой и обратной полярности доступно для всех видов инверторов. Однако помимо этой функции аппараты должны обладать дополнительными характеристиками. От этого зависит область их применения, скорость и комфорт выполнения работ. Поэтому к выбору модели необходимо подойти профессионально.
- Горячий старт. Происходит кратковременное повышение тока для быстрого формирования дуги.
- Антиприлипание. При высоких значениях тока велика вероятность его приваривания к металлу. Снижение этой величины позволит сформировать максимально ровный шов.
- Форсаж. Активируется автоматически, когда на конце электрода появляется расплавленный металл. Кратковременное увеличение рабочего тока предотвратит прилипание.
- Переменный ток. Он необходим для сварочных работ с алюминиевыми заготовками.
- Пониженное значение холостого хода. Относится к мерам безопасности при эксплуатации в местах с повышенной влажностью или небольших помещениях. С помощью специального блока происходит снижение напряжения до 15 В.
- Тип индикации. Оптимальный вариант – цифровое отображение текущих параметров.
Также важно выбрать ток сварки, который напрямую зависит от диаметра используемого электрода и толщины металла.
При работе с инверторными сварочными аппаратами чаще всего используют электроды марки АНО и МР. Они подходят для формирования шва на стальных поверхностях. или заготовок из сложных сплавов требует выбора специальных расходных материалов, могут использоваться присадки.
Когда применяется прямая и обратная полярность
Изменение полярности при работе обусловлено протекающими процессами. Помимо выбора основных параметров сварки можно поменять подключаемые клеммы местами. Ток идет от отрицательного элемента к положительному. В результате этого происходит нагрев первого.
- Прямая полярность – к электроду подключен «минус», к металлу «плюс». Происходит нагрев поверхности последнего. Подобный режим необходим для обработки глубоких швов при большой толщине заготовки.
- Обратная полярность – электрод подсоединен к «плюсу», металл к «минусу». Возникает обратный процесс – нагрев электрода при холодном металле. Это нужно для обработки тонкостенных заготовок, но приводит к быстрому выгоранию электрода.
Применение того или иного режима зависит от поставленных задач. Простота смены клемм позволяет выполнять эти операции при обработке одной заготовки.
На сегодняшний день сварочные инверторы практически полностью заменили с рынка другие типы сварочных аппаратов, ранее использовавшиеся в ходе сварочных работ: выпрямители тока, генераторы и сварочные трансформаторы. Подобные устройства были достаточно громоздкие, тяжеловесные и проблематичные в транспортировке. Инверторы, в свою очередь, обладают рядом неоспоримых преимуществ таких как минимальный вес устройства, относительно недорогая цена, высокое качество сварки, простота в эксплуатации.
Устройства типа инвертор позволяют не только выполнять сварку масштабах производства, но и решать любые сварочные задачи на бытовом уровне. Работать на сварочном инверторе может не только профессионал своего дела, но даже начинающий, имея небольшой багаж знаний и минимальный опыт в сварочных работах.
Также одним из основных достоинств можно считать его универсальность: при сварке используются электроды с постоянным электротоком и с током переменным. Обладая довольно широким спектром настроек тока на выходе можно решать различные задачи от сварки металла минимальной толщины до выполнения сложных работ связанных с резкой металла в несколько слоев. Рассмотрим основные виды полярности электрического тока и их применение в решении различных сварочных задач.
Прямая и обратная полярность при сварке
Принцип работы сварки с прямой полярностью подразумевает следующий алгоритм: ток от сварочного инвертора попадает на обрабатываемую деталь под положительным зарядом, в свою очередь клемма аппарата со знаком «плюс» соединяется с поверхностью металла с помощью специального кабеля. Заряд со знаком «минус» подается через электродержатель на электрод, который подключается к минусовой клемме. Это обеспечивает максимальный нагрев обрабатываемой детали при минимальном накаливании электрода. Подобный тип подачи тока рекомендуется для сварки изделий с толстыми краями, скрепление нескольких металлических пластин, а также часто используется профессионалами для резки по металлу.
Полезно знать: Если стоит задача получить идеальный, аккуратный шов без большого количества брызг от обрабатываемого изделия из металла обычно используется применение постоянного тока. Это происходит из-за отсутствия частой смены полярности при сварке. В остальных случаях в основном применяется переменный электроток по причине своей экономности в отличии от тока постоянного.
При сварке обратной полярности инвертором необходимо выполнить противоположные действия. На обрабатываемую поверхность металлической детали подается заряд со знаком «минус» от минусовой клеммы.В свою очередь, на электрод направляется заряд со знаком «плюс» от плюсовой клеммы. При таком подключении максимальные нагрев образуется на электроде, а обрабатываемая поверхность металла нагревается минимально. Такой тип полярности позволяет проводить так называемую «деликатную» сварку, так как в процессе сварки с помощью обратной полярности нивелирует вероятность «прожога» металла, что является наиболее актуальным с тонколистными металлами, сплавами, реагирующими на перегревание, а также с нержавеющей, легированной сталью.
Обратите внимание: чтобы предотвратить вероятность прожигания металла в ходе сварки профессионалы в сварочном деле советуют применять прижимную струбцину, которая позволяет крепко фиксировать обрабатываемые листы металла и делать процесс сварки более простым и удобным.
Особенности выбора электродов
Чтобы сварочные работы инвертором всегда выполнялись качественно и быстро очень важно уметь подбирать из всех разновидностей электродов представленных на современном рынке, именно тот который подходит для решения определенных сварочных задач. Выделим основные критерии, которые упростят процесс выбора оптимальных электродов для сварки инвертором:
Разновидность металлического изделия (существует определенная классификация электродов по виду металла, которая поможет выбрать оптимальный вариант стержня электрода).
Представляем вам основную классификации электродов по типу металла:
- Для выполнения ремонтных работ и наплавки;
- Для сварки на углеродистой и низколегированной стали;
- Для сварки изделий из меди и ее сплавов;
- Для сварки изделий из чугуна и его сплавов;
- Для сварки изделий из алюминия и его сплавов;
- Для выполнения работ с трудноподдающихся сварке металлами;
- Для сварка изделий из высоколегированной стали;
- Для сварки изделий с теплоустойчивыми с характеристиками.
Чистота обрабатываемой поверхности металла (например, стрежни электродов с рутиловым покрытием способны выполнять сварочные работы на сильно загрязненных, ржавых поверхностях металлических деталей; а основные электроды, наоборот, рекомендуется использовать для прочных соединений во время при отсутствии каких- либо загрязнений или влаги на металле).
Толщина металла (Чем больше толщина металла для сварки, тем большего диаметра должен быть подобран электрод):
- Для толщины изделия в 2 мм используют диаметр электрода в 2,5 мм;
- Для толщины изделия в 3 мм используют диаметр в 2,5 и 3 мм;
- Для толщины изделия в 4 и 5 мм используют диаметр электрода в 3,2 и 4 мм;
- Для толщины изделия от 6 до 12 мм используют диаметр электрода в 4 и 5 мм;
- Для толщины изделия свыше 13 мм необходимо использовать электроды в 5 мм.
Выбор оптимального электротока (Зависимость между диаметром рабочего стержня электрода и электротоком можно охарактеризовать следующим образом: если при усиленном токе изделие можно прожечь насквозь, то пониженном электротоке возможность создания рабочей электродугу окажется невозможной):
- электроду в 2 мм необходим ток от 50 до 60 А;
- электроду в 2,5 мм необходим ток от 60 до 90 А;
- для электрода в 3 мм необходим ток в пределах 80 — 140 А;
- для электрода в 4 мм необходим ток от 130-160 А;
- для электродов в 5 мм необходим ток в 200 А;
- электроду в 6 мм необходим ток от 220 до 240 А.
Аппараты для сварки обладают блоком выпрямительных диодов. Это обеспечивает постоянную силу тока, что является непременным условием для , материалом для которых служит проволока. Если для аппарата нужны электроды, то это обозначает опцию и возможность применения в процессе работы всех их марок. А полярность при сварке – основа ее качества.
Применяя полуавтомат, надо соблюсти полярность подключения. Сварка под защитой газа омедненной проволокой осуществляется при помощи тока прямой полярности. Фактически это означает:
- на держак подается минус;
- на само изделие – плюс.
Сила тока идет на него от проволоки. Изделие нагревается по сравнению со сильнее. В результате площадь свариваемого участка увеличивается. Он нуждается в значительном нагреве с целью формирования ванны для сварки. Проволока, которая обладает меньшей площадью, быстро расплавляется. Она попадает в нужное место уже расплавленной каплей. Током, протекающим от минуса к плюсу, увлекается расплавленный материал, образуется подходящая сварочная ванна.
Работая полуавтоматом вне защитной газовой среды, необходимо применять особую флюсовую ( . В таком случае меняется полярность подсоединения «массы» и держака. На последнем – плюс, а на «массе» — минус. Температура плавления флюса приблизительно соответствует температуре плавления металла. Чтобы добиться образования качественного шва, нужно, чтоб сгорел флюс. После чего ожидаются два следующих этапа:
- Должно появиться газообразное облачко.
- В его среде будет осуществляться процесс сварки.
Сила тока направляется к плюсу от минуса, и падение капли металла оказывается более низким. Как раз это обусловит меньший прогрев металла для сварки. Ведь его охлаждение не производится защитной газовой средой. По этой причине образование сварочной ванны почти не отличается от процесса сварки в среде газа. Сварка переменным током несет с собой свои преимущества. Она не имеет расхождения с дугой относительно первоначальной оси. А на качество шва как раз воздействует отклонение дуги.
Работая с генератором на переменном токе, несложно заметить: полярность его циклически меняется. Циклам присуща частота 50 Гц. Она, поднявшись до плюсового напряжения, может упасть до нуля либо опуститься до отрицательного показателя. Напряжение изменяется от плюса к минусу и наоборот.
Сваривая цветной металл и нержавейку
При сварке цветных металлов, включая алюминий, пользуются особым вольфрамовым электродом. При этом применяют в процессе сварки прямую полярность, минус на электроде. Данный тип подключения дает шанс иметь нужную температуру в зоне нагрева. Это важно для алюминия, так как сначала надо одолеть оксидную пленку. У нее температура плавления существенно выше в сравнении с самим металлом.
Полярность напрямую при сварке способствует получению:
- узкой электрической, более концентрированной дуги;
- более основательного проплавления металла, а также стали из нержавейки;
- более качественного шва.
Есть также у процесса и немаловажная экономическая составляющая. Применяя дорогостоящий электрод из вольфрама меньшего диаметра, можно попутно добиться снижения затрат на газ. Если же подсоединить электрод из вольфрама при сварке в обратной полярности, то есть на держателе – с плюсом, то шов окажется менее глубоким. У этого метода имеются свои преимущества. Сваривая тонкие пластины, можно не бояться прожечь насквозь материал из цветного металла и нержавейки.
Существенным недостатком становится только эффект магнитного дутья. Получающаяся дуга выходит блуждающей, а шов – не очень герметичным и привлекательным. Пользуясь переменным током, нужно применять электроды для переменки. Сварщики, мастера своего дела, применяют постоянный ток. С его помощью сварка образует однонаправленный поток электронов. Полярность обеспечивает качество сварки материала, в том числе нержавейки.
Прямая полярность получается, когда с изделием соединяют «плюс» источника тока. Если соединяют электрод, то тогда налицо обратная полярность. Пользуясь , можно самому выбрать на нем полярность. Она определит для сварки направление маршрута для потока электронов. Фактически определяется подключением проводов к отрицательной и положительной клеммам. При сваривании полярность обратная означает:
- на клемме земля – минус;
- на электроде – плюс.
Ток направляется к положительному от отрицательного контакта. По данной причине электроны идут на электрод от металла. В итоге сильно нагревается конец электрода. Для традиционной сварки эффективно применяют минус на клемме, а плюс – на электроде. При сваривании полярность прямая предполагает плюс на клемме земля, минус – на электроде. Ток движется к металлу от электрода. Металл – горячий, а электрод – холодный. Такая особенность нашла применение в особых электродах, предназначенных для ускоренной .
Особая важность полярности при сварке
Ясно, что сварка на переменном токе не зависит от того, какой выбран зажим трансформатора для присоединения электрода и изделия. А вот постоянным током по давней традиции сваривают одним из двух способов. С прямой полярностью электрод, подключенный к отрицательному полюсу, становится катодом.
В анод превращается изделие, подключенное к положительному полюсу. Обратная полярность означает, что электрод после подключения к положительному полюсу является анодом. Катод в данном случае – это изделие, подключенное к отрицательному полюсу.
Материал электрода определяет характер дуги между плавящимися электродами из металла и неплавящимися либо угольными). Сварочной дуге присущ ряд как технологических, так и физических свойств. От них почти полностью зависит результат применения при сварке дуги. К свойствам физическим относят:
- световые и электрические;
- температурные и электромагнитные;
- кинетические.
Главные технологические свойства включают три разновидности:
- Саморегулирование.
- Пространственную устойчивость.
- Мощность дуги.
Для поддержки горения дуги надо получить электрически заряженные частицы в пространстве между имеющимися электродами. Эти частицы представляют собой электроны, отрицательные и положительные ионы. Процесс их образования называют ионизацией. Газ, который содержит ионы и электроны, называют ионизированным.
Дуговой промежуток ионизируется при зажигании дуги, постоянно поддерживается во время ее горения. В дуговом промежутке обычно выделяют такие области:
- катодную;
- анодную;
- область дугового разряда (столб дуги).
В анодной области имеет место существенное падение напряжения, которое вызвано скоплением возле электродов заряженных частиц (пространственных зарядов). На поверхности катода и анода происходит образование электродных пятен. Они представляют собой своеобразный фундамент столба дуги. Через них проходит путь тока к сварке. Электронные пятна отличаются яркостью свечения.
Сварка имеет общую длину дуги, которая состоит из суммы длин трех областей. Общее напряжение сварочной дуги образует сумма падений напряжения в каждой из областей дуги. Зависимость напряжения от длины дуги представляет сумму падения напряжения в прианодной и прикатодной областях. Удельное падение в дуге напряжения соотносится с 1 миллиметром столба дуги. А главной характеристикой дуги при сварке считается тепловая мощность источника нагрева.
Ее эффективность определяется количеством теплоты, которое вводится в металл (не исключая нержавейки) за определенную единицу времени и расходуется на его нагрев. Тепловая мощность – часть совокупной тепловой мощности дуги, из которой небольшая доля теплоты тратится непроизводительно:
- на нагрев разбрызгивающихся капель;
- излучение;
- на теплоотвод в металле.
Отношение результативной тепловой мощности источника теплоты к полной является в процессе нагрева коэффициентом полезного действия.
Технология дуговой сварки
Популярность дуговой сварки неоспорима. Она различается по признакам:
- по виду электродов;
- по виду применяемого тока;
- по среде, где имеет место дуговой разряд.
Для ремонта кузовов авто широко применяется дуговая сварка полуавтоматом в газовой защитной среде. Для индивидуального использования самой доступной считается ручная дуговая сварка. Она осуществляется плавящимися электродами на постоянном либо переменном токах. Предоставляет отличный шанс сварить в непроизводственной обстановке большую часть разновидностей сталей, не исключая нержавейки.
Расстояние между дном кратера и поверхностью главного металла считается глубиной его проплавления или глубиной провара. Она зависит:
- от скорости перемещения дуги;
- величины тока сварки.
Если длина сварочной дуги не больше, чем диаметр стержня электрода, то дугу называют короткой или нормальной. Она способна гарантировать превосходное качество сварного шва. Дугу, имеющую большую протяженность, считают длинной. Чересчур значительное наращивание длины дуги приводит к снижению качества сварки. Влияние электромагнитного поля приводит к отклонению дуги от намеченного направления. Это явление назвали магнитным дутьем.
Электрод в ходе процесса перемещается поперек и вдоль сварного шва в направлении оси, чтобы сохранить намеченную длину дуги. Ускоренное движение электрода приводит к появлению неплотного, неровного и узкого шва. При замедлении движения появляется опасность пережога металла, в том числе нержавейки. Ширина большого шва не должна превышать 15 миллиметров, ниточного – на два-три миллиметра больше в сравнении с диаметром электрода.
Сварные швы по своей форме могут быть:
- нахлесточными,
- тавровыми,
- угловыми,
- стыковыми.
По протяженности швы делятся на прерывистые и сплошные. По пространственному положению они имеют четыре разновидности:
- Потолочные.
- Вертикальные.
- Горизонтальные.
- Нижние.
Источники питания: генератор, выпрямитель, сварочный трансформатор – при внешней характеристике представляют связь величины тока нагрузки с напряжением на выходных зажимах. Вольтамперная характеристика дуги – это зависимость между током дуги и напряжением в статическом режиме. Внешние характеристики генераторов для сварки считаются падающими.
Длина дуги определяется напряжением. Напряжение будет выше, если сварочная дуга длинней. Равное изменение длины дуги (падение напряжения) означает, что при различной внешней характеристике источника изменение тока при сварке неодинаково. Лучше характеристика – значит, длина сварочной дуги оказывает меньшее влияние на ток для сварки.
Качественное сварное соединение, при работе с аппаратами постоянного тока, во многом зависит от их настроек. Даже самый простой инвертор имеет не только настройки силы тока, но и полярности. Чаще всего, по умолчанию установлена прямая полярность при сварке и вы можете годами работать со своим инвертором, не зная всех его возможностей. Если у вас возникла необходимость сварить высоколегированную сталь или не получается добиться качественного шва, то знание всех тонкостей настроек вам просто необходимы. О том, какая бывает полярность и как она влияет на сварочные работы мы и поговорим.
Сварка постоянным током подразумевает наличие гнезда, для подключения к «+» и «–» сварочного аппарата. В зависимости от того, куда подключена масса, а куда электрод и различают полярность.
- Прямая полярность – схема подключения, при которой к плюсовому гнезду присоединяется масса, а к минусу – электрод. При этом род и полярность тока обуславливает существование анодного и катодного пятен. При таком подключении анодное(более горячее) образуется на стороне заготовки.
- Обратная полярность – масса присоединена к минусу, а электрод к плюсу. На обратной полярности при сварке постоянным током анодное пятно с более высокой температурой, образуется на противоположной стороне, то есть — электроде.
Обратите внимание! Сварка переменным током подразумевает самостоятельное изменение полярности до сотни раз в секунду, поэтому в таких случаях соблюдать схему подключения не имеет смысла.
Чем обусловлен выбор полярности
Изменяя тип подключения, можно сконцентрировать нагрев или на свариваемой детали или на электроде (перемещая анодное пятно). За нагрев отвечает плюсовое гнездо, поэтому при прямом подключении, когда плюс присоединен к металлу наблюдается больший нагрев сварного соединения, а при обратной полярности больше греется электрод.
Благодаря этой особенности мы можем выбирать схему подключения исходя из:
- Толщины металла. Если мы свариваем толстые детали или средней толщины, то подойдет прямое подключение, при котором тепло, сконцентрированное на изделии поможет получить более глубокий шов и качественный провар. Также этот вид подключения подходит для отрезания металлов различной толщины. Тонкие металлы лучше всего сваривать при обратной полярности, концентрируя большую часть тепла на электроде. Таким образом деталь не будет поддаваться перегреву, а сам электрод будет плавиться быстрей.
- Типа металла. Возможность изменять локализацию теплового пятна помогает подобрать наиболее эффективные схемы работы для различных металлов. К примеру, если мы варим нержавеющие стали или чугун, то необходимо обратное подключение, помогающее избежать перегрева сплава и формирования тугоплавких соединений. Для алюминия необходимо прямое подключение иначе пробиться через окислы будет очень сложно. Перед началом работ внимательно изучите рекомендации по настройки аппарата к конкретному сплаву.
- Типа электрода или проволоки. Как и металлы, электроды имеют свои особенности температурных режимов, в большей степени связанных с типом флюса. К примеру, для работы с угольными электродами нельзя использовать обратную полярность иначе флюс перегреется и электрод придет в негодность. Чтобы подобрать настройку, подходящую для вашего электрода смотрите на тип проволоки и флюса или воспользуйтесь рекомендациями производителя. Говоря о проволоках для полуавтоматов, то они тоже имеют рекомендации, относительно подключения минуса и плюса аппарата.
Теперь вы знаете, что может повлиять на настройки подключения. Бывают случаи, когда металл требует одних, а электрод совсем других настроек. В таких случаях следует искать компромиссы, подстраивая силу тока и рабочие циклы.
Запомните! Тип подключения не зависит от пространственного положения.
Особенности сварки током прямой полярности
Прямая полярность при работе с постоянным током имеет ряд особенностей. Некоторые из них, мы уже перечислили, на остальные стоит обратить особое внимание:
- сварной шов получается глубоким, но достаточно узким.
- подходит для большинства сталей, толщиной от 3-х мм.
- цветные металлы с применением вольфрамового стержня варятся только прямой полярностью.
- характеризуется стабильной дугой и как следствие — более качественным швом.
- запрещено использовать электроды для сварочных аппаратов переменного тока.
- лучше подходит для резки металла.
Особенности сварки током обратной полярности
Как и прямая, обратная полярность при сварке инвертором имеет ряд особенностей, зная которые вы сможете избежать ряда ошибок, свойственных новичкам. Стоит выделить такие особенности:
- при сварке постоянным током на обратной полярности шов получается менее глубоким, но более широким
- отлично подходит для сваривания тонких металлов и средней толщины. При работе с толстыми заготовками качество шва резко снижается.
- запрещено работать обратной полярностью с электродами, чувствительными к перегреву.
- при низких токах наблюдается значительное снижение качества сварного шва из-за скачущей дуги.
- помимо обратного подключения, для работы с высоколегированными сталями следует строго придерживаться рекомендаций о рабочем цикле и остывании заготовки.
Заключение
Сварочные аппараты постоянного тока, такие как инверторы или полуавтоматы – достаточно просты, чтобы использовать в быту. Именно поэтому спрос и предложение этих устройств на рынке постоянно растет. Этому способствует их доступность, дешевизна и постоянным током варить проще, чем переменным. Однако чтобы получить качественное, красивое и долговечное сварное соединение нужно знать ряд технологических особенностей, в том числе предназначение и виды полярности. Благодаря знаниям из этой статьи и источнику постоянного тока своими руками вы сможете выполнить любые сварочные работы. Главное — тщательный подход к работе и соблюдение всех защитных мер.
Медленное электричество: возвращение постоянного тока?
Изображение: Брайтонская электрическая световая станция, 1887 г. Стационарные паровые машины приводят в действие генераторы постоянного тока с помощью кожаных ремней. Источник.
(Эта статья переведена на французский язык).
Электроэнергия может производиться и распределяться с использованием переменного или постоянного тока. В случае с электричеством переменного тока ток периодически меняет направление, в то время как напряжение меняется на противоположное вместе с током.В случае электричества постоянного тока ток течет в одном направлении, а напряжение остается постоянным. Когда в последней четверти девятнадцатого века была введена передача электроэнергии, переменный и постоянный ток конкурировали за то, чтобы стать стандартной системой распределения энергии — период в истории, известный как «война токов».
AC выиграл, в основном из-за его более высокой эффективности при транспортировке на большие расстояния. Электрическая мощность (выраженная в ваттах) равна току (выраженному в амперах), умноженному на напряжение (выраженному в вольтах).Следовательно, данное количество мощности может быть произведено низким напряжением с более высоким током или высоким напряжением с более низким током. Однако потери мощности из-за сопротивления пропорциональны квадрату тока. Следовательно, высокое напряжение является ключом к энергоэффективной передаче электроэнергии на большие расстояния. [1]
Изобретение трансформатора переменного тока в конце 1800-х годов позволило легко повысить напряжение для передачи энергии на большие расстояния, а затем снова понизить его для местного использования.С другой стороны, электричество постоянного тока нельзя было эффективно преобразовать в высокое напряжение до 1960-х годов. Следовательно, невозможно было эффективно передавать мощность на большие расстояния (> 1-2 км).
Иллюстрация: динамо-машина центральной электростанции Brush Electric Company приводила в действие дуговые лампы для общественного освещения в Нью-Йорке. Начав работу в декабре 1880 года по адресу 133 West Twenty-Fifth Street, он питал цепь длиной 2 мили (3,2 км). Источник: Wikipedia Commons.
Сеть постоянного тока предполагала установку относительно небольших электростанций в каждом районе.Это было не идеально, потому что эффективность паровых двигателей, которые приводили в действие динамо-машины, зависела от их размера: чем больше паровой двигатель, тем эффективнее он становится. Кроме того, паровые двигатели были шумными и вызывали загрязнение воздуха, в то время как низкая транспортная эффективность постоянного тока исключала использование более удаленных чистых источников гидроэнергии.
Спустя более ста лет переменного тока по-прежнему составляет основу нашей энергетической инфраструктуры. Хотя высоковольтный постоянный ток все больше используется для транспортировки на большие расстояния, все электрические сети в зданиях основаны на переменном токе 110 В или 220 В.Системы низкого напряжения постоянного тока сохранились в автомобилях, грузовиках, автодомах, караванах и лодках, а также в телекоммуникационных офисах, удаленных научных станциях и убежищах для чрезвычайных ситуаций. В большинстве этих примеров устройства питаются от батарей, работающих от 12, 24 или 48 В постоянного тока.
Возобновление интереса к источникам питания постоянного токаВ последнее время два сходящихся фактора возродили интерес к распределению энергии постоянного тока. Во-первых, теперь у нас есть лучшие альтернативы децентрализованному производству электроэнергии, наиболее значительными из которых являются солнечные фотоэлектрические панели.Они не загрязняют окружающую среду, и их эффективность не зависит от их размера. Поскольку солнечные панели могут быть расположены прямо там, где есть потребность в энергии, передача энергии на большие расстояния не является обязательной. Кроме того, солнечные панели «естественным образом» производят энергию постоянного тока, как и химические батареи, которые являются наиболее практичной технологией хранения для фотоэлектрических систем.
Солнечные фотоэлектрические панели естественным образом вырабатывают постоянный ток, и все большая часть наших электроприборов работают от внутреннего источника постоянного тока
Во-вторых, растущая доля наших электроприборов работает от источника постоянного тока.Это верно для компьютеров и всех других электронных устройств, а также для твердотельного освещения (светодиодов), телевизоров с плоским экраном, стереооборудования, микроволновых печей и все большего количества устройств, работающих от двигателей постоянного тока с регулируемой скоростью (вентиляторы, насосы). , компрессоры и тяговые системы). В течение следующих 20 лет мы можем увидеть, что до 50% от общей нагрузки в домохозяйствах будет составлять потребление постоянного тока. [2]
DC Электростанция Ипподрома в Париже. Паровой двигатель запускает несколько динамо-машин, питающих дуговые лампы.Источник неизвестен.
В здании, которое генерирует солнечную фотоэлектрическую энергию, но распределяет ее внутри по электрической системе переменного тока, требуется двойное преобразование энергии. Во-первых, мощность постоянного тока от солнечной панели преобразуется в мощность переменного тока с помощью инвертора. Затем мощность переменного тока преобразуется обратно в мощность постоянного тока адаптерами внутренних устройств постоянного тока, таких как компьютеры, светодиоды и микроволновые печи. Эти преобразования энергии подразумевают потери мощности, которых можно было бы избежать, если бы здание, работающее на солнечной энергии, было оборудовано распределительной системой постоянного тока.Другими словами, электрическая система постоянного тока может сделать солнечную фотоэлектрическую систему более энергоэффективной.
Больше солнечной энергии за меньшие деньгиПоскольку эксплуатационное потребление энергии и затраты на солнечную фотоэлектрическую систему равны нулю, более высокая энергоэффективность приводит к более низким капитальным затратам, поскольку для выработки определенного количества электроэнергии требуется меньше солнечных панелей. Кроме того, нет необходимости устанавливать инвертор, который является дорогостоящим устройством, которое необходимо заменять хотя бы один раз в течение срока службы солнечной фотоэлектрической системы.Более низкие капитальные затраты также подразумевают более низкую воплощенную энергию: если требуется меньше солнечных панелей и не требуется инвертор, для производства солнечной фотоэлектрической установки требуется меньше энергии, что имеет решающее значение для повышения устойчивости технологии.
Для выработки определенного количества электроэнергии требуется меньше солнечных панелей
Аналогичное преимущество применимо к электрическим устройствам. В здании с распределением мощности постоянного тока внутренние электрические устройства постоянного тока могут избавиться от всех компонентов, необходимых для преобразования переменного тока в постоянный.Это сделало бы их более простыми, дешевыми, надежными и менее энергоемкими в производстве. Адаптеры переменного / постоянного тока (которые могут быть размещены во внешнем источнике питания или в самом устройстве) часто являются компонентом, ограничивающим срок службы внутренних устройств постоянного тока, и они довольно значительны по размеру. [2]
Иллюстрация: Драйвер питания для светодиодной лампы мощностью 35 Вт. [3] Все части, необходимые для преобразования переменного тока в постоянный, отмечены.
Например, для светодиодной лампы примерно 40% печатной платы занято компонентами, необходимыми для преобразования переменного тока в постоянный.[3] Адаптеры переменного / постоянного тока имеют больше недостатков. В результате сомнительной коммерческой стратегии они обычно относятся к конкретному устройству, что приводит к пустой трате ресурсов, денег и места. Более того, адаптер продолжает использовать энергию, когда устройство не работает, и даже когда устройство не подключено к нему.
Распределение питания постоянного тока сделает устройства более простыми, дешевыми, надежными и менее энергоемкими для производства
И последнее, но не менее важное: низковольтные сети постоянного тока (до 24 В) считаются безопасными от поражения электрическим током или возгорания, что позволяет электрикам устанавливать относительно простую проводку без заземления или металлических распределительных коробок и без защиты от прямого контакта.[4, 5, 6] Это еще больше увеличивает экономию средств и позволяет вам самостоятельно установить солнечную систему. Мы продемонстрируем такую самодельную систему в следующей статье, где мы также объясним, как получить устройства постоянного тока или преобразовать устройства переменного тока в постоянный ток.
Сколько энергии можно сэкономить?Важно отметить, однако, что преимущество энергосберегающей сети постоянного тока не является очевидным. Экономия энергии может быть значительной, но она также может быть очень маленькой или даже отрицательной.То, является ли постоянный ток хорошим выбором, зависит в основном от пяти факторов: конкретных потерь преобразования в адаптерах переменного / постоянного тока всех устройств, времени «нагрузки» (использования энергии), наличия накопителя электроэнергии, длина распределительных кабелей и мощность электроприборов.
Отсутствие инвертора приводит к вполне предсказуемой экономии энергии. Это касается только одного устройства с довольно фиксированным КПД (+ 90% — хотя КПД может упасть примерно до 50% при низкой нагрузке).Однако этого нельзя сказать о AC / DC-адаптерах. Мало того, что адаптеров столько же, сколько и устройств с внутренним постоянным током, их эффективность преобразования также сильно различается: от менее 50% для устройств с низким энергопотреблением до более 90% для устройств с высоким энергопотреблением. [6, 7, 8]
Следовательно, общие потери энергии адаптеров переменного / постоянного тока могут сильно отличаться в зависимости от того, какие приборы используются в здании и как они используются. Как и инверторы, адаптеры тратят относительно больше энергии, когда используется мало энергии, например, в режимах ожидания или с низким энергопотреблением.[8]
Потери преобразования в адаптерах самые высокие для DVD / видеомагнитофонов (31%), домашнего аудио (21%), персональных компьютеров и сопутствующего оборудования (20%), перезаряжаемой электроники (20%), освещения (18%) и телевизоров (15%). %). Потери электроэнергии ниже (10-13%) для более приземленных приборов, таких как потолочные вентиляторы, кофеварки, посудомоечные машины, электрические тостеры, обогреватели, микроволновые печи, холодильники и т. Д. [8].
Освещение и компьютеры (которые имеют высокие потери переменного / постоянного тока) обычно составляют значительную долю от общего потребления электроэнергии в офисах, магазинах и институциональных зданиях.В домашних хозяйствах имеется более разнообразная бытовая техника, в том числе устройства с более низкими потерями переменного / постоянного тока. Следовательно, система постоянного тока обеспечивает большую экономию энергии в офисах, чем в жилых зданиях.
Наибольшее преимущество в центрах обработки данных, где компьютеры являются основной нагрузкой. Некоторые центры обработки данных уже перешли на системы постоянного тока, даже если они не работают от солнечной энергии. Поскольку большой адаптер более эффективен, чем множество маленьких адаптеров, преобразование переменного тока в постоянный на локальном уровне (с использованием выпрямителя большого объема), а не на отдельных серверах, может обеспечить экономию энергии от 5 до 30%.[6, 9] [10, 11]
Важность хранения энергииЕсли мы предположим, что потери энергии в инверторе составляют 10%, а средние потери 15% для всех адаптеров переменного / постоянного тока, мы ожидаем экономии энергии около 25% при переключении на распределение постоянного тока в здании, работающем на солнечных батареях. Однако такая значительная экономия не гарантируется. Начнем с того, что большинство зданий, работающих на солнечной энергии, подключены к электросети. Они не хранят солнечную энергию в местных батареях, а полагаются на сеть, чтобы справиться с излишками и дефицитом.
В здании с чистой солнечной энергией только нагрузки, совпадающие с мощностью солнечной фотоэлектрической энергии, могут получить выгоду от сети постоянного тока
Это означает, что избыточная солнечная энергия должна быть преобразована из постоянного тока в переменный ток, чтобы отправить ее в электрическую сеть, в то время как мощность, полученная из сети, должна быть преобразована из переменного тока в постоянный ток, чтобы быть совместимой с системой распределения электроэнергии здание. Следовательно, в здании с солнечными фотоэлектрическими батареями с чистым счетчиком только нагрузки, совпадающие с выходной мощностью фотоэлектрических солнечных батарей, могут получить выгоду от сети постоянного тока.
Ранние электростанции постоянного тока имели по динамо-машине для каждой лампочки. Источник неизвестен.
Еще раз, это означает, что преимущества эффективности системы постоянного тока обычно больше в коммерческих зданиях, где большая часть потребления электроэнергии совпадает с выходом постоянного тока из солнечной системы. С другой стороны, в жилых домах потребление энергии часто достигает пика по утрам и вечерам, когда солнечная энергия практически отсутствует.
Следовательно, есть лишь небольшое преимущество, которое можно получить от системы постоянного тока в жилом доме с сетевым счетчиком, поскольку большая часть электроэнергии в любом случае будет преобразована в переменный ток или из него.Недавнее исследование подсчитало, что система постоянного тока может повысить энергоэффективность американского дома с солнечной батареей и сетевым счетчиком в среднем всего на 5% — это средний показатель для 14 домов по США. [12] [13]
Автономные солнечные системыЧтобы полностью реализовать потенциал сети постоянного тока, особенно когда это касается жилого дома, нам необходимо хранить солнечную энергию в местных батареях. Таким образом, система может хранить и использовать энергию в форме постоянного тока. Накопление энергии может происходить в автономной системе, которая полностью независима от сети, но добавление некоторого количества аккумуляторов к зданию с сетевым счетчиком также улучшает преимущества системы постоянного тока.Однако накопление энергии добавляет еще один вид потерь энергии: потери при зарядке и разрядке батарей. КПД для свинцово-кислотных аккумуляторов составляет 70-80%, а для литий-ионных — около 90%.
К сожалению, накопление энергии приводит к еще одному типу потерь энергии — потерям при зарядке и разрядке батарей — и сводит на нет экономические преимущества системы постоянного тока.
Точное количество энергии, которое можно сэкономить с помощью локального аккумулятора, опять же, зависит от времени загрузки.Электроэнергия, потребляемая в течение дня, когда батареи полностью заряжены, не вызывает потерь при зарядке и разрядке. В этом случае экономия энергии в системе постоянного тока может составить 25% (10% при отказе от инвертора и 15% при отказе от адаптеров).
Однако электричество, используемое после захода солнца, снижает экономию энергии до 15% для литий-ионных аккумуляторов и от -5% до + 5% для свинцово-кислотных аккумуляторов. В действительности электричество, вероятно, будет использоваться как до, так и после захода солнца, так что повышение эффективности будет где-то между этими крайностями (от -5% до 25% для свинцово-кислотных и 15-25% для литий-ионных).
Кенсингтонский суд: паровой двигатель, динамо-машина и батареи. Источник: Central-Station Electric Lighting, Killingworth Hedges, 1888.
С другой стороны, аккумуляторная батарея дает дополнительное преимущество: меньше или — в полностью независимой системе — нет дополнительных потерь энергии при передаче и распределении электроэнергии переменного тока на большие расстояния. Эти потери сильно различаются в зависимости от местоположения. Например, средние потери при передаче составляют всего 4% в Германии и Нидерландах, 6% в США и Китае и от 15 до 20% в Турции и Индии.[14] [15]
Если мы добавим еще 7% экономии энергии за счет предотвращения потерь при передаче, автономная система постоянного тока может обеспечить экономию энергии от 2% до 32% для свинцово-кислотных аккумуляторов и от 22% до 32% для литий-ионных аккумуляторов. , в зависимости от сроков загрузки.
В автономной системе постоянного тока потребление электроэнергии можно удовлетворить с помощью солнечной системы, которая на одну пятую или треть меньше, в зависимости от типа используемых батарей
Предполагая, что потребление энергии составляет 50% в течение дня и 50% энергии в ночное время, мы получаем прирост на 17% для автономной системы с использованием свинцово-кислотных аккумуляторов и 27% для литий-ионных аккумуляторов.Это означает, что потребление электроэнергии можно удовлетворить с помощью солнечной системы, которая на одну пятую или треть меньше, соответственно. Общая экономия затрат останется немного больше, потому что нам по-прежнему не нужен инвертор, а затраты на установку ниже или отсутствуют вовсе.
К сожалению, внедрение накопителя электроэнергии на месте снова увеличивает капитальные затраты, потому что нам нужно вкладывать средства в батареи. Это сведет на нет то преимущество в стоимости, которое мы получили при выборе системы постоянного тока. То же самое и с энергией, инвестируемой в производственный процесс: автономная система постоянного тока требует меньше энергии для производства солнечных панелей, но требует, по крайней мере, такого же потребления энергии для производства батарей.
Однако мы должны сравнивать яблоки с яблоками: автономная солнечная система постоянного тока дешевле и более энергоэффективна, чем автономная система переменного тока, и это главное. Анализ жизненного цикла солнечных систем с нетто-счетчиком не соответствует действительности, потому что они игнорируют важный компонент систем солнечной энергии.
Потери в кабелеНо есть еще одна важная вещь, которую следует учитывать. Как мы видели, потери мощности из-за сопротивления пропорциональны квадрату тока.Следовательно, низковольтные сети постоянного тока имеют относительно высокие потери в кабеле внутри здания. Есть два пути, по которым потери в кабеле могут сделать выбор системы постоянного тока контрпродуктивным. Первый — это использование устройств большой мощности, а второй — использование очень длинных кабелей.
Регулировка напряжения на ранней электростанции. Источник неизвестен.
Потери энергии в кабелях равны квадрату силы тока (в амперах), умноженного на сопротивление (в омах). Сопротивление определяется длиной, диаметром и проводящим материалом кабелей.Медный провод сечением 10 мм2, распределяющий мощность 100 Вт при 12 В (8,33 А) на расстояние 10 метров, дает приемлемые потери энергии в размере 3%. Однако при длине кабеля 50 метров потери энергии становятся 16%, а на длине 100 метров потери энергии составляют 32% — этого достаточно, чтобы свести на нет преимущества эффективности сети постоянного тока даже в самом оптимистичном сценарии. .
Относительно высокие потери энергии в кабелях ограничивают использование приборов большой мощности
Относительно высокие потери в кабеле также ограничивают использование мощных устройств.Если вы хотите запустить микроволновую печь мощностью 1000 Вт в сети 12 В постоянного тока, потери энергии в сумме составят 16% при длине кабеля всего 1 метр и увеличатся до 47% при длине кабеля 3 метра.
Очевидно, низковольтная сеть постоянного тока не подходит для таких устройств, как стиральные машины, посудомоечные машины, пылесосы, электрические плиты, электрические духовки или водогрейные котлы. Обратите внимание, что в этом отношении важно использование мощности , а не энергии . Использование энергии равно использованию энергии, умноженному на время.Холодильник потребляет гораздо больше энергии, чем микроволновая печь, потому что он работает 24 часа в сутки, но его потребление энергии может быть достаточно небольшим, чтобы работать от сети постоянного тока.
Потери в кабеле также ограничивают комбинированное энергопотребление маломощных устройств. Если предположить, что длина распределительного кабеля 12 В составляет 12 метров, и мы хотим, чтобы потери в кабеле не превышали 10%, то общее энергопотребление всех устройств ограничивается примерно 150 Вт (потери в кабеле 8,5%). Например, это позволяет одновременно использовать два портативных компьютера (мощностью 20 Вт каждый), холодильник постоянного тока (45 Вт) и пять светодиодных ламп мощностью 8 Вт (всего 40 Вт), что оставляет еще 25 Вт мощности для одного устройства. пара устройств поменьше.
Как ограничить потери в кабелеЕсть несколько способов обойти потери распределения низковольтной системы постоянного тока. Если это касается нового здания, его пространственная планировка может значительно ограничить длину распределительного кабеля. Например, голландским исследователям удалось сократить общую длину кабеля в доме с 40 до 12 метров. Они сделали это, переместив кухню и гостиную (где используется большая часть электроэнергии) на второй этаж, чуть ниже крыши (где находятся солнечные батареи), а спальни переместили на первый этаж.Они также сгруппировали большинство приборов в центральной части здания, прямо под солнечными батареями (см. Иллюстрацию ниже). [16]
Еще один способ уменьшить потери в кабеле — установить несколько независимых солнечных систем на одну или две комнаты. Это может быть единственный способ решить проблему в большом существующем здании, спроектированном без учета системы постоянного тока. Хотя эта стратегия подразумевает использование дополнительных контроллеров заряда солнечной энергии, она может значительно снизить потери в кабеле.Такой подход также позволяет потреблять мощность всех приборов выше 150 Вт.
Установка независимых солнечных систем для одной или двух комнат — один из способов ограничения потерь в кабелях и увеличения общего потребления энергии
Третий способ ограничить потери в кабеле — выбрать более высокое напряжение: 24 или 48 В вместо 12 В. Поскольку потери энергии увеличиваются пропорционально квадрату тока, удвоение напряжения с 12 до 24 В делает потери в кабеле в 4 раза меньше, а переключение на 48 В уменьшает их в шестнадцать раз.Этот подход также позволяет использовать устройства с более высокой мощностью и увеличивает общую мощность, которая может использоваться системой постоянного тока. Однако у более высоких напряжений есть и недостатки.
Во-первых, большинство низковольтных устройств постоянного тока, представленных в настоящее время на рынке, работают от 12 В, поэтому использование сети 24 или 48 В постоянного тока предполагает использование большего количества адаптеров постоянного / постоянного тока, которые понижают напряжение, а также имеют потери преобразования. Во-вторых, более высокие напряжения (выше 24 В) сводят на нет преимущества системы постоянного тока с точки зрения безопасности. В центрах обработки данных и офисах, а также в американских жилых домах в упомянутом ранее исследовании электричество постоянного тока распределяется по всему зданию с напряжением 380 В, но для этого требуются такие же строгие меры безопасности, как и с электричеством на 110 или 220 В переменного тока.[17]
Медленное электричествоУкорочение кабеля или удвоение напряжения до 24 В по-прежнему не позволяет использовать мощные устройства, такие как микроволновая печь или стиральная машина. Есть два способа решить эту проблему. Первый — это установка гибридной системы переменного / постоянного тока. В этом случае сеть постоянного тока настраивается для устройств с низким энергопотреблением, таких как светодиодные фонари (<10 Вт), ноутбуки (<20 Вт), телевизор (30-90 Вт) и холодильник (<50 Вт), в то время как отдельная сеть переменного тока настраивается для устройств большой мощности.Это подход для домов и небольших офисов, который продвигает EMerge Alliance, консорциум производителей продуктов постоянного тока, который разработал стандарт для гибридной системы 24 В постоянного тока / 110–220 В переменного тока. [18]
В конце 19 века единственной электрической нагрузкой в домах было освещение.
На устройства малой мощности (в среднем) приходится 35-50% от общего потребления электроэнергии в доме. Даже в лучшем случае (50% нагрузки) гибридная система вдвое уменьшает выигрыш от энергоэффективности, который мы вычислили выше, в результате чего экономия энергии составляет всего 8.От 5% до 13,5%, в зависимости от типа используемых батарей. Эти цифры будут еще ниже из-за потерь в кабеле. Короче говоря, гибридная система переменного / постоянного тока дает довольно небольшую экономию энергии, которую можно легко стереть с помощью эффектов отскока.
Второй способ решить проблему мощных устройств — просто не использовать их. Это подход, которого придерживаются в парусных лодках, автодомах и караванах, где поддерживающая система распределения переменного тока просто не подходит. Это наиболее устойчивое решение с учетом ограничений мощности постоянного тока, потому что в этом случае выбор постоянного тока также приводит к снижению потребности в энергии на .Таким образом, общая экономия энергии может стать намного больше, чем рассчитанные выше 17–27%, и тогда мы, наконец, имеем радикально лучшее решение, которое может иметь значение.
Один из способов решить проблему устройств большой мощности — просто не использовать их — это подход, который используется в парусных лодках, автодомах и караванах
Очевидно, эта стратегия подразумевает изменение нашего образа жизни. Это будет означать, что электричество используется только для освещения, электроники и охлаждения, в то время как неэлектрические альтернативы выбираются для всех других приборов.Не случайно, это очень похоже на то, как работали сети постоянного тока в конце девятнадцатого века, когда единственная электрическая нагрузка была для освещения — сначала дуговые лампы, а затем лампы накаливания.
Таким образом, не мыть посуду в посудомоечной машине, а мыть посуду вручную. Стиральной машины нет, но стирка осуществляется в прачечной или в машине с ручным управлением. Сушилки не было, зато есть веревка для белья. Никаких удобных и экономящих время кухонных приборов, таких как электрические чайники, микроволновые печи и кофемашины, а только традиционная кухонная плита, работающая на (био) газе, солнечная плита или ракетная печь.Никакого пылесоса, зато метла и взбивалка для ковров. Без морозильника, но свежие ингредиенты. Никакого электрического водогрейного котла, зато есть солнечный бойлер и небольшая стирка у раковины, если не светит солнце. Не электромобиль, а велосипед.
Чтобы понять, что возможно, мы преобразовываем штаб-квартиру Low-tech Magazine в автономную систему на 12 В постоянного тока — подробнее об этом в следующем посте.
Автор Крис Де Деккер. Под редакцией Дженны Коллетт.
СТАТЬИ ПО ТЕМЕ:
ИСТОЧНИКИ И ПРИМЕЧАНИЯ
[1] Существует аналогия с гидравлической мощностью: электрическое напряжение соответствует давлению воды, а электрический ток — потоку воды.Изобретение гидроаккумулятора в 1850-х годах позволило повысить давление воды и, таким образом, обеспечить эффективную транспортировку гидроэнергии на большие расстояния.
[2] Исследование и моделирование микросети постоянного тока с упором на эффективность, использование материалов и экономические ограничения (PDF), Simon Willems & Wouter Aerts, 2013-14
[3] Решетки постоянного тока для светодиодного освещения, LED professional
[4] Предварительное исследование микросетей постоянного тока: оценка технических и экономических выгод, Scott Backhaus et al., Март 2015
[5] Микросети постоянного тока и преимущества местного электричества, Раджендра Сингх и Кришна Шенай, IEEE Spectrum, 2014
[6] Сравнение стоимости и эффективности постоянного и переменного тока в офисных зданиях (PDF), Джузеппе Лаудани, 2014
[7] Месть Эдисона, The Economist, 2013
[8] Каталог устройств постоянного тока и систем питания, Карина Гарбеси, Вагелис Воссос и Хунся Шен, 2011 г.
[9] DC, построение сети и хранилища для интеграции BIPV, J.Хофер и др., CISBAT 2015, 2015
[10] Однако питание постоянного тока в центрах обработки данных не принесет нам менее энергоемкого Интернета — наоборот.
[11] Также обратите внимание, что эффективность адаптеров переменного / постоянного тока может быть значительно повышена, особенно для устройств с низким энергопотреблением. Многие «настенные бородавки» напрасно расточительны, потому что производители электроприборов хотят снизить расходы. Если это изменится, например, из-за новых законов, преимущество перехода на сеть постоянного тока станет меньше.
[12] Экономия энергии от прямого постоянного тока в жилых домах в США, Вагелис Фоссос и др., В Energy and Buildings, 2014
[13] В этом исследовании в зданиях используется комбинация 24 В постоянного тока для маломощных нагрузок и 380 В постоянного тока для мощных устройств и для распределения мощности постоянного тока по всему дому для ограничения потерь в кабеле.
[14] Потери при передаче и распределении электроэнергии (% от выработки), Всемирный банк, 2014 г.
[15] Сельские районы обычно имеют более высокие потери, чем городские районы, и одинокая линия деления, расходящаяся в сторону сельской местности, может привести к очень высоким потерям.
[16] Концепция дома с низким напряжением постоянного тока (PDF), Мааике Фридеман и др., Конференция по устойчивому строительству 2002 г.
[17] Последний — и довольно безнадежный — способ снизить потери при распределении — использовать более толстые кабели. Сопротивление в электрических проводах можно уменьшить не только за счет укорочения кабелей, но и за счет увеличения их диаметра (здесь диаметр относится к медной жиле). Например, если мы будем использовать кабели сечением 100 мм2 вместо кабелей сечением 10 мм2, мы получим кабели, которые будут в десять раз длиннее при тех же потерях энергии.Распределение электроэнергии 12 В постоянного тока по 100 м кабеля приведет к потере энергии всего 3%. Одна из проблем этого подхода заключается в том, что стоимость электрических кабелей линейно увеличивается с диаметром. Один метр кабеля сечением 100 мм2 обойдется вам примерно в 50 евро по сравнению с 5 евро за кабель сечением 10 мм2. Устойчивость также страдает, потому что более широкое использование меди влечет за собой значительные экологические издержки. Толстые кабели тяжелые и менее удобны в обращении. Спасибо Херману ван Мюнстеру и Ари ван Зилу за то, что они разъяснили это.
[18] Наши стандарты, Merge Alliance, данные получены в апреле 2016 г.
Прямые и косвенные методы приготовления — Девочки за грилем
Понятно, что первое, что вам нужно делать [всегда], — это покупать сырые ингредиенты самого высокого качества. Тем не менее, секрет хорошего приготовления на гриле прост: знать, какой метод приготовления использовать. Практически все приготовления на газовом и / или угольном гриле можно разделить на три метода приготовления: прямой, непрямой или комбинированный. Как следует из названия, разница между методами определяется тем, где кладется еда по отношению к огню.Метод DIRECT готовит пищу на прямом огне. НЕПРЯМОЕ приготовление пищи использует отраженное тепло для приготовления пищи; продукты размещаются подальше от источника пламени. Комбинированное приготовление — это просто комбинация двух методов.
Прямой метод:
ПРЯМОЙ метод используется в основном для обжаривания продуктов и для приготовления продуктов, для приготовления которых требуется менее 20 минут, таких как креветки, стейки, гамбургеры, отбивные и большинство овощей. Пища размещается непосредственно над источником тепла, и ее необходимо перевернуть один раз по истечении половины времени приготовления, чтобы обе стороны продукта подверглись воздействию тепла.Прямой метод можно использовать на любом гриле, но лучше всего при закрытой крышке гриля во время приготовления. Помните: чем длиннее закрыта крышка, тем дольше будет готовиться еда.
Косвенный метод:
Этот метод используется для больших кусков мяса и других продуктов, для которых требуется более длительное время приготовления при более низких температурах, таких как целая индейка, грудинка, кусочки курицы, ребра и другое жаркое. Пища готовится за счет отраженного тепла, как в конвекционной печи. Это позволяет быстрее готовить и получать более сочное мясо, не переворачивая продукты.Этот метод можно использовать только на закрытом гриле. В КОСВЕННОМ методе пища помещается между источниками тепла, а не непосредственно над газовыми горелками или древесным углем. Помните, что непрямое приготовление — это метод приготовления без подглядывания: каждый раз, когда вы поднимаете крышку, тепло уходит и может увеличить время приготовления.
Секрет непрямой варки на древесном угле заключается в добавлении брикетов в огонь каждый час, чтобы поддерживать огонь и поддерживать равномерную температуру приготовления. Брикеты древесного угля можно добавить в огонь, бросив дополнительные брикеты через отверстие за ручки с каждой стороны решетки для готовки.Используйте это эмпирическое правило: положите около 30 углей, покрытых серой золой, с каждой стороны с поддоном для сбора жира между ними, чтобы собирать жиры и соки во время приготовления пищи. Каждый час добавляйте древесный уголь по мере необходимости, чтобы поддерживать температуру приготовления.
Совет: Легкие брикеты в дымоходе устанавливают в одноразовый алюминиевый поддон за 20 минут до их добавления. Таким образом, новые брикеты уже достигли своей начальной (серо-зольной) температуры.
Combo:
Это буквально комбинация двух методов приготовления.Он используется для поджаривания продуктов на сильном огне перед медленным завершением процесса приготовления непрямым нагревом. Поместите пищу прямо над источником тепла, пока она не станет хорошо прожаренной, обычно всего на несколько минут, а затем переместите ее в ту зону гриля, которая настроена для непрямого нагрева, обычно в центр решетки для приготовления пищи, и завершите приготовление. Этот метод идеально подходит для отбивных, стейков, целой вырезки и кусочков курицы, которые имеют обжаренный карамелизованный внешний вид и сочную нежную внутреннюю часть. На самом деле, я использую комбинированный метод почти для всех своих блюд с белками и первыми блюдами, и это секрет приготовления пиццы на гриле!
Appliance Science: горячая физика индукционных варочных панелей
Индукционные варочные панели не нагреваются сами по себе: они создают тепло в основании посуды.GEКак получить тепло без огня? Это не магия, это наука. В частности, наука об индукции, где сильные электрические поля могут создавать тепло. Индукционные варочные панели используют это для нагрева пищи без огня или прямого нагрева, готовя более эффективно, чем их газовые или обычные электрические собратья. Отсутствие прямого нагрева делает их более безопасными: вы даже можете положить бумагу между индукционной варочной панелью и сковородой, и она не будет светиться.
Индукционные варочные панели также более эффективны, чем другие способы приготовления. Поскольку тепло генерируется внутри дна сковороды, они потребляют меньше электроэнергии, чем обычные электрические варочные панели, и могут нагреть предметы быстрее. Их также легче чистить, потому что на плоской стеклянной или керамической поверхности нет щелей или решеток для сбора пролитой пищи, и еда не пригорает на поверхности. Если вы что-то пролили, можно очистить его одним быстрым движением влажной тряпкой. Кроме того, их можно быстрее контролировать и точнее, опять же, потому что внутри посуды выделяется тепло, и поэтому они быстрее реагируют, когда вы поворачиваете ручку вверх или вниз.
Так почему же они не более распространены? Отчасти это утешение; большинству потребителей в США они не нравятся, потому что они выросли на газовых кольцах. Samsung недавно представила интересное решение этой проблемы: варочная панель, которая излучает светодиодное пламя, которое показывает, что кольцо включено, и указывает уровень нагрева. Индукционные варочные панели также дороже, потому что они сложнее, чем более распространенные газовые плиты.
Но главный вопрос в том, с какой посудой их можно использовать.Из-за того, как они работают, многие виды сковородок просто не нагреваются с помощью индукционных варочных панелей. Если у вас медное дно, стеклянные или алюминиевые сковороды, они не нагреваются, когда вы ставите их на индукционную плиту.
Как они работают
Индукционные варочные панели используют одну из странных причуд электромагнетизма: если вы поместите определенные материалы в быстро меняющееся магнитное поле, материал поглощает энергию и нагревается. Это потому, что поле создает электрические токи внутри материала, а сопротивление материала преобразует эту электрическую энергию в тепло, которое передается пище внутри сковороды.
Колин Макдональд / CNETПрямо под рабочей зоной индукционной варочной панели находится тугая спираль из кабелей, обычно сделанных из меди. Контроллер варочной панели пропускает через эту катушку переменный ток, который обычно меняет направление от 20 до 30 раз в секунду. Этот ток создает магнитное поле над катушкой. Когда ток меняется взад и вперед, магнитное поле делает то же самое.Если вы поставите сковороду на поверхность (так, чтобы она находилась прямо над катушкой), это магнитное поле индуцирует (отсюда и название) электрический ток в металлическом основании сковороды. Когда магнитное поле меняется, этот ток течет вперед и назад (поэтому его часто называют вихревым током, поскольку он кружится, как водоворот в реке). Металл сопротивляется этому потоку и, подобно электронагревателю, создает тепло, которое передается в пищу через металл сковороды. Если вы хотите мягко нагреть пищу, варочная панель пропускает через змеевик меньший ток, поэтому посуда выделяет меньше тепла, а пища нагревается медленнее.
Ограничения индукции
Ахиллесова пята этого процесса заключается в том, что он работает только с посудой, изготовленной из определенных материалов, обладающих определенными свойствами. Чтобы посуда могла нагреваться магнитным полем, она должна быть изготовлена из ферромагнитного материала, например из нержавеющей стали или железа.
Электроны обладают свойством, называемым вращением, при котором они могут вести себя как крошечный магнит, указывающий в определенном направлении. Причины этого сложны (это попадает в сумасшедший мир квантовой математики и странную природу субатомных частиц), но основная идея состоит в том, что в зависимости от того, где они окружают ядро атома, электроны вращаются друг относительно друга. направление (вызвано) или другое, вызванное вниз.Ферромагнитные материалы имеют несбалансированный набор электронов, где в каждом атоме больше электронов со спином вверх, чем вниз, или наоборот. Это означает, что атомы, из которых состоит материал, могут вести себя как крошечный магнит и на них могут влиять магнитные поля. Более крупная кристаллическая структура материала также помогает удерживать атомы выровненными, поэтому этот эффект увеличивается.
Цветные металлы, такие как цинк и большинство неметаллов, имеют сбалансированный набор электронов, где каждый электрон с восходящим спином соответствует электрону с нисходящим спином.Таким образом, магнитные поля на них не так сильно действуют, как на железные: магнитное поле создает только очень небольшие вихревые токи, которых недостаточно для нагрева.
Это означает, что есть простой способ проверить, будет ли ваша сковорода работать с индукционной плитой. Если прикоснуться к ним магнитом, и он прилипнет к дну сковороды, их можно будет использовать на индукционной плите. Если магнит не прилипнет, они не будут работать с индукцией. Многие производители кастрюль теперь также вводят на сковороде специальный знак, который показывает, что они подходят для использования на индукционной варочной панели: Индукционная метка.
Знак индукции CalphalonБудущее индукции
Индукционные варочные панели остаются нишевым рынком: по данным Ассоциации производителей бытовой техники (AHAM), только 7 процентов варочных панелей, проданных в первом квартале 2014 года в США, были индукционными. В других странах это не так: процент индукционных варочных панелей в Германии составляет 17 процентов, а в других частях Европы он даже выше.
Были попытки обойти ограничения индукционного приготовления: в 2009 году Panasonic представила модель, которая, как они утверждали, работала со всей металлической посудой, расширив диапазон кастрюль, которые можно было использовать. Это работало за счет увеличения частоты переменного магнитного поля, поэтому ток в кастрюлях протекал быстрее и производил эффект нагрева в более широком диапазоне металлов. Однако эта модель, похоже, недоступна за пределами Японии, и она была дороже, чем обычные индукционные варочные панели, поэтому, похоже, не имела успеха.По некоторым данным, это высокочастотное поле заставляло сковороды слегка левитировать, поэтому в руководстве рекомендовалось, чтобы сковороды всегда были достаточно полными, иначе сковороды имели обыкновение соскальзывать с варочной панели.
Таким образом, похоже, что индукционные варочные панели, вероятно, останутся нишевым рынком в США. Что жаль, поскольку они определенно являются классным примером науки о бытовой технике.
(Одно интересное замечание: большинство химических веществ, включая воду, обладают свойством, называемым димагнетизмом, когда молекулы могут действовать как очень маленькие магниты.При достаточно сильном магнитном поле это свойство может заставить объекты левитировать. Именно этот эффект использовали М. Берри и Андре Гейм, когда они левитировали лягушку в 1997 году. Но не пытайтесь делать это дома, потому что использованное магнитное поле было невероятно сильным, более 16 Тесла. Это в миллионы раз мощнее, чем магнитное поле индукционной варочной панели, и для его генерации требуется более 4 мегаватт электроэнергии. Индукционная варочная панель потребляет максимум несколько сотен ватт. Кроме того, левитация лягушки должна выполняться только квалифицированным ученым с соответствующими мерами безопасности.)
Chili Half-Smoke (Chili Dog в стиле D.C.): Рецепты: Рецепт кулинарного канала
Соус чили:
300 г говяжьего фарша мелкого помола
1 нарезанная желтая луковица
3 столовые ложки смеси порошка чили, например McCormick
1 чайная ложка сушеного горчичного порошка
Кошерная соль
1/2 чайной ложки молотого кориандра
1/4 чайной ложки молотого тмина
Щепотка кайенского перца, по желанию
1 свежий лавровый лист
1 зубчик чеснока, измельченный
1/4 стакана томатной пасты
2 столовые ложки яблочного уксуса
1 1/2 столовой ложки масла канолы
2 столовые ложки универсальной муки
2 стакана куриного бульона
Полудымки:
8 обычных (не горячих) хот-догов с полукопчением
1/4 стакана желтой горчицы для намазывания
8 жареных булочек для хот-догов
1/2 стакана нарезанного кубиками сырого лука для посыпки
Рекомендации по сервировке: картофель фри или чипсы
9780135000267: Введение в электронику постоянного / переменного тока — AbeBooks
С задней стороны обложки :Этот освященный веками текст, теперь в своем пятом издании, продолжает предлагать исчерпывающий и актуальный обзор электроники постоянного и переменного тока в стиле, который легко читать и легко понимать.Подходящий для использования в любом курсе цепей постоянного / переменного тока и некоторых курсах по электронным устройствам, он обеспечивает прочную основу, столь необходимую для четкого понимания области электроники в целом.
Этот отлаженный, тщательно протестированный и проверенный на точность том том состоит из четырех разделов:
- Часть I: Основы электричества
- Часть II: Электроника постоянного тока
- Часть III: Электроника переменного тока
- Часть IV: Полупроводниковые приборы и схемы
Написав 12 учебников и 20 изданий и имея 17-летний опыт обучения на передовой, автор бестселлеров Найджел Кук создал еще один выдающийся текст в этом пятом издании, снова сделав мир электроники ожил.Читатель быстро почувствует себя комфортно благодаря удобному для студентов стилю письма и способности автора сделать традиционно сложные темы легкодоступными.
Введение в электронику постоянного и переменного тока, пятое издание, сопровождается полным вспомогательным пакетом, включая:
- Файлы данных схемы Electronics Workbench / MultiSim, упакованные с каждой копией этого текста
- Лабораторное руководство (ISBN 0-13- 034031-6)
- Руководство по решениям для сопровождения лабораторного руководства (ISBN 0-13-034032-4)
- Практическое применение схем в электронике постоянного и переменного тока, с компакт-диском Study Wizard (ISBN 0-13-031084-0)
- Ответ инструктора — ключ к практическому применению схем в электронике постоянного / переменного тока (ISBN 0-13-060108-X)
- Руководство по решениям для инструктора (ISBN 0-13-034020-0)
- Прозрачные пленки PowerPoint ™ (ISBN 0-13-034038 -3)
- Файл тестового задания (ISBN 0-13-034033-2)
- Менеджер тестирования PH (ISBN 0-13-034037-5)
- Сопутствующий веб-сайт: http // www.prenhall.com/cook
«Об этом заголовке» может принадлежать другому изданию этого заголовка.
Электрическая плита постоянного тока для эффективного приготовления пищи
Купите одни из лучших и наиболее продуктивных. электрическая плита постоянного тока на Alibaba.com для разнообразных семейных и коммерческих кухонных целей. Эти невероятные продукты соответствуют высочайшим стандартам и могут обеспечивать стабильную производительность с течением времени.Опытный. dc электрическая плита сертифицирована и протестирована на оптимальную производительность и вызвала ажиотаж среди обычных людей. Оборудованный всеми последними и расширенными функциями, эти. электрическая плита постоянного тока , как известно, работает от источников электроэнергии и может быстрее служить вашим целям приготовления пищи. Ведущие поставщики и оптовики на сайте предлагают эти безупречные продукты по самым доступным ценам и по отличным разовым предложениям.Большой выбор передовых и модернизированных. Электрическая плита постоянного тока , доступная на сайте, изготовлена из прочных материалов, таких как чугун, нержавеющая сталь и чугун, и это лишь некоторые из них, которые обеспечивают неуклонную устойчивость на протяжении многих лет в самых сложных условиях. Эти. Электрическая плита dc также идеально подходит для коммерческих кухонь, так как они могут приготовить пищу быстрее и при этом без дополнительных затрат энергии. Безупречный. электрическая плита постоянного тока , представленная здесь, представляет собой изделия для установки на столешнице, которые можно устанавливать над индукционными печами, нагревателями, которые в основном работают от источников электроэнергии.
Alibaba.com предлагает экстравагантные разновидности. электрическая плита постоянного тока доступна в различных формах, размерах, материалах, характеристиках, поверхностях и других аспектах в зависимости от ваших конкретных требований. Эти спиральные конфорки, сплошные конфорки. электрическая плита постоянного тока - это водонепроницаемые, экологически чистые и экономичные варианты для более быстрых, эффективных и надежных процедур приготовления пищи. Эти. электрическая плита постоянного тока также поставляется с вариантами контроля температуры, световыми индикаторами, двойной спиралью, спиральной спиралью для нагрева, на основе различных моделей.Эти портативные и электрические устройства идеально подходят для всех, кто находится в пути.
Alibaba.com демонстрирует доступные цены. Электроплита dc вариации, чтобы купить данную продукцию в рамках вашего бюджета и требований. Эти качественные сертифицированные продукты предлагаются с превосходным послепродажным обслуживанием и снабжены гарантиями. Вы также можете выбрать параметры настройки на некоторых моделях.
Зависимость переменного тока (AC) от постоянного (DC)
Пораженный громом!
Откуда австралийская рок-группа AC / DC получила свое название? Да ведь переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи.В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменного тока (AC), с другой стороны, периодически меняет направление. Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.
Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить свой проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный ток.Переменный ток также обладает некоторыми полезными свойствами, такими как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства для передачи электроэнергии на большие расстояния.
Что вы узнаете
- История создания переменного и постоянного тока
- Различные способы генерации переменного и постоянного тока
- Некоторые примеры приложений переменного и постоянного тока
Рекомендуемая литература
и nbsp
и nbsp
Переменный ток (AC)
Переменный ток описывает поток заряда, который периодически меняет направление.В результате уровень напряжения также меняется на противоположный вместе с током. AC используется для подачи электроэнергии в дома, офисные здания и т. Д.
Генерация переменного тока
переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.
Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее.Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот короткая анимация, показывающая этот принцип:
(Видео предоставлено: Хуррам Танвир)
Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:
Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду в трубах вперед и назад (наш «переменный» ток).Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.
Формы сигналов
AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенным типом переменного тока является синусоида. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.
Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:
Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.
Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.
Описание синусоидальной волны
Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .
Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:
V (t) — это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени. Уравнение справа от знака равенства описывает, как напряжение изменяется с течением времени.
V P — амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, что означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.
Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.
2π — это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).
f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз конкретная форма волны (в данном случае один цикл нашей синусоидальной волны — подъем и спад) происходит в течение одной секунды.
t — наша независимая переменная: время (измеряется в секундах). По мере того, как меняется время, наша форма волны меняется.
φ описывает фазу синусоидальной волны. Фаза — это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °.Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.
Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):
Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).
Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерять напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).
ПРИМЕЧАНИЕ. Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Часто бывает полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере у нас было напряжение, изменяющееся от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.
Приложения
В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.
AC также может питать электродвигатели. Двигатели и генераторы — это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.
Постоянный ток (DC)
Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.
Генерация постоянного тока
постоянного тока можно создать несколькими способами:
- Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
- Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
- Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи
Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.
Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не течет по трубам.
Описание DC
DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:
Если мы построим график с течением времени, мы увидим постоянное напряжение:
Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. В действительности батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.
Приложения
Практически все проекты электроники и запчасти для продажи на SparkFun работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:
- Сотовые телефоны
- D&D Dice Gauntlet на основе LilyPad
- Телевизоры с плоским экраном (переменный ток переходит в телевизор, который преобразуется в постоянный ток)
- Фонари
- Гибридные и электромобили
Битва течений
Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и Европе привели к полномасштабной битве между распределением переменного и постоянного тока.
В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. .
переменного тока по сравнению с постоянным током
Томас Эдисон (Изображение любезно предоставлено biography.com)В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). 110 В допускает некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).
Несмотря на то, что падение напряжения на линиях электропередач было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.
Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.
Кампания по выявлению мазков Эдисона
В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток более опасен, чем постоянный ток. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.
Возвышение AC
В 1891 году Международная электротехническая выставка проходила во Франкфурте, Германия, и показала первую передачу трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены дисплеем. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.
Электростанция Эдварда Дина Адамса в Ниагарском водопаде, 1896 г. (Изображение предоставлено teslasociety.com)Westinghouse выиграла контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и в Буффало начали использовать переменный ток. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.
Высоковольтный постоянный ток (HVDC)
Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и обслуживания систем Thury, HVDC никогда не применялся в течение почти столетия.
С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) может использоваться специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.
В линияхHVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.
В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый служит определенной цели.
Ресурсы и дальнейшее развитие
Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке.