Какая температура плавления алюминия: Температура плавления алюминия

Содержание

Знание, какая температура плавления алюминия по Цельсию, обеспечивает домашнее литье

Такой металл, как алюминий, очень распространен в мире. Немалое его количество содержится в организме человека, а уж в окружающем мире его еще больше. Среди материалов, из которых построены дома, а также в конструкции любого автомобиля есть некая доля алюминия.

Нередко из этого вещества изготавливаются детали мебели. И если вдруг что-то из этого сломается, то можно либо приобрести новый товар в соответствующем магазине, либо заняться самостоятельным ремонтом изделия. В последнем случае придется плавить металл в домашних условиях, а для этого уже нужно знать о некоторых свойствах этого металла.

  • О температуре плавления
    • Уменьшение температуры
  • Процесс плавления в домашних условиях
    • Средства защиты
    • Выбор формы для литья
  • Кратко о процессе

Для изготовления какой-либо алюминиевой конструкции вовсе не обязательно подробно изучать все характеристики вещества, но на основные моменты следует обратить свое внимание, включая знание, при какой температуре плавится алюминий.

О температуре плавления

Необходимо помнить: алюминий очень легко поддается литью и начинает превращаться в жидкую субстанцию уже при температуре в 660 градусов. Для того чтобы понять, что этот показатель довольно низкий, достаточно сравнить его с температурами плавления других металлов, которые также нередко используются для изготовления тех или иных, нужных в обиходе предметов.

Например:

  • сталь начинает плавиться лишь при температуре в 1300 градусов;
  • чугун — при 1100 градусах.

Но все же, хоть температура плавления алюминия по Цельсию и не слишком высока по сравнению со многими другими металлами, достичь 600 градусов в домашних условиях с использованием обыкновенной газовой или электрической плиты довольно трудно.

Уменьшение температуры

Прежде чем подвергать металл плавлению, можно специальными методами уменьшить его температуру плавления, например, использовать в виде порошка. В этом случае он начнет плавиться чуть быстрее. Но при этом он становится опасным, так как взаимодействуя с атмосферным кислородом, может окислиться или воспламениться. А в результате окисления, как мы помним из школьного курса химии, образуется оксид алюминия; и температура, при которой начинает плавиться это вещество, уже превышает две тысячи градусов.

Вообще избежать образования оксида не получится, если заниматься плавлением алюминия, но уменьшить количество лишнего вещества вполне возможно. При плавлении алюминия нужно не допускать попадания в вещество воды. Ведь если это случится, то произойдет взрыв.

Перед началом процесса нужно убедиться в том, что сырье является абсолютно сухим. Чаще всего в качестве исходного материала применяется алюминиевая проволока. Предварительно ее нужно с помощью ножниц разделить на множество мелких по длине кусочков. А для того, чтобы уменьшить площадь контакта с содержащимся в атмосфере кислородом, эти кусочки прессуются пассатижами.

Не всегда есть необходимость создать алюминиевое изделие высокого качества, поэтому вовсе не обязательно всегда использовать порошок или мелко нарезанную и плотно сдавленную проволоку. Можно взять любой предмет, который уже был использован, например, банку, в которой хранились консервы. Но перед плавкой нужно лишить ее нижнего шва или обрезать профиль. Полученное сырье может быть окрашено или испачкано. Не нужно об этом беспокоиться. Все, что имеется лишнее на поверхности, быстро отходит в виде шлаков.

Процесс плавления в домашних условиях

Плавление — это довольно опасный процесс. Предварительно необходимо обязательно побеспокоиться о средствах защиты от различных ядовитых веществ, которые будут образовываться, а также подготовить литейную форму.

Средства защиты

  1. Не обойтись без специальных перчаток даже в том случае, если расплавить алюминий необходимо лишь единожды. Это, пожалуй, основное средство защиты, так как расплавленная масса с большой долей вероятности может попасть на руки, и тогда неминуемо на коже появится ожог, поскольку температура жидкого металла превышает 600 градусов.
  2. Следующая часть тела, которую также необходимо защитить от попадания горячего алюминия — глаза. При частой плавке не обойтись без специальной защитной маски, ну или хотя бы очков. Но лучше всего работать в костюме, который устойчив к воздействию высокой температуры в несколько сотен градусов.
  3. Если необходимо получить чистый алюминий, потребуется рафинирующий флюс. И тогда работать нужно в химическом респираторе.

Выбор формы для литья

Для того, чтобы отлить алюминий, необязательно запасаться литейной формой. Достаточно лишь приобрести лист из более тугоплавкого металла — из стали, вылить на него расплавленный алюминий и подождать, пока последний затвердеет. Но для получения какой-либо детали из алюминия обязательно придется приобретать форму для литья.

Ее можно изготовить самостоятельно в домашних условиях. Для этой цели обычно используется скульптурный гипс. Он заливается в форму, затем какое-то время охлаждается. После этого в него вставляют модель и сверху кладут вторую емкость с гипсом. При этом важно не забыть проделать отверстие в гипсе с помощью какого-нибудь предмета цилиндрической формы. Через это отверстие и будет заливаться горячий алюминий.

При плавлении алюминия не обойтись без так называемого тигеля: то есть емкости из тугоплавкого металла. Она может быть выполнена из фарфора, кварца, стали, чугуна. Впрочем, изготавливать тигель самостоятельно вовсе не обязательно, ведь его можно просто купить в специальном магазине. Объем тигеля зависит от того, какое количество металла требуется получить.

Кратко о процессе

Плавка алюминия в домашних условиях — это не такой уж трудный процесс, которым он может показаться поначалу. Кусочки металла нагреваются до нужной температуры плавки алюминия в специальной емкости.

Некоторое время полученный расплав необходимо выдерживать в разогретом состоянии и периодически удалять с его поверхности образующийся шлак. После этого чистый жидкий металл наливается в специальную форму, в которой он некоторое время будет остывать.

Время, которое уйдет на плавку, зависит от самой печи, а точнее от той температуры, которую она может обеспечить. Если же вместо печи используется газовая горелка, то она должна нагревать металл сверху.

Алюминий и сплавы. Свойства.

Свойства алюминия

Алюминий и его сплавы имеют малую плотность 2,64— 2,89 г/см3. Прочностные же свойства зависят от легирования, тер­мической обработки, степени деформирования и могут достигать высоких значений. По прочности многие алюминиевые сплавы не уступают конструкционным сталям.

Чистый алюминий (суммарное содержание примесей не более 0,05%) имеет гранецентрированную кубическую решетку с пара­метрами 4,04 А. Температура его плавления 659,8—660,2° С, температура кипения 1800—2500° С.

Для сплавов алюминия электропроводность составляет 30—50% электропроводности меди, а для чистого алюминия 62—65% электропроводности меди.

Алюминий окисляется с образованием окисной пленки Аl203, которая защищает его от дальнейшего окисления,Химический состав деформируемых и литейных алюминиевых сплавов по ГОСТам 4784—65 и 2685—63.

Из алюминиевых сплавов в основном изготовляют конструк­ции, работающие при сравнительно низких температурах не свыше 350° С. Так дуралюмин используют для работы при темпе­ратурах не более 200° С, сплавы типа В95 до 125° С, авиали до 80—100° С при длительной работе и до 200° С при кратковре­менной. Специальные сплавы САП (спеченный алюминиевый поро­шок) применяют и для работы при более высоких температурах. До температуры 100° С кратковременные механические свойства меняются мало. Обращает внимание высокое относительное удли­нение алюминиевых сплавов при низких температурах.

Характеристики длительной проч­ности термически не упрочняемых сплавов обычно ниже, чем тер­мически упрочняемых.

Длительные выдержки сплавов типа авиаль при температурах свыше 80—100° С приводят к их упрочнению и снижению пласти­ческих свойств. Исследованиями, проведенными авторами, уста­новлено, что относительное удлинение снижается при указанных условиях с 20—25% (исходное состояние после закалки и есте­ственного старения) до 1—2%. Подобное ухудшение свойств, при которых возможно хрупкое разрушение конструкций, яв­ляется существенным препятствием применения сплавов такого типа для работы при температурах выше 80° С.

 

Циклическая прочность 

Циклическая прочность деформируемых сплавов при симме­тричном изгибе на базе 5*108циклов составляет 3,5 кГ/мм2 для сплава А ДМ, 4,2—6,3 кГ/мм2 для сплава АДН, 5—6,5 кГ/мм2 для сплава АМцАМ, 15 кГ/мм2 для сплава В95.

Области применения литейных сплавов различны. Сплавы группы I рекомендуют для литья в песчаные формы, кокиль и для литья под давлением. Сплав АЛ22 обычно применяют в закален­ном состоянии, а сплав АЛ23 и АЛ29 — в литом. Сплавы группы II имеют высокие литейные свойства благодаря наличию в сплавах двойной эвтектики, которая уменьшает также литейную усадку и склонность к образованию горячих трещин. Сплавы AЛ2, АЛ4 и АЛ9 обладают повышенной коррозионной стойкостью, поэтому их применяют для изделий, работающих во влажной и морской средах. С целью получения заданных механических свойств отливки подвергают термической обработке по различ­ным режимам.

Сплавы группы III обладают высокими механи­ческими свойствами, особенно пределом текучести и повышенной жаропрочностью. У этих сплавов пониженные литейные свойства и коррозионная стойкость, кроме того, они склонны к образова­нию горячих трещин. Для выполнения отливок сложной формы такие сплавы не рекомендуют. Сплав АЛ7 применяют для деталей, испытывающих средние нагрузки и температуры не свыше 200° С. Сплав АЛ 19 по сравнению с АЛ 17 имеет более высокую жаропроч­ность (в 2 раза), и применяют его для силовых деталей в условиях статических и ударных нагрузок при температурах до 300° С.

Сплавы группы IV применяют для всех способов литья. По ли­тейным свойствам они менее технологичны, чем сплавы II.

Сплавы группы V применяют для самых разнообразных дета­лей, работающих при высоких температурах. К этой группе относятся также самозакаливающиеся сплавы.

 

Механические свойства

Механические свойства всех вышеуказанных, литейных спла­вов зависят от режимов термической обработки, определяющей структурное и фазовое состояние сплавов.

Высокая коррозионная стойкость алюминия объясняется обра­зованием окисиой пленки Аl203. Коррозионная стойкость алю­миния зависит от влияния агрессивной среды на растворимость защитной окисной пленки, от чистоты обработки поверхности и режима термической обработки. Чистый алюминий обладает высокой стойкостью в сухом и влажном воздухе. В азотной кислоте концентрации 30—50% при увеличении температуры скорость коррозии алюминия возрастает. При концентрации азотной кис­лоты выше 80% коррозия резко снижается. Алюминий обладает высокой стойкостью в разбавленной серной кислоте и в концен­трированной при 20° С. Средние концентрации серной кислоты (более 40%) наиболее опасны для алюминия. При комнатных тем­пературах алюминий устойчив в фосфорной и уксусных кислотах. Такие, как муравьиная, щавелевая, трихлоруксусная и другие хлороорганические кислоты значительно разрушают алюминий. В растворах едких щелочей окисная пленка алюминия раство­ряется. Растворы углекислых солей калия и натрия оказывают меньшее влияние на скорость коррозии алюминия.

Алюминий при температурах до 300° С обладает хорошей стойкостью в жидких металлических средах, например, натрии.

Коррозионная стойкость алюминия в воде и водяном паре при повышенных температурах (выше 200° С) зависит от чистоты алюминия. Если происходит движение среды, то скорость корро­зии повышается в 10—60 раз.

Основными видами коррозии алюминиевых сплавов является межкристаллитная коррозия и коррозия под напряжением. Для повышения коррозионных свойств применяют защитные покрытия, такие, как плакирование, оксидные пленки, лакокрасочные по­крытия, смазки, хромовые или никель-хромовые гальванические покрытия.

 

Технология производства

Технология производства и термическая обработка могут оказывать существенное влияние на коррозионные свойства спла­вов. Сплавы АД, АД1, АМц, АМг2 и АМгЗ мало чувствительны к методам производства. Коррозионная стойкость сплавов АМг5, АМгб во многом зависит от методов производства. У этих сплавов при длительном нагреве на 60—70° С проявляется склонность к межкристаллитной коррозии и коррозии под напряжением.

Сплавы Д1, Д18, Д16 и типа В95 имеют пониженную корро­зионную стойкость. Подобные сплавы применяют с соответствую­щей защитой от коррозии. Сплавы типа авиаль обладают высокой коррозионной стойкостью в воде высокой чистоты с до­бавлением углекислого газа при температурах до 100° С.

При изучении влияния облучения на некоторые характеристики алюминия установлено, что после облучения интегральным пото­ком 1,1 х 1019 нейтрон/см2 при 80° С критическое напряжение сдвига увеличивается в 5 раз. При этом электросопротив­ление алюминия повышается на 30%. Влияние облучения на электрическое и критическое сопротивления сдвигу снимается при температуре около 60° С.

Из разработанных свариваемых, термически обрабатываемых, самозакаливающихся при сварке сплавов, наиболее характерны сплавы системы Аl—Zn—Mg. Однако, обладая удовлетвори­тельными прочностными свойствами, они склонны к коррозии под напряжением и замедленному разрушению. Такая склонность вызвана переходом от зонной к фазовой стадии старения даже при комнатных температурах эксплуатации сварных соединений. Поэтому сплавы системы Аl—Zn-Mg можно применять в усло­виях низких температур, исключающих переход к фазовому ста­рению при низком уровне сварочных напряжений. Содержание цинка и магния должно быть при этом минимальным.

 

Высокая стойкость 

К самозакаливающимся сплавам относится сплав 01911, по химическому составу он является среднелегированным сплавом системы Аl—Zn-Mg. Высокая стойкость против коррозии под напряжением обеспечивается суммарным содержанием цинка и магния до 6,5% и дополнительным введением марганца, хрома, меди и циркония. Причем медь ухудшает свариваемость сплава, поэтому для его сварки применяют проволоку марки 01557, аналогичную по химическому составу сплаву АМг5, но с добавкой циркония й хрома. Сплавы Д20 и АК8 достаточно прочны, но имеют низкую общую коррозионную стойкость. Они обладают высокой стойкостью против коррозии под напряжением и замедленного разрушения.

Перспективными являются спеченные сплавы. К числу жаро­стойких относятся сплавы типа САП, которые можно применять для конструкций, работающих при температурах до 400—500° С. САП содержит до 13% тугоплавкой окисной фазы, поэтому тем­пература плавления его очень высокая (2000° С).

Из сплавов САП-1 (6,0—9,0% А1203) и САП-2 (9,1 — 13,0% А1203) изготовляют такие же полуфабрикаты, как из алю­миниевых сплавов. Сплав САП-3 применяют только для прессо­ванных полуфабрикатов. Наибольшая масса прессованных полу­фабрикатов до 400 кг. Размеры изготовляемых листов 1000 X Х7000 мм при толщине от 0,8 до 10 мм.

Сплавы имеют высокие прочностные свойства. Так у сплава САП-1 при 20° С ов = 35 кГ/мм2, а у САП-3  40 кГ/мм2. Подобными свойствами обладает сплав САС-1 (25—30% Si и 7% Nі), получаемый из распыленного порошка. Он износостоек, достаточно прочен (<та = 25,0-28,0 кГ/мм2), имеет коэффициент линейного расширения, близкий к стали, и высокий модуль упру­гости.

Сплавы САС-1 и САП не склонны к коррозии под напряжением и замедленным разрушениям. Сплав САП можно применять при сравнительно высоких температурах эксплуатации. При сварке этих сплавов обычно применяют присадочную проволоку марки АМг6.

 

Материалы с сатйа: http://ruswelding.com

 

Температура плавления алюминия в домашних условиях: плавка алюминиевых сплавов

Температура плавления алюминия в домашних условиях

  • admin
  • Стройка и ремонт
  • 0

Данный элемент (Al) является самым распространенным среди всех металлов. Благодаря своим особым свойствам (небольшой вес, мягкость и ряд других), он нашел широкое применение не только в промышленности. С алюминием часто имеют дело и домашние умельцы, так как его обработка труда не представляет ввиду невысокой температуры плавления.

Иногда приходится расплавлять этот металл для заливки в определенные формы. Как это сделать, причем в бытовых условиях, без специального оборудования – этот вопрос интересует многих. Прежде всего, нужно отметить, что плавление можно осуществить двумя способами – поверхностным нагревом металла и «внутренним». Последний способ в домашних условиях вряд ли осуществим, так как предусматривает применение специального оборудования. Например, для нагрева индукционного. Следовательно, самостоятельно можно использовать только способ внешнего воздействия (теплового) на Al.

Мы не будем рассматривать все нюансы, так как точная температура плавления зависит от нескольких факторов – давления, химической чистоты материала и некоторых других. Поэтому приведем только усредненное значение – 660 ºС (по шкале Кельвина это 993,5 º).

А вот мнения о том, можно ли достигнуть такой температуры в домашних условиях, встречаются разные. Одни «самоделкины» утверждают, что сами плавили Al на обычном костре (даже указывают температуру в 560 ºС), другие над этим смеются и говорят, что придется применять мощные нагревательные приборы и при этом не смотреть на эл/счетчик, а то мол, «сердце прихватит» от того, как он «накручивает».

Правильность утверждений о том, что алюминий можно расплавить на открытом огне, можно проверить только на практике. Попробуйте, может, и получится.

Остается добавить, что не все изделия, которые мы считаем «алюминиевыми» (например, кастрюли), на самом деле являются таковыми. В чистом виде этот металл в производстве редко используется. Как правило, все разновидности подобной продукции сделаны из различных сплавов Al, которые в обиходе имеют общее название «дюраль». А она плавится и при меньших значениях температуры.

Источник: https://ismith.ru/metal/temperatura-plavleniya-alyuminiya/

О температуре плавления

Необходимо помнить: алюминий очень легко поддается литью и начинает превращаться в жидкую субстанцию уже при температуре в 660 градусов. Для того чтобы понять, что этот показатель довольно низкий, достаточно сравнить его с температурами плавления других металлов, которые также нередко используются для изготовления тех или иных, нужных в обиходе предметов.

Например:

  • сталь начинает плавиться лишь при температуре в 1300 градусов;
  • чугун — при 1100 градусах.

Но все же, хоть температура плавления алюминия по Цельсию и не слишком высока по сравнению со многими другими металлами, достичь 600 градусов в домашних условиях с использованием обыкновенной газовой или электрической плиты довольно трудно.

Уменьшение температуры

Прежде чем подвергать металл плавлению, можно специальными методами уменьшить его температуру плавления, например, использовать в виде порошка. В этом случае он начнет плавиться чуть быстрее. Но при этом он становится опасным, так как взаимодействуя с атмосферным кислородом, может окислиться или воспламениться. А в результате окисления, как мы помним из школьного курса химии, образуется оксид алюминия; и температура, при которой начинает плавиться это вещество, уже превышает две тысячи градусов.

Вообще избежать образования оксида не получится, если заниматься плавлением алюминия, но уменьшить количество лишнего вещества вполне возможно. При плавлении алюминия нужно не допускать попадания в вещество воды. Ведь если это случится, то произойдет взрыв.

Перед началом процесса нужно убедиться в том, что сырье является абсолютно сухим. Чаще всего в качестве исходного материала применяется алюминиевая проволока. Предварительно ее нужно с помощью ножниц разделить на множество мелких по длине кусочков. А для того, чтобы уменьшить площадь контакта с содержащимся в атмосфере кислородом, эти кусочки прессуются пассатижами.

Не всегда есть необходимость создать алюминиевое изделие высокого качества, поэтому вовсе не обязательно всегда использовать порошок или мелко нарезанную и плотно сдавленную проволоку. Можно взять любой предмет, который уже был использован, например, банку, в которой хранились консервы. Но перед плавкой нужно лишить ее нижнего шва или обрезать профиль. Полученное сырье может быть окрашено или испачкано. Не нужно об этом беспокоиться. Все, что имеется лишнее на поверхности, быстро отходит в виде шлаков.

Процесс плавления в домашних условиях

Плавление — это довольно опасный процесс. Предварительно необходимо обязательно побеспокоиться о средствах защиты от различных ядовитых веществ, которые будут образовываться, а также подготовить литейную форму.

Средства защиты

  1. Не обойтись без специальных перчаток даже в том случае, если расплавить алюминий необходимо лишь единожды. Это, пожалуй, основное средство защиты, так как расплавленная масса с большой долей вероятности может попасть на руки, и тогда неминуемо на коже появится ожог, поскольку температура жидкого металла превышает 600 градусов.
  2. Следующая часть тела, которую также необходимо защитить от попадания горячего алюминия — глаза. При частой плавке не обойтись без специальной защитной маски, ну или хотя бы очков. Но лучше всего работать в костюме, который устойчив к воздействию высокой температуры в несколько сотен градусов.
  3. Если необходимо получить чистый алюминий, потребуется рафинирующий флюс. И тогда работать нужно в химическом респираторе.

Выбор формы для литья

Для того, чтобы отлить алюминий, необязательно запасаться литейной формой. Достаточно лишь приобрести лист из более тугоплавкого металла — из стали, вылить на него расплавленный алюминий и подождать, пока последний затвердеет. Но для получения какой-либо детали из алюминия обязательно придется приобретать форму для литья.

Ее можно изготовить самостоятельно в домашних условиях. Для этой цели обычно используется скульптурный гипс. Он заливается в форму, затем какое-то время охлаждается. После этого в него вставляют модель и сверху кладут вторую емкость с гипсом. При этом важно не забыть проделать отверстие в гипсе с помощью какого-нибудь предмета цилиндрической формы. Через это отверстие и будет заливаться горячий алюминий.

При плавлении алюминия не обойтись без так называемого тигеля: то есть емкости из тугоплавкого металла. Она может быть выполнена из фарфора, кварца, стали, чугуна. Впрочем, изготавливать тигель самостоятельно вовсе не обязательно, ведь его можно просто купить в специальном магазине. Объем тигеля зависит от того, какое количество металла требуется получить.

удельный вес и теплопроводность, производство, применение, сплавы и температура плавления

Алюминий — всем известный из школьного курса химии элемент из таблицы Менделеева. В большей части соединений он проявляет трехвалентность, но в условиях высоких температур достигает некоторой степени окисления. Одним из самых важных его соединений является оксид алюминия.

Алюминий — серебристый металл с удельным весом 2,7*103кг/м3 и плотностью 2,7 г/см3. Легкий и пластичный, хорош, как проводник электроэнергии, благодаря тому, что теплопроводность алюминия довольно высока — 180 ккал/м*час*град (указан коэффициент теплопроводности). Теплопроводность алюминия превышает аналогичный показатель чугуна в пять раз и железа в три раза.

Благодаря своему составу, этот металл можно легко раскатать в тонкий лист или вытянуть в проволоку. При соприкосновении с воздухом на его поверхности образуется оксидная пленка (оксид алюминия), которая является защитой от окисления и обеспечивает его высокие антикоррозионные свойства. Тонкий алюминий, например, фольга или порошок этого металла мгновенно сгорают, если их нагреть до высоких температур и становятся оксидом алюминия.

Металл не особенно устойчив к агрессивным кислотам. К примеру, его можно растворить в серной или соляной кислотах даже, если они разбавленны, особенно, если их нагреть. Однако он не растворяется ни в разбавленной ни в концентрированной и при этом холодной азотной кислоте, благодаря оксидной пленке. Определенное воздействие на металл имеют водные растворы щелочей — оксидный слой растворяется и образуются соли, содержащие этот металл в составе аниона — алюминаты.

Известно, что алюминий является самым часто встречающимся металлом в природе, но впервые в чистом виде его смог получить ученый-физик из Дании Х. Эрстед еще в 1925 году XIX века. Этот металл занимает третье место по распространенности в природе среди элементов и является лидером среди металлов. 8,8% алюминия содержит земная кора. Его выявили в составе слюд, полевых шпатов, глин и минералов.

Производство и применение алюминия

Процесс производства очень энергоемкий и поэтому первый большой завод в нашей стране был построен и запущен в XX веке. Основным сырьем для получения этого металла является оксид алюминия. Чтобы его получить, необходимо минералы, содержащие алюминий или бокситы, очистить от примесей. Далее электролитическим способом расплавляют естественный или полученный искусственным путем криолит при температуре чуть ниже 1000 ºС . Затем начинают понемногу добавлять оксид алюминия и сопутствующие вещества, необходимые для улучшения качества металла. В процессе оксид начинает разлагаться и выделяется алюминий. Чистота получаемого металла 99,7% и выше.

Этот элемент нашел свое применение в пищевом производстве в качестве фольги и столовых приборов, в строительстве используют его сплавы с другими металлами, в авиации, электротехнике в качестве заменителя меди для кабелей, как легирующая добавка в металлургии, алюмотермии и других отраслях.

Что такое температура плавки металлов?

Температура плавки металлов – значение температуры нагревания металла, при которой начинается процесс перехода из исходного состояния в другое, то есть процесс противоположный кристаллизации (отвердевания), но неразрывно связаный с ней.

Итак, для расплавления металл нагревают извне до температуры плавки и продолжают нагревать для преодоления границы фазового перехода. Суть в том, что показатель температуры плавки означает температуру, при которой металл находится в фазовом равновесии, то есть между жидким и твердым телом. Другими словами существует одновременно, как в том, так и в другом состоянии. А для плавления нужно нагреть его больше пограничной температуры, чтобы процесс пошел в нужную сторону.

Стоит сказать о том, что только для чистых составов температура плавки постоянна. Если в составе металла находятся примеси, то это сместит границу фазового перехода, а, соответственно, и температура плавления будет другой. Это объясняется тем, что состав с примесями имеет иную кристаллическую структуру, в которой атомы взаимодейстуют между собой по-другому. Исходя из этого принципа, металлы можно разделить на:

  • легкого плавления, такие как ртуть и галлий, например, (температура плавки до 600°С)
  • среднеплавкие — это алюминий и медь (600-1600°С)
  • тугоплавкие — молибден , вольфрам (больше 1600°С).

Знание показателя температуры плавления необходимо, как при производстве сплавов для правильного расчета их параметров, так и при эксплуатации изделий из них, поскольку этот показатель определяет ограничения их использования. Уже давным давно для удобства ученые физики свели эти данные в одну таблицу. Существуют таблицы температур плавки как металлов, так и их сплавов.

Температура плавления алюминия

Плавление — процесс перерабатывания металлов обычно в специальных печах для получения сплава нужного качества в жидком состоянии . Как уже говорилось выше, алюминий относится к среднеплавким металлам и плавится при нагреве до 660ºС. При изготовлении изделий из металла температура плавления влияет на выбор плавильной печи или агрегата и, соответственно, используемых для отливки огнеупорных форм.

Указанная температура относится к процессу расплавки чистого алюминия. Так как в чистом виде он применяется реже, а введение в его состав примесей меняет температуру плавления. Сплавы алюминия изготавливаются для того, чтобы изменить какие-либо его свойства, увеличить прочность, например, или жароустойчивость. В качестве добавок применяют:

  • цинк
  • медь
  • магний
  • кремний
  • марганец.

Добавление примесей влечет за собой снижение электропроводности, ухудшение или улучшение коррозионных свойств, повышение относительной плотности.

Обычно добавление других элементов в металл приводит к тому, что температура плавления сплава понижается, но не всегда. К примеру, добавление меди в объеме 5,7% приводит к понижению температуры плавления до 548ºС. Полученный сплав называют дюралюминием, его подвергают дальнейшей термической закалке. А алюминиево-магниевые составы плавятся при температуре 700 — 750ºС.

Во время процесса плавления необходим строгий контроль температуры расплава, а также присутствия газов в составе, которые выявляют через технологические пробы или способом вакуумной экстракции. На заключительной стадии производства сплавов алюминия проводят их модифицирование.

  • Автор: Фёдор Ильич Артёмов

Плотность алюминия при 20°С
Степень чистоты, %   99,25 99,40 99,75 99.97 99,996 99.9998
Плотность при 20°С, г/см3  2,727 2,706 2,703 2,6996 2,6989 2,69808
Плотность расплавленного алюминия при 1000°С
Степень чистоты, % 99,25 99. 40 99.75
Плотность, г/см3 2,311 2,291 2,289
Kaye & Laby Online, 16-е издание, 1995 г. Версия 1.0 (2005 г.), по состоянию на декабрь 2014 г.
Дж. С. Курси, Д. Дж. Шваб, Дж. Дж. Цай и Р. А. Драгосет, Атомные веса и изотопные композиции (версия 4.1) , 2015 г., Национальный институт стандартов и технологий, Гейтерсберг, Мэриленд, по состоянию на ноябрь 2016 г.
TL Cottrell, The Strengths of Chemical Bonds , Butterworth, London, 1954.

 

Использование и свойства

John Emsley, Nature’s Building Blocks: An AZ Guide to the Elements , Oxford University Press, New York, 2nd, New York, 2nd Издание 2011 г.
Национальный ускорительный центр Томаса Джефферсона — Управление научного образования, It’s Elemental — The Periodic Table of Elements, по состоянию на декабрь 2014 г.
Периодическая таблица видео, по состоянию на декабрь 2014 г.

 

Данные о рисках снабжения

Частично получены из материалов, предоставленных Британской геологической службой © NERC.

ИСТОРИЯ ТЕКСТ

Элементы 1-112, 114, 116 и 117 © Джон Эмсли 2012. Элементы 113, 115, 117 и 118 © Королевское общество химии 2017.

. .

 

Периодическая таблица видео

Создано видеожурналистом Брэди Хараном, работающим с химиками Ноттингемского университета.

Загрузите наше бесплатное приложение Периодической таблицы для мобильных телефонов и планшетов.

Исследуйте все элементы

 

Оптимальная температура литья алюминия: условия плавления и заливки

Температура алюминиевого литья оказывает большое влияние на механические свойства алюминиевого сплава, а также определяет качество алюминиевых отливок. В статье анализируются два его основных параметра, включая температуру плавления и температуру заливки алюминия в процессе литья в песчаные формы, и указывается оптимальная температура для изготовления деталей из алюминиевого литья наилучшего качества.

Являясь одним из трех самых распространенных элементов на Земле, алюминиевое литье имеет широкий диапазон приложений как в промышленных, так и в непромышленных областях, от автомобилей, транспорта, строительства, садовой мебели, авиации до кухонных принадлежностей.

Поскольку мир требует высокой точности деталей и меньшего количества дефектов литья, необходимо, чтобы алюминиевые литейные заводы тщательно контролировали и просчитывали технические вопросы, связанные с производством качественных литейных изделий, соответствующих требованиям клиентов.

Литье алюминия определяется как процесс плавления алюминиевых сплавов, заливки расплавленного алюминия в формы и охлаждения. При этом конкретная температура алюминиевого литья, включая температуру плавления и температуру заливки, является одним из важнейших факторов, прямо или косвенно влияющих на конечное качество алюминиевого литья.

Следовательно, очень важно хорошо знать температуру плавления и заливки алюминиевых сплавов, которые вы хотите плавить и отливать.

В этой статье мы поможем вам прояснить эти соображения.

Содержание

  1. Температура плавления алюминия
    • Влияние температуры плавления алюминия на качество отливки
    • Температура плавления чистого алюминия
    • Диапазон температур плавления алюминиевых сплавов
  2. ТЕМПЛАТА АЛУМИНЕВА
    • Влияние температуры заливки алюминия на качество литья
    • Рассчитайте температуру алюминиевого сплава
      • Эффект плесени на алюминиевую температуру
  3. 13030303030303030303030303030303030303030303030331303030303030303030303030303313030303030303313313030303303330 гг. Скорость заливки на качество отливки
  4. Расчет скорости заливки алюминия
    • Влияние формы отливки на скорость заливки алюминия
  5. Заключение

Температура плавления алюминия

Влияние температуры плавления алюминия на качество отливки

Как один из двух параметров температуры литья алюминия, температура плавления оказывает большое влияние на качество алюминиевых отливок.

Температура плавления, обеспечиваемая для разжижения металла, должна быть достаточной, не слишком низкой и не слишком высокой, чтобы получить наилучшее качество отливки.

Недостаточная температура плавления алюминия (низкая температура плавления) может привести к дефектам литья, таким как усадка алюминиевого литья, поскольку жидкость затвердевает до того, как заполняется полость формы.

Наоборот, при чрезмерной температуре плавления алюминия (высокая температура плавления) возможно появление горячих трещин в формах и позднее образование пористости в отливках.

Таким образом, литейщики должны рассчитать точный диапазон температур плавления алюминия, который используется не только для обеспечения качества исходного материала, но и для последующего расчета надлежащей температуры заливки.

Температура плавления чистого алюминия

Температура плавления металла зависит от его чистоты. Он также применяется для определения температуры плавления алюминия.

Как цитируется во многих исследованиях, чистый алюминий бывает нескольких видов в зависимости от содержания алюминия.

Particularly, the melting temperature of three pure aluminum types showed as the table 1:

Table 1: The melting temperature of some pure aluminum

STT Type % содержания алюминия Температура плавления ( ° C)
1 Ultrapure aluminum 99996% 660,37 °C
2 High pure aluminum 99,5 % 657 °C
1 Чистый алюминий 99,0 % 643 °C

Диапазон температур плавления алюминиевых сплавов

Поскольку механические характеристики чистого алюминия низкие, алюминиевый материал, используемый для литья, легирован другими элементами таких как кремний, медь и магний, для повышения его литейных свойств, коррозионной стойкости, прочности и механических характеристик для вышеуказанных целей.

Алюминиевые сплавы входят в серию типов , соответствующих диапазонам сплавов.

Алюминиевые сплавы не разжижаются при определенной температуре плавления, но находятся в диапазоне температур, который зависит от состава сплава.

Как правило, добавление сплавов снижает температуру плавления алюминия. Температура плавления алюминиевого сплава находится в диапазоне от 463 до 671°C (865-1240°F).

См. диапазоны температур плавления некоторых распространенных литейных алюминиевых сплавов, разработанных по системе Алюминиевой ассоциации (АА) в таблице 2.

Таблица 2: Диапазон температуры плавления некоторых общих литых алюминиевых сплавов (обозначение AA)

STT . 657 °C
2 A356 557.2 – 612.8 °C
3 A380 566°C-580 °C
4 A413 649 – 760 °C
5 A360 577°C-612 °C
6 319 516 – 604 °C
7 390 507 – 649 °C

Температура заливки алюминия

В процессе литья алюминия расплавленный алюминий должен быть в конечном итоге залит в полость формы через литниковую систему и течь, чтобы полностью заполнить все формовать полости и края до того, как металл замерзнет.

Одним из жизненно важных параметров, влияющих на этот процесс, является температура заливки (анализируется здесь), а другой — скорость заливки (будет обсуждаться в следующем разделе).

Влияние температуры заливки алюминия на качество отливки

Температура заливки алюминия вместе с температурой плавления являются параметрами температуры отливки алюминия, которые сильно влияют на механические свойства и литейные способности алюминиевых сплавов.

Подобно температуре плавления, температура заливки алюминия должна быть достаточной, не слишком высокой и не слишком низкой, чтобы обеспечить качество отливки.

Добавление слишком высокой температуры заливки может привести к усадке, заворачиванию формы и снижению точности размеров изделий из алюминиевого литья.

С другой стороны, слишком низкая температура заливки алюминия может привести к тому, что полость литейной формы будет заполнена не полностью из-за быстрого затвердевания алюминиевых сплавов, что приведет к дефектам литья и неточностям.

Кроме того, было замечено, что отверстия в алюминиевых литейных деталях образуются из-за поглощенного водорода. Обеспечивая адекватную температуру заливки алюминиевых сплавов, он помогает уменьшить пористость, возникающую в процессе литья.

Расчет температуры заливки алюминиевого сплава

Заливка алюминия в песчаную форму

Температура заливки алюминиевого сплава должна быть выше точки плавления.

Добавление дополнительной температуры (перегрева) в процессе плавления алюминиевого сплава помогает увеличить текучесть, компенсировать потери тепла до того, как они попадут в форму полости формы, и снизить скорость отвода тепла формой.

Установлено, что оптимальный диапазон температур заливки алюминиевых сплавов составляет от 680°C до 750°C .

В этом диапазоне алюминиевые литые детали производятся с хорошими механическими свойствами и качеством литья.

И наилучшая температура заливки алюминиевых сплавов для получения наилучшей чистоты поверхности изделий из алюминиевого литья должна быть испытана в диапазоне 680°C – 700°C.

При более высокой температуре разливки поверхность отливки становится очень шероховатой, прочность отливки снижается, а газы задерживаются, вызывая такие дефекты отливки, как пузыри.

Влияние конструкции литейной формы на температуру разливки алюминия

Кроме того, на температуру разливки алюминиевых сплавов также частично влияют различные размеры и объемы литейной формы, относящиеся к толщине стенки отливки.

Соответственно, более высокая температура заливки применяется для тонкостенных алюминиевых отливок, тогда как более низкая температура заливки обычно используется для толстостенных отливок или цельных деталей.

См. Справочник по литейной практике , Fachverlag Schiele & Schön, Berlin, рекомендуется, чтобы толстостенные отливки предпочитали разливать при температуре 620°C, а тонкостенные модели – при температуре до 730°C.

Скорость литья алюминия

Помимо температуры литья и плавления, необходимо учитывать скорость литья алюминиевых сплавов для получения лучших отливок.

При разной скорости заливки результаты литья имеют разное совершенство.

Скорость заливки алюминия прямо или косвенно влияет на качество отливки

Влияние скорости заливки алюминия на качество отливки

Скорость заливки алюминия оказывает большое влияние на качество конечной отливки. Для получения наилучших результатов отливки требуется разливка с соответствующей скоростью.

Соответственно, если расплавленный алюминий заливать со слишком низкой скоростью, жидкость не заполнит все полости и углы формы из-за отсутствия давления и затвердевания.

Наоборот, если скорость заливки слишком высока, это создаст возможность турбулентности, которая приведет к дефектам литья в изделиях из алюминиевого литья, таким как включения, окалина, газовые отверстия.

Расчет скорости заливки алюминия

Скорость заливки определяется как расход металла в единицу времени.

Скорость разливки алюминия V рассчитывается по расстоянию ковша над разливочной воронкой за единицу времени разливки металла.

Его формула выражается как: V = H / T

Где:

  • V — скорость разливки (см/с)
  • H — высота ковша над разливочной емкостью (см )
  • T время заливки расплавленного металла (сек)

Оптимальная скорость заливки алюминиевых сплавов должна быть в пределах 2,2 – 2,8см/с.

В этом диапазоне скоростей разливки твердость, прочность на растяжение и деформация алюминия достигаются с наилучшей производительностью.

В частности, в диапазоне 2,0 см/с – 2,7 см/ с окончательные отливки собираются с наилучшей обработкой поверхности. Кроме того, идеальная степень чистоты поверхности алюминиевого литья снижается по мере увеличения скорости.

Влияние формы отливки на скорость разливки алюминия

Плотность алюминиевой отливки является жизненно важным фактором в процессе заливки, который определяет скорость заливки.

Соответственно, в отношении тонкостенных отливок скорость заливки требуется осуществлять быстрее, чем для более толстых отливок, чтобы алюминиевая жидкость не застывала.

Заключение

Было продемонстрировано, что условия плавления и заливки алюминия прямо или косвенно влияют на механические характеристики и качество конечной отливки.

Таким образом, процесс литья алюминиевых деталей требует большого количества навыков и опыта литейщиков для правильного расчета адекватной температуры литья алюминия, чтобы производить высокоточные и точные литейные изделия, отвечающие требованиям заказчика.

В приведенном выше содержании мы представили краткое обсуждение влияния температуры плавления, температуры заливки и скорости заливки на результат алюминия, а также оптимальные значения этих параметров. Надеюсь, это будет полезным справочником для вашей литейной практики.

Не стесняйтесь оставлять комментарии, чтобы поделиться своими знаниями в нашем обсуждении. Мы приветствуем любой вклад доброй воли и обмен.

Референс

Агер П., Иорсор А., Оботу Г.М. Поведение отливок из алюминиевых сплавов при различных температурах и скоростях заливки. Дискавери , 2014, 22 (74), 62-71.

Подробнее о Сравнение различных методов литья алюминия

алюминий | Использование, свойства и соединения

алюминий

Посмотреть все СМИ

Ключевые люди:
Ганс Кристиан Эрстед Эмиль Ратенау Фридрих Вёлер Чарльз Мартин Холл
Похожие темы:
химический элемент обработка алюминия элемент группы бора

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

алюминий (Al) , также пишется как алюминий , химический элемент, легкий серебристо-белый металл основной группы 13 (IIIa, или группа бора) периодической таблицы. Алюминий является самым распространенным металлическим элементом в земной коре и наиболее широко используемым цветным металлом. В силу своей химической активности А. никогда не встречается в природе в металлическом виде, но его соединения в большей или меньшей степени присутствуют почти во всех горных породах, растительности и животных. Алюминий сосредоточен во внешних 16 км (10 милях) земной коры, из которых он составляет около 8 процентов по весу; его превосходят по количеству только кислород и кремний. Название алюминия происходит от латинского слова 9.1184 alumen , used to describe potash alum, or aluminum potassium sulfate, KAl(SO 4 ) 2 ∙12H 2 O.

Element Properties
atomic number 13
Атомальный вес 26,9815384
Плата 660 ° C (1 220 ° F)
Копелярный точка 2. 46710
.0214 2.70 (at 20 °C [68 °F])
valence 3
electron configuration 1 s 2 2 s 2 2 p 6 3 S 2 3 P 1

ВКЛЮЧЕНИЕ И ИСТОРИЯ

Алюминиевые годы встречаются в негмагнитных камнях. в полученной из них почве в виде глины; и при дальнейшем выветривании в виде бокситов и богатых железом латеритов. Бокситы, смесь гидратированных оксидов алюминия, являются основной алюминиевой рудой. Кристаллический оксид алюминия (наждак, корунд), встречающийся в некоторых магматических породах, добывается как природный абразив или в виде его более тонких разновидностей, таких как рубины и сапфиры. Алюминий присутствует в других драгоценных камнях, таких как топаз, гранат и хризоберилл. Из многих других алюминиевых минералов алунит и криолит имеют некоторое коммерческое значение.

Britannica Викторина

118 Названий и символов периодической таблицы Викторина

Периодическая таблица состоит из 118 элементов. Насколько хорошо вы знаете их символы? В этом тесте вам будут показаны все 118 химических символов, и вам нужно будет выбрать название химического элемента, который представляет каждый из них.

До 5000 г. до н.э. люди в Месопотамии делали прекрасную керамику из глины, которая состояла в основном из соединения алюминия, а почти 4000 лет назад египтяне и вавилоняне использовали соединения алюминия в различных химических веществах и лекарствах. Плиний ссылается на квасцы, теперь известные как квасцы, соединение алюминия, широко используемое в древнем и средневековом мире для закрепления красителей в текстиле. Во второй половине 18 века такие химики, как Антуан Лавуазье, признали глинозем потенциальным источником металла.

Сырой алюминий был выделен (1825 г.) датским физиком Гансом Христианом Эрстедом путем восстановления хлорида алюминия амальгамой калия. Британский химик сэр Хамфри Дэви приготовил (1809 г.) железо-алюминиевый сплав путем электролиза плавленого оксида алюминия (оксида алюминия) и уже назвал этот элемент алюминием; слово позже было изменено на алюминий в Англии и некоторых других европейских странах. Немецкий химик Фридрих Велер, используя металлический калий в качестве восстановителя, получил алюминиевый порошок (1827 г.) и небольшие глобулы металла (1845 г.), по которым он смог определить некоторые его свойства.

Новый металл был представлен публике (1855 г.) на Парижской выставке примерно в то же время, когда он стал доступен (в небольших количествах за большие деньги) путем восстановления натрием расплавленного хлорида алюминия в процессе Девиля. Когда электроэнергия стала относительно обильной и дешевой, почти одновременно Шарль Мартин Холл в Соединенных Штатах и ​​Поль-Луи-Туссен Эру во Франции открыли (1886 г.) современный метод промышленного производства алюминия: электролиз очищенного оксида алюминия (Al 9). 1740 2 O 3 ), растворенных в расплавленном криолите (Na 3 AlF 6 ). В 1960-е годы алюминий вышел на первое место, опередив медь, в мировом производстве цветных металлов. Для получения более подробной информации о добыче, переработке и производстве алюминия см. обработка алюминия.

Применение и свойства

Алюминий добавляют в небольших количествах к некоторым металлам для улучшения их свойств для конкретных целей, например, в алюминиевых бронзах и большинстве сплавов на основе магния; или, для сплавов на основе алюминия, к алюминию добавляются умеренные количества других металлов и кремния. Металл и его сплавы широко используются в авиастроении, строительных материалах, потребительских товарах длительного пользования (холодильники, кондиционеры, кухонная утварь), электрических проводниках, химическом и пищевом оборудовании.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Чистый алюминий (99,996%) довольно мягкий и непрочный; технический алюминий (чистота от 99 до 99,6%) с небольшими количествами кремния и железа отличается твердостью и прочностью. Ковкий и очень податливый алюминий можно вытягивать в проволоку или сворачивать в тонкую фольгу. Плотность металла составляет всего около одной трети плотности железа или меди. Несмотря на свою химическую активность, алюминий обладает высокой коррозионной стойкостью, так как на воздухе на его поверхности образуется прочная оксидная пленка.

Алюминий является отличным проводником тепла и электричества. Его теплопроводность примерно вдвое меньше, чем у меди; его электропроводность, около двух третей. Он кристаллизуется в гранецентрированной кубической структуре. Весь природный алюминий представляет собой стабильный изотоп алюминия-27. Металлический алюминий, его оксид и гидроксид нетоксичны.

Алюминий медленно подвергается воздействию большинства разбавленных кислот и быстро растворяется в концентрированной соляной кислоте. Однако концентрированную азотную кислоту можно перевозить в алюминиевых цистернах, поскольку она делает металл пассивным. Даже очень чистый алюминий подвергается энергичному воздействию щелочей, таких как гидроксид натрия и калия, с образованием водорода и иона алюмината. Из-за большого сродства к кислороду мелкодисперсный алюминий при возгорании сгорает в монооксиде или диоксиде углерода с образованием оксида и карбида алюминия, но при температурах до красного каления алюминий инертен к сере.

Алюминий может быть обнаружен в концентрациях до одной части на миллион с помощью эмиссионной спектроскопии. Алюминий может быть количественно проанализирован как оксид (формула Al 2 O 3 ) или как производное азоторганического соединения 8-гидроксихинолина. Производное имеет молекулярную формулу Al(C 9 H 6 ON) 3 .

Соединения

Обычно алюминий является трехвалентным. Однако при повышенных температурах было получено несколько газообразных одновалентных и двухвалентных соединений (AlCl, Al 2 О, AlO). В алюминии конфигурация трех внешних электронов такова, что в некоторых соединениях (например, в кристаллическом фториде алюминия [AlF 3 ] и хлориде алюминия [AlCl 3 ]) голый ион Al 3+ образован потеря этих электронов, как известно, происходит. Однако энергия, необходимая для образования иона Al 3+ , очень велика, и в большинстве случаев атому алюминия энергетически выгоднее образовывать ковалентные соединения путем sp 2 гибридизация, как это делает бор. Ион Al 3+ может быть стабилизирован гидратацией, а октаэдрический ион [Al(H 2 O) 6 ] 3+ встречается как в водном растворе, так и в некоторых солях.

Ряд соединений алюминия имеет важное промышленное применение. Глинозем, встречающийся в природе в виде корунда, также производится в промышленных масштабах в больших количествах для использования в производстве металлического алюминия, а также в производстве изоляторов, свечей зажигания и различных других изделий. При нагревании оксид алюминия образует пористую структуру, которая позволяет ему поглощать водяной пар. Эта форма оксида алюминия, известная как активированный оксид алюминия, используется для сушки газов и некоторых жидкостей. Он также служит носителем для катализаторов различных химических реакций.

Анодный оксид алюминия (ААО), обычно получаемый путем электрохимического окисления алюминия, представляет собой наноструктурированный материал на основе алюминия с очень уникальной структурой. AAO содержит цилиндрические поры, которые можно использовать для различных целей. Это термически и механически стабильное соединение, а также оптически прозрачное и электрическое изолятор. Размер пор и толщину AAO можно легко адаптировать для определенных приложений, в том числе в качестве шаблона для синтеза материалов в нанотрубки и наностержни.

Другим важным соединением является сульфат алюминия, бесцветная соль, полученная действием серной кислоты на гидратированный оксид алюминия. Коммерческая форма представляет собой гидратированное кристаллическое твердое вещество с химической формулой Al 2 (SO 4 ) 3 . Он широко используется в производстве бумаги в качестве связующего для красителей и в качестве поверхностного наполнителя. Сульфат алюминия соединяется с сульфатами одновалентных металлов с образованием гидратированных двойных сульфатов, называемых квасцами. Квасцы, двойные соли формулы MAl(SO 4 ) 2 · 12H 2 O (где M представляет собой однозарядный катион, такой как K + ), также содержат ион Al 3+ ; M может быть катионом натрия, калия, рубидия, цезия, аммония или таллия, а алюминий может быть заменен множеством других ионов M 3+ , например галлия, индия, титана, ванадия, хрома, марганца. , железо или кобальт. Наиболее важной из таких солей является сульфат алюминия-калия, также известный как квасцы калия или квасцы калия. Эти квасцы имеют множество применений, особенно в производстве лекарств, текстиля и красок.

Реакция газообразного хлора с расплавленным металлическим алюминием дает хлорид алюминия; последний является наиболее часто используемым катализатором в реакциях Фриделя-Крафтса, т. Е. Синтетических органических реакциях, связанных с получением самых разных соединений, включая ароматические кетоны, антрохинон и его производные. Гидратированный хлорид алюминия, широко известный как хлоргидрат алюминия, AlCl 3 ∙H 2 O, используется в качестве местного антиперспиранта или дезодоранта для тела, который сужает поры. Это одна из нескольких солей алюминия, используемых в косметической промышленности.

Гидроксид алюминия, Al(OH) 3 , используется для водонепроницаемости тканей и для производства ряда других соединений алюминия, включая соли, называемые алюминатами, которые содержат группу AlO 2 . С водородом алюминий образует гидрид алюминия, AlH 3 , полимерное твердое вещество, из которого получают тетрагидроалюминаты (важные восстановители). Алюмогидрид лития (LiAlH 4 ), образующийся при взаимодействии хлорида алюминия с гидридом лития, широко используется в органической химии, например, для восстановления альдегидов и кетонов до первичных и вторичных спиртов соответственно.

Эта статья была недавно отредактирована и обновлена ​​Эриком Грегерсеном.

Какова температура плавления алюминия?

Вопрос задан: Миракл Мерфи

Оценка: 4,3/5 (55 голосов)

Алюминий — это химический элемент с символом Al и атомным номером 13. Алюминий имеет плотность ниже, чем у других обычных металлов, примерно на треть плотности стали. Он имеет большое сродство к кислороду и образует защитный слой оксида на поверхности при воздействии воздуха.

Что такое плавление алюминия?

Алюминий имеет температуру плавления приблизительно при 1220°F. По сравнению с другими металлами это примерно в два раза выше температуры плавления цинка и вдвое ниже температуры плавления нержавеющей стали. Примечательно, что температура плавления алюминия изменяется в зависимости от состава сплава.

Какова температура плавления и кипения алюминия?

Оксид алюминия плавится при температуре около 2000 градусов Цельсия. Вот почему извлечение алюминия из оксида алюминия осуществляется электролизом до расплавления металла. По отношению к плавлению алюминий имеет температура кипения примерно 2467 градусов Цельсия .

При какой температуре плавится латунь?

Температура плавления 1880 F (1025 C) . Латунь: 1700 F (927 C) Латунь представляет собой сплав меди.

Является ли латунь токсичной при нагревании?

На самом деле чистая латунь нетоксична и не вызывает осложнений со здоровьем. Вот почему вы всегда должны убедиться, что покупаете только трубы из чистой латуни. …Еще одно заблуждение о латунных трубах состоит в том, что этот металл сильно токсичен при нагревании. Дело в том, что латунь — это не металл, а сплав.

Справочник по температурам плавления металлов (ºF)

Найдено 19 связанных вопросов

Какой металл имеет самую высокую температуру плавления?

Из всех металлов в чистом виде вольфрам имеет самую высокую температуру плавления (3422 °C, 6192 °F), самое низкое давление паров (при температурах выше 1650 °C, 3000 °F) и самую высокую прочность на растяжение.

Какой металл легче всего расплавить?

Вообще, алюминий легко плавится, и его легко достать.

Какой металл имеет самую низкую температуру плавления?

15 Металлы с самой низкой температурой плавления

  • Температура плавления материала в первую очередь связана с прочностью связи. …
  • 15 металлов с самой низкой температурой плавления: ртуть, франций, цезий, галлий, рубидий, калий, натрий, индий, литий, олово, полоний, висмут, таллий, кадмий и свинец.

Что имеет самую высокую температуру плавления?

Химический элемент с самой низкой температурой плавления — гелий, а элемент с самой высокой температурой плавления — углерод .

Что такое температура плавления?

температура плавления, температура, при которой твердая и жидкая формы чистого вещества могут существовать в равновесии . Когда к твердому телу прикладывается тепло, его температура будет повышаться до тех пор, пока не будет достигнута точка плавления. Затем больше тепла превратит твердое тело в жидкость без изменения температуры.

При какой температуре плавится пластик?

В то время как бесчисленное множество видов пластика в мире имеют разные температуры плавления, самые разные виды пластика начинают плавиться при 100 градусах Цельсия (212 F) . Сообщается, что на этой неделе портативные датчики в этом месте показали, что площадь в пределах области действия отраженного солнечного света составляет более 90°C.

Ядовиты ли плавящиеся алюминиевые банки?

Несоблюдение надлежащих процедур при плавке и литье алюминия может быть опасным. … Контакт с расплавленным алюминием может вызвать сильные ожоги и создать серьезную опасность возгорания. Смешивание воды или других загрязняющих веществ с расплавленным алюминием может привести к взрыву.

При какой температуре плавятся золото и серебро?

Тигель обычно изготавливается из графита или глины. Температура плавления золота составляет 90 155, что примерно равно 1943 градусам по Фаренгейту (1064 °C) 90 156, а это означает, что для его плавления вам понадобятся такие высокие температуры. Таким образом, очень важно, чтобы вы не просто выбрали любой контейнер.

Какой самый прочный металл в мире?

Вольфрам обладает самой высокой прочностью на растяжение среди всех чистых металлов – до 500 000 фунтов на квадратный дюйм при комнатной температуре. Даже при очень высоких температурах свыше 1500°C он обладает высочайшей прочностью на растяжение.

Можно ли расплавить сталь огнем?

Сталь часто плавится при температуре около 1370 градусов C (2500°F). … Многие сайты ссылаются на разницу в температуре плавления стали и температуре горения авиакеросина как на доказательство того, что Всемирный торговый центр не мог рухнуть от авиационных пожаров.

При какой температуре сталь разрушается?

При какой температуре сталь полностью теряет свою емкость? Прочность стали остается практически неизменной примерно до 600°F. Сталь сохраняет около 50% своей прочности при температуре 1100°F. Сталь теряет всю свою емкость, когда она плавится при около 2700°F.

Что труднее всего расплавить?

Вольфрам известен как один из самых прочных материалов, встречающихся в природе. Он очень плотный и его практически невозможно расплавить. Чистый вольфрам представляет собой серебристо-белый металл, и в тонком порошке он может быть горючим и может самовозгораться. Природный вольфрам содержит пять стабильных изотопов и 21 другой нестабильный изотоп.

Какой самый жаропрочный металл в мире?

Установлен новый рекорд для самого термостойкого материала в мире. Исследователи обнаружили, что материалы из карбида тантала и карбида гафния могут выдерживать палящие температуры почти 4000 градусов по Цельсию.

Является ли бронза токсичным металлом?

Исследования показывают, что токсичные металлы способствуют развитию заболеваний головного мозга, вызывая окислительный стресс, а бронза является одним из самых серьезных нарушителей . … Воздействие металлической пыли, к сожалению, характерно для некоторых профессий, таких как горнодобывающая промышленность, заводские работы и сварка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *