Какова температура плавления и кипения меди: Температура плавления меди – при какой температуре плавится медь – Медь: температура плавления, физические свойства, сплавы

Температура плавления меди

Историки предполагают, что первобытные люди находили медь в виде самородков, порой достигающих значительных размеров. Свое название на латинском языке медь (Cuprum) получила от острова Кипр, где ее добывали древние греки. Благодаря тому, что температура плавления меди не слишком высока и составляет 1083 °С, самородки или руду, содержащую медь, можно было плавить на костре. Это обеспечивало получение меди и позволяло использовать ее для изготовления оружия и предметов быта.

Несмотря на то, что медь широко применялась людьми еще с древних времен, по распространению в земной коре она занимает 23 место среди других элементов. Чаще всего она в природе встречается в виде соединений, входящих в состав сульфидных руд. Наиболее распространенные из них – медный блеск и медный колчедан. Существует несколько технологий получения меди из руды, причем по каждой из них процесс происходит в несколько этапов.

Как уже отмечалось, невысокая температура плавления меди позволяла успешно ее обрабатывать еще на самом начальном этапе развития цивилизации. И надо отдать должное древним металлургам, ими были найдены варианты получения и использования не только чистой меди, но и ее сплавов. Плавление – это переход металла из твердого состояния в жидкое. Для этого использовали нагрев, и низкая температура плавления меди позволяла успешно проводить подобную операцию.

Затем в жидкую медь добавляли олово или производили его восстановление из касситерита (руды, содержащей олово) на поверхности меди. В итоге получали бронзу, по прочности превосходящую Cuprum и применяемую для изготовления оружия. Однако сейчас хотелось бы остановиться более подробно на операции плавления, позволяющей получить достаточно чистый материал из руды.

Температура плавления у каждого металла своя и зависит от наличия примесей в составе исходного материала. Так, медь, температура плавления которой составляет 1083 °С, после добавления олова образует бронзу, которая плавится при температуре 930-1140°С в зависимости от содержания олова. Латунь же, сплав меди и цинка, имеет температуру плавления 900-1050°С.

В процессе нагрева металла происходит разрушение кристаллической решетки. Первоначально, по мере нагрева, температура возрастает, а затем, начиная с некоторого значения, остается постоянной, хотя нагрев и продолжается. В этот момент и происходит плавление. Так продолжается в течение всего времени, пока весь металл не расплавится, и только потом температура начнет повышаться. Это справедливо для всех металлов, температура плавления меди также не изменяется.

При охлаждении картина обратная: сначала температура снижается до начала затвердевания металла, потом держится постоянной и после полного отвердения металла начинает опять понижаться. Такое поведение металла, если его изобразить на графике, называется фазовой диаграммой, показывающей, в каком состоянии находится вещество при конкретной температуре. Для ученых фазовая диаграмма является одним из инструментов в изучении поведения металлов при плавлении.

Если продолжить нагрев расплавленного металла, то при некоторой температуре начинается процесс, похожий на кипение. Так, температура кипения меди составляет 2560 °С. Это название процесс получил за внешнее сходство с кипением жидкости, когда из нее начинают выделяться пузырьки газа. То же самое происходит и с металлом, например, при достаточно высокой температуре из жидкого железа начинает выходить углерод, образующийся в ходе его окисления.

В статье рассмотрен процесс плавления металлов, описано понятие температуры плавления, ее поведение в процессе проведения плавки. Объясняется, какое влияние низкая температура плавления меди оказала на развитие цивилизации и металлургии.

Температура кипения металлов (Таблица)

Справочная таблица по химии содержит информацию по температуре кипения металлов. Будет полезна для школьников и студентов при изучении химии, а также для подготовки к экзаменам и ЕГЭ.

Смотрите также таблицу «температура кипения твердых тел».

Металлы

Температура кипения, С°

Актиний

3300

Албминий

2467

Барий

1860

Бериллий

2470

Висмут

1550

Вольфрам

5657

Галлий

2205

Германий

2850

Железо

3050

Золото

2807

Индий

2000

Иридий

4400

Итрий

3300

Кадмий

767

Кальций

1495

Кобальт

2960

Лантан

3450

Магний

1095

Медь

2567

Никель

2900

Олово

2620

Осмий

5027

Палладий

2940

Платина

3800

Радий

1500

Родий

3700

Ртуть

357

Рутений

4200

Свинец

1475

Серебро

2212

Скандий

2850

Стронций

1390

Сурьма

1634

Таллий

1475

Хром

2672

Цинк

906,2



Температура кипения и плавления простых веществ (Таблица)

В таблице приводятся температуры кипения и плавления простых веществ (химических элементов). Цифры в скобках обозначают, что вещество при данной температуре и разлагается.

Сокращения:   г.— газ; ж. — жидкость; тв. — твердое вещество: возг. — возгорается; ромб. — ромбическая.

Название элемента

Символ

Состояние

Температура плавления

Температура кипения, °С

Азот

N

Г.

—209,86

—195,8

Актиний

Ас

ТВ.

~1040

~3300

Алюминий

Аl

ТВ.

660,1

~2500

Америций

Ат

ТВ.

~1200

~2600

Аргон

Аr

Г.

—189,2

—185,7

Астат

At

 

 

334

Барий

Ва

ТВ.

710

1640

Бериллий

Be

ТВ.

1285

2970

Бор

В

ТВ.

~2075

~3800

Бром

Вr

Ж.

—7,3

58,8

Ванадий

V

ТВ.

1900

3400

Висмут

Bi

ТВ.

271,3

~1560

Водород

Н

Г.

—259,18

—252,8

Вольфрам

W

ТВ.

3380

5900

Гадолиний

Gd

ТВ.

1312

~1500

Галлий

Ga

Ж.

29,8

~2230

Гафний

Hf

ТВ.

~2230

~5400

Гелий

Не

Г.

—272,2

—268,9

Германий

Ge

ТВ.

936

2700

Гольмий

Но

ТВ.

1500

~2380

Диспрозий

Dy

ТВ.

1380

~2330

Европий

Eu

ТВ.

~900

~1430

Железо

Fe

ТВ.

~1535

~3000

Золото

Au

ТВ.

1063

~2847

Индий

In

ТВ.

~155

~2000

Йод

J

ТВ.

114

183

Иридий

Ir

ТВ.

2450

~500

Иттербий

Yb

ТВ.

824

~132

Иттрий

Y

ТВ.

~1500

3020

Кадмий

Cd

ТВ.

321,03

7670

Калий

К

ТВ.

62,3

~7605

Кальций

Ca

ТВ.

850

1482

Кислород

О

Г.

—218,4

—182,97

Озон

 

Г.

—251

—112

Кобальт

Со

ТВ.

~1490

~2900

Кремний

Si

ТВ.

1420

~2600

Криптон

Кr

Г.

—157

—152,9

Ксенон

Хе

Г.

—112

—108,1

Кюрий

Сm

ТВ.

Лантан

La

ТВ.

920

~3470

Литий

Li

ТВ.

186

~(1370)

Лютенций

Lu

ТВ.

1675

~2680

Магний

Mg

ТВ.

651

~1110

Марганец

Mn

ТВ.

1260

~1900

Медь

Cu

ТВ.

1083

~2300

Молибден

Mo

ТВ.

2625

~3700

Мышьяк

As

ТВ.

814 (36 бар)

615, возг.

Натрий

Na

ТВ.

97,5

~880

Неодим

Nd

ТВ.

1024

3210

Неон

Ne

Г.

—248,67

—245.9

Нептуний

Np

ТВ.

640

Никель

Ni

ТВ.

1453

2900

Ниобий

Nb

ТВ.

(2500)

3700

Олово

Sn

ТВ.

231,91

2270

Осмий

Os

ТВ.

2700

>5300

Палладий

Pd

ТВ.

1552

>2500

Платина

Pt

ТВ.

1773,5

4300

Плутоний

Pu

ТВ.

673

3230

Полоний

Po

ТВ.

254

952

Празеодим

Pr

ТВ.

940

3017

Прометий

Pm

ТВ.

~1000

Протактиний

Pa

ТВ.

~1400

~4000

Радий

Ra

ТВ.

960

1140

Радон

Rn

Г.

—71

—61,8

Рений

Re

ТВ.

3170

>5440

Родий

Rh

ТВ.

1966

>3000

Ртуть

Hg

Ж.

—38,87

356,58

Рубидий

Rb

ТВ.

38,5

700

Рутений

Ru

ТВ.

1950

(2700)

Самарий

Sm

ТВ.

1072

1670

Свинец

Pb

ТВ.

327,3

1740

Селен

Se

ТВ.

220

688

Сера (ромб.)

S

ТВ.

112,8

444,60

Серебро

Ag

ТВ.

960,8

~2160

Скандий

Sc

ТВ.

1200

2400

Стронций

Sr

ТВ.

725

1150

Сурьма

Sb

ТВ.

630

1380

Таллий

TI

ТВ.

302,5

1457

Тантал

Та

ТВ.

3000

(4100)

Теллур

Те

ТВ.

452

1390

Тербий

Tb

ТВ.

1368

2480

Технеций

Тс

ТВ.

~2300

~4700

Титан

Ti

ТВ.

~1800

>3000

Торий

Th

ТВ.

1845

>3000

Тулий

Tu

ТВ.

1600

1720

Углерод алмаз

С

ТВ.

>3500

4200

Углерод графит

C

ТВ.

3600

~4200

Уран

U

ТВ.

(1150)

~3900

Фосфор белый

P

ТВ.

44,1

280

фосфор красный

P

ТВ.

590 (43 бар)

423, возг.

Франций

Fr

ТВ.

17,5

Фтор

F

Г.

—223

—187

Хлор

Cl

Г.

—102

—34,1

Хром

Сг

ТВ.

1615

2200

Цезий

Cs

ТВ.

28,5

670

Церий

Се

ТВ.

804

~3000

Цинк

Zn

ТВ.

419,5

907

Цирконий

Zr

ТВ.

~1900

~4000

Эрбий

Ег

ТВ.

1525

~2500

 



Температура плавления и кипения различных веществ

Вещество

Температуры плавления и кипения, °С

Ag

пл. 962, кип. 2170

Ag2O

разл. > 160

Al

пл. 660, кип. 2500

Al2O3

пл. 2053, кип. > 3000

As

возг. 615, пл. 817

AsH3

пл.- 117, кип.- 62

At

пл. 244, кип. 309

Au

пл. 1064, кип. 2947

B

пл. 2075, кип. 3700

B2O3

пл. 450, кип. ок. 2000

Ba

пл. 727, кип. ок. 1860

BaO

пл. ок. 2020

Be

пл. 1287, кип. 2507

BeO

пл. 2580, кип. 4260

Bi

пл. 271, кип. 1564

Bi2O3

пл. 825, кип. 1890

C (графит)

пл. 4800 [см. примечание]

C (алмаз)

1800 ® C (графит)

CH4

пл.- 182, кип.- 162

CO

пл.- 205, кип.- 192

CO2

возг. — 78

Ca

пл. 842, кип. 1495

CaO

пл. ок. 2614, кип. 2850

Cd

пл. 321, кип. 767

CdO

возг. ок. 900, разл.

Cl2

пл.- 101, кип.- 34

ClO2

пл.- 60, кип. +11

Cl2O

пл.- 116, кип. +2

Cl2O6

пл. 4, разл. > 20

Cl2O7

пл.- 90, кип. +83

Сo

пл. 1494, кип. 2960

Cr

пл. 1890, кип. 2680

Cr2O3

пл. 2340, кип. 3000

Cs

пл. 29, кип. 668

Cu

пл. 1085, кип. 2540

CuO

разл. 1026

Cu2O

пл. 1240, кип. 1800

F2

пл.- 220, кип.- 188

Fe

пл. 1539, кип. ок. 3200

FeO

пл. 1368

Fe2O3

разл. 1390

Fr

пл. 21, кип. 660

Ga

пл. 30, кип. 2403

Ga2O3

пл. ок. 1725

Ge

пл. 937, кип. ок. 2850

GeH4

пл.- 166, кип.- 89

H2

пл.- 259, кип.- 253

HBr

пл.- 87, кип.- 67

HCl

пл.- 114, кип.- 85

HF

пл.- 84, кип. +20

HI

пл.- 51, кип.- 35

HN3

пл.- 80, кип. +36

HNO3

пл.- 42, кип. +83, разл.

H2O

пл. 0, кип. 100

H2O2

пл.- 0,4, разл. +150

H(PH2O2)

пл. 27, разл. 140

H2(PHO3)

пл. 74, разл. 200

H3PO4

пл. 42, разл. 150

H4P2O7

пл. 61, разл. 300

H2S

пл.- 86, кип.- 60

H2SO4

пл. 10, кип. 296, разл.

H2Se

пл.- 66, кип.- 42

H2SeO3

пл. и разл. 70

H2SeO4

пл. 62

H2Te

пл.- 51, кип.- 2, разл.

H2TeO3

40 ® TeO2

H6TeO6

пл. 136, 220 ® TeO3

Hg

пл.- 39, кип. +357

HgO

разл. > 400

I2

пл. 114, кип. 184

I2O5

разл. 275-350

In

пл. 157, кип. 2024

In2O3

пл. 1910, кип. ок. 3300

K

пл. 64, кип. 760

Li

пл. 180, кип. 1337

Mg

пл. 648, кип. 1095

MgO

пл. 2825, кип. 3600

Mn

пл. 1245, кип. 2080

MnO

пл. 1780

MnO2

разл. > 535

Mn2O3

940 ® (MnIIMn2III)O4

Mn2O7

пл. 6, разл. > 55

Mo

пл. 2620, кип. 4630

N2

пл.- 210, кип.- 196

NH3

пл.- 78, кип.- 33

N2H4

пл. 2, кип. 114

NH2OH

пл. 32, разл. > 100

NO

пл.- 164, кип.- 152

NO2

< 21 ® N2O4

N2O

пл.- 91, кип.- 89

N2O3

кип.- 40, разл. > +5

N2O4

пл.- 11, кип. 21, разл.

N2O5

пл. 41, разл.

Na

пл. 98, кип. 886

Ni

пл. 1455, кип. ок. 2900

NiO

пл. 1955

O2

пл.- 219, кип.- 183

O3

пл.- 193, кип.- 112

OF2

пл.- 224, кип.- 145

P (красный)

возг. 416

P4 (белый)

пл. 44, кип. 287

PH3

пл.- 134, кип.- 87

P4O6

пл. 24, кип. 175

P4O10

возг. 359, пл. 422

Pb

пл. 328, кип. 1745

PbO

пл. 886, кип. 1535

PbO2

разл. > 344

(Pb2IIPbIV)O4

550 ® PbO

Ra

пл. 969, кип. 1536

Rb

пл. 39, кип. 696

Re

пл. 3190, кип. ок. 5900

S8 (монокл.)

пл. 119, кип. 445

S8 (ромб.)

96 ® S8 (монокл.)

SO2

пл.- 75, кип.- 10

SO3

пл. 17, кип. 45

Sb

пл. 631, кип. 1634

SbH3

пл. — 94, кип. — 18

Sb2O3

пл. 655, кип. 1456

Se

пл. 217, кип. 685

SeO2

возг. 315, пл. 340

SeO3

пл. 118, разл. > 185

Si

пл. 1415, кип. ок. 3250

SiH4

пл.- 185, кип.- 112

SiO2 (кварц)

пл. 1550, кип. 2950

Sn

пл. 232, кип. 2620

SnO

пл. 1040, кип. 1425

SnO2

пл. 1630, кип. 2500

Sr

пл. 768, кип. 1390

Tc

пл. 2250, кип.ок. 4600

Te

пл. 450, кип. 990

TeO2

пл. 733, кип. 1257

TeO3

разл. > 400

Ti

пл. 1668, кип. 3260

TiO2

пл. 1870, кип. ок. 3000

Tl

пл. 304, кип. 1457

Tl2O

пл. 303, кип. ок. 1100

V

пл. 1920, кип. 3450

W

пл. 3387, кип. ок. 5680

Zn

пл. 420, кип. 906

ZnO

возг. 1725, разл.

 

Сокращения:
возг. — возгонка; кип. — кипение; ок. — около;
пл. — плавление; разл. — разложение; ® — переход одного вещества в другое


Примечание: определение температуры плавления графита является очень важной, но очень сложной научной проблемой, которой занимаются во всем мире. В данном справочнике мы приводим значение, которое, исходя из обзора Савватимского Александра Ивановича, зав. лаб. электровзрывных процессов ОИВТ РАН, является в настоящее время наиболее обоснованным и полученным с помощью самых современных методов. Обзор и описание методов см. в работах:
Савватимский А.И.»Плавление графита и жидкий углерод» УФН том 173 №12 стр.1371

A. I. Savvatimskiy. «Liquid carbon density and resistivity» J. Phys.: Condens. Matter 20 (2008) 114112

Korobenko V.N., Savvatimskiy A.I. «Graphite melting temperature» Electronic journal “INVESTIGATED IN RUSSIA” 2161

Примечание ко всем таблицам свойств: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *