Обратная полярность при сварке постоянным током что это: Обратная и прямая полярность сварки

Содержание

Сварка током обратной полярности. Что такое обратная полярность при сварке.

Большинство современных сварочных аппаратов имеют в своей конструкции блок выпрямительных диодов, что, в свою очередь, обеспечивает постоянный сварочный ток. Для аппаратов, использующих в качестве сварочного материала проволоку (сварочных полуавтоматов) это является обязательным условием. Для аппаратов же, использующих для работы электроды это уже является опцией, позволяющей использовать практически любые марки электродов для проведения сварочных работ.

Классификация сварочной дуги по полярности постоянного тока:
а — прямая полярность; б — обратная полярность


При работе полуавтоматом необходимо обязательно соблюдать полярность подключения. Так, сварка обычной обмедненной проволокой в среде защитного газа производится током прямой полярности. То есть на изделие подается плюс, а на держак минус (прямая полярность при сварке). При таком подключении ток протекает от проволоки на изделие, в связи с чем нагрев изделия получается выше, нежели сварочной проволоки. И это закономерно. Свариваемые части имеют значительно большую площадь, соответственно, требуют большего нагрева для образования сварочной ванны. Проволока же, имеющая меньшую площадь достаточно легко плавится и в место сварки попадает уже в виде расплавленной капли. Протекающий ток, а он протекает именно от плюса к минусу, захватывает расплавившийся материал, опять же способствуя формированию качественной сварочной ванны.

Судя по комментариям посетителей нашего сайта, возникла небольшая путаница с тем, в каком все таки направлении течет ток в цепи. Давайте попытаемся внести ясность в этот вопрос!
Необходимо понимать, что «направление тока» в электротехнике — это больше условность, принятая для рисования схем. Традиционно, на схемах, принято рисовать от плюса к минусу, как будто движение тока происходит от плюса к минусу, хотя реальное движение носителей заряда в большинстве случаев происходит в обратном направлении! В случае, если проводником выступает металл (провод, электрод и т.п.), реальные носители заряда — электроны, летят от минуса к плюсу (т.к. электроны — отрицательно заряженные частицы). Если проводником выступает ионизированый газ или жидкость с ионами, в таком случае ионы летят в обе стороны.


При работе полуавтоматом без защитной среды газа, используется специальная порошковая (флюсовая) проволока. В этом случае обязательно меняется полярность подключения держака и «массы». То есть на массе «минус», а на держаке плюс (обратная полярность при сварке). Обусловлено это тем, что температура плавления флюса примерно одинакова с температурой плавления металла, однако для получения качественного шва необходимо чтобы флюс сгорел и образовал небольшое газообразное облако в среде которого и будет происходить сварочный процесс. Как уже отмечалось выше, ток течет от минуса к плюсу, поэтому и падение расплавленной капли металла будет несколько более низким, что обеспечит меньший прогрев свариваемого металла, поскольку охлаждение последнего не осуществляется средой защитного газа и формирование сварочной ванны будет примерно таким же, как и при сварке в среде газа.
Сварка цветных металлов, в частности алюминия, производится, как правило, специальным вольфрамовым электродом. В этом случае обычно используют прямую полярность при сварке — минус на электроде. Такой тип подключения позволяет получить большую температуру в зоне нагрева, что особенно критично для того же алюминия, поскольку первоначально необходимо «пробить» оксидную пленку, тем более, что температура плавления у последней гораздо выше, нежели самого металла.
Прямая полярность помимо всего прочего позволяет получить более концентрированную и узкую электрическую дугу, более глубокое проплавление металла, а, соответственно, более качественный шов и, что немаловажно, использовать меньший диаметр дорогостоящего вольфрамового электрода, а также снизить расход не менее дешевого газа.
При подключении вольфрамового электрода в обратной полярности при сварке — с плюсом на держаке — шов получается менее глубоким. Такой способ хорош при сваривании тонких пластин — в этом случае отсутствует опасность прожечь свариваемый материал. Однако ещё одним минусом является эффект «магнитного дутья». В этом случае образующаяся дуга получается блуждающей и шов получается менее красивым и герметичным.

Вопрос: Какой светофильтр нужно использовать при сварке тем или иным электродом, например 3 мм и 5 мм?

Ответ: Вот сравнительная таблица по применению светофильтров при разных типах сварки и силе тока — от которых и зависит яркость сварочной дуги:

Соответствие Российских стандартов европейским: С3=8 DIN, C4=9 DIN, C5=11 DIN, C6=12 DIN, C7=12 DIN, C8= 13 DIN

Вид сваркиСварочный ток, А
12,5510152030406080100125150175200225250275300360400450500более
Ручная дуговая91011121314
MIG,тяжелый сплав1011121314
MIG, легкий сплав101112131415
TIG91011121314
MAG10111213
14
15
Плазменная резка111213
Микроплазм. резка6789101112131415

Вопрос: Что значит прямая и обратная полярность, куда подключать плюс и куда минус?

Ответ: Прямая полярность это на деталь подключается +, а на электрод -, при обратной полярности наоборот на деталь -, а на электрод +. Разница заключается в том, что на + выделяется тепла больше чем на — , поэтому в зависимости от конкретной задачи сварки можно переключать полярность. Например, обратная полярность подключения используется при сварке тонколистовых металлов, чувствительных к перегреву легированных сталей, нержавейки. Кроме того полярность влияет на перенос металла с электрода на деталь.

Вопрос: Собираюсь научиться варить, как это сделать проще всего?

Ответ: Проще всего и комфортнее варить постоянным током, еще проще и легче варить полуавтоматом, так как в нем хорошо видно дугу и металл. Если берете инвертор, то желательно чтобы в нем были функции облегчающие работу — быстрый поджиг, антизалипание электрода, сброс форсажа дуги и т.д., чем больше регулируемых функций — тем комфортнее будет выполнять ряд операций, но тем выше стоимость аппарата.

Вопрос: При сварке на инверторе залипает электрод, зажигается очень плохо чуть ли не после 10 тыканья в металл, как это прекратить?

Ответ: Может быть много причин: а) сырые электроды, тогда их надо прокалить и держать в герметичной емкости; б) некоторые электроды, например УОНИИ очень чувствительны к выбранному току, при этом сварщики пытаются увеличить ток, что усугубляет проблему (так как стержень горит быстрее обмазки), т.е. нужно отрегулировать силу тока — скорее всего уменьшить его или изменить полярность.

Вопрос: Что лучше приобрести — сварочный трансформатор или инвертор?

Ответ: Это большая и сложная тема, выбор зависит от конкретных условий эксплуатации, производителя, модели, предстоящей работы и т.д. Приведем основные плюсы и минусы трансформаторов и инверторов.

Трансформатор:

Надежен, долговечен, допускает непрерывную работу, легко сочетается с осцилятором (например от TIG сварки), малочувствителен к скачкам напряжения и т.д.

Тяжел и неудобен для переноски, неудобно регулируется напряжение и ток

Инвертор:

Мал, компактен, легок, легко регулируется напряжение, ток и другие параметры (когда не горит дуга)

Недопустим перегрев (поэтому для каждой модели пишутся время работы/отдыха в зависимости от режима), сложно подключить осциллятор (на большинстве моделей), боится сырости, железной пыли и опилок (причем притягивает их), пониженного напряжения сети, многие модели боятся холода, на большинстве моделей недопустимо крутить настройку при работающей дуге — причем чем ниже качество аппарата, тем выше вероятность, что в результате нарушения одного или нескольких правил аппарат выйдет из строя.

Вопрос: Как правильно приварить оцинкованную деталь к черному металлу, что за хлопья возникают при такой сварке?

Ответ: Оцинкованные детали нужно обязательно тщательно и качественно зачищать от оцинкованного слоя, как в месте сварки, так и рядом, так как цинк при сгорании образует очень ядовитые для здоровья соединения, а остатки цинка попадая в шов сильно снижают его качество.

Вопрос: Крокодил которым присоединяю массу к уголкам посверкивает, греется, чернеет — возможно ли лучше присоединять массу?

Ответ: Лучше всего для присоединения массы использовать прижимную струбцину, она обеспечит надежный контакт.

Вопрос: Можно ли ручной дуговой сваркой сварить алюминиевые детали?

Ответ: Да, для этого существуют специальные электроды по алюминию, но такая сварка требует высокой квалификации сварщика, электроды не должны быть лежалыми, требуется обязательный предварительный прогрев деталей. Т.е. все же для получения качественной сварки лучше сваривать алюминий TIG-сваркой.

Вопрос: Можно ли ручной дуговой сваркой сварить титановые детали и существуют ли для этого специальные электроды?

Ответ: Нет, невозможно и электродов по титану для РДС не существует. Титан можно сварить только в атмосфере аргона очень высокой очистки, в противном случае титан активно поглощает кислород и в больших количествах водород, в результате чего шов неизбежно лопается.

Вопрос: Как заварить дырки в тонком листе металла?

Ответ: Тонкий металл лучше сваривать полуавтоматической сваркой проволокой, но если такой сварки нет, то можно наплавлять вокруг дырки валик и продолжая наплавлять его и сужая внутрь дырки — постепенно заварить ее всю. Также чтобы избежать продырявливания тонкого металла можно подложить под металл медную пластину и варить на обратной полярности.

Администрация Общая оценка статьи: Опубликовано: 2012.05.16

Полярность сварочного тока — один из важных параметров, влияющих на качество сварного шва. Ведь от него зависит направление движения тока, то есть электронов в металле, что влияет на процесс выполнения шва, горение дуги, формирование сварочной ванны и в результате — на качество сварного соединения.

По поводу физического смысла, а также терминов «прямая» и «обратная» я написал отдельную статью ранее. А сейчас я расскажу основные принципы использования прямой и обратной полярностей сварочного тока. И главное, что нужно знать: там, где «+», там греется больше. Соответственно, при сварке на токе при обратной полярности, когда «+» на электроде, он греется больше, чем в случае с прямой. А деталь, наоборот, больше греется при сварке на токе прямой полярности.

Тонкости и особенности

С деталью ситуация несколько более хитрая. Когда «+» на детали, получается шире пятно проплавления, но глубина при этом не больше, а то и меньше, чем когда на детали «-«. С «минусом» на детали пятно сварочной ванны меньше, но его глубина может быть не меньше, а то и больше, чем при сварке на токе прямой полярности. Благодаря этому, когда на детали «минус», получается лучше контролировать перемещение сварочной ванны.

Как это использовать на практике? Вариантов много. Обычно, по умолчанию используется прямая полярность сварочного тока — особенно, когда нужно сильно прогревать и проваривать детали. Обратная полярность используется в тех случаях, когда нужно точнее контролировать перемещение сварочной ванны. Например, это некоторые виды , особенно сверху вниз. Также сварка на токе обратной полярности может помочь при выполнении потолочных швов и — ведь в этом случае деталь прогревается меньше, а это позволит минимизировать стекание металла при выполнении вертикальных и потолочных швов и сквозное проплавление металла при сварке тонкого листа.

Полярность сварочного тока зависит также от электродов

Ещё один важный момент — это . Не все электроды позволяют использовать сварочный ток любой полярности. Например, электродами с основным видом покрытия сварку следует вести только с «минусом» на свариваемом металле. К таким электродам относятся, например, электроды УОНИ-13/55. В любом случае, всегда проверяйте соответствие фактически установленной полярности сварочного тока допустимой для конкретных используемых электродов.

Резюме

Итак, важно понимать, что выбор направления сварочного тока зависит от пространственного положения сварного шва, выбранных электродов, толщины металла и личных навыков сварщика. Если все эти условия будут соблюдены, то и швы будут получаться качественными, надёжными и эстетичными.

И главное — экспериментируйте! Я говорю это очень часто, потому что на самом деле, только эксперимент даст вам самые точные и правильные ответы на ваши вопросы!

Возможно, я раскрыл эту тему несколько сумбурно, поэтому, если у вас остались какие-то вопросы, пишите их в комментариях. А также обязательно расскажите о своём опыте использования прямой и обратной полярностей!

В зависимости от ряда факторов, сварочная дуга, подаваемая при сварке постоянным током, может иметь прямую или обратную полярность. В первом случае к обрабатываемым элементам подводится заряд «плюс», а к электроду — «минус». Обратная полярность при сварке отличается подачей к электроду «плюса» и «минуса» к детали. Подробнее о специфике методов — далее.

Особенности процессов

Габариты и форма получаемого шва также зависят от расположения полюсов. Например, более глубокая проплавка возможна при постоянном токе обратной направленности, что обусловлено увеличенным теплообразованием на аноде и катоде.

Немаловажно помнить — чем быстрее осуществляется сварочный процесс, тем ширина шва и глубина провара становятся меньше.

Какое оборудование использовать

Обратное направление востребовано в работе особыми установками. Специфика в том, что машина подает проволоку с некоторой скоростью на заготовку, поэтому возможен выбор нескольких типов сварки.

Например, в среде защитных газов (когда используется аргон или углекислый газ), либо с использованием проволоки, обработанной порошком. Обратная направленность тока применима при работе с газами, прямая — когда процесс выполняется порошковой проволокой (также известной как флюсовой).

Полуавтоматическая сварка предполагает ряд изменений процесса. Во-первых, подключение «держака» и «массы» меняется — на первом «плюс», на второй «минус» (обратная). Делается это для того, чтобы флюс выгорел полностью, а сварочный процесс произошел внутри образовавшегося газообразного облака. Металл будет меньше прогреваться, а разбрызгивание капель сведется к минимуму.

Прямая используется для сварки цветных металлов, когда рабочим расходным элементом выступает вольфрамовый электрод. Таким образом достигается увеличение температуры в зоне нагрева, что может быть критично для, например, алюминия.

В работе с переменным током задача пользователя — своевременно менять расходные элементы. Профессионалы же или продвинутые любители предпочитают постоянный ток как надежный залог качественной сварки. Работа с инвертором позволяет выбирать один из двух известных вариантов действий. Прямая и обратная полярность при сварке выступают способами, каждый из которых имеет свои преимущества и недостатки. Выбор направления диктуется рядом факторов, главные из которых — материал расходников и используемое оборудование.

Если вы знаете другие специфические особенности выбора параметров сварки, поделитесь информацией в комментариях к статье.

Сварка электрической дугой, по сравнению с газовой сваркой, имеет некоторые особенности. Это и более высокая, до 5000°С, температура самой дуги, что превосходит температуры плавления всех существующих металлов, и большое разнообразие видов и типов сварки, а, соответственно, методов и целей её применения. Электродуговая сварка различается по степени механизации, по роду тока, по типу дуги и свойствам сварочного электрода, а также другим параметрам. В данной статье хотелось бы рассмотреть некоторые нюансы электродуговой сварки в зависимости от полярности сварочных электродов.

Виды сварки.

По роду используемого тока различают два вида дуговой сварки:

  • сварка электрической дугой, питаемой переменным током;
  • сварка электрической дугой, питаемой постоянным током.

В свою очередь, сварка с использованием постоянного тока бывает двух типов:

  • сварка током прямой полярности;
  • сварка током обратной полярности.

Рассмотрим особенности каждого типа сварки постоянным током подробнее.

Сварка током прямой полярности.

Под сваркой прямой полярности принято понимать сварку, при проведении которой на свариваемую деталь (изделие) подаётся положительный заряд от сварочного выпрямителя, то есть сварочный кабель соединяет свариваемую конструкцию с клеммой «плюс» сварочного аппарата. На электрод же подаётся отрицательный заряд через электрододержатель, соединённый кабелем с минусовой клеммой.

Поскольку на положительном полюсе (аноде) температура всегда значительно более высокая, чем на отрицательном (катоде), ток прямой полярности рекомендуется применять при необходимости резки металлоконструкций и сварке толстостенных деталей, а также в иных случаях, когда требуется добиться большого выделения тепла, что как раз и является характерной особенностью такого типа подключения.

Сварка током обратной полярности.

Для проведения сварки током обратной полярности подключение следует провести противоположным образом: на свариваемую деталь подать отрицательный заряд с клеммы «минус», а на электрод — положительный заряд с клеммы «плюс».


Такая полярность сварочных электродов обеспечивает обратную прямому подключению ситуацию — больше тепла выделяется на электроде, а нагрев детали сравнительно уменьшается. Это позволяет производить более «деликатную» сварку и уменьшает вероятность прожига детали. Соответственно, сварку током обратной полярности рекомендуется применять при необходимости сваривания тонких листов металла, нержавеющей, легированной стали, иных сталей и сплавов, чувствительных к перегреву.

На какой полярности лучше варить инвертором. Сварка постоянным током.

Электродуговой способ сварки, в отличие от традиционной газовой, отличается некоторыми особенностями. Одной из самых главных является температура нагрева дуги, которая может достигать 5000С, что значительно превышает температуру плавления какого-либо из существующих металлов. Отчасти этим объясняется большое разнообразие технологий и способов этого вида сварки, позволяющих решить при ее помощи самые различные задачи.

Виды сварки

Сварочные аппараты имеют блок выпрямительных диодов . Что создает постоянный ток, это обязательное условие для сварочных полуавтоматических аппаратов, для которых материалом является проволока. Если для аппарата требуются электроды, то это обозначает возможность использования во время работы всех их моделей. А полярность во время сварки – это залог ее качества.

Используя полуавтомат, надо соблюдать полярность подсоединения. Сварка под газовой защитой омедненной проволокой происходит с помощью полярности прямого тока. Фактически это значит:

  • на деталь идет плюс;
  • на держак идет минус.

Сила тока подается на деталь от проволоки, и она нагревается, в отличие от сварочной проволоки, сильнее. В итоге повышается площадь свариваемого участка. Ему необходим значительный нагрев для образования варочной ванны . Проволока, имеющая меньшее сечение, быстрей плавится и попадает на необходимый участок уже жидкой каплей. Током, который проходит от разных полярностей, увлекается расплавленный материал, получается подходящая ванна для сварки.

Используя полуавтомат без защитной газовой среды, нужно использовать специальную порошковую или флюсовую проволоку. В этом случае изменяется полярность соединения держака и «массы». На «массе» находится минус, а на держаке находится плюс. Температура плавления флюсовой проволоки имеет примерно такое же значение, как и температура плавления металла. Чтобы достичь качественного шва, необходимо, чтобы сгорел флюс. Затем ожидают два таких процесса:

  • Появление газообразного облака;
  • В среде этого облака и происходит сварка.

Сила тока переходит от минуса к плюсу, и падение жидкой капли металла становится более низким. Именно это обуславливает меньший нагрев металла для сварки. Так как его охлаждение не происходит под защитной газа. Поэтому образование ванны для сварки практически не отличается от сварки в газовой среде. Работа переменным током имеет определенные преимущества. Она не расходится с дугой относительно изначальной оси. А на качество соединения воздействует именно отклонение дуги.

Делая сварку генератором с переменным током, легко заметить: его полярность изменяется циклически. Циклы имеют частоту 50 Герц. Она, повысившись до плюсового напряжения, может снизиться до нуля или упасть до отрицательного уровня. Напряжение меняется с плюса на минус и, наоборот.

Сварка нержавейки и цветных металлов

Во время сварки цветных металлов, в том числе и алюминий, используют специальный вольфрамовый электрод. Причем используют во время инверторной сварки прямую полярность, на электроде находится минус. Этот вид подключения позволяет иметь необходимую температуру в участке нагрева . Это немаловажно для алюминия, потому как сперва нужно преодолеть оксидную пленку, у которой температура плавления значительно больше, в отличие от самого металла.

Полярность при сварке напрямую способствует образованию:

  • более качественного шва;
  • более лучшего проплавления металла, в том числе и из нержавеющей стали;
  • более концентрированной узкой электрической дуги.

У процесса также существует и немаловажная экономическая часть. Используя дорогой вольфрамовый электрод меньшего диаметра, попутно добиваются уменьшения газовых затрат . Если же подключить вольфрамовый электрод при сварке в другой полярности, а именно, на держателе – с плюсом, то шов будет не таким глубоким. У данного способа есть свои преимущества. Работая с тонкими пластинами, можно не переживать, что вы прожжете насквозь изделие из нержавейки и цветного металла.

Значительным недостатком является эффект электромагнитного дутья. Образующаяся дуга выходит блуждающей, а шов – не сильно привлекательным и герметичным. Используя переменный ток, необходимо использовать электроды для переменки. Опытные сварщики обычно выбирают постоянный ток. Благодаря ему сварка создает однонаправленный проход электронов. Полярность влияет на качество сварочных работ, в том числе материала из нержавеющей стали.

Сварка прямой полярности инвертором получается, если с деталью подключается «плюс» источника тока. Когда подсоединяют электрод , то в этом случае получается обратная полярность. Используя сварочный инвертор, можно самостоятельно установить на нем полярность. Полярность определяет направление передвижения потока электронов. То есть, определяется подсоединением проводов к положительной и отрицательной клеммам. При работе со сваркой обратная полярность обозначает:

  • на электроде – плюс;
  • на «земле» – минус.

Ток переходит от отрицательного контакта к положительному. Именно поэтому электроны переходят на электрод от металла. В результате сильно нагревается окончание электрода . Для классической сварки эффективно используют плюс – на электроде, а минус – на клемме. При прямой полярности сварки предполагается минус – на электроде, плюс – на «земле». Ток перемещается от электрода к изделию. Электрод – холодный, а изделие – горячее. Эта особенность широко используется в особых электродах, которые предназначены для быстрой сварки листов нержавеющей стали.

Важность полярности при сварочных работах

Естественно, что инверторная сварка на переменном токе не зависит, какой установлен зажим трансформатора для соединения изделия и электрода . Но вот постоянным током по сложившейся традиции сваривают несколькими способами. Электрод, подсоединенный к отрицательному полюсу, с прямой полярностью является катодом.

В анод, подсоединенное к положительному полюсу, преобразуется изделие. Обратная полярность обозначает, что электрод после подсоединения к положительному полюсу становится анодом. Катод в этом положении – это изделие, подсоединенное к отрицательному полюсу.

Материал изготовления электрода задает параметр дуги между неплавящимися электродами из вольфрама и плавящимися металлическими электродами. Сварочная дуга имеет ряд физических и технологических свойств. От этого практически полностью будет зависеть результат работы дуги. К физическим свойствам относятся:

  • кинетические;
  • электромагнитные и температурные;
  • электрические и световые.

Основные технологические свойства имеют три вида:

  • мощность дуги;
  • пространственную стойкость;
  • саморегулирование.

Для поддержания горения дуги требуется создать обратные электрически заряженные части в пространстве между находящимися электродами. Данные частицы – это электроны, а также положительные и отрицательные ионы . Их преобразование называется ионизацией. Газ, имеющий электроны и ионы, называется ионизированным.

Промежуток дуги ионизируется во время зажигания дуги, и все время поддерживается при ее горении. В промежутке дуги, как правило, выделяют следующие области:

  • область разряда дуги;
  • анодную;
  • катодную.

В области анодов происходит значительное снижение напряжения , вызванное скоплением около электродов заряженных частиц. На поверхности анода и катода начинается появление электродных пятен, которые представляют некий фундамент дугового столба. Через них и прокладывается маршрут тока к сварке.

У сварки есть общий размер дуги, он состоит из суммарных длин 3-х областей. Общее напряжение дуги – это сумма снижений напряжения в каждой части дуги. Зависимость напряжения от размера дуги – это сумма снижения напряжения в прикатодном и прианодном участках. Удельное снижение в дуге напряжения имеет один миллиметр от столба дуги. А основной характеристикой дуги является тепловая мощность нагревательного источника.

Ее эффективность рассчитывается с учетом количества теплоты , вводимой в металл за единицу времен. Тепловая мощность – это часть общей дуговой тепловой мощности, из которой определенная доля тепла уходит непроизводительно:

  • на теплоотвод в изделии;
  • излучение;
  • на прогрев разбрызгивающихся капель.

Технология сварочных работ дугой

Преимущество сварочных работ дугой явны. Сварка отличается по признакам:

  • по среде, где находится дуговой разряд;
  • по типу тока;
  • по типу электродов.

Для ремонта кузовов автомобилей широко используется дуговая сварка полуавтоматом в защитной среде газа. Для частного пользования наиболее доступной является дуговая ручная сварка. Она делается плавящимися электродами на переменном или постоянном токах. Это хороший шанс сварить в не заводской обстановке большую часть видов металлов.

Размер между поверхностью основного изделия и дном кратера является глубиной провара или проплавления. Глубина зависит:

  • величины сварочного тока;
  • от скорости передвижения дуги.

Если размер дуги сварки не больше, чем размер стержня электрода, то эта дуга называется нормальной или короткой. Она гарантирует великолепное качество шва. Дугу, которая имеет большую длину, считают длинной. Очень большое наращивание размера дуги приводит к ухудшению качества сварки. Влияние магнитного поля создает отклонение дуги от заданного направления. Это называется электромагнитным дутьем .

Электрод во время процесса передвигается вдоль и поперек сварочного шва в направлении оси, дабы сохранить заданный размер дуги. Ускоренное перемещение электрода приводит к образованию узкого, неровного и неплотного шва. При медленном передвижении есть опасность пережога материала.

Сварочные швы по форме бывают:

  • тавровыми;
  • нахлесточными;
  • стыковыми;
  • угловыми.

По длине швы разделяются на сплошные и прерывистые. По пространственному расположению имеют такие разновидности:

  • вертикальные;
  • потолочные;
  • нижние;
  • горизонтальные.

Источники питания: трансформатор для сварки, выпрямитель, генератор – при внешнем показателе имеют связь величины нагрузочного тока с напряжением на зажимах выхода. Вольтамперный показатель дуги – это соотношение между напряжением в статическом режиме и током дуги. Внешние показатели сварочных генераторов считаются падающими.

На размеры и форму шва также влияют вид электротока и его полярность . То есть, постоянный ток обратной полярности обеспечивает гораздо большую глубину плавления, чем постоянный ток с прямой полярностью, это объясняется разными количествами тепла, появляющимися на аноде с катодом. От повышения скорости процесса сварки глубина и ширина шва провара снижаются.

На сегодняшний день сварочные инверторы практически полностью заменили с рынка другие типы сварочных аппаратов, ранее использовавшиеся в ходе сварочных работ: выпрямители тока, генераторы и сварочные трансформаторы. Подобные устройства были достаточно громоздкие, тяжеловесные и проблематичные в транспортировке. Инверторы, в свою очередь, обладают рядом неоспоримых преимуществ таких как минимальный вес устройства, относительно недорогая цена, высокое качество сварки, простота в эксплуатации.

Устройства типа инвертор позволяют не только выполнять сварку масштабах производства, но и решать любые сварочные задачи на бытовом уровне. Работать на сварочном инверторе может не только профессионал своего дела, но даже начинающий, имея небольшой багаж знаний и минимальный опыт в сварочных работах.

Также одним из основных достоинств можно считать его универсальность: при сварке используются электроды с постоянным электротоком и с током переменным. Обладая довольно широким спектром настроек тока на выходе можно решать различные задачи от сварки металла минимальной толщины до выполнения сложных работ связанных с резкой металла в несколько слоев. Рассмотрим основные виды полярности электрического тока и их применение в решении различных сварочных задач.

Прямая и обратная полярность при сварке

Принцип работы сварки с прямой полярностью подразумевает следующий алгоритм: ток от сварочного инвертора попадает на обрабатываемую деталь под положительным зарядом, в свою очередь клемма аппарата со знаком «плюс» соединяется с поверхностью металла с помощью специального кабеля. Заряд со знаком «минус» подается через электродержатель на электрод, который подключается к минусовой клемме. Это обеспечивает максимальный нагрев обрабатываемой детали при минимальном накаливании электрода. Подобный тип подачи тока рекомендуется для сварки изделий с толстыми краями, скрепление нескольких металлических пластин, а также часто используется профессионалами для резки по металлу.

Полезно знать: Если стоит задача получить идеальный, аккуратный шов без большого количества брызг от обрабатываемого изделия из металла обычно используется применение постоянного тока. Это происходит из-за отсутствия частой смены полярности при сварке. В остальных случаях в основном применяется переменный электроток по причине своей экономности в отличии от тока постоянного.

При сварке обратной полярности инвертором необходимо выполнить противоположные действия. На обрабатываемую поверхность металлической детали подается заряд со знаком «минус» от минусовой клеммы.В свою очередь, на электрод направляется заряд со знаком «плюс» от плюсовой клеммы. При таком подключении максимальные нагрев образуется на электроде, а обрабатываемая поверхность металла нагревается минимально. Такой тип полярности позволяет проводить так называемую «деликатную» сварку, так как в процессе сварки с помощью обратной полярности нивелирует вероятность «прожога» металла, что является наиболее актуальным с тонколистными металлами, сплавами, реагирующими на перегревание, а также с нержавеющей, легированной сталью.

Обратите внимание: чтобы предотвратить вероятность прожигания металла в ходе сварки профессионалы в сварочном деле советуют применять прижимную струбцину, которая позволяет крепко фиксировать обрабатываемые листы металла и делать процесс сварки более простым и удобным.

Особенности выбора электродов

Чтобы сварочные работы инвертором всегда выполнялись качественно и быстро очень важно уметь подбирать из всех разновидностей электродов представленных на современном рынке, именно тот который подходит для решения определенных сварочных задач. Выделим основные критерии, которые упростят процесс выбора оптимальных электродов для сварки инвертором:

Разновидность металлического изделия (существует определенная классификация электродов по виду металла, которая поможет выбрать оптимальный вариант стержня электрода).

Представляем вам основную классификации электродов по типу металла:

  • Для выполнения ремонтных работ и наплавки;
  • Для сварки на углеродистой и низколегированной стали;
  • Для сварки изделий из меди и ее сплавов;
  • Для сварки изделий из чугуна и его сплавов;
  • Для сварки изделий из алюминия и его сплавов;
  • Для выполнения работ с трудноподдающихся сварке металлами;
  • Для сварка изделий из высоколегированной стали;
  • Для сварки изделий с теплоустойчивыми с характеристиками.

Чистота обрабатываемой поверхности металла (например, стрежни электродов с рутиловым покрытием способны выполнять сварочные работы на сильно загрязненных, ржавых поверхностях металлических деталей; а основные электроды, наоборот, рекомендуется использовать для прочных соединений во время при отсутствии каких- либо загрязнений или влаги на металле).

Толщина металла (Чем больше толщина металла для сварки, тем большего диаметра должен быть подобран электрод):

  • Для толщины изделия в 2 мм используют диаметр электрода в 2,5 мм;
  • Для толщины изделия в 3 мм используют диаметр в 2,5 и 3 мм;
  • Для толщины изделия в 4 и 5 мм используют диаметр электрода в 3,2 и 4 мм;
  • Для толщины изделия от 6 до 12 мм используют диаметр электрода в 4 и 5 мм;
  • Для толщины изделия свыше 13 мм необходимо использовать электроды в 5 мм.

Выбор оптимального электротока (Зависимость между диаметром рабочего стержня электрода и электротоком можно охарактеризовать следующим образом: если при усиленном токе изделие можно прожечь насквозь, то пониженном электротоке возможность создания рабочей электродугу окажется невозможной):

  • электроду в 2 мм необходим ток от 50 до 60 А;
  • электроду в 2,5 мм необходим ток от 60 до 90 А;
  • для электрода в 3 мм необходим ток в пределах 80 — 140 А;
  • для электрода в 4 мм необходим ток от 130-160 А;
  • для электродов в 5 мм необходим ток в 200 А;
  • электроду в 6 мм необходим ток от 220 до 240 А.

Если вкратце, деталь плавится в результате образования электрической дуги, образуемой от анода — электрода с положительным зарядом источника электротока, и отрицательного катода. Источником электротока является сварочный аппарат, анодом и катодом — держатель и провод с клеммой, присоединяемый к металлической заготовке. При приближении электрода к заготовке между ними образуется электрическая дуга, которая разогревает заготовку до высокой температуры, происходит плавление и смешивание разогретых поверхностей. Если анодом является деталь — электросварка происходит в режиме прямой полярности. Обратная полярность при дуговой сварке образуется при подаче положительного заряда на держатель сварочного аппарата.

Применение разного подключения

Разница подключения значений источника питания существенно влияет на результат работы. По сути, полярность — это движение электронов от отрицательного заряда к положительному. Следует учитывать, что «плюсовой» источник электротока всегда имеет наибольшую температуру нагрева (это явление широко используется в электросварке).

При прямой полярности сварки металл разогревается гораздо сильнее электрода — более чем на четыре тысячи градусов по Цельсию, в то время как обратная позволяет добиться максимальной температуры электрода.

Для соединения тугоплавких материалов либо металла значительной толщины целесообразнее подключить деталь в качества анода. Это обеспечит максимальный разогрев металла и меньшую площадь плавления. То же правило применимо при резке либо изготовлении отверстий в заготовках.

Для работы с тонкими листами либо с легкоплавким материалом идеальным выбором будет обратная полярность электросварки — наибольшая площадь плавки, а также высокая температура электрода позволят избежать прожога заготовки и создать эстетичный сварной шов.

Готовясь к сварочным работам, необходимо уделять внимание типу электротока, его силе, материалу электродов, скорости перемещения держателя при обработке заготовки.

Электроток бывает:

  • постоянным;
  • переменным.

Инверторный сварочный аппарат при подключении к сети преобразует переменный электрический ток в постоянный, который считается наиболее подходящим. Сварочный шов при использовании постоянного электротока получается более аккуратным, без разбрызгивания расплавленного металла. Разница в подключении «плюса» и «минуса» с использованием переменного тока практически отсутствует. Переменный электроток в электросварке имеет один из плюсов — дешевизну.

За счет увеличения силы тока увеличивается температура пятна сварки и ее глубина. Такие параметры можно регулировать скоростью перемещения держателя: чем выше скорость — тем меньше температура, глубина электросварки. Необходимо обращать внимание на рекомендации завода-изготовителя электродов: применение может отличаться в зависимости от выбранного подключения анода и катода. Неправильно выбранный расходный материал может существенно ухудшить качество шва в результате несоблюдения инструкции по его использованию. Для возбуждения электрической дуги при сварке с обратной полярностью требуется больше времени.

Качество, а также скорость проведения сварочных работ, зависят от подготовки работника, сварочного аппарата и расходных материалов.

Необходимо внимательно ознакомиться и неукоснительно соблюдать требования инструкций изготовителей к аппарату и электродам по режиму сварки : силе, напряжению тока, расстоянию дуги, скорости движения держателя.

Правильный выбор прямой или обратной полярности сварки позволит выполнить работу качественно и без лишних материальных затрат.

Графики, поясняющие процесс сварки постоянным током (б) и переменным (а)


Сварка с использованием сварочных аппаратов, которые работают на постоянном токе, сегодня нашла гораздо большее применение, нежели сварка аппаратами, которые работают на переменном токе. В первую очередь это связано с тем, что особенности сварки постоянным током позволяют существенно уменьшить количество присадочного металла электродов в сварочном шве. Во-вторых, при использовании сварки постоянным током удается добиться существенно уменьшения уровня окалины в сварном шве. Это значит, что соединение, которое получается в результате, обладает повышенной прочностью.
Электроды – одна из основных статей расходов при любых сварочных работах. Сварка постоянным током позволяет достичь существенного уменьшения показателей разбрызгивания электродов, а это значит – сокращение издержки материалов. В целом сварка переменным током позволяет повысить доходность процесса, при этом снизить затраты на изготовление деталей.
Немаловажное преимущество сварки постоянным током – это повышение производительности труда. Работа с постоянным током делает работу сварщика значительно проще, а значит – эффективнее и производительнее.
Сварка постоянным током может быть прямой и обратной полярности. Прямая полярность – это когда ток идет от минуса к плюсу и тепло концентрируется на изделии. Этот тип зачастую используют в механизированной сварке. Сварка постоянным током обратной полярности предполагает концентрацию тепла на торце электрода (то есть, минус – на изделии, а плюс – на электроде).
Стоит заметить, что потребности сварочного шва предполагают использование сварочного выпрямителя. Он может быть разного типа конструкции. Большинство этих выпрямителей используются в промышленности, поэтому они чаще всего работают на трехфазном токе частотой 50-60 Гц.
Сварка постоянным током обратной полярности позволяет увеличить глубину провара на 50%, по сравнению со сваркой постоянным током прямой полярности. Это объясняется тем, что на аноде и катоде выделяется различное количество теплоты. А вот во время сварки переменным током, глубина провара по сравнению с постоянным током обратной полярности ниже на 20%.
Диаметр электрода при сварке постоянным током зависит от положения сварки, толщины металла, вида соединения и формы кромок под сварку. Если речь идет о сварке встык, то диаметр электрода должен быть равным толщине свариваемого листа. При сварке листов большей толщины используют электроды диаметром от 4 до 6 мм.
Напряжение – величина, которая главным образом определяет ширину шва. А на такой параметр как глубина провара, напряжение не оказывает значительного влияния. Но и это не обязательно. Например, если при увеличении напряжения постепенно увеличивать скорость сварки, то ширина шва будет уменьшаться. В основном сила тока зависит от диаметра электрода, от его рабочей длины, покрытия и положения сварки. Чем выше ток, тем больше производительность, поскольку увеличивается количество наплавляемого металла.

Большинство современных сварочных аппаратов имеют в своей конструкции блок выпрямительных диодов, что, в свою очередь, обеспечивает постоянный сварочный ток. Для аппаратов, использующих в качестве сварочного материала проволоку (сварочных полуавтоматов) это является обязательным условием. Для аппаратов же, использующих для работы электроды это уже является опцией, позволяющей использовать практически любые марки электродов для проведения сварочных работ.

Классификация сварочной дуги по полярности постоянного тока:
а — прямая полярность; б — обратная полярность


При работе полуавтоматом необходимо обязательно соблюдать полярность подключения. Так, сварка обычной обмедненной проволокой в среде защитного газа производится током прямой полярности. То есть на изделие подается плюс, а на держак минус (прямая полярность при сварке). При таком подключении ток протекает от проволоки на изделие, в связи с чем нагрев изделия получается выше, нежели сварочной проволоки. И это закономерно. Свариваемые части имеют значительно большую площадь, соответственно, требуют большего нагрева для образования сварочной ванны. Проволока же, имеющая меньшую площадь достаточно легко плавится и в место сварки попадает уже в виде расплавленной капли. Протекающий ток, а он протекает именно от плюса к минусу, захватывает расплавившийся материал, опять же способствуя формированию качественной сварочной ванны.

Судя по комментариям посетителей нашего сайта, возникла небольшая путаница с тем, в каком все таки направлении течет ток в цепи. Давайте попытаемся внести ясность в этот вопрос!
Необходимо понимать, что «направление тока» в электротехнике — это больше условность, принятая для рисования схем. Традиционно, на схемах, принято рисовать от плюса к минусу, как будто движение тока происходит от плюса к минусу, хотя реальное движение носителей заряда в большинстве случаев происходит в обратном направлении! В случае, если проводником выступает металл (провод, электрод и т.п.), реальные носители заряда — электроны, летят от минуса к плюсу (т.к. электроны — отрицательно заряженные частицы). Если проводником выступает ионизированый газ или жидкость с ионами, в таком случае ионы летят в обе стороны.


При работе полуавтоматом без защитной среды газа, используется специальная порошковая (флюсовая) проволока. В этом случае обязательно меняется полярность подключения держака и «массы». То есть на массе «минус», а на держаке плюс (обратная полярность при сварке). Обусловлено это тем, что температура плавления флюса примерно одинакова с температурой плавления металла, однако для получения качественного шва необходимо чтобы флюс сгорел и образовал небольшое газообразное облако в среде которого и будет происходить сварочный процесс. Как уже отмечалось выше, ток течет от минуса к плюсу, поэтому и падение расплавленной капли металла будет несколько более низким, что обеспечит меньший прогрев свариваемого металла, поскольку охлаждение последнего не осуществляется средой защитного газа и формирование сварочной ванны будет примерно таким же, как и при сварке в среде газа.
Сварка цветных металлов, в частности алюминия, производится, как правило, специальным вольфрамовым электродом. В этом случае обычно используют прямую полярность при сварке — минус на электроде. Такой тип подключения позволяет получить большую температуру в зоне нагрева, что особенно критично для того же алюминия, поскольку первоначально необходимо «пробить» оксидную пленку, тем более, что температура плавления у последней гораздо выше, нежели самого металла.
Прямая полярность помимо всего прочего позволяет получить более концентрированную и узкую электрическую дугу, более глубокое проплавление металла, а, соответственно, более качественный шов и, что немаловажно, использовать меньший диаметр дорогостоящего вольфрамового электрода, а также снизить расход не менее дешевого газа.
При подключении вольфрамового электрода в обратной полярности при сварке — с плюсом на держаке — шов получается менее глубоким. Такой способ хорош при сваривании тонких пластин — в этом случае отсутствует опасность прожечь свариваемый материал. Однако ещё одним минусом является эффект «магнитного дутья». В этом случае образующаяся дуга получается блуждающей и шов получается менее красивым и герметичным. входная дверь с зеркалом подробнее на сайте

Влияние рода тока и марки флюса на форму шва

При сварке постоянным током существенное влияние на глубину провара, высоту усиления шва и коэффициент плавления электрода оказывает полярность тока.

При автоматической и полуавтоматической дуговой сварке под флюсом постоянным током прямой полярности (катод на электроде, анод на изделии) при неизменных величинах сварочного тока, напряжения дуги и скорости сварки скорость плавления проволоки (и, следовательно, коэффициент наплавки) больше, а расплавление основного металла меньше, чем при обратной полярности.

Это обусловлено тем, что при сварке под флюсом на катоде, как правило, выделяется больше тепла, чем на аноде. Однако при сварке под флюсом постоянным током сталей (в частности, высоколегированных) и ряда других металлов чаще применяют обратную полярность, при которой больше расплавляется основной металл.

Изменение формы шва и внешнего вида его поверхности при использовании различных марок флюса зависит от его стабилизирующих свойств, газопроницаемости в жидком состоянии и насыпного веса. С повышением стабилизирующих свойств флюса при неизменном режиме сварки увеличивается длина дуги, вследствие чего глубина провара уменьшается, а ширина шва возрастает.

Менее вязкие (более жидкотекучие) флюсы, а также флюсы, обладающие меньшей скоростью затвердевания, обеспечивают лучшее удаление избытка газов из зоны сварки и более гладкую поверхность шва. К таким флюсам относятся высококремнистые марганцевые флюсы.

Флюсы с меньшим насыпным весом способствуют получению более широкого шва с меньшей глубиной провара, чем флюсы с большим насыпным весом. Напомним, что флюсы с пемзовидной структурой имеют меньший насыпной вес, чем стекловидные. Кроме того, чем мельче флюс, тем больше его насыпной вес.

Влияние насыпного веса флюса на форму шва состоит в следующем: чем меньше насыпной вес флюса, тем меньшее давление он оказывает на газовую полость зоны сварки и тем, следовательно, больше объем этой полости; при увеличении объема полости повышается подвижность дуги по поверхности сварочной ванны, благодаря чему ширина шва увеличивается, а глубина провара уменьшается.

обратная полярность постоянного тока — Испанский перевод — Linguee

05ah 05ah 05ah
V DC ] 24 , обратная полярность p r ot ected Рабочее напряжение

festo.com

V DC] 24 con co nt actos inconfundibles Tensin […]

de funcionamiento

festo.com

12-52 В ol t с DC ( Ha s обратная полярность a n высокое напряжение .com

12- 52 вольт ios CC (co n protecc in de polaridad inversa y 9 d ecom

Двойная розетка f o r DC i n st allati on s , с обратной полярностью r ot ected, только […]

подходит для установки на украшениях

stromaufwaerts.at

Enchufe doble para

[…] centra le s de CC , pro tec cci n co nt ra polaridad in ve rsa, sol sol в сталицине […]

для вечеринок

stromaufwaerts.at

Приведенное выше описание основано на рабочем a DC c o il , t h e с обратной полярностью v o lt Возрастной пик при обесточивании применяется аналогично катушкам переменного тока.

findernet.com

Cuando se elimina la alimentacin de la bobina, el campo magntico desaparece y se индуцирует один тензин, который называется тензином де алиментацин.

findernet.it

Все демонстрационные платы

[…] защищены от перенапряжения через с t от обратной полярности a n d от перенапряжения (макс. 30 V DC .

hps-systemtechnik.com

Todas las Placas de Demostracin estn

[…] protegidas con tr a polarizacin Invertida y c on tr a sobretensin ( m x 3 0 V DC )

hps-systemtechnik.com

Cor re c t DC полярность s h или ld […]

всегда.

recgroup.com

E n CC e s ne ce sario tener en cuenta […]

la correctiveapolaridad en todo momento.

recgroup.com

W i t h обратная полярность обратная t h e направление […]

температуры потока.

антенна.wimo.de

C или n polaridad r eve rsa invierte la dir ec cin del […]

Flujo de la temperatura.

antenna.wimo.de

Электронная схема последнего поколения защищает от скачков напряжения в лодке

[…] электрическая система в сборе l a s обратная полярность .

bluemarinestore.com

El circuito electrnico de ltima generacin protege contra picos de voltaje del sistema elctrico

[…] del bar co y in clu so de polaridad inversa .

bluemarinestore.com

Обратная полярность p r ot ection, короткое замыкание на выходе […]

защита, предотвращение взаимных помех

загрузок.industrial.omron.eu

Протеин

[…] Contra в версиях n de polaridad , p rot ecci n contra […]

Cortocircuito de la carga, превентивная интерференция с изменениями

загрузокs.industrial.omron.eu

В cas e o f обратная полярность , t прибор остается неповрежденным, и нет необходимости заменять предохранитель.

steca-solar.com

Si esto llega a suceder , el aparato no recibe ningn dao y no se necesita cambiar el fusible.

steca-solar.com

Не размещать t h e DC f u se if t h e полярность n не верно.

изображений.mastervolt.nl

Нет установки

[…] el fusible d e CC s i l a polaridad n o e s la co rrecta.

изображений.mastervolt.nl

T h e полярность o f t h e DC t изменено…]

путем вращения выпрямителя в высоковольтной части.

baur.at

Girando el rectificador en l и unidad d e alta

[…] tensin, s e camb ia l a polaridad d e la ten si n континуум […]

utilizada en el ensayo.

baur.at

F o r DC v o lt стареет входы a r e 000 9000 s 9000 5 itive.

memco.co.uk

Para los vol ta jes DC las e ntradas son se ns ible s a la polaridad .

memco.co.uk

Направление подключено к цифровому входу

[…] DI5. 0 В постоянного тока на DI5 = вперед и 24 В постоянного тока o n DI5 = .

drivetech.com.ve

Direccin is conectado a la entrada digital

[…] ED5. 0 В CC e n ED5 = Avance y 24 В CC en ED 5 = Retroceso .

drivetech.com.ve

Изделие легко

[…] установить и защищен ага через с t обратная полярность .

prelectronics.co.uk

La instalacin del producto es muy sencilla y est

[…] protegido c на tra el e rro r de polaridad en l a c onexi n .

prelectronics.es

«Нажав на букву выше», вы можете

[…] активировать t h e обратная полярность i . эл. позитив / негатив

eschenbach-optik.com

Al «hacer clic» se

[…] activa la conmu ta cin inversa o la i magen en […]

positivo / negativo.

eschenbach-optik.com

Кроме того,

[…] Лампа также имеет так называемую ll e d обратную полярность p r ot ection особенность, которая […]

предотвращает неправильную установку и обращение.

hella-press.de

Adems, las luces estn

[…] equipa da s con la llamada pro tecci n contra pola ri zaci n inversa .

hella-press.de

) Модуль

[…] защищенный aga in s t обратная полярность , h ow никогда не может до ve n t обратная полярность o f t he AS-i автобус.

ifmefector.net

) Эль-мдуло есть

[…] Protegido co nt ra инверсии polaridad, pero n или инвертированный si n de polaridad del b us iffector iffector

Внимание: этот разъем

[…] ll e d обратная полярность i n W Оборудование iFi / WLAN.

antenna.wimo.de

Внимание: этот разъем является общим для США и Wi-Fi / WLAN.

antenna.wimo.de

Обратная полярность p r ot ection diode s o n DC s i Diodos anti -i nvers in de polaridad en la par te CC

radius-gefran.это

Mass Combi не

[…] защищенный aga в с t с изменением полярности o f t h e т, переменное напряжение […]

по входу постоянного тока и серьезный более

[…]

напряжение (> 265 В переменного тока при 230 В) на входе переменного тока или на выходе переменного тока.

изображений.mastervolt.nl

El Mass Combi нет

[…] protegido c на tra insiones de polaridad de la entr ad a de CC, […]

ni de voltajes CA en la entrada de

[…]

CC ni sobrevoltaje extremo (> 265VAC @ 230V /> 135VCA @ 120V) en la entrada de CA или salida de CA.

изображений.nl

Только место t h e DC f u se (s) if t h полярность e 000 000 с c или правильно.

изображений.mastervolt.nl

Slo coloqu e el (los) f usi ble (s ) s i l a polaridad e s c orr ecta ​​.

изображений.mastervolt.nl

w i t h DC v o lt age and autom at i c ве рсион.

adinstruments.es

con ten si ncontina y con i nvers in de polaridad aut om tica .

adinstruments.es

Остаточная пульсация в диапазоне напряжений

[…]

Номинальный ток (при U N) 1/2 канала Потребляемая мощность (при U N) 1

[…] / 2 канала ne l s Обратная полярность p r ot ection ( 24 V DC

Остаточное содержание ондулацина Номинальное значение тензина Номинальное значение Корриенте (U

[…]

N) 1/2 канала Consumo de energa elctrica (a U N) 1/2 канала

[…] Protecci n contra i nver sin d e polaridad ( 2 4 В CC

stahl.de

Полярность t o b e соблюдается f o r DC a p : Полярность t o b e соблюдается f o r DC a as p.nl

para cilindro sin vstago de carro no guiado — STN

asconumatics.nl

Полярность постоянного тока n o t важно, но клемма + защищена предохранителем

eurotherm.es

tiene un fusible Tierr a Lnea N eutro ( DC +) ( DC )

eurotherm.es

Благодаря t h e обратная полярность p r ot ection, electronic […]

и автоматическое обнаружение неисправного аккумулятора, устройство не требует обслуживания и удобно.

steca-solar.de

Грасиас а

[…] la pr ot ecci n c ont ra polaridad in ver sa, al f us ible electrnico […]

y al reconocimiento automtico de una batera defectuosa,

[…]

el aparato no Requiere mantenimiento y es fcil de manejar para el usuario.

steca-solar.de

Эта страница позволяет управлять

[…] устройство devi ce s обратная полярность f e at ure, который соединяет MTA с биллинговой машиной, которая us s обратная полярность t o d etermine […]

начало и конец разговора.

web.net2phone.com

Esta pgina le permite controlar l a fun ci nve e polaridad i nve rsa de l di sp m ositivo, que conecta el MTA […]

facturacin для определения начального уровня и конечного результата una llamada.

web.net2phone.com

Подключение модулей ClassicLine к плоскому кабелю осуществляется через проверенный

[…]

и протестировал нижние части обычного плоского кабеля и

[…] позволяет быстро a n d обратная полярность p r ot ected подключение […]

для пользователя.

ifmefector.net

Соединение кабелей ClassicLine с плоским кабелем и кабелем

[…]

Con Los Habituales Zcalos Para Mdulos, Los Cuales фасилитиан Аль Усуарио ООН

[…] montaje rpid o y sin invers ion es de polaridad .

ifmefector.net

Контактор обратной полярности DC | Контроль всех беспроводных сетей

Контактор Trombetta постоянного тока обратной полярности Используйте этот 12-вольтный контактор обратной полярности с одной из наших беспроводных систем для вращения двигателей вперед и назад. (Двигатель должен быть рассчитан на это) Большинство двигателей лебедок, мотор-редукторов, приводов и т. Д. Сконструированы таким образом.

ControlAllWireless — поставщик инновационных решений для беспроводного дистанционного управления для сотен коммерческих и развлекательных приложений 12 В постоянного тока.

От разработки, проектирования и производства всех твердотельных передатчиков и приемников, одобренных FCC, до устранения неполадок и круглосуточной поддержки — наша команда может предоставить контроллер для вашего конкретного приложения. Если это приложение с напряжением 12 вольт, мы можем разработать для вас беспроводную систему дистанционного управления.

  • Все приемники герметизированы и устойчивы к атмосферным воздействиям, с подвесными проводами.
  • Возможны оптовые скидки.
  • Наши универсальные беспроводные контроллеры дистанционного управления работают в бесчисленном количестве систем.
  • Рабочий диапазон до 500 футов и более
  • Мгновенная активация управляемого устройства
  • 1 из 16 миллионов комбинаций адресов
  • К одному приемнику можно подключить до 20 передатчиков
  • Соответствие адреса микропроцессора означает отсутствие переключателей для установки
  • Приемник для поверхностного монтажа с корпусом
  • Ножки 10 А и твердотельное реле
  • 5 ★ 0
  • 4 ★ 0
  • 3 ★ 0
  • 2 ★ 0
  • 1 ★ 0

Только зарегистрированные клиенты, которые приобрели этот продукт, могут оставлять отзыв.

Руководство по проектированию

— PMOS MOSFET для схемы защиты от обратной полярности

Если источник питания в цепи поменял местами, например, подключив положительный провод к земле, а отрицательный провод — к Vcc схемы. Могут произойти две плохие вещи: либо схема, которую мы разработали, может сгореть вместе со всеми дорогостоящими компонентами в ней, либо сам источник питания может выйти из строя. Все становится еще опаснее, если схема питается от батареи.Изменение полярности батареи — худшее, что может произойти в цепи, потому что это не только повредит цепь, но также может вызвать дым и пожар, что делает ее потенциальной угрозой.

Но человеческая ошибка может произойти, и поэтому разработчик несет ответственность за то, чтобы его схема могла безопасно обрабатывать условия обратной полярности. Вот почему почти все схемы имеют дополнительную схему безопасности на входной стороне, которая называется схемой защиты от обратной полярности .В этой статье мы обсудим схему MOSFET защиты от обратной полярности , которая очень эффективна для защиты схемы от повреждений, связанных с обратной полярностью. Схема также может действовать как схема защиты полярности батареи , , поэтому то же руководство по проектированию можно использовать для защиты ваших цепей, даже если она питается от внешнего адаптера постоянного тока или батареи.

Защита цепей от обратной полярности

Есть несколько вариантов защиты цепи от обратной полярности.В большинстве случаев устройства с батарейным питанием используют специальные типы батарейных разъемов, которые не позволяют подключать батарейный разъем в обратном порядке. Это механически возможная защита аккумулятора от обратной полярности. Другой вариант — использовать диод Шоттки в шине питания, но это самый неэффективный способ защиты цепи от обратной полярности.

Использование диода Шоттки для защиты от полярности и его недостатки

На изображении ниже диод Шоттки используется последовательно с шиной питания, которая будет смещена в обратном направлении в условиях обратной полярности и отключит цепь.Мы также ранее обсуждали это в разделе «Применение диодов» в предыдущей статье.

Левое изображение соответствует правильному соединению полярности, а правое изображение — состоянию обратной полярности. При подключении с обратной полярностью диод Шоттки блокирует прохождение тока.

Но, схема выше неэффективна из-за постоянного протекания тока нагрузки через диод Шоттки. Кроме того, напряжение на выходе диода Шоттки меньше входного напряжения из-за прямого падения напряжения на диоде.Таким образом, используя описанный выше метод, он защитит схему от защиты от обратной полярности, но не эффективно.

Правильный способ сделать схему защиты от обратной полярности — использовать простой PMOS MOSFET или NMOS MOSFET. Рекомендуется использовать PMOS, потому что PMOS отключает положительные шины, и в цепи не будет никакого напряжения, а вероятность вредных последствий меньше, если схема работает при высоких напряжениях постоянного тока.

PMOS MOSFET для защиты от обратного напряжения

Полевой транзистор (FET) — это тип транзистора, который использует электрическое поле для управления прохождением тока через него.Полевые транзисторы — это устройства с тремя выводами: исток, затвор и сток. Полевые транзисторы управляют протеканием тока путем приложения напряжения к затвору, которое, в свою очередь, изменяет проводимость между стоком и истоком. Это основная вещь, которая используется в P-MOSFET в качестве переключателя защиты от обратной полярности.

На рисунке ниже показана схема защиты от обратной полярности PMOS .

PMOS используется как выключатель питания, который подключает или отключает нагрузку от источника питания.Во время правильного подключения источника питания MOSFET включается из-за правильного VGS (напряжения затвора в источник). Но в ситуации обратной полярности напряжение затвора в источник слишком низкое, чтобы включить полевой МОП-транзистор, и нагрузка отключается от входного источника питания.

Резистор 100R представляет собой затворный резистор MOSFET , соединенный со стабилитроном. Стабилитрон защищает затвор от перенапряжения.

Фактическое моделирование в Orcad PSPICE

Вышеупомянутая схема имеет все необходимые компоненты для защиты от обратной полярности.V1 — это источник с идеальной полярностью. MOSFET с каналом P смещается от резистора 100R и стабилитрона 6,8 В 1N4099. Нагрузка — резистор 10R.

Моделирование показывает, что схема работает правильно при правильной полярности источника питания. Стабилитрон защищает затвор от перенапряжения, и нагрузка достигает 1,3 А при 13,9 В.

На изображении выше источник перевернут. Нагрузка полностью отключена, и схема действует как предохранитель от обратной полярности.Вы также можете посмотреть видео ниже, в котором объясняется работа схемы с симуляцией:

Выбор полевого МОП-транзистора для защиты от обратной полярности

Рекомендуется использовать PMOS вместо NMOS. Это связано с тем, что PMOS используется в положительной шине цепи, а не в отрицательной шине. Следовательно, PMOS отключает положительные шины, и в цепи не будет положительного напряжения. Но NMOS используется в отрицательных шинах, поэтому отключение отрицательной шины не отключает цепь от положительной шины аккумулятора.Следовательно, в случае высокого напряжения постоянного тока отсоединение положительной шины намного безопаснее, чем отсоединение отрицательной шины, и вероятность возникновения вредных последствий, таких как короткое замыкание, поражение электрическим током и т. Д., Меньше.

Выбор компонентов — важная часть этой схемы. Основным компонентом является полевой МОП-транзистор с каналом P.

МОП-транзистор имеет следующие характеристики, которые имеют решающее значение для схемы.

  1. Сопротивление истока стока (RDS)
  2. Ток утечки
  3. Напряжение сток к источнику

Сопротивление истока стока (RDS):

RDS — сопротивление от стока к источнику.Используйте очень низкое RDS (сопротивление от стока к источнику) для низкого тепловыделения и очень низкого падения напряжения на выходе. Чем выше RDS, тем выше тепловыделение.

Ток утечки:

Это максимальный ток, который проходит через полевой МОП-транзистор. Поэтому, если для цепи нагрузки требуется ток 2 А, выберите полевой МОП-транзистор, который выдержит этот ток. В таком случае хорошим выбором будет Mosfet с током стока 3А. Выберите этот параметр больше, чем необходимо на самом деле.

Напряжение стока в источник:

Напряжение стока к истоку полевого МОП-транзистора должно быть выше, чем напряжение в цепи. Если для схемы требуется максимум 30 В, для безопасной работы требуется полевой МОП-транзистор с напряжением сток-исток 50 В. Всегда выбирайте этот параметр больше фактического требуемого.

Во время обратной полярности МОП-транзистор будет отключен из-за недостаточного напряжения Vgs, и это не повлияет на цепь нагрузки, а также на МОП-транзистор.Вышеуказанные параметры необходимы при нормальных условиях и требуют тщательного выбора.

Выбор напряжения стабилитрона:

Каждый полевой МОП-транзистор имеет Vgs (напряжение затвор-исток). Если напряжение затвор-исток превышает максимальное значение, это может повредить затвор полевого МОП-транзистора. Поэтому выбирайте напряжение на стабилитроне, которое не будет превышать напряжение затвора полевого МОП-транзистора. Для напряжения Vgs 10 В будет достаточно стабилитрона 9,1 В. Убедитесь, что напряжение затвора не должно превышать максимальное номинальное напряжение.

100R Резистор в цепи:

Значение резистора должно быть выбрано таким образом, чтобы оно не было достаточно высоким, чтобы не перегревать стабилитрон, но достаточно низким, чтобы обеспечить адекватный ток смещения стабилитрона и быстро разрядить затвор, если напряжение питания внезапно изменится на противоположное. Следовательно, здесь есть компромисс между временем разряда затвора и смещением стабилитрона. В большинстве случаев подойдет 100R-330R, если есть вероятность появления внезапного обратного напряжения в цепи.Но если нет вероятности внезапного обратного напряжения во время непрерывной работы схемы, можно использовать любое значение резистора от 1 кОм до 50 кОм.

Номер детали Предложение:

Самые популярные полевые МОП-транзисторы, которые используются для широкого спектра схем, связанных с защитой от обратной полярности.

  1. IRF9530
  2. IRF9540
  3. Si2323 (низковольтные операции с низким током)
  4. ILRML6401 (низковольтные операции с низким током)

Недостатки схемы защиты от обратной полярности полевого МОП-транзистора

Основным недостатком этой схемы является рассеивание мощности через полевой МОП-транзистор.Однако эту проблему можно решить, используя полевой МОП-транзистор с каналом P, сопротивление которого измеряется в миллиомах.

Программируемый источник питания постоянного тока HY3030EP 0-30V 0-30A с автоматической обратной полярностью

Volteq HY3030EP в основном аналогичен HY3030EX, за исключением того, что он поставляется со встроенным управлением и программированием с помощью Arduino Micro. Если вы знакомы с Arduino, написание программного кода для управления этим источником питания и запуска автоматического тестирования — это несложно. Мы предоставляем образец кода, чтобы вы могли устанавливать и считывать выходное напряжение и ток через USB, вы также можете использовать наше программное обеспечение для калибровки источника питания, создания многоступенчатого линейного нарастания и запуска операции с фиксированной ампер-минутой и т. Д.Этот источник питания идеально подходит для автоматического тестирования, зарядки / обслуживания аккумуляторов, для двигателей постоянного тока / серводвигателей, а также для анодирования и нанесения покрытий. В настоящее время используются следующие вводы / выводы, остальное для других приложений / элементов управления, которые у вас могут быть:

A6 — считывание напряжения

A7 — текущее чтение

D10 — ШИМ для Current Set

D9 — ШИМ для набора напряжения

D2 — выход вкл / выкл


Эта модель оснащена возможностью автоматического переключения выходной полярности с настраиваемой продолжительностью для прямой и обратной полярности, что делает ее идеальной для электрокоагуляции и гальванических покрытий.


Характеристики и характеристики:

  • Управление: с передней панели или через Arduino Nano через USB или RS-485
  • Два уровня управления выходами по току и напряжению: грубый и тонкий для простоты использования
  • Выходы: 0-30 В и 0-30 А
  • Защита: защита от перенапряжения и обратного напряжения
  • Входное напряжение: 110 В переменного тока
  • Стабилизация напряжения: <= 0.2%
  • Текущая стабилизация: <= 0,5%
  • Регулировка нагрузки: <= 0,3%
  • Шум пульсации: CV <= 1%
  • Точность считывания ЖК-дисплея: +/- 1% +/- 1 цифра
  • Окружающая среда: 0-40C, относительная влажность <90%
  • Размер: 12 дюймов x 10 дюймов x 6 дюймов
  • Вес: 16 фунтов
  • Гарантия: 1 год

Код товара : HY3030EP_RS

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *