Определение сварочной дуги: Электрическая сварочная дуга и ее свойства: температура, строение, сущность, характеристика

Содержание

Что такое сварочная дуга

Метод сварки используется людьми для герметичного соединения металлов уже больше века. Изучал его еще физик Вольт. Его работы были использованы в процессе создания первого сварочного аппарата. Генерируется электрический разряд в момент, когда между электродом и рабочей поверхностью образуется короткое замыкание. Подаваемая на сварочный аппарат электрическая энергия преобразуется в тепловую, в результате чего появляется ванна расплава. В таких условиях формируется на месте стыка образуется однородный металлический шов.

Со временем, детально проанализировав вольтамперные характеристики, ученые сделали сварку более совершенной. Были созданы современные устройства, которые отлично поддерживали стабильность сварочной дуги.

Что такое сварочная дуга

Генерируемая сварочным аппаратом электрическая дуга представляет собой ни что иное, как состоящий из ионизированных частиц проводник. Он существует в определенном временном промежутке благодаря тому, что поддерживается электрическим полем. Такой разряд образуется в способной к ионизации газовой среде, характеризуется непрерывной формой и высокой температурой.

В учебных пособиях по сварочному делу данное явление определяется как электрический разряд в плазме длительного характера. Плазма является смесью защитных, ионизированных атмосферных газов в сочетании с испарениями от металлов, которые образуются под воздействием высокой температуры.

Строение сварочной дуги

Разогреть металл до температуры плавления за очень короткое время можно, но для этого потребуется мощная электрическая дуга. Основные ее характеристики – вольтаж, ампераж и плотность потока заряженных частиц. Как электротехническое явление дуговой столб представляет собой проводник между полярными полюсами, состоящий из газовой среды. При этом он обладает большим сопротивлением и способен светиться.

Детальный анализ построения дуги помогает разобраться с течением температурного воздействия на металл. Сравнительно небольшая длина электрической дуг – 5 см, которые состоят из трех зон:

  • собственно, столб – это видимая светящаяся часть;
  • катодная – 1 микрон;
  • анодная – 10 микрон.

Поток свободных электронов определяет температуру сварочной дуги. Они формируются на катоде, который нагревается до 38% от температуры плазмы. В газовой среде отрицательные частички – электроны двигаются по направлению к аноду, в то время как положительные элементы направляются к катоду. Столб лишен какого-либо заряда и все время остается нейтральным.

Температура частиц внутри достигает 10 000 градусов Цельсия. Воздействуя на металл, они разогревают его до 2350 градусов. Точка входа электронов среди специалистов называется анодным пятном. По сравнению с катодным оно имеет температуру на 6% выше. Поскольку плазма генерирует ультрафиолетовые, световые и инфракрасные волны, то она находится в видимом для человека спектре. Но важно учесть, что данные волны вредны для человека: и для кожи, и для глаз. Поэтому для сварщиков были разработаны специальные средства защиты.

Виды сварочной дуги

Классифицируется сварочная дуга по нескольким параметрам. В зависимости от пространственного положения электрода и типу тока она бывает:

  • прямого действия. Разряд располагается перпендикулярно по отношению к рабочей поверхности и параллельно относительно электрода;
  • косвенного действия. Разряд образуется между электродом, который располагается относительно рабочей поверхности под углом 40-60 градусов и самим металлом.

По составу плазменный столб делится на:

  • открытый. Образуется в атмосферных газах. Питающей средой являются компоненты, испаряемые из обмазки и заготовки;
  • закрытый. Генерируется под флюсом при условии присутствия газообразной фазы, которая получается из частиц, испаряемых от металла, электрода и компонентов флюса;
  • с подачей инертного газа или другой защитной смеси.

Сварочная дуга отличается и в зависимости от применяемого расходного материала. В работах используются электроды:

  • тугоплавкие из вольфрама;
  • графитовые или угольные;
  • стальные с обмазкой, содержащей ионизирующие включения.

В зависимости от времени воздействия принято различать дугу постоянную и импульсную.

Условия горения

Сварочный процесс основан на преобразовании электрической энергии в тепловую. Сварочный столб может удерживаться как угодно долго при условии быстрой ионизации газа. Свариваемые заготовки прогреваются, воздух вокруг них теплый и насыщен испаряемыми компонентами. Альтернативный метод – в рабочую зону специально подается газ, который может ионизироваться. Лучше всего ионизации поддаются частицы щелочноземельных и щелочных металлов. Они становятся активными сразу, как только начинает проходить ток.

Другое обязательное условие для поддержания сварочного столба – постоянная высокая температура на катоде. Ее значение зависит от химического состава и площади катода. Для этого требуется источник электричества. В условиях производства показатель температуры катодной области может доходить до 7 000 градусов.

Как образуется электрическая дуга

Сварочная дуга является ничем иным, как электрическим разрядом. Возникает она в случае замыкания цепи. В тот момент, когда электрод прикасается к поверхности свариваемого металла, начинает вырабатываться тепловая энергия в большом количестве. В точке соприкосновения металл начинает плавиться. Расплав притягивается к окончанию расходника, образуя тонкую шейку. Она почти что мгновенно распыляется под влиянием сильного электрического поля. В это время молекулы газа ионизируются, образуется защитное облако и обеспечивается свободное перемещение электродов.

Вид тока определяет направленность потока. Поджечь дугу можно на токе прямой и обратной полярности, переменном или постоянном. Частота, с какой дуга гаснет и разжигается напрямую зависит от выбранных сварщиком параметров тока.

Чем определяется мощность сварочной дуги

Основные факторы, оказывающие влияние на параметры мощности:

  • напряжение. Увеличение мощности сварки достигается за счет увеличения питающего напряжения. Но в сравнительно небольшом диапазоне значений. Есть определенные ограничения и по размеру расходных материалов;
  • сила тока. Прямая зависимость: чем больше показатель – тем стабильнее горит дуга;
  • величина напряжения плазмы находится в прямой зависимости от мощности.

Длиной дуги принято называть расстояние от электрода доя рабочей поверхности в момент выполнения сварочных работ. От данного показателя зависит величина продуцированного тепла.

Мощность дуги определяет скорость плавления металла. Данная характеристика имеет большое значение, поскольку от нее зависит скорость выполнения операций по соединению металлов. Силой тока меняется рабочая температура в зоне плавления. Даже длинная электрическая дуга не будет затухать при большой силе тока. Во время сварочных работ изменение настроек ампеража требуется очень редко.

Вольт-амперная характеристика сварочной дуги

Выражают параметры питания. Данные позволяют определить:

  • время горения;
  • мощность дуги;
  • условия гашения.

Динамика вольтамперных показателей показывает изменение длины электрической дуги в период ее нестабильности. Статическая вольт-амперная характеристика дуги, наоборот, указывают на зависимость между напряжением и силой тока в период стабильности длины электродуги. Ее свойства выражены графиком, разделенным на три сектора:

  • падающий. В случае увеличения силы тока резко уменьшается напряжение. Связано это с образованием столба: возрастает площадь потока плазмы и изменяется показатель ее электропроводимости;
  • жесткий. Характерные особенности сектора – понижение напряжения при неизменной плотности тока. Наблюдается рост показателей силы тока в диапазоне значений 100-1000А. Прямо пропорционально увеличивается дуговой столб в диаметре. Помимо этого, изменяются анодное и катодное пятна;
  • растущий. Размер катодного пятна стабилен и зависит от диаметра электрода. При увеличении силы тока в большую сторону меняются показатели дугового столба.

Вольтамперные характеристики (ВАХ) ручной дуговой сварки с неплавящимися или плавящимися электродами не доходят до третьего сектора графика, а варьируются только в первых двух. Механизированная сварка, подразумевающая использование флюсов, описывается показателями графика второго и третьего сектора. Третий сегмент в полной степени соответствует сварке плавящимся электродом в защитной среде.

В случае использования сварочного аппарата в режиме переменного тока. В каждом полупериоде на пике розжига случается возбуждение сварочной дуги. При переходах через нулевую отметку электрическая дуга затухает. Прекращается нагрев активных пятен. Ионизация газов удерживается стабильной за счет испарений активных щелочных металлов, которые присутствуют в покрытии электродов. При работе на переменном токе труднее разжечь дугу в защитной среде, нежели в случае постоянного тока.

При выборе оборудования для выполнения конкретного вида работ важно учесть, что ВАХ электрической дуги напрямую зависят от внешних вольтамперных показателей. К примеру, для ручной дуговой сварки требуется питание с падающими характеристиками вольт-ампер (повышенное напряжение на холостом ходу). При этом специалист будет иметь возможность с помощью регулятора ампеража менять длину дуги.

Сила тока при коротком замыкании во время плавления электрода на 20-50% выше показателя силы тока дуги. Выполнение работ плавящимися электродами оптимально в случае использования дуги размыкания. Для того, чтобы разжечь электродугу угольным или вольфрамовым электродом, не помешает вспомогательный разряд.

Высокие показатели силы тока при коротком замыкании могут спровоцировать прожиг заготовки. Короткое замыкание имеет место в момент, когда падает капля расплава электрода. После этого показатели резко возвращаются к исходным значениям. Возрастает ампераж до уровня тока короткого замыкания, мостик, образовавшийся между металлом и электродом быстро перегорает, и электрическая дуга снова возбуждается. Все эти изменения в столбе происходят моментально. Установка должна успеть за этот период отреагировать на изменения с тем, чтобы стабилизировать рабочие показатели.

Особенности дуги

Благодаря широкому диапазону значений, электродуга совместима как с тугоплавкими, так и с привычными плавящимися электродами. Под ее воздействием металл быстро разогревается, после чего образуется ванна расплава. Преобразование электроэнергии в тепловую происходит с минимальными потерями.

По своей природе электрическая дуга сопоставима с другими видами зарядов. Ее отличительные особенности:

  • созданная плотным током высокая температура;
  • небольшое снижение катодного и анодного напряжения, которое в малой степени зависит от изначально заданного вольтажа;
  • электрическое поле между полюсами распределяется неравномерно;
  • устойчивость электрической дуги в пространстве;
  • мощность и вольтамперные характеристики саморегулируются;
  • границы электродуги четко очерчены.

Зажечь дугу можно одним из двух способом: чирканьем или коротким прикасанием.

Лекция №10. Сварочная дуга (определение, физическая сущность, способы зажигания, условия устойчивого горения, строение, влияние длины дуги на производительность и качества шва, окончание шва)

Если случайно или намеренно разомкнуть элек­трическую цепь, то в месте разрыва цепи проскакивает электрическая искра. Это явление, представляющее со­бой прохождение электрического тока через воздух, но­сит название искрового разряда.

Сварочной дугой называют дугу, представляющую собой длительный устойчивый электрический разряд в га­зовой среде между электродом и изделием либо между электродами, отличающуюся большим количеством теп­ловой энергии и сильным световым излучением.

Сварочные дуги квалифицируют по следующим признакам:

  • по среде, в которой происходит дуговой разряд; на воздухе — открытая дуга, под флюсом — закрытая дуга; в среде защитных газов;
  • по роду применяемого электрического тока—постоян­ный, переменный;
  • по типу электрода — плавящийся, неплавящийся;
  • по длительности горения — непрерывная, импульсная дуга;
  • по принципу работы — прямого действия, косвенная дуга, комбинированная или трехфазная

 

Для сварки металлов наиболее широко исполь­зуют сварочную дугу прямого действия, в которой одним электродом служит металлический стержень (плавящийся или неплавящийся электрод), а вторым — свариваемая деталь. К электродам подведен электрический ток — по­стоянный или переменный.

 

Теплота, выделяемая сварочной дугой, не вся переходит в сварной шов. Часть теплоты теряется бесполезно на нагрев окружающего воздуха, плавление электродного покрытия

Мощность сварочной дуги Q зависит от свароч­ного тока I и напряжения дуги U

Q=I*U Вт

 

Дугу возбуждают двумя способами — касанием или чирканьем. В обоих случаях процесс возбуждения сварочной дуги начинается с короткого замыкания. При этом в точках контакта увеличивается плотность тока, выделяется большое количество теплоты, и металл пла­вится. Затем электрод отводят, разрядный промежуток заполняется нагретыми частицами паров металла, и начи­нается горение дуги.



При отводе электрода от изделия (после корот­кого замыкания и мгновенного расплавления металла) жидкий мостик металла вначале растягивается, сечение его уменьшается, температура металла повышается, а за­тем жидкий мостик металла разрывается (рис.14). При этом происходит быстрое испарение металла, и разрядный промежуток заполняется нагретыми ионизированными частицами паров металла, электродного покрытия и воз­духа — возникает сварочная дуга.

Для повышения устойчивости горения сварочной, дуги в электродное покрытие или в защитный флюс вводят эле­менты (калий, натрий, барий и др.), которые повышают степень ионизации и, следовательно, стабилизации свароч­ной дуги.

 
 

 

 

 

1 2 3 (+) 4

Рис.14 Схема возбуждения электрической дуги:

Короткое замыкание; 2 –образование жидкого металла; 3 – образование шейки; 4 – возникновение дуги

 

Сварочную дугу можно возбудить без касания электродом свариваемого изделия. Для этого нужно в сварочную цепь параллельно включить источник тока высокого напряжения и высокой частоты (осциллятор). При этом для возбуждения дуги достаточно приблизить конец электрода на расстояние 2 -3 мм к поверхности изделия

 

Рассмотрим строение сварочной дуги.

Дуговой промежуток подразде­ляется на три основные области (рис.15):

· катодную,

· анодную

· столб дуги

 

К а то д н о е пятно является источником потока свободных электронов. Температура его для стальных электродов достигает 2400—2600 °С. В катодном пятне выделяется около 38% общей теплоты дуги.

Столб дуги представляет собой проводник электрического то­ка. В нем свободные электроны и отрицательно заряженные ионы движутся к аноду, а положительно заряженные ионы — к катоду. В целом столб дуги не имеет заряда. Он нейтрален, так как в каждом сечении столба одновременно находятся равные количества противоположно заряженных частиц.

В столбе дуги выделяется около 20% общей теплоты дуги. Температура столба дуги зависит от силы сварочного тока и достигает в ее центре 6000— 7000 °С и более. Температура капли на конце стального электрода приблизительно равна 2150°С, а при перелете ее через дуговой промежуток — 2350 °С.

В среднем температура сварочной ванны составляет 1770°С.

Анодное пятно является местом входа и нейтрализации сво­бодных электронов. Оно имеет примерно такую же температуру, как и катодное пятно, но в результате бомбардировки электронами на нем выделяется больше теплоты (примерно 42 %), чем на катод­ном.

 

 

Рис.15 Строение электрической дуги и распределение напряжения на ее участках: 1 – катодное пятно; 2 – столб дуги; 3 – анодное пятно.


Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

что это такое? Источники питания и температура, строение и классификация, ее свойства и амперная характеристика в сварке

В современной промышленности сварка – это довольно популярный процесс. В основе данной процедуры находится электрическая дуга, она способствует надежности, быстроте и простоте процесса сваривания поверхностей. В ее разработке принимали активное участие такие светила науки, как Бернадос, Славянов, Меритен.

Что это такое?

Сварочной дугой называют энергетический электрозаряд между электродами, который имеет длительную продолжительность и большое количество выделяемой энергии, ему характерна разница потенциалов, что возникает в среде газов. Определение данного понятия также свидетельствует о том, что металл с высокой плотностью электрического напряжения нагревается с высокой скоростью, изначально становясь пластичным, а в последующем готовым к плавке.

Максимальным показателем температуры, которую может достичь электрическая дуга, принято считать не более 7000 градусов по Цельсию. На практике в сварке известно, что таким образом обрабатываются металлы, которым присуще свойство плавки при температурном показателе более 3000 градусов. Согласно теоретическим данным о свойствах и строении данного электрического заряда он имеет вид проводника, в основе которого ионизированный газ. Он состоит из частей, зон, которые выделяют большой объем тепловой энергии во время протекания по ним тока.

Во время поджига дуги происходит создание гальванической цепи. В этом процессе принимает участие пара электродов, что представляют собой совокупность анода, катода, а также ионизированного газа. При протекании ток способствует нагреванию, свечению. Последнее обусловлено фотонным излучением.

При построении сварочных цепей не обойтись без участия таких областей:

  • анодной;
  • катодной;
  • столба дуги, который имеет длину от 4 до 6 миллиметров.

На первых участках происходит возникновение активных пятен, также осуществляется максимальный спад напряжения и нагревание. Во время действия электрической дуги наблюдается не только повышенная температура, но и ультрафиолетовое излучение.

Ультрафиолет негативно воздействует на глаза и наружные покровы человека. По этой причине сварщики во время процедуры обязаны пользоваться защитными средствами, например: масками, рукавицами, одеждой из плотной ткани, обувью из негорючего материала.

Благодаря вольт-амперной характеристике определяют мощность напряжения дуги, которая напрямую связана с источником питания. От того, какой будет мощность сварочной дуги, зависит множество иных факторов, например ее длина. Характеризуясь одинаковыми параметрами источников электричества, у дуги с большей длиной будет выше мощность.

Сварочную дугу используют при стандартном процессе сваривания, при этом она характеризуется простотой проведения процедуры. Помимо этого, данный энергетический электрозаряд нашел свое применение в газовой сварке полуавтоматического типа. В этом случае на дугу подают сварочную проволоку, что способствует расплавлению материала.

Также дуги используются в автоматах, которые считаются довольно простыми в создании, и поэтому распространены в промышленном производстве. В данном случае могут использоваться как плавкие, так и неплавкие электроды. Ручная дуговая сварка работает с обычной конструкционной сталью, при этом она обеспечивает стабильность горения и надежность швов.

Мощность сварочных дуг имеет прямую зависимость от следующих факторов:

  • длины сварочной электрической дуги – она также способна определять объем тепла, что выделяется во время горения;
  • силы тока – большая сила тока препятствует угасанию длинной дуги;
  • напряжения – при повышении напряжения в небольшом диапазоне мощность возрастает.

Вольт-амперная характеристика энергетического электрозаряда – это график, который выражает зависимость напряжения от смены тока. Данный показатель может иметь такие виды:

  • нисходящий, который снижается при росте напряжения;
  • стабильный, который не меняется при смене силы тока;
  • восходящий, растущий при повышении силы тока, он обычно используется в сварках-автоматах.

По сравнению с другими электрическими зарядами дуге характерны такие особенности:

  • высокая плотность тока;
  • неравномерное падение напряжения вдоль по разрядному столбу;
  • обратная пропорциональность температуры относительно ее толщины;
  • большое число вариантов рабочего режима.

Электросварку можно назвать самым быстрым и при этом надежным вариантом неразъемного соединения деталей металлической конструкции. Ее можно применять в самых разнообразных сферах человеческой жизни, начиная от строительства и заканчивая транспортом.

Требования

Каждый сварщик должен знать об амперной характеристике, длине и напряжении сварочной дуги. К основным требованиям для источника питания дуги можно отнести следующие:

  • разжигание электрода должно происходить во время его взаимодействия с заготовкой из металла, когда происходит замыкание контактов электроцепи;
  • во время плавки присадки может произойти короткое замыкание – если такое случилось, то стоит следить, чтобы аппарат не вышел из строя, а дуга стабильно поддерживалась;
  • до того как возникнет вспышка дуги на границе детали и электрода, может наблюдаться кратковременное замыкание – от того, насколько быстро произойдет восстановление напряжения, напрямую зависит динамика источника питания;
  • переход с холостого в рабочий ход должен происходить со спадом напряжения от 60–80 до 18–20 В.

Ко всем источникам питания сварочной дуги предъявляются аналогичные требования. Поэтому можно сделать вывод, что на эффективность функционирования оборудования для сварки оказывает прямое воздействие возможность поддерживать процесс горения дуги от момента ее разжигания.

В сварочных аппаратах должны присутствовать только такие регуляторы, на которых установка параметров будет максимально удобной.

Классификация

За счет широкого распространения сварочного процесса дуга может быть нескольких видов. Особенности энергетического электрозаряда позволяют выделить следующие его разновидности согласно конструкции и назначению:

  • плавкая изготавливается из стального сплава – при работе происходит расплавка металлического электродного стержня;
  • неплавкая актуальна при работе с графитом и вольфрамом – электроды данного вида во время сварки не расходуются, а формирование шва происходит из расплавленных металлических заготовок.

По схеме подвода тока и среде

Согласно схеме электросоединения дуги для сварки делят на две разновидности.

  1. Прямого действия. В качестве одного электрода выступает конструкция сварки, а второго – плавящийся элемент. В месте зазора происходит образование дуги.
  2. Косвенного действия. Розжиг происходит между парой неплавких параллельных электродов, после чего он подносится к свариваемой заготовке.

По атмосфере

По принципу атмосферы сварочные дуги бывают трех типов.

  1. Открытая сфера. В данном случае горение дуги возможно в открытом пространстве, при этом образуется газовая сфера с содержанием металлического пара, а также электродного и поверхностного.
  2. Закрытая. Дуга закрытого типа наблюдается при горении под флюсом. В фазе газа около дуги находится пар от материала, электрода и слоя флюса.
  3. С подачей смеси газа. В этом электрозаряде может располагаться газ в сжатом виде, а также его примеси. Использование водорода, углекислого газа и аргона необходимо для предотвращения окисления обрабатываемой поверхности. Благодаря подаче вышеперечисленных веществ наблюдается восстановление среды или ее нейтральное отношение по отношению к факторам последней.

По длительности действия

Согласно длительности работы электрическую сварочную дугу можно поделить на такие типы:

  • постоянная, которая считается актуальной для длительной работы;
  • импульсная, что представлена однократным мощным импульсом, обычно такая дуга используется для контактного вида сварки.

Условия горения

Стандартные температурные условия в столбике сварочной дуги максимально составляют 7000 градусов тепла по Цельсию. Благодаря использованию катода можно добиться постоянства температуры, при которой произойдет возникновение и горение дуги. В данной ситуации также обязательно должны быть учтены такие параметры, как габариты, диаметр и температура в окружающей среде.

Для того чтобы получилось сварить материал любого качества, потребуется наблюдать за постоянством температуры. При исправном источнике питания температурный показатель будет постоянным, а работа элемента – качественной.

Основы областей сварочных дуг сосредоточены на работе ионизированных газов, использовании щелочных, щелочно-земельных групп по типу калия, кальция. Такие особенности способствуют высокому качеству горения сварочных дуг. Последние могут гореть не во всех средах, поэтому не стоит обходить вниманием физические, химические факторы.

Существует несколько типов электрозаряда, благодаря которым осуществляется горение.

  1. Тлеющий. Он возникает за счет низкого давления. Обычно его используют для освещения с помощью люминесцентной лампы или экрана плазмы.
  2. Искровой. Возникает такой электрический заряд после доведения показателя давления до атмосферного. Искровому типу дуги характерна прерывистость, при этом наблюдается механизм действия, сходный с молниевым. Он нашел свое применение при розжиге двигателя внутреннего сгорания.
  3. Дуговой используют при работе сваркой или для простого освещения. У такого заряда прерывистая форма, которая возникает из-за особенностей давления в атмосфере.
  4. Коронный электрозаряд может возникнуть в результате структурной шероховатости, неоднородности. В ходе данного воздействия происходит образование струйки.

Источники питания

При сварочных работах должны использоваться только те способы зажигания, стабилизаторы, которые способны удовлетворить такие требования:

  • с легкостью зажигать дугу;
  • стабильно поддерживать процесс горения;
  • осуществлять контроль за верхним порогом тока коротких замыканий;
  • иметь хорошую динамику;
  • характеризоваться электрической безопасностью.

Источники питания сварочных дуг имеют следующую классификацию:

  • предназначение – делятся источники на те, что подходят ручной сварке, флюсовой либо в защитной от газа среде;
  • количество сварочных постов, что могут быть подключены в одно время;
  • возможность передвижения, а именно: мобильный и стационарный;
  • производство энергии: производитель и преобразователь;
  • тип выходящего тока;
  • вольт-амперная характеристика.

Источники тока:

  • трансформатор представляет собой простой сварочный агрегат с реактивной катушкой индуктивности в основе;
  • выпрямитель имеет вид устройства, которое выпрямляет электрический ток;
  • преобразователь – устройство с помощью механического воздействия делает из переменного вида тока постоянный;
  • инвертор – этот сварочный аппарат считается наиболее подходящим для выполнения бытовых нужд, эти мобильные устройства характеризуются компактностью, удобством в применении.

Для изготовления качественного и надежного сварочного шва потребуется создание электрической дуги. Чтобы воспользоваться данным видом энергетического электрозаряда, не нужно особых навыков. Однако сварщик должен знать особенности возникновения, использования и образования сварочной дуги.

О сварке короткой дугой смотрите в следующем видео.

Презентация урока для интерактивной доски на тему: Определение и строение сварочной дуги Тема урока: Определение и строение дуги АУ ЧР С ПО «КанТЭТ» преподаватель спецдисциплин Иванов Евгений Иванович

Слайд 2

03.05.17 Цели урока: Понять и запомнить, что называется электрической сварочной дугой. Уяснить, какие функции выполняет сварочная дуга при сварке. Изучить строение дуги и характеристики её отдельных участков.

Слайд 3

03.05.17 Определение сварочной дуги: Сварочной дугой называется длительный устой-чивый разряд, возникающий между электродом и свариваемым металлом, который протекает под действием электрического тока в полностью ионизированном дуговом промежутке. Ионизацией называется процесс образования в воздухе заряженных частиц (протонов (+ ) и электронов (-) ) Обратный процесс называется рекомбинацией .

Слайд 4

03.05.17 Функции сварочной дуги: Источник тепла для плавления основного и электродного (присадочного металла) Средство для ионизации дугового промежутка (появления в воздухе заряженных частиц) Средство для направленного переноса капель расплавленного электродного металла в свароч-ную ванну («коридор»)

Слайд 5

03.05.17 Строение сварочной дуги: Анодная область (вблизи положительного заряженного полюса) Катодная область (вблизи отрицательно заряженного полюса) Столб дуги (участок дуги, расположенный между анодной и катодной областями)

Слайд 6

03.05.17 Строение сварочной дуги:

Слайд 7

03.05.17 Характеристики участков сварочной дуги: Анодная область: Температура Т А = 4 000 О С Падение напряжения Δ U А = 2 – 12 вольт Катодная область: Температура Т К = 3 000 О С Падение напряжения Δ U К = 8 – 18 вольт Столб дуги: Температура Т С = 6 000 – 7 000 О С Падение напряжения Δ U С = 12 – 20 вольт

Слайд 8

03.05.17 Напряжение на дуге: В сварочной дуге все три участка (анодная область, столб дуги и катодная область соединены последовательно, поэтому общее напряжение равно их сумме: U ДУГИ = Δ U A + Δ U C + Δ U K Минимальное напряжение дуги равно 22 вольта, а максимальное – 50 вольт. U ДУГИ = 22 – 50 вольт

Слайд 9

03.05.17 Вопрос: почему анодная область имеет более высокую температуру нагрева? Ответ: На анодной области – недостаток электронов, а на катодной области – их избыток. Вопрос: Куда пойдут электроны? Ответ: правильно – оттуда где их много — туда где их мало, то есть от минуса к плюсу. Электроны движутся к анодной области с огром-ной скоростью и ударяются об неё, вызывая дополнительный разогрев.

Слайд 10

03.05.17 Способы зажигания дуги: Впритык (медленный подвод и быстрый отвод на 2 – 5 мм) «Чирканьем» При помощи осциллятора (высокочастот-ного высоковольтного разрядника) – этот способ применяется при сварке неплавя-щимся электродом в среде инертного газа.

Слайд 11

03.05.17 Способы зажигания дуги: Впритык «Чирканье»

Слайд 12

03.05.17 Немного юмора: Выпускника 16 – го училища как – то спросили: Что ты умеешь делать? Он ответил – могу варить! А ещё что ты умеешь делать? — Могу и не варить!!!

Слайд 13

03.05.17 А теперь попробуйте ответить на следующие вопросы? Что называется сварочной дугой? Сколько участков имеется в сварочной дуге? Назовите участки сварочной дуги? Из каких слагаемых складывается напряжение дуги? Почему анодная область «нагрета» сильнее, чем катодная? Какой из участков сварочной дуги имеет самую большую температуру?

Слайд 14

03.05.17 Тема урока исчерпана! Какие будут вопросы?

Слайд 15

03.05.17 Задание на дом: Выучить по конспекту тему сегодняшнего урока. Знать термины и определения сварочной дуги. Знать строение дуги и характеристики её участков Знать какие существуют способы зажигания дуги

Слайд 16

03.05.17 Благодарю за внимание

Что такое дуговая сварка? — Определение и типы процессов

Дуговая сварка — это тип сварочного процесса, в котором используется электрическая дуга для создания тепла для плавления и соединения металлов. Источник питания создает электрическую дугу между расходуемым или нерасходуемым электродом и основным материалом, используя либо постоянный (постоянный ток), либо переменный (переменный ток).

Эта статья является одной из серии часто задаваемых вопросов TWI (FAQs).

Как это работает?

Дуговая сварка — это процесс сварки плавлением, используемый для соединения металлов.Электрическая дуга от источника переменного или постоянного тока создает интенсивную температуру около 6500 ° F, которая плавит металл при соединении двух заготовок.

Дуга может быть направлена ​​либо вручную, либо механически вдоль линии соединения, в то время как электрод либо просто проводит ток, либо проводит ток и одновременно плавится в сварочной ванне, чтобы подавать присадочный металл в соединение.

Поскольку металлы вступают в химическую реакцию с кислородом и азотом в воздухе при нагревании дугой до высоких температур, защитный защитный газ или шлак используется для сведения к минимуму контакта расплавленного металла с воздухом.После охлаждения расплавленные металлы затвердевают, образуя металлургическую связь.

Какие бывают виды дуговой сварки?

Этот процесс можно разделить на два разных типа; Методы расходных и не расходуемых электродов.

Методы расходных электродов

Сварка металла инертным газом (MIG) и Сварка металла активным газом (MAG)

Также известный как Газовая дуговая сварка (GMAW) , использует защитный газ для защиты основных металлов от загрязнения.

дуговая сварка в среде защитного металла (SMAW)

Также известный как ручная дуговая сварка металлом (MMA или MMAW) , дуговая сварка с дуговой защитой или сварка палкой — это процесс, в котором возникает дуга между металлическим стержнем (покрытым флюсом электрода) и заготовкой поверхность стержня и заготовки плавится, образуя сварочную ванну. При одновременном плавлении флюсового покрытия на стержне образуются газ и шлак, который защищает сварочную ванну от окружающей атмосферы.Это универсальный процесс, идеально подходящий для соединения черных и цветных материалов с различной толщиной материала во всех положениях.

дуговая сварка порошковой проволокой (FCAW)

Созданный как альтернатива SMAW, FCAW использует непрерывно подаваемый электрод с сердечником из флюсового сердечника и источник постоянного напряжения, обеспечивающий постоянную длину дуги. В этом процессе используется либо защитный газ, либо газ, созданный флюсом для защиты от загрязнения.

Дуговая сварка под флюсом (SAW)

Часто используемый процесс с непрерывно подаваемым расходуемым электродом и защитным слоем из плавкого флюса, который становится расплавленным при расплавлении, обеспечивая путь тока между деталью и электродом.Флюс также помогает предотвратить разбрызгивание и искры, подавляя пары и ультрафиолетовое излучение.

Электрошлаковая сварка (ESW)

Вертикальный процесс, используемый для сварки толстых листов (более 25 мм) за один проход. ESW полагается на электрическую дугу для запуска до того, как добавление флюса погасит дугу. Флюс плавится, когда расходные материалы из проволоки подают в расплавленную ванну, что создает расплавленный шлак на поверхности ванны. Тепло для плавления краев проволоки и пластины генерируется за счет сопротивления расплавленного шлака прохождению электрического тока.Две медные колодки с водяным охлаждением следят за ходом процесса и предотвращают вытекание расплавленного шлака.

дуговой сварки (SW)

Аналогично сварке мгновенным способом, SW соединяет гайку или крепеж, обычно с фланцем с выступами, которые плавятся, чтобы создать соединение, к другому металлическому элементу.

Методы непотребляемых электродов

Вольфрамовая сварка инертным газом (TIG)

Также известный как Газовая вольфрамовая сварка (GTAW) , использует неплавящийся вольфрамовый электрод для создания дуги и инертный защитный газ для защиты сварного шва и расплавленной ванны от атмосферного загрязнения.

плазменная сварка (PAW)

Аналогично TIG, PAW использует электрическую дугу между неплавящимся электродом и анодом, которые расположены внутри корпуса горелки. Электрическая дуга используется для ионизации газа в горелке и создать плазму, которую затем протирают через отверстие тонкой в ​​аноде, чтобы достигнуть опорной плиты. Таким образом, плазма отделяется от защитного газа.

,
ДУГОВАЯ СВАРКА | смысл в кембриджском словаре английского языка Вначале углеродные электроды использовались в углеродистой дуге при сварке . От

Википедия

Этот пример взят из Википедии и может быть повторно использован под лицензией CC BY-SA. Дуга Сварка Процессы могут быть ручными, полуавтоматическими или полностью автоматизированными.От

Википедия

Этот пример взят из Википедии и может быть повторно использован под лицензией CC BY-SA. Дуга Сварка находится между этими двумя крайностями, при этом отдельные процессы несколько различаются по подводу тепла.От

Википедия

Этот пример взят из Википедии и может быть повторно использован под лицензией CC BY-SA. Кожа Кибера была склеена слоем почти неразрушимого сплава адамантия, за исключением его лица, с использованием неизвестной техники дуги сварки .От

Википедия

Этот пример взят из Википедии и может быть повторно использован под лицензией CC BY-SA.

Сварка Сварка и кислородно-топливная сварка были одними из первых процессов, разработанных в конце столетия, и электрические

.

Основы дуговой сварки

Дуговая сварка является одним из нескольких процессов сварки для соединения металлов. При интенсивном нагревании металл в соединении между двумя частями расплавляется и вызывает смешивание — непосредственно или чаще с промежуточным расплавленным металлическим наполнителем. При охлаждении и затвердевании образуется металлургическая связь. Поскольку соединение представляет собой смесь металлов, конечный сварной шов потенциально обладает такими же прочностными свойствами, что и металл деталей. Это резко контрастирует с процессами соединения без слияния (т.е.е. пайки, пайки и т. д.), при котором механические и физические свойства базовых материалов не могут дублироваться на стыке.

Basic Arc-Welding Circuit

Рис. 1 Основная схема дуговой сварки

При дуговой сварке интенсивное тепло, необходимое для плавления металла, вырабатывается электрической дугой , Дуга образуется между фактической работой и электродом (стержнем или проволокой), который вручную или механически направляется вдоль соединения.Электрод может представлять собой стержень с целью простого переноса тока между наконечником и работой. Или это может быть специально подготовленный стержень или проволока, которая не только проводит ток, но также плавит и подает присадочный металл в соединение. Большая часть сварки при изготовлении стальных изделий использует электрод второго типа.


Базовая схема сварки
Базовая схема дуговой сварки показана на рис. 1. Источник переменного или постоянного тока, оснащенный любыми необходимыми элементами управления, подключается рабочим кабелем к заготовке и » Горячий »кабель к держателю электрода какого-либо типа, который осуществляет электрический контакт со сварочным электродом.

Дуга создается через зазор, когда цепь под напряжением и наконечник электрода касаются заготовки и отводятся, но все еще находятся в тесном контакте.

Дуга производит температуру около 6500ºF на конце. Это тепло расплавляет как основной металл, так и электрод, образуя лужу расплавленного металла, которую иногда называют «кратером». Кратер затвердевает позади электрода при его перемещении вдоль стыка. Результатом является фьюжн-связь.


Защита от дуги
Однако для соединения металлов требуется нечто большее, чем перемещение электрода вдоль соединения.Металлы при высоких температурах имеют тенденцию химически реагировать с элементами в воздухе — кислородом и азотом. Когда металл в расплавленной ванне вступает в контакт с воздухом, образуются оксиды и нитриды, которые разрушают прочность и ударную вязкость сварного соединения. Поэтому многие процессы дуговой сварки предоставляют некоторые средства для покрытия дуги и расплавленной ванны защитным экраном из газа, пара или шлака. Это называется экранированием дуги. Это экранирование предотвращает или сводит к минимуму контакт расплавленного металла с воздухом. Экранирование также может улучшить сварку.Примером является гранулированный флюс, который фактически добавляет раскислители к сварному шву.

Coating on a coated (stick) electrode provides a gaseous shield around the arc and a slag covering on the hot weld deposit.

Рис. 2 Это показывает, как покрытие на покрытом (прилипающем) электроде обеспечивает газовый экран вокруг дуги и покрытие из шлака на горячем сварном шве.

На рис. 2 показано экранирование сварочной дуги и ванны расплава с помощью стержневого электрода. Экструдированное покрытие на стержне присадочного металла обеспечивает защитный газ в точке контакта, в то время как шлак защищает свежий сварной шов от воздуха.

Сама дуга — очень сложное явление. Глубокое понимание физики дуги не представляет особой ценности для сварщика, но некоторые знания его общих характеристик могут быть полезны.


Природа дуги

Дуга — это электрический ток, протекающий между двумя электродами через ионизированный газовый столб. Отрицательно заряженный катод и положительно заряженный анод создают интенсивный нагрев сварочной дуги. Отрицательные и положительные ионы отскакивают друг от друга в плазменном столбе с ускоренной скоростью.

При сварке дуга не только обеспечивает тепло, необходимое для плавления электрода и основного металла, но и при определенных условиях также должна обеспечивать средства для транспортировки расплавленного металла от наконечника электрода до работы. Существует несколько механизмов переноса металла. Два (из множества) примеров:

  1. Surface Tension Transfer® — капля расплавленного металла касается ванны расплавленного металла и втягивается в нее поверхностным натяжением
  2. Spray Arc — капля выбрасывается из расплавленного металла на электрод наконечник электрическим зажимом, выталкивающим его в ванну с расплавом (отлично подходит для сварки сверху)

Если электрод расходуется, наконечник плавится под воздействием тепла дуги, и расплавленные капли отсоединяются и транспортируются на работу через дуговой столб.Любая система дуговой сварки, в которой электрод расплавляется, чтобы стать частью сварного шва, называется металлической дугой. При сварке углеродом или вольфрамом (ВИГ) нет расплавленных капель, которые необходимо пропустить через зазор и на работу. Металлический наполнитель расплавляется в соединение из отдельного стержня или проволоки.

Больше тепла, выделяемого дугой, передается в сварочную ванну с расходуемыми электродами. Это обеспечивает более высокую тепловую эффективность и более узкие зоны термического влияния.

Так как для прохождения электричества через зазор должен быть ионизированный канал, простое включение сварочного тока с электрически холодным электродом, наложенным на него, не приведет к возникновению дуги.Дуга должна быть зажжена. Это вызвано либо подачей начального напряжения, достаточно высокого, чтобы вызвать разрядку, либо прикосновением электрода к работе, а затем снятием его, когда область контакта нагревается.

Дуговая сварка может выполняться постоянным током (DC) с положительным или отрицательным электродом или переменным током (AC). Выбор тока и полярности зависит от процесса, типа электрода, атмосферы дуги и свариваемого металла.


Посмотреть другие статьи о процессе и теории дуговой сварки

Посмотреть статьи с инструкциями по дуговой сварке

Посмотреть статьи о решениях по дуговой сварке

,

сварка | Типы и определение

Сварка , техника, используемая для соединения металлических деталей, как правило, путем приложения тепла. Эта техника была обнаружена во время попыток манипулировать железом в полезные формы. Сварные лезвия были разработаны в 1-м тысячелетии до н.э., самыми известными из которых были арабские оружейники в Дамаске, Сирия. В то время был известен процесс науглероживания чугуна с получением твердой стали, но полученная сталь была очень хрупкой.Техника сварки, которая включала в себя смешивание относительно мягкого и прочного чугуна с высокоуглеродистым материалом с последующей ковкой молотком, позволила получить прочное жесткое лезвие.

дуговая сварка Экранированная дуговая сварка металлом. Военно-морской флот США

В наше время совершенствование технологий производства чугуна, особенно внедрение чугуна, ограничило сварку кузнеца и ювелира. Другие методы соединения, такие как крепление болтами или заклепками, широко применялись для новых продуктов, от мостов и железнодорожных двигателей до кухонной утвари.

Современные процессы сварки плавлением являются результатом необходимости получения непрерывного соединения на больших стальных пластинах. Было показано, что клепка имеет недостатки, особенно для закрытого контейнера, такого как бойлер. Газовая сварка, дуговая сварка и контактная сварка появились в конце 19-го века. Первая настоящая попытка широко использовать сварочные процессы была предпринята во время Первой мировой войны. К 1916 году процесс оксиацетилена был хорошо развит, и применяемые тогда методы сварки все еще используются.Главные улучшения с тех пор были в оборудовании и безопасности. В этот период также была введена дуговая сварка с использованием расходуемого электрода, но изначально использовались неизолированные проволоки, которые давали хрупкие сварные швы. Решение было найдено, обмотав оголенный провод асбестом и переплетенным алюминиевым проводом. Современный электрод, представленный в 1907 году, состоит из оголенной проволоки со сложным покрытием из минералов и металлов. Дуговая сварка не использовалась повсеместно до Второй мировой войны, когда острая необходимость в быстрых средствах строительства для судоходства, электростанций, транспорта и сооружений стимулировала необходимые работы по развитию.

Резистивная сварка, изобретенная Элиху Томсоном в 1877 году, была принята задолго до дуговой сварки для точечного и шовного соединения листа. Стыковая сварка для изготовления цепей и соединения прутков и стержней была разработана в 1920-х годах. В 1940-х годах был внедрен процесс вольфрам-инертного газа с использованием неплавимого вольфрамового электрода для выполнения сварочных соединений. В 1948 году в новом газовом экранировании использовался проволочный электрод, который использовался в сварном шве. Совсем недавно были разработаны электронно-лучевая сварка, лазерная сварка и несколько твердофазных процессов, таких как диффузионное соединение, сварка трением и ультразвуковое соединение.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Основные принципы сварки

Сварочный шов может быть определен как коалесценция металлов, полученных нагреванием до подходящей температуры с применением давления или без него, а также с использованием наполнителя или без него.

При сварке плавлением источник тепла генерирует достаточно тепла для создания и поддержания расплавленной ванны металла требуемого размера. Тепло может поставляться электричеством или газовым пламенем.Сварка электрическим сопротивлением может считаться сваркой плавлением, потому что образуется некоторое количество расплавленного металла.

Твердофазные процессы производят сварные швы без плавления основного материала и без добавления присадочного металла. Давление всегда используется, и, как правило, немного тепла. Теплота трения развивается при ультразвуковом соединении и трении, а нагревание печи обычно используется при диффузионном соединении.

Электрическая дуга, используемая в сварке, представляет собой сильноточный низковольтный разряд, обычно в диапазоне 10–2000 ампер при 10–50 вольт.Столб дуги сложен, но, в общем и целом, состоит из катода, который испускает электроны, газовой плазмы для проводимости тока и области анода, которая становится сравнительно более горячей, чем катод, из-за электронной бомбардировки. Обычно используется дуга постоянного тока (DC), но могут использоваться дуги переменного тока (AC).

Общий расход энергии во всех сварочных процессах превышает тот, который требуется для производства соединения, поскольку не все выделяемое тепло может быть эффективно использовано. Эффективность варьируется от 60 до 90 процентов, в зависимости от процесса; некоторые специальные процессы значительно отклоняются от этой цифры.Тепло теряется в результате проводимости через основной металл и из-за излучения в окружающую среду.

Большинство металлов при нагревании вступают в реакцию с атмосферой или другими соседними металлами. Эти реакции могут быть чрезвычайно вредными для свойств сварного соединения. Например, большинство металлов быстро окисляются при расплавлении. Слой оксида может помешать правильному соединению металла. Капли расплавленного металла, покрытые оксидом, захватываются сварным швом и делают соединение хрупким. Некоторые ценные материалы, добавленные для определенных свойств, реагируют на воздухе так быстро, что осажденный металл не имеет того же состава, что и первоначально.Эти проблемы привели к использованию флюсов и инертных атмосфер.

При сварке плавлением флюс играет защитную роль, облегчая контролируемую реакцию металла, а затем предотвращая окисление, образуя защитное покрытие поверх расплавленного материала. Флюсы могут быть активными и помогать в процессе или неактивны и просто защищать поверхности во время соединения.

Инертная атмосфера играет защитную роль, аналогичную той, что существует у флюсов. При сварке металлической дугой и вольфрамовой дугой в среде защитного газа инертный газ — обычно аргон — течет из кольцевого пространства, окружающего горелку, непрерывным потоком, вытесняя воздух вокруг дуги.Газ не вступает в химическую реакцию с металлом, а просто защищает его от контакта с кислородом воздуха.

Металлургия соединения металлов важна для функциональных возможностей соединения. Дуговая сварка иллюстрирует все основные особенности соединения. В результате прохождения сварочной дуги возникают три зоны: (1) металл сварного шва или зона плавления, (2) зона термического влияния и (3) зона, не подверженная воздействию. Металл сварного шва — это та часть соединения, которая была расплавлена ​​во время сварки.Зона термического влияния — это область, смежная с металлом сварного шва, который не был сварен, но подвергся изменению микроструктуры или механических свойств из-за высокой температуры сварки. Неповрежденным материалом является материал, который не был нагрет в достаточной степени, чтобы изменить его свойства.

Состав металла шва и условия, при которых он замерзает (затвердевает), существенно влияют на способность соединения соответствовать требованиям обслуживания. При дуговой сварке металл сварного шва содержит присадочный материал плюс расплавленный основной металл.После прохождения дуги происходит быстрое охлаждение металла шва. Однопроходной сварной шов имеет литейную структуру со столбчатыми зернами, проходящими от края расплавленной ванны до центра сварного шва. В многопроходном сварном шве эта литая структура может быть модифицирована в зависимости от конкретного металла, который сваривается.

Основной металл, прилегающий к сварному шву или зоне термического влияния, подвергается ряду температурных циклов, и его изменение в структуре напрямую связано с пиковой температурой в любой заданной точке, временем воздействия и охлаждением. ставки.Типы основного металла слишком многочисленны, чтобы обсуждать их здесь, но они могут быть сгруппированы в три класса: (1) материалы, не подверженные влиянию сварочного тепла, (2) материалы, закаленные в результате структурных изменений, (3) материалы, закаленные в результате процессов осаждения.

Сварка создает напряжения в материалах. Эти силы вызваны сжатием металла шва и расширением, а затем сжатием зоны термического влияния. Необогреваемый металл накладывает ограничения на вышеуказанное, и, поскольку преобладает сжатие, металл сварного шва не может свободно сжиматься, и в соединении создается напряжение.Это обычно известно как остаточное напряжение, и для некоторых критических применений необходимо удалить термическую обработку всего производства. Остаточное напряжение неизбежно во всех сварных конструкциях, и, если оно не контролируется, прогиб или деформация сварного шва будут иметь место. Контроль осуществляется с помощью техники сварки, приспособлений и приспособлений, процедур изготовления и окончательной термообработки.

Существует широкий спектр сварочных процессов. Некоторые из наиболее важных обсуждаются ниже.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *