Плазмогенератор схема подключения: Схемы плазмотронов — КАТАЛОГ СХЕМ СВАРОЧНОГО ОБОРУДОВАНИЯ

Содержание

Плазмотрон: принцип работы и конструкция

Плазмотрон – это генератор плазмы, то есть такое техническое устройство, в котором электрический ток используется для образования плазмы, которая, в свою очередь, применяется с целью обработки материалов, например, для резки плазмотроном.

Первые плазмотроны появились в середине ХХ века, что было вызвано расширением производства тугоплавких металлов и необходимостью введения технологии обработки материалов, устойчивых в условиях высоких температур. Ещё одна причина появления плазмотронов – потребность в источнике тепла повышенной мощности.

Предлагаем посмотреть, как работает ручной плазмотрон (он же плазморез):

Вот основные особенности современных плазмотронов:

  • Получение сверхвысоких температур, недостижимых при использовании химического топлива
  • Лёгкость регулирования мощности, пуска и остановки рабочего режима
  • Компактность и надёжность устройства

Устройство плазмотрона

Устройство плазмотрона для резки металла представлено следующими конструктивными элементами:

  1. Электрод/катод со вставкой из циркония или гафния – металлов с высокой термоэлектронной эмиссией
  2. Сопло для плазмотрона, обычно изолированное от катода
  3. Механизм для закручивания плазмообразующего газа

Сопла и катоды – это основные расходные материалы плазмотронов. При толщине обрабатываемого металла до 10 мм одного комплекта расходных материалов бывает достаточно для одной рабочей смены – восьми часов работы. Сопла и катоды плазмотронов, как правило, изнашиваются с одинаковой интенсивностью, поэтому их замену можно организовать одновременно.

Несвоевременная замена расходников может оказать большое влияние на качество реза: например, при нарушении геометрии сопла может возникнуть эффект косого реза, или на поверхности реза будут возникать волны. Износ катода выражается в постепенном выгорании гафниевой вставки, выработка которой в объёме более 2 мм способствует пригоранию катода и перегреванию плазмотрона. Таким образом, несвоевременная замена изношенных расходных материалов влечёт за собой более скорый износ и остальных комплектующих плазмотронов.

Для защиты плазмотрона от брызг расплавленного металла и металлической пыли в процессе работы, на него надевают специальный кожух, который необходимо время от времени снимать и очищать от загрязнений. Отказ от использования защитного кожуха приводит к риску негативного влияния вышеуказанных загрязнений на качество работы плазмотрона и даже к его поломке. Кроме очистки кожуха, время от времени стоит чистить и сам плазмотрон.

Узнать больше о технологии плазменной резки вы сможете, посмотрев следующее видео:

Разновидности плазмотронов для резки металлов

Все существующие плазмотроны делятся на три большие группы:

        I.            Электродуговые

      II.            Высокочастотные

    III.            Комбинированные

Электродуговые плазмотроны оснащены как минимум одним анодом и катодом, подключёнными к источнику питания плазмотрона постоянного тока. В качестве хладагента таких устройств используется вода, которая циркулирует в охладительных каналах.

Существуют следующие разновидности электродуговых плазмотронов

  • Плазмотроны с прямой дугой
  • Плазмотроны с косвенной дугой (плазмотроны косвенного действия)
  • Плазмотроны с использованием электролитического электрода
  • Плазмотроны с вращающимися электродами
  • Плазмотроны с вращающейся дугой

Высокочастотные плазмотроны не имеют ни электродов, ни катодов, ведь для связи такого плазмотрона с источником питания используется индуктивный/ёмкостной принцип. Из этого следует, что высокочастотные плазмотроны делятся на индукционные и ёмкостные.

Принцип работы плазмотронов высокочастотной группы требует того, чтобы разрядная камера таких устройств была выполнена из непроводящих материалов, и в качестве таковых обычно используются керамика или кварцевое стекло.

Так как поддержание безэлектродного разряда не нуждается в электрическом контакте плазмы с электродами, в плазмотронах такого типа используется газодинамическая изоляция стенок от плазменной струи, что даёт возможность избежать их перегрева и ограничиться воздушным охлаждением.

Комбинированные плазмотроны работают при совместном действии ТВЧ – токов высоких частот – и горении дугового разряда, в том числе с его сжатием магнитным полем.

Кроме общей классификации плазмотронов на электродуговые, высокочастотные и комбинированные, такие устройства можно разделять на группы по многим принципам: например, в зависимости от типа охлаждения, по способу стабилизации дуги, в зависимости от типа электродов или используемого тока.

Система стабилизации дуги в процессе работы плазмотрона

В зависимости от способа стабилизации дуги, все плазмотроны делятся на газовые, водяные и магнитные. Надо сказать, что система стабилизации дуги является очень важной для процесса функционирования плазмотрона, ведь именно она обеспечивает сжатие столба и его фиксацию по оси электрода и сопла.

Самая простая и распространённая система стабилизации дуги – газовая. Её принцип работы заключается в охлаждении и сжимании стенок столба дуги внешним, более холодным плазмообразующим газом. Водяная система даёт возможность достичь большей степени сжатия и поднять температуру столба дуги до 50000 градусов.

Плазмотроны такого типа используют графитовый электрод, подающийся в меру его сгорания, поскольку пары воды вблизи электрода обеспечивают повышенную скорость этого процесса. По сравнению с этими двумя системами стабилизации, магнитная стабилизация дуги считается менее эффективной, однако её преимущество заключается в возможности регулировки степени сжатия без потерь плазмообразующего газа.

как переделать, устройство, схема, подробно, видео

Плазморез из инвертора своими руками — не самая простая, но осуществимая задача. Собрать резак по металлу в домашних условиях дешевле, чем покупать готовый аппарат.

Можно ли из инвертора сделать плазморез

Чтобы сделать плазморез из сварочного инвертора, в любом случае понадобится докупить некоторые комплектующие. Но аппарат сможет взять на себя роль источника питания. Он будет преобразовывать переменный ток в постоянный и поддержит работоспособность плазмореза.

Во многих случаях идеальным вариантом для конструирования резака считают сварочный трансформатор. Но у него есть свои минусы — агрегат слишком большой, потребляет много энергии и требует подключения к сети 380 В. Сварочный инвертор, в отличие от него, работает от бытовой розетки, экономно расходует электричество и показывает неплохой КПД.

Как сделать плазморез из сварочного инвертора своими рукамиИспользовать плазморез из инвертора для сварки можно в гараже без переоборудования электросети

Важно! Единственным недостатком инвертора при переделке в плазменный резак считается ограниченная функциональность. С очень толстыми и плотными заготовками агрегат не справится.

Как устроен плазморез

Любой плазменный резак состоит из нескольких частей:

  • плазмотрона, отвечающего непосредственно за создание потока ионизированного газа;
  • сварочного трансформатора, выполняющего функции источника питания;
  • компрессора для нагнетания воздуха, проходящего через плазмотрон;
  • осциллятора, подающего напряжение для формирования раскаленного потока при включении в работу.

Также в комплект устройства обязательно входят кабели, соединяющие сварочный аппарат и горелку, и шланги для подачи воздуха или другого газа из компрессора.

Принцип работы плазмореза состоит в том, что при включении агрегата трансформатор подает напряжение на электрод и сопло. Осциллятор формирует электрическую дугу, а под действием последней разогревается до 8000 °С подаваемый в резак газ. Раскаленный поток с высокой скоростью выходит из сопла и касается разрезаемой детали, а ток идет через трансформатор, после чего специальное реле отключает осциллятор и вспомогательную дугу.

Схемы самодельного плазмореза из сварочного инвертора

Перед сборкой самодельного агрегата необходимо ознакомиться с чертежами. Прежде всего, нужно изучить принципиальную схему устройства плазмореза, которая показывает, как соединены между собой детали.

Как сделать плазморез из сварочного инвертора своими рукамиПринципиальная схема дает представление о сути установки

Также понадобится изучить схему управления плазморезом, сделанным из сварочного инвертора своими руками, подробно и внимательно. Она показывает расположение важнейших регуляторов и кнопок на резаке и блоке управления, а также отображает вольтметр, амперметр, датчики воздуха и давления.

Как сделать плазморез из сварочного инвертора своими рукамиПри использовании плазмореза важно контролировать температуру и электрические показатели установки

В последнюю очередь нужно изучить схему подключения элементов установки. На ней указано, как именно требуется соединить части агрегата шлангами и кабелями.

Как сделать плазморез из сварочного инвертора своими рукамиСхема подключения отмечает длину и сечение проводов

Внимание! Поскольку плазморез является сложным электрическим агрегатом, при сборке устройства из инвертора нужно внимательно рассмотреть все доступные чертежи.

Как переделать сварочный инвертор в плазморез своими руками

Переделка сварочного инвертора в плазморез заключается в подготовке нескольких принципиально важных частей аппарата. Их собирают и приобретают по отдельности, после чего соединяют в конечное устройство согласно существующей схеме. Сам инвертор, в отличие от сварочного трансформатора, в усовершенствовании не нуждается, при подключении осциллятора он сможет работать в неизменном виде.

Как сделать плазмотрон

Плазмотрон является одной из важнейших деталей агрегата. Проще всего купить готовый резак, обладающий всеми необходимыми характеристиками. Но также его можно сделать самостоятельно из горелки для аргонодуговой сварки. В этом устройстве присутствует большинство нужных компонентов, в том числе:

  • клеммы и кабель для подключения тока;
  • рукав и направляющие для подачи газа на сопло;
  • вольфрамовый электрод 4 мм с возможностью регулировки положения.
Как сделать плазморез из сварочного инвертора своими рукамиВ резаке при включении под воздействием воздуха и электротока формируется струя ионизированного газ

При сборке плазмореза из инвертора резак требуется только немного доработать. Для этого нужно:

  • удалить тонкое латунное сопло и поставить прокладку из фторопласта для изоляции;
  • поверх нее установить латунный фиксатор для сопла из меди;
  • припаять или закрепить на корпусе хомутом кабель для вспомогательной электродуги.

Также на рукоять устанавливают выключатель, отвечающий за перевод самодельного плазмотрона в режим реза.

Как сделать осциллятор

Осциллятор в плазморезе из инвертора необходим для розжига дуги и поддержания ее в стабильном состоянии. Собрать компонент можно самостоятельно, к примеру, из трансформатора микроволновки. Сначала на нем заменяют первичную и вторичную обмотку и комплектуют сердечник кабелем нужного сечения, а затем размещают на плате разрядник для проведения искры и колебательный контур с высокочастотным конденсатором.

Как сделать плазморез из сварочного инвертора своими рукамиПодключение осциллятора в одной цепи с инвертором должно быть параллельным

Сделать деталь можно даже из старой катушки зажигания автомобиля. Но требуется учитывать, что сборка осциллятора может потребовать больших познаний в радиотехнике, чем создание самого плазмореза из инвертора. Поэтому проще всего купить готовый блок.

Как подобрать компрессор

Для формирования потока плазмы необходим не только ток, но и направленный поток сжатого воздуха. За него отвечает компрессор, этот элемент подбирают в соответствии с толщиной металла для реза. В частности, производительность 190 л в минуту позволит обрабатывать заготовки до 30 мм, 170 л в минуту — до 20 мм и так далее.

Как сделать плазморез из сварочного инвертора своими рукамиКомпрессор лучше всего использовать заводской, но при желании можно взять деталь от холодильника

Важно обратить внимание также на параметры ресивера. Требуется объем больше 50 л, иначе работа плазмореза из инвертора будет неустойчивой.

Важно! Рабочее давление компрессора должно составлять не менее 4,5 Бар.

Как выбрать или сделать кабель массы и кабель-шланг

Кабель массы отвечает за замыкание электродуги сварочного инвертора, выступающего в роли плазмореза, на детали. Его необходимо приобрести в специализированном магазине.

Как сделать плазморез из сварочного инвертора своими рукамиКабель массы для инверторного плазмореза должен оканчиваться зажимом для металла

Важный элемент самодельного плазмореза — это шланг, объединяющий в себе несколько проводов и трубок. В его конструкцию входят:

  • электропроводка для соединения устройства с выключателем;
  • шланг компрессора с диаметром 10 мм;
  • два электрических кабеля — для массы и для электрода;
  • провод для вспомогательной дуги с сечением от 1,5 мм.

Особенное внимание нужно уделить параметрам электрокабеля. Сечение элемента подбирают в соответствии с производительностью инвертора и сделанного на его основе плазмореза. При токе 50 А и тонких металлических заготовках будет достаточно сечения 6 мм, если изоляция на кабеле не ПВХ, а жаростойкая, показатель можно взять еще меньше.

Как сделать плазморез из сварочного инвертора своими рукамиШирокий шланг позволяет компактно закрыть всю кабельную систему инверторного плазмореза

Кабель-шланг можно купить готовый, а можно сделать своими руками из шланга для подводки воды. Внутрь него помещают проводку, гибкую кислородную трубку и электрокабель.

Финальная сборка

После того, как все части плазмореза будут подготовлены, их останется только соединить. Делают это так:

  • воздушный шланг закрепляют на ресивере компрессора;
  • кабели для электродуги, резака и массы подключают к соответствующим клеммам на инверторе сварки;
  • соединяют электропроводкой выключатель на блоке управления и плазмотрон.

Перед первым включением аппарата рекомендуется проверить по схеме правильность подключения и убедиться в надежности креплений.

Проверка работоспособности

Полностью собранный плазморез из инвертора необходимо испытать, прежде чем пробовать выполнить с его помощью конкретные работы. Для этого:

  • на инвертор сварки подают питание на десять минут;
  • по истечении срока выключают и проверяют, нагрелся ли аппарат;
  • при положительном результате включают компрессор;
  • при заполненном ресивере открывают клапан подачи воздуха и посылают поток через плазмотрон;
  • нажимают на кнопку выключателя на ручке резака и возбуждают вспомогательную электродугу;
  • при подаче плазмы через сопло выполняют тестовый рез металлической заготовки.

В первый раз деталь для разрезания нужно брать тонкую и с минимальной плотностью. Но в целом видео о плазморезе своими руками из инвертора показывает, что правильно сконструированный аппарат сможет справляться с заготовками до 10 мм.

Как сделать плазморез из сварочного инвертора своими рукамиВ первый раз нельзя использовать плазморез долго, после запуска его выключают и проверяют степень нагрева

Заключение

Плазморез из инвертора своими руками позволяет не тратиться на приобретение дорогого заводского аппарата. Мощность у самодельного устройства не самая высокая, но его возможностей хватает для обработки тонких листов металла.

ГЕНЕРАТОР ДЛЯ ПЛАЗМЕННОЙ ЛАМПЫ

   Недавно на нашем сайте была размещена статья про плазменную лампу. Решил тоже сделать себе подобное, результатами чего поделюсь с вами — уважаемые гости сайта «Радиосхемы«. Готовую схему балласта-преобразователя от энергосберегающей лампы использовать не хотел. Было решено собрать схемку на микросхеме-таймере NE555. Сложную не хотел паять. Так что нашёл в интернете самую простую. Деталей минимум — три резистора, конденсатор, транзистор и сама микросхема. Решил её проверить для опыта и спаять для получения тока высокой частоты. 


   Схема действительно очень простая как на рисунке, так и при сборке. Кстати, её можно заменить не только на советскую КР1006ВИ1, но и другие аналоги: ECG955M, HA555, LC555, ICM7555, LM1455, NTE955M, RM555, LC7555 и SN52555. 


   Транзистор обязательно нужно закрепить на очень большой радиатор. У меня стоял довольно приличный радиатор, но даже он нагревался до значительной температуры. Если запустить без охлаждающего элемента — сразу взорвётся транзистор. У меня так две штуки сгорело:( 


   На саму микросхему больше 15 вольт не подавайте, а то NE555 выйдет из строя. Она имеет некоторое предельное напряжение (16В), выше которого сгорает. У меня взорвался таймер при 20.5в. Теперь питаю схему от аккумулятора на 12в. 


   Резисторы берите любой мощности. Номинал можно отклонить на 20% в любую сторону — работать будет в любом случае, только нужно подобрать их по маскимуму высокого напряжения. Провода на питание ставьте толстые, т.к. они нагреваются во время работы. Если всё правильно спаяно, работать генератор начнёт сразу. Как подключить строчник показано на фото. 


   С высоковольтной обмотки снимаем высокочастотный ток. Он для жизни не опасен, но ожоги маленькие делает. 


   Подключив схему генератора к обычной лампочке, можно увидеть свечение плазмы внутри. Очень красивое явление.

   Если поднести ЛДС — начинает светиться даже без подключения. Уже на расстоянии несколько сантиметров!


   Питать устройство нужно от мощного источника питания. Чем мощнее — тем больше плазма. У меня разряд был примерно от 0.5 до 2 см. Мало, но красиво. Увеличить мощность выходного тока можно запитав микросхему через стабилизатор на 15В, а на транзистор подать 20-40В. Ещё лучше задействовать мощный полевой, типа IRF540. 

Видеоролик с работой схемы:

   В общем данная схема проверена и её работоспособность доказана. Maxim Schaikow

   Форум по генераторам ВВ

   Обсудить статью ГЕНЕРАТОР ДЛЯ ПЛАЗМЕННОЙ ЛАМПЫ


Генерация плазмы

18 Апреля 2016

Выбор «правильного» решения

Сергей Леванов, инженер-технолог по микроэлектронике
[email protected]



В профессиональных обсуждениях часто поднимается тема плазмы как современного инструмента высокотехнологичных производств, позволяющего существенно улучшать характеристики выпускаемых изделий. Что же такое плазма вообще? Какие виды плазмы бывают, чем они различаются и какие из них лучше подходят для того или иного применения?

Термин «плазма» знаком многим, любим писателями-фантастами и режиссерами блокбастеров, но что же в действительности кроется под этим звучным именем? Плазма — это частично или полностью ионизированный газ (аргон, кислород, азот, водород или другие), то есть газ, состоящий из нейтральных атомов или молекул и заряженных частиц, ионов и электронов. По сравнению с обычным газом основное преимущество плазмы заключается в том, что благодаря наличию свободных мест на внешних электронных оболочках атомы/молекулы плазмы химически более активны. Именно эта особенность позволяет им так эффективно взаимодействовать с частицами других материалов.

Для ионизации газа необходимо передать ему энергию, а для этого существует множество способов, таких как нагрев и облучение. Но наиболее распространен способ получения плазмы с помощью электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, создавая ток.

Есть несколько видов газового разряда: искровой, дуговой и тлеющий. Все они нашли то или иное применение в современной технике, но наибольшее распространение получил тлеющий разряд. Всем знакомые светящиеся рекламные колбы, лампы дневного света, покрытые изнутри люминофорами сложного состава, представляют собой многочисленные варианты применения плазмы тлеющего разряда. Все установки плазменной обработки поверхности в микроэлектронике также используют тлеющий разряд.

Для получения тлеющего газового разряда необходим газ, герметичная камера, в которой создано пониженное давление с помощью вакуумного насоса, генератор и два электрода. В камеру запускается газ так, чтобы итоговое давление в камере оставалось ниже атмосферного (примерно 10–2 мм рт. ст.), и включается генератор. Между электродами возникает переменное электромагнитное поле, которое передает энергию частицам газа, вследствие чего происходит их ионизация и зажигается разряд. Параметры разряда в значительной степени зависят от характеристик генератора, создающего электромагнитное поле.
Существует три основных типа генераторов:
1)    Низкочастотный генератор (НЧ). Самый простой и надежный по конструкции и универсальный по применению. Используется в основном для «жесткой» быстрой очистки образцов (пластины, подложки, детали и т. д.) от загрязнений перед последующими операциями. Низкочастотными принято считать генераторы килогерцевого диапазона (обычно 40, 80 или 100кГц). Схема установки с таким генератором аналогична представленной на рис. 2.
2)    Высокочастотный генератор (ВЧ). Традиционно частота ВЧ-генераторов составляет 13,56 Мгц. ВЧ-генераторы имеют особенность, заключающуюся в необходимости их согласования для максимального увеличения падающей мощности и минимизации отраженной. Из-за наличия устройства согласования (ручного или автоматического) данный тип генератора более дорогой, чем НЧ, и менее надежный. Однако у него есть важное преимущество — способность создавать «мягкую» плазму, которая не повреждает даже чувствительные элементы на обрабатываемых образцах (например, открытые кристаллы на микросборках или легированные области в полупроводниковых пластинах). Принципиально устройство установки с таким генератором мало отличается от представленной на рис. 2, разница заключается только в наличии согласующих конденсаторов.
3)    Сверхвысокочастотный генератор (СВЧ, частота 2,45 ГГц). В грубом приближении установка с таким генератором есть не что иное, как известная всем микроволновая печь. То есть, если бы в домашней микроволновке можно было создать вакуум и подать внутрь ее газ, то при включении нагрева был бы получен тлеющий разряд. Особенностью микроволнового генератора (как и бытовых микроволновок) является невозможность напрямую обрабатывать металлические предметы. Но эта проблема была решена, когда образцы стали помещать в клетку Фарадея, изолируя их от СВЧ электромагнитного поля. Такая конструкция позволяет ионизировать газ в СВЧ-поле и после этого доставлять его к обрабатываемой поверхности (ионы плазмы свободно проходят через клетку Фарадея). Основная область применения таких генераторов — быстрое удаление с подложек толстых слоев органических материалов, в частности позитивных и негативных фоторезистов. Схема установки с СВЧ-генератором представлена на рис. 3. Как видно на схеме, ввод электромагнитного излучения производится через специальное кварцевое окно. Такая конструкция необходима в случае, когда вакуумная камера изготовлена из металла.

Теперь, зная особенности и специфику всех типов генераторов, можно рекомендовать следующее:
При производстве интегральных микросхем и других микроэлектронных устройств для очистки и подготовки подложек без нанесенных функциональных слоев или установленных бескорпусных компонентов, а также для очистки корпусов электронных компонентов перед герметизацией и активации контактных площадок перед микросваркой наиболее оптимальным решением является использование НЧ-генератора.
Для очистки и подготовки подложек с нанесенными функциональными слоями или установленными бескорпусными компонентами рекомендуется использовать ВЧ-генератор. Также лучше приобретать установку плазменной обработки с таким генератором и в том случае, если есть задача обеспечить наиболее широкое технологическое окно, которое позволяет технологу варьировать различные параметры процесса, используя множество режимов, материалов и т. д.
При необходимости скоростного удаления толстых слоев органических веществ, таких как фоторезисты и полиимиды, лучше всего подойдет СВЧ-генератор, обеспечивающий в несколько раз более высокую скорость этих процессов, чем любой другой генератор.


Компания Diener Electronic предлагает генераторы разных типов, что позволяет легко конфигурировать установку плазменной обработки под абсолютно любые задачи

принцип работы и простейшая конструкция

Автор Aluarius На чтение 5 мин. Просмотров 1.5k. Опубликовано

Альтернативных источников энергии на планете Земля огромное количество. Просто человечество еще не научилось эту энергию получать дешевыми способами, хотя многие из них уже используются. Практически все виды альтернативной энергии в теории разработаны и получены в лабораторных условиях. Одним из таких видов является энергия, получаемая от электролита, расположенного в магнитном поле. Такой эффект называется магнитогидродинамический, а установка, в которой эту энергию получают, МГД генератор. Ученым этот эффект известен давно. Стоит напомнить, что еще Фарадей в 1832 году пытался в лабораторных условиях найти электромагнитную движущуюся силу. Для этого он использовал воду из реки Темза. Давайте рассмотрим обе позиции (эффект и генератор) более подробно.

Принцип работы МГД-генератора

Магнитогидродинамический эффект

По сути, это возникновение электрического поля, а соответственно и электрического тока в электролите, который собой может представлять ионизированную воду, газ (это плазма) или жидкий металл. Получается так что сам эффект основан на принципе электромагнитной индукции, в основе которой лежит способ получения электричества внутри проводника, расположенного в магнитном поле. То есть, проводник должны пересекать силовые линии поля.

В этом случае внутри проводника возникают потоки ионов, заряды которых противоположны зарядам движущихся частиц внутри магнитного поля. При этом силовые линии магнитного поля движутся в противоположную сторону ионизированных зарядов внутри проводника.

Магнитогидродинамический генератор

МГД генератор – это установка преобразования тепловой энергии в электрическую, в основе которой лежит магнитогидродинамический эффект. На генераторы возлагались большие надежды, ученые в конце двадцатого столетия пытались разработать эффективные МГД генераторы промышленного исполнения, даже были построены экспериментальные образцы. Но все по непонятным причинам остановилось, видно прекратилось финансирование проектов.

Необходимо отдать должное ученым, которые не бросили начинания. Во всяком случае, теоретическая часть доведена до максимальной точности.

Магнитогидродинамический генератор

Достоинства и недостатки

Итак, каковы преимущества МГД генераторов:

  • Это огромная мощность при небольших размерах установки (доходит до нескольких мегаватт).
  • Полное отсутствие вращающихся деталей, а, значит, нет потерь на трение.
  • МГД генератор – объемная установка. Почему? Во-первых, объемные процессы, которые протекают в генераторе, уменьшают наличие нежелательных процессов поверхностного типа, к примеру, снижено загрязнение, минимум токов утечек и так далее. Во-вторых, больше объем – больше мощность машины.
  • Из предыдущего следует, что чем больше МГД генератор, тем выше коэффициент полезного действия, тем меньше вредных выбросов из установки.
  • В свое время был достигнут достаточно серьезный показатель экономии и эффективности, когда магнитогидродинамический агрегат соединили с котельной. Эффект оказался тройным. После сжигания газа или другого энергоносителя в топке котла, отработанные газы (они ионизированные) поступали в генератор, который вырабатывал электрический ток, далее газы поступали на парогенератор ТЭЦ, дополнительно нагревая воду или пар для отопления. Необходимо отметить, что в те времена коэффициент полезного действия такой комбинации составлял 65%, и это по сравнению с традиционным КПД старых котельных 50%.
  • И, конечно, магнитогидродинамические генераторы являются установками передвижными. А это, как показывает жизнь, иногда очень важно.

Основные компоненты МГД-генератора


Теперь о недостатках:

  • В первую очередь необходимо отметить, что установка МГД генератора должна изготавливаться из дорогих жаропрочных сплавов. Потому что температура внутри генератора очень высокая, а скорость движения внутри него горячих газов составляет 2000 м/с.
  • МГД генератор может вырабатывать только постоянный ток, поэтому к нему придется добавлять эффективный инвертор.
  • Существует два вида генераторов: с открытым циклом и открытым. В обоих из них протекают процессы с химически активными веществами.
  • Электроды, которые и вырабатывают электрический ток внутри МГД генератора, расположен в так называемом МГД канале. Так вот в канале всегда присутствует температура, определяемая тысячами градусов. Поэтому электроды быстро выходят из строя.
  • Всем известно, что мощность установки прямопропорциональна квадрату индукции магнитного поля. Поэтому для промышленных образцов требуются очень большие магнитные системы. Они в несколько тысяч раз мощнее, чем лабораторные образцы.
  • Если температура газа, проходящего через МГД генератор, падает ниже +2000С, то в нем практически не остается свободных электронов. Поэтому такой газ использовать для получения электрического тока нет смысла.
  • По непонятным причинам в основном разрабатывались МГД генераторы, работающие на плазме (ионизированном газе). А вот использование морской воды не применялось, хотя именно морская вода и является отличным электролитом. В ней заключено огромное количество энергии, которую можно было бы использовать. Видно пока не нашлись те технологии, которые смогли бы эту энергию получить через МГД генератор.

Из всего вышесказанного можно сделать вывод, что проблем с устройством и использованием МГД генераторов много. И их придется еще преодолевать. Правда, некоторые позиции умельцам удается обходить, используя всевозможные хитроумные идеи. Но это опять-таки на уровне опытных образцов.

Как сделать МГД-генератор своими руками

Давайте рассмотрим вопрос, можно ли сделать МГД генератор своими руками? В принципе, ничего сложного нет, ведь теоретически схема и технология работы установки известна. Вот самый простой МГД генератор.

Генератор своими руками

Для его изготовления потребуется плексигласовый брусок прямоугольного сечения вот с такими размерами: 120х26х18 миллиметров. В бруске необходимо сделать сквозное отверстие диаметром 12 мм. Внутрь отверстия устанавливаются две пластинки или из меди, или из латуни. Обратите внимание, что сечение полосок должно быть сегментным. Они соединяются клеммами.

С двух сторон к бруску необходимо подсоединить ниппели из алюминия. К ним будут присоединяться резиновые шланги. По граням бруска приклеиваются цилиндры из плексигласа, на которые будут надеты магниты диаметром 20 мм. Все, вот такая нехитрая конструкция. Этот МГД генератор позволяет проводить забавные опыты с магнитной индукцией и электродвижущей силой. Все будет зависеть от числа прикрепленных магнитов, уменьшая или увеличивая их, можно изменять скорость движения ионов, изменять заряды, количество и так далее.

Импульсное зажигающее устройство (ИЗУ): устройство, принцип работы, виды

Импульсное зажигающее устройство – импульсный прибор для розжига газоразрядных ламп, в том числе ДНаТ (натривых высокого давления), ДРИ (ртутных газоразрядных), МГЛ (металлогалогенных) и др.

Устройство ИЗУ

Газоразрядные лампы (ГРЛ) обладают многими достоинствами, но для их подключения требуются дополнительные электрические приборы. К ним относятся импульсные зажигающие устройства (ИЗУ), пускорегулирующая аппаратура (балласт/дроссель).

Свечение любой ГРЛ начинается с первоначального импульса высокого напряжения, который вызывает первичное возбуждение молекул газа, который заполняет колбу лампы. Далее молекулы возбуждаются сильнее под действием проходящего тока, электроны поглощают энергию и переходят на более высокие орбитали и оседают обратно на более низкие с выделением фотонов света. Лампочка начинает светить.

Для создания высокочастотного импульса необходим специальный прибор. Им является ИЗУ. Прибор повышает напряжении сети 220 В до величины, при которой образуется электрическая дуга. Повышение происходит благодаря высокому (2-5 кВ) напряжению. Зажигающее устройство выдает высоковольтные импульсы и в колбе возникает дуга. После этого источник света продолжает работать от сети 220 В.

Внешне импульсные защитные аппараты выглядят, как параллелепипеды или цилиндры с контактами. На корпусе нанесены электрические параметрами и схема подключения.

Внешний вид

Внутренняя конструкция защитных аппаратов довольно сложна и зависит от их типа.

Принципиальная схема трехконтактного прибора с таймером

Принцип работы

Необходимые элементы подключения газоразрядных лампочек

Импульсное защитное устройство работает, как полупроводниковый генератор импульсов высокой частоты. Внутри прибора есть конденсатор, который через диод и резистор заряжается до нужного напряжения. При прохождении тока контакты (тиристоры) замыкаются, и конденсатор разряжается через первичную обмотку трансформатора. А на вторичной обмотке формируется высокое напряжение, которое подается на источник света.

Все электротехнические элементы прибора подбираются так, чтобы импульсы формировались только в определенные фазы напряжения сети. Количество импульсов, формируемых в нужную фазу, доходит до нескольких десятков. А их продолжительность – от сотых долей микросекунд до нескольких микросекунд.

Таким образом, импульсный защитный прибор необходим для повышения напряжения до такого значения, чтобы образовалась дуга.

Важно контролировать процесс зажигания источника света. Контроль возможен через силу тока или напряжения в источнике света.

При выборе импульсного аппарата рекомендуется обратить внимание на некоторые дополнительные параметры:

  • Функция автоматического выключения (для случаев, когда лампы вышли из строя) или таймер.
  • Максимальные импульсные частоты для выходного напряжения.
  • Наибольшая величина допустимого тока для запуска газоразрядных ламп высокого давления. Желательно, чтобы ток превышал рабочий в 2,5 или 3 раза.
  • Время импульса.
  • Напряжение в момент розжига источника света. Лучше, если оно чуть ниже сетевого.
  • Длина кабелей подключения не должна превышать 2-3 м, иначе могут возникнуть помехи в работе некоторых приборов (особенно радио-).
  • Наибольшее количество циклов включения-выключения.

Виды ИЗУ

Двухконтактный аппарат

Зажигающие устройства могут быть последовательного типа и параллельного. Приборы параллельного типа оснащены двумя контактами. Напряжение при их работе поступает не только на лампу, но ответвляется на дроссель. В результате возможен пробой: изоляция пускорегулирующей аппаратуры не выдерживает таких напряжений. К тому же при отсутствии в цепи или перегорании лампы двухконтактный прибор сломается. Рекомендуемое расстояние от защитного устройства до пускорегулирующей аппаратуры составляет всего 2 м. Однако, такие аппараты дешевле.

В приборе последовательного типа три контакта. При последовательном подключении при перегорании или отсутствии источника света защитное устройство продолжает работать. Расстояние между дросселем и импульсным прибором не ограничивается. Но к концу срока службы источника света проявляется выпрямительный эффект, который приводит к неверной работе пускорегулирующей аппаратуры. Импульсный защитный аппарат при этом работает постоянно, что приводит к выходу всей системы из строя.

Для индикации возможных проблем в трехконтактные приборы встраивают таймер. Таймер отключает прибор через заданное время в случаях отсутствия/перегорания источника света или безуспешной попытке разжечь лампу.

Также есть разделение по мощностям и типу цоколя Е27 и Е14.

Схема подключения ИЗУ: конкретные схемы

В зависимости от количества контактов импульсные зажигающие устройства подключаются либо последовательно, либо параллельно. Схема подключения обычно указывается на корпусе изделия.

Общие схемы подключения

Подключение двухконтактного ИЗУ

Двухконтактные приборы используются для ламп, напряжение розжига которых меньше 2 кВ. Главным образом, это дуговые металлогалогенные и натриевые источники света малой мощности. Схема подключения: параллельная.

Схема подключения двухконтактного ИЗУ

Ток, идущий на лампу, не проходит через защитное устройство. Однако, высокочастотные импульсы, формирующиеся для розжига, влияют на балласт и могут привести к его пробою. Поэтому при параллельном подключении обязательно применение дросселей с изоляцией, устойчивой к повышенным напряжениям (2-5 кВ).

Подключение трехконтактного ИЗУ

Трехконтактные аппараты постепенно вытесняют двухконтактные. Они подключаются последовательно. Прибор с последовательным подключением надежнее: исключается пробой на балласт. Подключение защитного устройства к источнику света можно разделить на несколько этапов:

  • один отрицательный провод из электрического щитка подключить к однотипному зажиму ИЗУ, а второй – к лампе;
  • фазовый провод разомкнуть, вставить в балласт, а контакт балласта – в зажим «В» ИЗУ;
  • средний провод подключают к патрону источнику света.

Рассмотрим конкретные схемы подключения.

ИЗУ-Т характеризуется небольшими размерами (диаметр 35 мм на 50 мм), стандартным креплением и встроенным таймером (не во всех моделях). Предназначено для совместной работы с магнитным балластом и лампами ДНаТ и ДРИ мощностью до 1000 Вт (220 В) и до 2000 Вт (380 В). Конструкция моделей с таймером позволяет балласту дольше оставаться в исправном состоянии, повторно зажигать источник света при кратковременном отключении электричества, уменьшает вероятность пробоя магнитного балласта.

Схема подключения ИЗУ-Т

ИЗУ-250-1000 Вт используются для розжига ДНаТ, ДРИ и МГЛ. Размер: 60×78 мм. Рекомендуется использовать с электромагнитным балластом. Степень защиты IP20.

Схема подключения ИЗУ-250

ИЗУ-1М используются для включения ДНаТ мощностью от 100 до 400 Вт и ДРИ мощностью от 35 до 400 Вт. Работает в широком диапазоне температур: от -45⁰ до +70⁰С. Габаритные размеры: 32×27×30 мм.

Схема подключения ИЗУ-1М

Распространенные ошибки при подключении

  • Использование оборудования, не предназначенного для данного типа ламп. Каждому типу и мощности источников света соответствует свой тип дополнительной аппаратуры. Использование несовпадающих типов приведет к поломке источника света.
  • То же самое относится к мощности: все дополнительные приборы должны быть подходящими к мощности источнику света.
  • Установка газоразрядного источника света голыми руками. Кожный жир превратится в черные пятна, которые могут привести к поломке или взрыву лампы. Используйте перчатки, или протрите спиртом колбу перед использованием.
  • Несоблюдение электрической схеме. Обычно схема подключения имеется на корпусе. Необходимо строго ей следовать.

Какое ИЗУ выбрать

В таблице представлены типы источников света и подходящие импульсные устройства.

Мощность ДНаТ/ДРИ/МГЛ, Вт

Модели защитный приборов

Тип

35-70 Вт (220 В)

ИЗУ 35/70, Helvar L-70 

Трехконтактный

70-400 Вт (220 В)

70-400 Вт TDM, POWERLUXE 70-400W

Трехконтактный

100-400 Вт (220 В)

ИЗУ 1М 100/400

Двухконтактный

ИЗУ 100/400, ИЗУ-1М 100/400, Vossloh Schwabe Z 400

Трехконтактный, Vossloh Schwabe – оба типа

100-1000 Вт (220 В)

ИЗУ-Т, ИЗУ-1М 100/1000

Трехконтактный

250-1000 Вт (220 В)

Vossloh Schwabe S Z 1000

Оба типа

1000/2000 Вт (380 В)

ИЗУ 1000/2000, Vossloh Schwabe Z 2000 

Трехконтактный, Vossloh Schwabe – оба типа

Для натриевых зеркальных ламп (ДНаз) мощностью 400-600 Вт (220 В)

Agro400/600

Трехконтактный

Мощность ДНаТ/ДРИ/МГЛ, Вт

Модели защитный приборов

Тип

35-70 Вт (220 В)

ИЗУ 35/70, Helvar L-70 

Трех-контактный

70-400 Вт (220 В)

70-400 Вт TDM, POWERLUXE 70-400W

Трех-контактный

100-400 Вт (220 В)

ИЗУ 1М 100/400

Двух-контактный

ИЗУ 100/400, ИЗУ-1М 100/400, Vossloh Schwabe Z 400

Трех-контактный, Vossloh Schwabe – оба типа

100-1000 Вт (220 В)

ИЗУ-Т, ИЗУ-1М 100/1000

Трех-контактный

250-1000 Вт (220 В)

Vossloh Schwabe S Z 1000

Оба типа

1000/2000 Вт (380 В)

ИЗУ 1000/2000, Vossloh Schwabe Z 2000 

Трех-контактный, Vossloh Schwabe – оба типа

Для натриевых зеркальных ламп (ДНаз) мощностью 400-600 Вт (220 В)

Agro400/600

Трех-контактный

Основные выводы

Импульсное защитное устройство – необходимый элемент подключения газоразрядных источников света. Оно подбирается исходя их типа лампы и ее мощности.

Соблюдайте схему подключения указанную на корпусе.

Двухконтактные приборы дешевле, но менее безопасны. При их использовании  необходимо подключать балласт с изоляцией, которая выдерживает высокие напряжения, иначе велика вероятность пробоя. При включении схемы с неработающими лампами дополнительное оборудование выйдет из строя.

Трехконтактные приборы лишены перечисленных недостатков. Однако, при выработке ресурса лампы они могут начать беспрерывно работать и выйти из строя. Для предотвращения этого стоит выбирать защитные устройства с таймером отключения.

 

 


 

ОИН-1 ограничитель импульсных напряжений: схема подключения, принцип работы

На каждой установке с воздушных выводом должны быть ограничители, которые помогают справиться со скачками напряжения. В этой статье говорится о том, как подключить ограничитель, а также приведены несколько схем.

Предназначение и принцип действия ОИН-1

Устройство ограничителя импульсных напряжений необходимо для предохранения сети с показателем 380/220 В. Это классическое напряжение для работы электросетей. Резкие перепады напряжения могут образовываться из-за ударов молний. Из-за грозы также образуется контактная разность в почве.

Как выглядит устройство

Также напряжение может меняться из-за всплеска в электросети. Они образуются при подключении или выключении различных приборов в одну сеть. Резкие скачки могут образовываться при присоединении мощных электрических приборов или каких-нибудь систем.

Принцип действия прибора: изнутри ОИН-1 оснащен варистором. По принципу работы они похожи на разрядники, которые применялись раньше.

УЗИП в щитке

В таком случае устройство будет устанавливаться параллельно предохраняемой электроцепи.

Если же по каким-то причинам величина напряжения в сети станет больше разрешенной, прибор просто замкнет проводку, таким образом предупредив угрозу от включенных за ним бытовых приборов.

Чтобы понять, исправен прибор или нет, необходимо обратить внимание на цвет индикатора. Если он зеленый, то модуль будет в исправном состоянии, а если красный, то его необходимо поменять.

Сфера применения

Ограничитель типа ОИН-1 используется достаточно часто. Его подключают в вводные щитки или для учёта потребителей. Желательно подключать его до счетчика, чтобы обезопасить и его.

Маркировка от производителя

Если необходимо построить дом и подсоединить всю территорию усадьбы к источнику электрической энергии – в техническом плане для такого подключения уже прописана норма установки ОИН-1 для защиты от скачков напряжения. Но это указание выполняется в основном, как прописано в правилах устройства электроустановок – при воздушном вводе провода.

Технические параметры

Таблица основных характеристик ОИН-1:

Стандартное напряжение220 В
Номинальный разрядный ток6
Максимальный РТ13
Остаточное напряжение2200
Уровень защитыне ниже IР21
Температурный режимот -50 до +55
Параметры устройства (размеры)80 × 17,5 × 66,5
Вес0,12 кг
Срок службы3–3,5 года

Схемы подключения прибора

Подключение может быть однофазное и трехфазное. У прибора ОИН-1 есть ряд похожих устройств от различных производителей бытовых приборов, потому все схемы подключения почти похожи. Стандартная схема описана ниже. Ее можно применять под все типы устройств.

ОИН 1 схема подключения

В первом случае подключение выполнено параллельно к цепи, а во втором – последовательно с размыкателем. Проще говоря, в итоге включения ОИН-1 во время скачков напряжения размыкатель будет обрывать цепь питания, чтобы миновать риск возникновения пожара в системе и прохождения тока по электродуге.

Внимание!  Кроме грамотной установки нулевого и фазного проводников, достаточно важную роль играет длина самого кабеля.

От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см.

Что использовать перед УЗИП — автоматы или предохранители

Для постоянного снабжения помещения энергией рекомендуется подключать автоматический выключатель, который будет выключать УЗИП.

После попадания молнии

Подключение этого автомата определяется также тем, что в период отвода импульса образуется, как говорят, сопровождающий ток.

Но гораздо легче приобрести модульные предохранители. Рекомендуется выбирать устройство типа GG.

Они могут защищать весь диапазон сверхтоков. Даже если ток вырос несильно, то предохранитель такого типа все равно его выключит.

Возникновение ошибок при подключении

Одна из популярных ошибок – это подключение УЗИП в щит с неправильным контуром заземления. Смысла от этой защиты вообще не будет. И при первом попадании молнии щиток сгорит.

Вторая ошибка – это неверная установка, исходя из системы заземления. Необходимо следовать техдокументации УЗИП, а получить консультацию у профессионального мастера или просто вызвать электрика на дом.

Типы ограничителей

Третье заблуждение – применение УЗИП неподходящего типа. Существует всего три типа импульсных защитных приборов, и все они должны использоваться, подключаться в свои щитки.

Схему подключения ОИН-1 (ограничитель импульсных напряжений) можно найти на специализированных сайтах для электриков. Там же мастера могут дать полезный совет и рассказать о пошаговом подключении своими руками.

В заключение необходимо отметить, что ограничители импульсных напряжений должны быть в каждой электрической цепи. Это поможет предотвратить замыкания и риск возникновения пожаров. Если у человека нет опыта работа с проводкой, то желательно вызвать профессионального электрика.

Новая энергосистема стоимостью 10 долларов для автомобиля и дома в 2016 году — Connectivist Collective

26 октября , 2015 знаменует собой день глобального обнародования проекта Кеше Foundation Magrav Плазменные блоки производства энергии : плазменная технология с использованием свободной энергии.

На этой неделе Keshe Foundation открыт для публики утром в будние дни, начиная с 10:00 CET и во второй половине дня с 14:00 CET до пятницы 30 октября 2015 года. Смотрите живые учения по технологии через [Livestream] , [Youtube] и [Zoom] .

Обновление от 8 июля 2016 г.:
[Продажа плазменных генераторов Magravs-Power]

Обновление от 14 декабря 2015 г .:
[
Kids Build Plasma Power System for Home ]

Первое официальное раскрытие информации было успешно транслировано в прямом эфире Фондом Кеше во время 16 октября -го -го заседания послов 2015 года в Риме. Участвующие страны: Мозамбик, Нигерия, Палестина, Беларусь, Гана, Китай, Армения, Грузия, Россия, Ирак, Норвегия, США, Румыния, Мальта, Австрия, Португалия, Швеция, Польша и другие.

Полный 2 часа 45 минут 16 октября 2015 г. Раскрытие информации:

[версия на 1 час 30 минут] [версия на 15 минут]

Согласившись забрать домой распределенные устройства свободной энергии, послы этих стран согласились заложить достижимые цели разоружения в своих регионах. Научные сообщества, в свою очередь, могут соответственно представить технологии своим гражданам, чтобы избежать дальнейших геополитических и макроэкономических конфликтов, тем самым продвигаясь к мирной цивилизации.

Фонд Кеше состоит из разных людей со всей планеты, цель которых — обеспечить мир во всем мире, неся человечеству новые технологии. Их зарегистрированный офис находится по адресу: Jubileumplein 3, NL-6161 SR Geleen, Нидерланды. Однако большая часть исследований и разработок Keshe Foundation базируется за пределами Италии. Итальянское правительство, военные и ведущие ученые вкладываются в эту науку. В настоящее время они поддерживают и защищают Фонд, несмотря на запросы США и НАТО о закрытии.Фонд Кеши сейчас является одной из крупнейших исследовательских организаций на планете, находящейся под самой строгой защитой.

Единственным директором Фонда является основатель, г-н Мехран Таваколи Кеше , инженер-ядерщик, родившийся в Иране в 1958 году. Кеше недавно заявил: «Одна нация, одна планета, одна раса… был дан инструмент мира остальное принадлежит народу ».

Этот источник энергии, который в конце 2016 года будет стоить менее 10 долларов на семью, сможет обеспечить все необходимое.Приложения обширны: неограниченное использование для разработки продуктов питания, энергии, путешествий, медицины, материалов и многого другого. Устройство разработано специально, чтобы быть доступным для всех. Каждый дом может генерировать электроэнергию и перестать полагаться на энергетические компании. Финансирование этой инициативы уже доступно.

[Продукты Фонда Кеше]

Keshe Foundation продает блоки питания заранее, готовясь к тому, что многие дистрибьюторы организуют логистику для продажи блоков через различные сети, такие как канадская maggrav.com сайт. [Обновление от 5 июля 2016 г .: веб-сайт maggrav.com больше не работает. Владелец теперь является частью команды распределения Keshe Foundation.] Энергоблоки хранятся в нескольких местах, и по состоянию на 25 октября 2015 года они доступны в следующих форматах:

Универсальная система Magrav-Power
Это полноценная система, способная обеспечивать электроэнергией дом и производить энергию для сети. (30 см x 90 см)

Автомобильная система Magrav-Power
Это полная система, которая может приводить в действие автомобиль.Электромобиль можно поддерживать вечно. (6 см x 18 см)

Согласно предварительным заказам для поддержки первоначального движения, цена на любую установку производства плазменной энергии Magrav составляет 500 евро + 300 евро пожертвования + 21% налога + доставка . Срок доставки: 30 — 90 дней. Ожидается, что в 2016 году цена значительно упадет.

Magrav Plasma Power

Фонд Кеше обеспечивает практическую гуманитарную связь между мышлением в состоянии материи и работой в состоянии плазмы.Г-н Кеше учит, как поднять материю до состояния «GA в нано-состояние» (GANS), а затем как использовать провода с нанопокрытием, чтобы строго работать с плазмой.

Физика Кеши основана на Магнитном (отталкивание) и Гравитационном (притяжение) полях, которые являются общими для каждой частицы Вселенной, отсюда и «маграв». Поскольку свет является результатом трения между магнитными полями Солнца и Земли (свет является 1-й стадией перехода между плазмой и материей), а гравитация является более сильной силой, легкие частицы притягиваются обратно к Земле, и, таким образом, мы имеем дневной свет.

Концепции намного легче понять, если принять, что мы имеем дело с высокоинтеллектуальной энергией, которая может работать через соответствующие протоколы связи. Эта технология основана на способности плазмы различать или думать. Мы можем проинструктировать плазму, когда поймем метод передачи намерения.

Электрическая энергия — это часть материи. Плазма — основа всей энергии, но не материя. Эти силовые агрегаты не являются электрическими генераторами и не работают как электрические системы, хотя в качестве побочного продукта они производят электрический ток.Например, если мотоцикл совместим через бесщеточный двигатель без резистивного управления скоростью, то его может питать плазменный реактор. Такие измерения, как ватты и вольт, больше не актуальны. Плазменный реактор может одновременно питать блок переменного тока и мобильный телефон по одному проводу.

В то время как мощность, выдаваемая блоком питания, неограниченна по потенциалу, канал из медного провода, который он использует, может обрабатывать только крошечную часть. На нанесение нанопокрытия проводов в достаточной степени, чтобы обеспечить сверхпроводимость, уходит пара недель, и на этом этапе из окружающих нас плазменных полей могут быть получены гигаватты. Фактическая розыгрыш — это только то, что требуется, поэтому спецификации указаны в приборах или самих нагрузках.

Научное распространение Magrav Plasma Power

Keshe Foundation 68 th Дни 1–3 семинара знаний, снятые в прямом эфире в течение июля 2015 года. Эти видеоролики включают многочасовые углубленные теории и демонстрации плазменных технологий magrav: [День 1] [День 2 ] [День 3] Этот видеоролик начинается на 15-минутной отметке в течение дня 3, при первом открытии энергоблоков, показанных на фотографиях в этой статье.

80-й семинар Фонда Кеше для искателей знаний, снятый в прямом эфире 24 сентября 2015 года. Здесь г-н Кеше описывает энергоблок Фонда Кеше.

То, что грядет, дополняет современную физику, но многое из того, что известно в настоящее время, устареет. Ожидается, что многие рабочие устройства будут ориентированы на более простое и улучшенное использование прямой плазменной энергии.

На все вопросы дополнительно ответят представители Keshe Foundation:

Фонд Кеше: http: // www.keshefoundation.org
Энергетические технологии Фонда Кеше
Институт космических кораблей Фонда Кеше
Сообщество Фонда Кеше
Форум Фонда Кеше

Архив организации программы космических кораблей Фонда Кеше:
[Youtube Channel] [Livestream Channel]

Приложенные примечания 28 октября 2015 г .:

Совместная работа Документация семинаров по Blueprint находится в процессе создания с использованием технологии редактирования документов общедоступного облака с помощью Документов Google.

Группа Slack.com была создана для тех, кто заинтересован в этой платформе совместной интеграции: KFSSI Magrav Plasma Blueprint Group Пожалуйста, напишите автору для членства. Добро пожаловать всем.

Для всех, кто заинтересован в обсуждении, есть комната для мозгового штурма по Skype: Keshe Tech Brainstorming Room.

Приложенные примечания от 3 ноября 2015 г .:

Готовится статья о раскрытом проекте и новых технологиях.Ожидаемая дата публикации — выходные 7 ноября или ранее.

[Загрузить проект (12,3 МБ)]


В связи с целями этого блога, а также с характером прилагаемой информации, эта статья была собрана как сборник исследований, связанных с раскрытиями информации Фондом Кеше, произошедшими между 16 и 25 -го октября 2015 года. были скопированы непосредственно из различных источников и отредактированы, чтобы соответствовать этой записи в блоге, без какой-либо проверки, кроме общего согласия в различных сообществах, поддерживающих работу.Разрешение на копирование информации не запрашивалось, так как существует согласованная необходимость двигаться дальше.

Другие статьи Connectivist Collective включают:

Продажа плазменных генераторов Магравс-Пауэр
(8 июля 2016 г.)

Дети создают плазменную систему питания для дома
(14 декабря 2015 г.)

Плазменный источник энергии — Уведомление о раскрытии информации в реальном времени Кеше
(16 октября 2015 г.)

Примечание: отгружены первые комплекты для получения свободной энергии от CO2
(15 февраля 2015 г.)

Примечание: Maggrav Canada распространяет комплект энергии плазмы Keshe CO2
(25 января 2015 г.)

Начальный фэнтезийный образ этой статьи Иван Лалиашвили назвал «Волшебное королевство».

Нравится:

Нравится Загрузка …

Связанные

.

Плазменные генераторы и резонансные драйверы


Инструкции PVM500
Схема PVM500
Запись рабочего цикла Изменение вторичного трансформатора

Этот надежный и гибкий плазменный драйвер будет питать обычные резистивные нагрузки, такие как плазменные устройства с внутренними электродами или лестницы Якоба, умножители напряжения, дуговые генераторы, неоновые трубки и другие подобные устройства, не требующие резонансной работы.

Он также будет обеспечивать питание сложных реактивных (резонансных) нагрузок путем настройки внешней емкости для эффективного управления резонансной нагрузкой, обеспечивая работу газовых дисплеев с высокой реальной мощностью, ионизирующие и зажигающие, ионизирующие и зажигающие, DBD, химические, ионные, плазменные, озоновые ячейки сосуды, преобразователи и другие исследовательские функции. Для достижения эквивалентного эффекта без возможности настройки емкости этого источника питания потребуется чрезвычайно высокое выходное напряжение. Вместо этого это достигается за счет простого резонанса и наблюдения за тем, когда измеритель указывает точку уменьшения емкости в сложных нагрузках. Вы найдете это устройство очень ценным в исследованиях подобного рода. Выходную мощность можно регулировать от 10 до 300 Вт, и он работает от стандартной настенной сети переменного тока 115 В (или 220 В с дополнительным понижающим трансформатором).

Может также использоваться для распыления, плазменного травления, нанесения покрытий химическим осаждением из паровой фазы (CVD) и физического осаждения из паровой фазы (PVD), электрохимических реакций, производства газа HHO и многих других исследовательских функций.

.Плазменные генераторы

RF | Плазменные генераторы

Продвинутая энергия <Назад

Поиск

  • Обзор компании
    • О нас
    • Команда руководителей
    • Корпоративная социальная ответственность
    • Приобретенные технологические бренды
    • Новости
  • Инвесторам
  • Карьера
.

Генератор холодной плазмы, Генератор плазменный ионизатор

ND-A:

Использование продукта: электронный вентилятор, фен, кондиционер, энергосберегающие лампы освещения, светодиодный свет и т. Д.

Параметр продукта:

Входное напряжение: DC6V ~ 24V, AC100 ~ 130V, AC200 ~ 240V

Выходное напряжение: DC- + 3KV ~ 4KV, DC- + 3KV ~ 4KV, DC- + 3KV ~ 4KV

Размер продукта: 60 ​​* 22.5 * 13 мм

Плотность плазмы:

+ -2,000,000 шт / см3

+ -3,000,000 шт / см3

+ -3,000,000 шт / см3

Использование продукта:

электронный вентилятор, фен, кондиционер, энергосберегающие лампы освещения, светодиодный свет и т. Д.

Функция продукта:

1) Используется для электронного вентилятора, фена, кондиционера, энергосберегающих лампочек, светодиодного освещения и т.п.
2) Активизирует кислород
3) Улучшает функцию легких
4) Также активирует ферменты, ускоряет обмен веществ в организме
5) Повышает способность бороться с болезнями
6) Улучшает сон
7) Функция стерилизации
8) Делает воздух чистым
9) Делает волосы мокрые

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *