Испытание сварного соединения керосином
Испытание керосином заключается в следующем. Сторону сварного соединения, доступную для осмотра, окрашивают водной суспензией мела или каолина. Для быстрого высыхания суспензию рекомендуется наносить на неостывший после сварки шов, когда температура его снизится примерно до 50—70°С.
После высыхания суспензии противоположную сторону соединения два-три раза тщательно смачивают керосином. При контроле нахлесточных соединений керосин подается в зазор нахлестки под избыточным давлением не менее 1,5 кГ/см2.
Если в соединении имеются неплотности, то на окрашенной мелом поверхности появляются темные или слегка желтоватые жирные пятна керосина. Продолжительность испытания от 15 мин до нескольких часов, в зависимости от толщины шва, вида сварного соединения и расположения его в пространстве.
Если доступ к сварным соединениям открыт только с одной стороны, керосин наносят на эту сторону два-три раза подряд.
Через 15—20 мин швы тщательно протирают насухо тряпками. Чтобы керосин, впитавшийся в дефектные места, быстрее вышел на поверхность шва, металл в районе сварного соединения обстукивают легкими ударами молотка с закругленным бойком.
Еще лучше изделие подвергать вибрации, например, с помощью виброуплотнителя бетона. При таком способе контроля можно обнаружить не только сквозные, но и несквозные дефекты, выходящие на поверхность.
Способность керосина проникать через мельчайшие неплотности швов объясняется его неполярностью, высокой смачивающей способностью, малой вязкостью, а также способностью растворять масляные пленки и пробки, могущие закупорить неплотности.
При взаимодействии неполярных жидкостей (керосина и других углеводородов) со стенками неплотности вязкость пристенных и центральных слоев жидкости одинакова. Поэтому, несмотря на то что вязкость воды в два раза меньше вязкости керосина, последний вследствие своей неполярности лучше проникает в микронеплотности.
С помощью керосина можно обнаружить неплотности диаметром до нескольких десятитысячных долей миллиметра.
Чувствительность и производительность метода испытания керосином можно повысить, используя его в комбинации с вакуумным методом. Сущность такого керосино-вакуумного испытания (см. рис. 181) заключается в следующем.
После смачивания шва керосином устанавливается вакуум-камера, с помощью которой создается перепад давлений воздуха. Разность давлений воздуха вместе с капиллярным давлением керосина повышает эффективность контроля.
Проверка непроницаемости сварных швов и соединений
Рекомендуем приобрести:
Установки для автоматической сварки продольных швов обечаек — в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.
Сварочные экраны и защитные шторки — в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!
Сварные швы и соединения ответственных изделий
Контроль непроницаемости сварных соединений проводят в соответствии с ГОСТ 3242-79, включая следующие виды испытаний: керосином, обдувом, аммиаком, воздушным давлением, гидравлическим давлением, наливом и поливом.
Кроме этого, непроницаемость сварных соединений определяют вакуумным методом и газоэлектрическими течеискателями.
Перед проведением испытаний должны быть устранены все дефекты, выявленные внешним осмотром.
Испытание керосином основано на способности многих жидкостей подниматься по капиллярным трубкам, какими в сварных швах являются сквозные поры и трещины. Керосин обладает высокой смачивающей способностью и сравнительно малой вязкостью, что обеспечивает большой эффект этого способа контроля. Например, в отличие от воды (полярная жидкость) керосин под действием поверхностных сил проникает в мельчайшие (10 -3 — 2,10-4 мм) неплотности в металле.
Испытание сварных соединений керосином проводят следующим образом. После внешнего осмотра простукивают молотком или подвергают вибрации основной металл на расстоянии 30—40 мм от шва и тщательно очищают сварное соединение от шлака, ржавчины, масла и других загрязнений. Такое простукивание или вибрация способствует лучшему удалению шлака и развитию несквозных дефектов в сквозные.
Затем с помощью пульверизатора сварные швы покрывают меловым раствором (350—450 г молотого мела или каолина на 1 л воды) с той стороны, которая более доступна для осмотра.
После высыхания мелового раствора другую сторону шва обильно смачивают керосином и выдерживают в течение определенного времени.
Исходя из экспериментальных данных Института электросварки им. Е. О. Патона, Всесоюзного научно-исследовательского института строительства трубопроводов и ряда монтажных организаций время выдержки под керосином обычно устанавливают не менее 12 ч при окружающей температуре выше 0° и не менее 24 ч — при температуре ниже 0°.
Ввиду того что при повышении температуры вязкость керосина уменьшается и скорость проникания его через неплотности шва увеличивается, для сокращения времени контроля рекомендуется швы перед испытанием нагревать до температуры 60—70° С. В этом случае время выдержки под керосином сокращается до 1,5—2 ч. Керосин наносят в процессе испытания 3—5 раз.
Соединения внахлестку, у которых один шов сплошной, а второй прерывистый, опрыскивают струей керосина под давлением co стороны прерывистого шва. Соединения внахлестку, сваренные сплошным швом с обеих сторон, испытывают керосином путем нагнетания его под давлением в межнахлесточное пространство через специально просверленное отверстие.
О наличии пор, свищей, сквозных трещин и непроваров свидетельствуют жирные желтые точки или полоски керосина на меловом слое, которые с течением времени расплываются в пятна. Поэтому необходимо тщательно следить за появлением первых точек или полосок и своевременно отмечать границы дефектных участков.
Обнаруженные дефекты устраняют, после чего сварной шов подвергают повторному контролю.
Для лучшего наблюдения за керосиновыми пятнами применяют керосин, окрашенный в красный цвет краской «Судан-III» в количестве 2,5—3 г на литр.
Эффективность контроля непроницаемости сварных швов с помощью керосина можно повысить, применяя дополнительно продувку швов сжатым воздухом под давлением 3—4 кгс/см2, разрежение атмосферного воздуха с меловой стороны шва при помощи специальных камер, вибрацию швов. Все эти меры ускоряют проникание керосина через неплотности.
С помощью керосина выявляют не только сквозные, но и поверхностные дефекты. Для этого поверхность контролируемого сварного соединения после тщательной очистки обезжиривают бензином или ацетоном и обильно смачивают окрашенным керосином. По истечении 15—20 мин керосин вытирают или смывают 5%-ным водным раствором кальцинированной соды с последующим просушиванием. Затем на поверхность сварного соединения при помощи пульверизатора наносят тонкий слой разведенного в воде мела (или каолина).
Когда мел высохнет, изделие около шва обстукивают молотком, а сам шов прогревают горячим воздухом. При этом керосин, задержавшийся ранее на дефектных участках (в случае их наличия), просачивается на меловую краску в виде пятен и полосок, по которым судят об имеющихся дефектах.
При испытании обдувом одну сторону сварного шва промазывают мыльным раствором (вода 1 л, мыло хозяйственное 100 г), а другую — обдувают сжатым воздухом, подаваемым по гибкому шлангу с наконечником под давлением 4—5 кгс/см2. Расстояние между наконечником и швом должно быть не более 50 мм.
Если испытание проводят при температуре ниже 0° С, мыльный раствор готовят с частичной заменой воды спиртом (до 60%) или с применением незамерзающей жидкости, растворяющей мыло.
Сквозные дефекты обнаруживают по появлению пузырей на промазанной мыльным раствором стороне шва.
В основу испытания аммиаком положено свойство некоторых индикаторов, например спирто-водного раствора фенолфталеина или водного раствора азотнокислой ртути, изменять окраску под воздействием щелочей, в данном случае сжиженного аммиака.
Перед началом испытаний тщательно очищают металлической щеткой сварное соединение от шлака, ржавчины, масла и других загрязнений. Если сварку вели электродами с обмазкой основного типа, то швы, кроме того, промывают водой, иначе остатки щелочных шлаков будут реагировать в процессе испытания с индикатором, изменяя его окраску.
После такой подготовки на одну сторону шва укладывают бумажную ленту или светлую ткань, пропитанную 5%-ным раствором азотнокислой ртути (индикатором), а с другой стороны создают давление аммиака.
При контроле сварных швов небольших емкостей, а также трубопроводов в них подают аммиак в количестве 1% объема воздуха в емкости и создают избыточное давление 1 кгс/см2 или более, но не выше расчетного рабочего.
При контроле отдельных участков шва над ними устанавливают герметичную камеру, в которой создают давление аммиака.
В обоих случаях спустя 1—5 мин аммиак, проникая через неплотности сварного шва, окрашивает пропитанную индикатором бумагу или ткань в серебристо-черный цвет. Скорость и интенсивность окраски, а также величина пятен характеризуют размеры дефектов, границы которых отмечают мелом или краской.
При использовании в качестве индикатора спирто-водного раствора фенолфталеина его тонкой струей льют на контролируемый шов. Если в шве имеются неплотности, аммиак проходит через них и окрашивает раствор фенолфталеина в ярко-красный цвет с фиолетовым оттенком.
Для испытания сварных швов днищ резервуаров или газгольдеров аммиак подают в пространство между днищем и основанием по трубкам с отверстиями и создают избыточное давление 8 — 10 мм вод. ст. Поливая швы спирто-водным раствором фенолфталеина, определяют неплотности в сварных швах и устраняют их.
Испытанию давлением газа подвергают емкости и трубопроводы, работающие под давлением, с целью контроля общей непроницаемости сварной конструкции.
Малогабаритные изделия герметизируют газонепроницаемыми заглушками и полностью погружают в ванну с водой. Затем в изделие через редуктор от воздушной сети или из баллона подают газ (воздух, азот, инертные газы) под давлением, величина которого на 10—20% больше величины рабочего. Имеющиеся неплотности определяют по появлению пузырьков газа в воде.
Крупногабаритные сварные изделия испытывают следующим образом. После герметизации в них создают испытательное давление и промазывают сварные швы мыльным раствором (100 г мыла на 1 л воды). Появление мыльных пузырей на промазанной поверхности свидетельствует о проницаемости шва.
Величину давления и время выдержки под ним устанавливают в соответствии с техническими условиями.
При испытании сжатыми газами следует тщательно соблюдать правила техники безопасности. Работы должны проводиться в изолированном помещении с ограждениями (на случай взрыва). Трубопроводы испытывают отдельными изолированными участками с предупредительными знаками об опасности. Гидравлическим давлением проверяют прочность и плотность сварных соединений различных емкостей, котлов паропроводов, водопроводов, газопроводов и других сварных конструкций, работающих под высоким давлением.
Перед испытанием сварное изделие герметизируют водонепроницаемыми заглушками, обтирают или обдувают сжатым воздухом сварные швы до получения сухой поверхности.
После полного заполнения изделия водой с помощью насоса или гидравлического пресса создают избыточное контрольное давление, величину которого принимают в соответствии со стандартами, инструкциями или техническими условиями (обычно в 1,5—2 раза больше рабочего). В процессе испытания давление определяют по проверенным и опломбированным манометрам.
В самой высокой точке испытываемого изделия устанавливают контрольную заглушку на резьбе для наблюдения за заполнением всего объема водой и выпуском воздуха в атмосферу. В противном случае не исключено образование воздушной подушки, находящейся под большим давлением, что может привести к разрыву изделия в процессе испытания.
По истечении 5—6 мин давление уменьшают до рабочего, а околошовную зону слегка обстукивают молотком на расстоянии 15—20 мм от края шва. Боек молотка должен быть круглым, чтобы не повредить основной металл изделия.
Проницаемость сварных швов и места сквозных дефектов устанавливают по снижению испытательного давления и появлению течи или просачиванию воды в виде капель, а также по запотеванию поверхности шва или вблизи него.
Во избежание ошибочных выводов следует иметь в виду, что при температуре воды в сосуде ниже температуры воздуха в помещении возможно полное запотевание всей поверхности металла испытуемого изделия. Кроме того, уменьшение испытательного давления не всегда указывает на наличие дефектов, а может быть вызвано неплотностями в нагнетательной системе, присоединительной арматуре, заглушках.
Недостатками этого способа контроля являются необходимость в источниках водоснабжения и трудности, возникающие при испытаниях в зимнее время на открытом воздухе.
Вертикальные резервуары для хранения нефти и нефтепродуктов, газгольдеры и другие крупные емкости испытывают наливом воды.
До испытания сварные швы тщательно обтирают ветошью или обдувают воздухом до получения сухой поверхности. Затем емкость заполняют водой и наблюдают за сварными швами и падением уровня воды. Продолжительность испытания, необходимого для осмотра всех швов, составляет от 2 до 24 ч в соответствии с техническими условиями. Если в течение этого времени не обнаружено пропусков воды и уровень ее не снизился, емкость считают выдержавшей испытание.
Категорически запрещается обстукивать сварные швы резервуаров, газгольдеров и других крупных емкостей в процессе испытания во избежание их разрушения. Испытание проводится при температуре окружающего воздуха не ниже 0° С и температуре воды не ниже +5° С.
Когда швов немного, их непроницаемость определяют, полива одну сторону шва водой из брандспойта под давлением 1—10 кгс/см2, устанавливаемым техническими условиями. Одновременно осматривают противоположную сухую сторону шва.
Проницаемость сварных швов и места дефектов определяют, следя за появлением течи, просачиванием воды в виде капель, запотеванием поверхности шва или вблизи его.
Вакуумный контроль сварных швов применяют в тех случаях, когда применение других способов почему-либо исключено. В частности, этот метод широко применяется при контроле сварных днищ резервуаров, газгольдеров, цистерн, гидроизоляционных ящиков. Он позволяет обнаружить отдельные поры диаметром до 0,004— 0,005 мм, а производительность при его использовании достигает 40—60 м сварных швов в час.
Вакуум создают при помощи переносной вакуум-камеры, которую устанавливают на наиболее доступной стороне проверяемого участка шва.
В зависимости от формы контролируемого изделия и типа соединения применяются плоские, угловые и кольцевые вакуум-камеры.
Механизированная вакуум-тележка укомплектована набором переносных вакуум-камер, позволяющих контролировать различные типы сварных соединений во всех пространственных положениях.
Контроль швов газоэлектрическими течеискателями. В настоящее время применяют два вида газоэлектрических течеискателей: гелиевые и галоидные.
Чувствительность газоэлектрических течеискателей к выявлению неплотностей в швах очень высока, но ввиду сложности конструкции и значительной стоимости изготовления их применяют только для контроля особо ответственных сварных конструкций.
Принцип работы гелиевого течеискателя основан на высокой способности гелия при определенном вакууме проходить сквозь неплотности сварных швов.
В зависимости от конфигурации и объема испытуемой сварной конструкции контроль неплотностей швов гелиевыми течеискателями производят следующими методами.
а) Контроль избыточным давлением состоит в том, что испытуемую емкость помещают в газонепроницаемую металлическую камеру, соединенную с насосами течеискателя. Внутри камеры создают вакуум, а в емкость подают под давлением гелий. При наличии сквозных дефектов в сварных швах гелий проникает в камеру и попадает в течеискатель, где фиксируется одновременно миллиамперметром и звуковым сигналом.
По окончании испытаний гелий перекачивают в другую емкость, подготовленную для контроля, или в резервуар для хранения.
б) При контроле с помощью гелиевой камеры вакуум создают в испытуемой емкости, а гелий подают в газонепроницаемую камеру. Если в сварных швах имеются неплотности, то гелий просачивается в испытуемый сосуд и попадает в течеискатель.
в) Метод установки специальной герметичной камеры-муфты применяют в основном для испытания стыков трубопроводов.
Камеру соединяют с насосом течеискателя, создают в ней вакуум и подают в трубопровод гелий. При наличии неплотностей в сварных швах гелий попадает в течеискатель и вызывает сигнал.
Эти три метода являются наиболее чувствительными к выявлению неплотностей в сварных швах, но не определяют место их расположения. С этой целью применяют обдувание струей гелия наружной поверхности испытуемой емкости, в которой создают вакуум. Места неплотностей фиксируют по сигналу течеискателя, соединенного с емкостью.
Для более точного определения расположения дефектных участков используют специальный щуп-улавливатель, соединенный с течеискателем. Щуп перемещают вдоль швов по наружной поверхности емкости, в которой находится гелий под давлением выше атмосферного. Малейшая неплотность в шве тотчас же фиксируется течеискателем.
Гелиевые течеискатели применяются для обнаружения неплотностей в сварных швах трубопроводов, находящихся под землей. Для этого над трубопроводами пробуривают несколько скважин, в которые опускают специальный щуп-улавливатель, а в каждую трубу подают гелий. Примерное место течи определяют в зависимости от того, какая из скважин показывает максимальную концентрацию гелия.
Метод испытания керосином
Этот метод, при котором в качестве проникающего вещества используют керосин (керосиновая проба), получил широкое распространение благодаря своей простоте и сравнительно высокой чувствительности. С помощью керосина контролируют открытые изделия – емкости, элементы гидравлических и газовых систем. В ряде случаев этот метод используют и при испытаниях закрытых систем – топливных отсеков, баков, а также сварных соединений различных изделий.
Высокая проникающая способность керосина обусловлена тем, что он не является полярно-активной жидкостью, имеет сравнительно низкую вязкость, хорошо растворяет пленки жира и устраняет пробки в неплотностях. В качестве индикатора течи используют меловую обмазку того же состава, что и при гидравлических испытаниях.
Различают четыре способа испытаний: керосиновый; керосинопневматический; керосиновакуумный; керосиновибрационный.
Чувствительность и порядок осмотра изделий при испытаниях керосиновым способом:
Давление керосина, Па |
Чувствительность, мм3 · МПа/с |
Порядок осмотра при толщине материала изделия, мм | |
до 6 | свыше 6 до 25 | ||
— | 6,6 · 10-2 | 1. Сразу после подачи керосина 2. Через 15…30 мин после подачи керосина |
1. Через 3…5 мин после подачи керосина 2. Через 30…50 мин после подачи керосина |
2,9 · 105 | 6,6 · 10-3 | 1. Через 1…2 мин после подачи давления 2. Через 15…30 мин после подачи давления |
1. Через 1…2 мин после подачи давления 2. Через 30…40 мин после подачи давления |
Контроль керосиновым способом выполняют следующим образом. На места контроля, предназначенного для осмотра, наносят меловую обмазку. Противоположную сторону изделия несколько раз смачивают керосином либо укладывают на нее ленту или кусок ткани, смоченные керосином. После выдержки, определяемой ТУ на изделие, его осматривают, выявляя места течей по пятнам керосина цвета ржавчины на меловой обмазке.
Иногда для повышения чувствительности контроля керосин окрашивают, растворяя в нем краски ярких цветов. Керосиновым способом могут быть выявлены течи диаметром до 0,1 мм в изделиях толщиной до 25 мм.
При керосинопневматическом способе контроля изделие после смачивания керосином обдувают струей сжатого воздуха под давлением 0,3…0,4 МПа, что повышает чувствительность контроля и ускоряет выявление дефектов.
Керосиновакуумный способ основан на применении переносных вакуумных камер, устанавливаемых на контролируемое изделие со стороны меловой обмазки. При этом так же, как и при керосинопневматическом способе, повышаются чувствительность и производительность контроля.
При керосиновибрационном способе на изделие, смоченное керосином, воздействуют ультразвуковыми колебаниями, что существенно ускоряет процесс проникновения керосина в неплотности и также повышает чувствительность и производительность контроля.
Чувствительность способов испытаний керосином существенно зависит от чистоты последнего. Примеси, растворяемые керосином, повышают его вязкость, что приводит к уменьшению потока через течь, которая при малых размерах может закупориться. Особое влияние на чувствительность испытаний оказывают компоненты смазок, применяемых при сборке гидро- и газовых систем и вымываемых керосином из объектов в процессе контроля. Использование загрязненной проникающей жидкости может привести к невыявлению скрытых дефектов, которые в дальнейшем, при эксплуатации изделия, могут проявиться в виде значительных течей.
Контроль сварных соединений
От качества сварного шва напрямую зависит надежность конструкции. В процессе сваривания в месте объединения деталей могут образовываться различные дефекты, которые приводят к ослаблению прочности соединения и последующему разрушению конструкции. Если сварку использовали для изготовления емкости, то при некачественном шве может произойти разгерметизация. Дефекты в сварных швах становятся причиной возникновения аварийных ситуаций.
Для проверки качества сварного шва выполняют контрольную проверку соединения. После сварки деталей шов проверяют на наличие крупных трещин, подрезов, пор, непроваров и прочих элементов, снижающих прочность. Для более тщательного контроля качества используют специальные инструменты и материалы. Они позволяют обнаружить недостатки шва, расположенные в глубине металла.
Применяют несколько методов контроля, которые отличаются по технологии проведения испытания, необходимому оборудованию, способу обнаружения дефектов. Эти методы делят на две группы: разрушающие и неразрушающие. По ряду причин второй способ контроля является более распространенным.
К неразрушающим методам контроля относят:
- проверка вихревыми токами и прочие способы.
- контроль проницаемости металла;
- определение качества шва при помощи капиллярной дефектоскопии;
- обнаружение недостатков в металле методом ультразвуковой дефектоскопии;
- магнитный контроль качества сварного шва;
- поиск дефектов при помощи радиационной дефектоскопии;
- осмотр шва без использования дополнительного оборудования;
Внешний осмотр
Самый простой вид осмотра, который выполняют сразу после сварки элементов. Он позволяет обнаружить поверхностные и некоторые внутренние дефекты. Специалист способен точно определить непровары путем осмотра и обнаружения неравномерности складок, свидетельствующих о частом обрыве дуги.
Прежде чем осматривать соединение шов тщательно очищают от шлака и окалины. При необходимости место соединения протирают спиртом и травят 10% раствором азотной кислоты, которая сделает поверхность шва матовой и удобной для обнаружения небольших трещин и пор. После проведения осмотра кислоту обязательно удаляют, чтобы избежать разрушения металла.
Визуальный контроль в основном направлен на выявление поверхностных недостатков, к которым относятся наружные поры, подрезы, наплывы, трещины, непровары. Чтобы точно определить параметры дефекта применяют простые инструменты в виде лупы с 5–10 кратным увеличением, яркого освещения, линейки, шаблонов. Увеличительный прибор помогает в поиске недостатков, которые недоступны для обнаружения простым осмотром. Например, он позволяет увидеть тонкие трещины, незаметные подрезы, прожоги. Лупу также используют для контроля над трещинами в процессе использования изделия с целью своевременного предотвращения увеличения их размеров.
Капиллярный контроль сварных соединений
Он основан на том, что жидкостям свойственно проникать в мельчайшие каналы на поверхности материала. Чем выше проникающая способность используемой жидкости, тем глубже и быстрее она заполняет имеющиеся каналы, трещины, поры.
При помощи капиллярного метода ищут недостатки в сварных швах, созданных между различными материалами: черные и цветные металлы, керамика, стекло, пластмасса. Чаще всего капиллярный контроль применяют для обнаружения скрытых недостатков открытых поверхностей. При использовании керосина можно обнаружить поверхностные и сквозные трещины.
Контроль с помощью пенетрантов
Для проверки сварных швов используют жидкости, обладающие небольшим значением поверхностного натяжения и повышенной световой, цветовой контрастностью, к которым относят пенетранты. Они быстро проникают в материал, окрашивают дефектные места, позволяя проще их обнаружить.
Производители выпускают пенетранты, обладающие различными свойствами. Есть продукция, созданная на основе воды, керосина, бензола, трансформаторного масла и других органических жидкостей. В состав добавляют люминесцирующие компоненты, которые позволяют увидеть дефекты при облучении поверхности ультрафиолетовыми лучами. Такой способ контроля называют люминесцентной дефектоскопией. В состав цветных пенетрантов входят красители, которые подкрашивают места повреждений, позволяя увидеть недостатки сварного шва при дневном свете. Этот метод контроля называют цветной дефектоскопией.
Пенетранты имеют разную чувствительность, могут храниться в любой емкости, легко наносятся на поверхность любым доступным способом. Обычно продукт выпускают в баллончиках с распылительным клапаном.
В комплект поставки входит:
- пенетрант;
- средство для подготовки поверхности и удаления излишков вещества перед проверкой;
- проявитель, предназначенный для очистки от жидкости и создания фона, который образует четкий, понятный рисунок.
Баллончики можно перезаряжать при помощи специального оснащения, которое входит в комплект поставки.
Способы проверки сварного шва с использованием пенетрантов отличаются незначительно. Весь процесс поиска дефектов состоит из трех операций. На первом этапе выполняют очистку поверхности, на втором наносят препарат и на третьем выявляют недостатки.
Выполнение проверки качества шва
Поверхность очищают, обезжиривают, сушат. Для чистки не рекомендуется использовать механический способ, который может стать причиной некачественной проверки в результате заполнения повреждений посторонними включениями. После удаления всех загрязнений используют очиститель, входящий в комплект поставки. Если перед проведением проверки поверхность подвергалась травлению, то необходимо нейтрализовать используемый состав 10-15% раствором соды.
Если соединенные детали имеют минусовую температуру, то перед применением пенетранта рекомендуется шов протереть чистой ветошью, которую необходимо смочить в этиловом спирте. Потом по поверхности распыляют препарат и дают жидкости впитаться в материал в течение 5–20 минут. Далее, удаляют излишки вещества. В зависимости от характеристик пенетранта для очистки поверхности от лишнего продукта используют разные составы. Жидкость, созданную на водной основе, удаляю при помощи ткани без волокон, которую предварительно смачивают вводе. Обычно для очистки поверхности применяют очиститель, входящий в комплект.
На завершающем этапе наносят индикаторную жидкость для того, чтобы удалить пенетрант из полостей дефектов. На поверхности появляется рисунок, характерный расположению всех недостатков сварного шва. Для тщательного изучения дефектов используют лупу.
Использование керосина
Контроль качества сварных швов при помощи керосина отличается эффективностью, простотой и низкой стоимостью расходных материалов. Керосин может быстро проникать в маленькие трещины, позволяя находить скрытые дефекты. По эффективности метод контроля с керосином сравнивают с возможностями гидравлических испытаний, которые проводят под давлением рабочей жидкости в 3-4 кгс/мм2. В некоторые пенетранты производители добавляют керосин.
Этапы проверки:
- Определение дефектов с другой стороны, которая обработана мелом или каолиновой суспензией.
- Смачивание другой стороны шва керосином. Процедуру повторяют два или три раза в течение 15 минут в зависимости от толщины материала. Смачивать можно любым удобным инструментом, например, краскопультом, кистью, ветошью.
- Нанесение на одну сторону мела или водной суспензией каолина. Естественная или принудительная сушка поверхности.
- Очистка поверхности от шлака, ржавчины и загрязнений с двух сторон сварного шва.
Негерметичность определяют по темным полосам или точкам, которые образовались на контрольной поверхности. Со временем они растекаются в большие темные пятна. Поэтому после смачивания необходимо сразу приступить к наблюдению. Это позволит точнее определить место и форму дефекта. Точки свидетельствуют о свищах и порах, а полоски о наличии сквозных трещин.
При комнатной температуре продолжительность испытаний составляет несколько часов. Керосин может иметь разную вязкость, которая к тому же зависит от температуры жидкости, поэтому скорость проникновения в материал может изменяться.
При помощи керосина чаще всего проверяют швы стыковых, реже нахлесточных соединений. При проверке последних эффективность резко снижается. Чтобы повысить качество определения дефектов, в металле делают отверстие и заполняют его керосином. После проверки жидкость рекомендуется полностью удалить, иначе не избежать коррозии и ослабления соединения. Для удаления керосина шов прогревают горелкой или паяльной лампой.
Контроль на проницаемость
К изделиям, которые предназначены для эксплуатации в гидравлических, пневматических системах, предъявляют высокие требования герметичности. Продукция, изготовленная при помощи сварки, должна пройти испытания на непроницаемость сварных швов. При этом используют несколько методов проверки качества соединений. Целью процедуры является обнаружение сквозных дефектов, которые могут привести к утечке жидкости, выхода газа и потери давления, попаданию внутрь нежелательных веществ.
на шов. Если соединение имеет сквозные дефекты, то произойдет утечка газа или жидкости. Существует гидравлический, пневматический, вакуумный и пневмогидравлический контроль. Способы проверки отличаются используемой рабочей средой и методом создания разности давления. Для выполнения испытаний на проницаемость применяют газы и жидкости. При помощи специального оборудования создают давление рабочей среды
Пневматический контроль сварных соединений
В изделие закачивают воздух, азот, специальный газ до давления, которое превышает эксплуатационное значение на 100–150% в зависимости от эксплуатационных особенностей продукции. Делают мыльный раствор и покрывают им шов. Если проверку проводят при низкой температуре, то в состав добавляют спирт. Газ, находящийся под давлением, станет выходить через сквозные отверстия, образуя на поверхности шва мыльные пузыри.
Для повышения уровня безопасности и качества контроля следует подключить предохранительное устройство и манометр, который позволит наблюдать за падением давления при наличии недостатков сварного шва. Клапан предохраняет систему от избыточного давления, автоматически снижая его до допустимого параметра. Если испытанию подвергают небольшие изделия, то их помещают в емкость с водой. Появление воздушных пузырьков является свидетельством того, что имеются сквозные дефекты.
Проверка аммиаком
В качестве рабочей среды используют смесь аммиака с воздухом, которую закачивают в емкость. Предварительно сварные швы покрывают бумагой или марлей, пропитанной фенолфталеином. Смесь, пройдя через сквозные отверстия, попадает на ленту или бинт и оставляет следы благодаря аммиаку. Преимуществом способа является повышенная достоверность результата.
У этого способа проверки есть как достоинства, так и недостатки. К преимуществам метода относят простоту применения, возможность использования на поверхностях различных материалов, относительно низкую стоимость, высокую чувствительность и достоверность обнаружения. Недостатками считают необходимость предварительной чистки поверхности, обнаружение только поверхностных дефектов, недоступность проверки после механической обработки шва. Пенетранты могут не выявлять раскрытые дефекты, размером более 0,5 мм из-за особенностей капиллярного явления.
Контроль проникающими веществами
Что такое контроль проникающими веществами
Контроль проникающими веществами — вид неразрушающего контроля, основанный на проникновении веществ в полости дефектов контролируемого объекта.
Контроль проникающими веществами включает две группы методов:
- капиллярные методы;
- методы контроля течеисканием.
Капиллярный метод контроля
Капиллярные методы контроля основаны на капиллярном проникновении жидкостей (пенетрантов) в дефекты и их контрастном изображении. Эти методы применяются для выявления поверхностных дефектов, в основном в изделиях из неметаллов и сплавов, для которых невозможно использовать магнитные методы контроля.
Этапы проведения капиллярного контроля
Капиллярный контроль осуществляют следующим образом. После подготовки (очистки, обезжиривания) поверхности контролируемой детали на нее наносят индикаторную жидкость. Жидкость проникает внутрь дефектов. После нанесения жидкость с поверхности убирают (вытирают или сдувают), но в дефектах она остается. Далее наносят на поверхность проявитель. Проявитель высыхает, в него всасывается из дефектов индикаторная жидкость, окрашивая места дефектов. Проявитель может быть в виде порошка (сухой способ). Можно наносить в качестве проявителя растворы люминофоров (в летучем растворителе) — тогда дефект будет светиться в ультрафиолетовых лучах (беспорошковый способ). Дефекты выявляют внешним осмотром с помощью лупы; если применялись люминофоры, можно использовать фотодатчики. Капиллярным контролем выявляют дефекты шириной от 1 мкм, глубиной от 10 мкм и длиной от 0,1 мм.
Методы контроля течеисканием
Методы контроля течеисканием применяются для обнаружения сквозных дефектов. Для многих изделий (сосуды, замкнутые объемы) важнейшим эксплуатационным требованием является герметичность, т.е. свойство изделия обеспечивать настолько малое проникновение газа или жидкости, чтобы им можно было пренебречь в рабочих условиях. Особо высокие требования предъявляются к изделиям, работающим в вакууме, такие изделия должны обладать вакуумной плотностью. Сквозные дефекты могут сказываться и на других характеристиках соединения (прочности, коррозионной стойкости, электропроводности и др.), поэтому метод контроля течеисканием применим и для других изделий, даже для сварных листов.
Виды контроля течеисканием
Методы контроля течеисканием подразделяются на:
- гидравлические;
- пневматические;
- вакуумные;
- химической индикации течей;
- керосином и пенетрантами;
- газоаналитические и др.
Гидравлический метод течеискания
В гидравлических методах в качестве проникающего вещества используется жидкость, обычно вода, которая подается под давлением с одной стороны шва. Дефект обнаруживается по появлению жидкости с противоположной стороны шва. Применяются различные варианты гидравлического контроля. При испытаниях избыточным гидравлическим давлением в изделие подается вода под давлением, которое в 1,5…2 раза превышает рабочее. Изделие выдерживают определенное время, следя за давлением по манометру, затем обстукивают молотком, течи выявляются в виде струек и отпотевания поверхности контролируемого изделия. Этим методом выявляются дефекты диаметром до 0,001 мм.
Пневматический метод течеискания
Пневматические испытания производятся давлением воздуха, равным 1… 1,2 рабочего давления. Разновидностью пневматических испытаний является манометрический метод, при котором изделие выдерживается под давлением от 10 до 100 ч. Изменение давления, наблюдаемое по манометру, не должно превышать допускаемой величины. Испытания под высоким давлением опасны, поэтому их проводят редко. Возможно определение места течи при испытаниях невысоким давлением (0,03…0,3 МПа). Для индикации используют мыльную пену или пенные индикаторы на основе моющих средств. Поры диаметром 10-3…10-4 мм можно обнаружить, обдувая поверхность сварного шва воздухом из шланга под давлением примерно 0,4 МПа.
Вакуумный метод течеискания
Вакуумные методы основаны на перепаде давления, создаваемого откачкой воздуха из изделия. К ним относятся манометрический метод, электроискровой и др. Широко используется метод мыльной индикации: на проверяемый участок шва, предварительно смазанный мыльным раствором, накладывается прозрачная камера на присосках, в которой создается низкий вакуум. При наличии в шве дефектов воздух проникает через несплошности и на поверхности шва образуются мыльные пузыри, наблюдаемые через прозрачное стекло камеры. Метод можно использовать для контроля стыковых и нахлесточных соединений.
Метод химической индикации
Метод химической индикации течей заключается в том, что на контролируемые стыки сосуда наносят индикаторную массу, пасту или ленту. В сосуд подают пробный газ под избыточным давлением. Пробный газ проникает через неплотности и окрашивает индикатор. В качестве пробного газа используют аммиак или углекислый газ, в качестве индикатора — 5 %-й раствор азотнокислой ртути (при наличии течи появляются черные или фиолетовые пятна) или фенолфталеин (появляются бесцветные пятна на малиновом фоне).
Метод контроля керосином (мел-керосин)
Метод контроля керосином (бензином или спиртом) основан на высокой проникающей способности керосина или другого пенетранта, например бензина или спирта. Обычно контролируемый шов покрывают меловой краской со стороны, доступной для осмотра и устранения дефектов. Затем шов смачивают керосином с другой стороны и выдерживают необходимое время (обычно 15…60 мин). Дефекты выявляют по ржавым полосам и пятнам на слое мела.
Газоаналитический метод течеискания
Газоаналитические методы (контроль с помощью течеискателей) заключаются в следующем: с одной стороны сварного шва в замкнутом изделии подается пробный газ, с другой стороны — отбирается проба газа, которая подается в анализатор течеискателя.
ГОСТ 3242-79 «Соединения сварные. Методы контроля качества»
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
СОЕДИНЕНИЯ СВАРНЫЕ
МЕТОДЫ КОНТРОЛЯ КАЧЕСТВА
ГОСТ 3242-79
ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
СОЕДИНЕНИЯ СВАРНЫЕ Методы контроля качества Welded joints. |
ГОСТ Взамен |
Постановлением Государственного комитета СССР по стандартам от 2 августа 1979 г. № 2930 срок действия установлен
с 01.01.81
до 01.01.91
Несоблюдение стандарта преследуется по закону
1. Настоящий стандарт устанавливает методы контроля качества и область их применения при обнаружении дефектов сварных соединений металлов и сплавов, выполненных способами сварки, приведенными в ГОСТ 19521-74.
Стандарт соответствует рекомендациям СЭВ по стандартизации PC 5246-73, PC 4099-73, PC 789-67 и международному стандарту ИCO 2437-72.
2. Применение метода или комплекса методов контроля для обнаружения дефектов сварных соединений при техническом контроле конструкций на всех стадиях ее изготовления, ремонте и модернизации зависит от требований, предъявляемых к сварным соединениям в технической документации на конструкцию.
Методы контроля должны соответствовать приведенным в таблице и указываться в технической (конструкторско-технологической) документации на конструкцию.
3. Допустимость применения неустановленных в настоящем стандарте методов должна быть предусмотрена в технической документации на конструкцию. Технология контроля сварных швов любым методом должна быть установлена в нормативно-технической документации на контроль.
Неразрушающие методы контроля качества сварных соединений
Вид контроля |
Метод контроля |
Характеристики метода |
Область применения |
Обозначение стандарта на метод контроля |
|||
Выявляемые дефекты |
Чувствительность |
Особенности метода |
|||||
Технический осмотр |
Внешний осмотр и измерение |
Поверхностные дефекты |
Выявляются несплошности, отклонения размера и формы сварного соединения от заданных величин более 0,1 мм, a также поверхностное окисление сварного соединения |
Метод позволяет обнаруживать дефекты минимального выявляемого размера при осмотре и измерении сварного соединения с использованием оптических приборов с увеличением до 10´ и измерительных приборов |
Не ограничивается |
— |
|
Капиллярный |
Цветной Люминесцентный Люмннесцентно-цветной |
Дефекты (несплошности), выходящие на поверхность |
Условные уровни чувствительности по ГОСТ 184412-80 |
Чувствительность и достоверность метода зависят от качества подготовки поверхности соединения к контролю |
Не ограничивается |
Проверка непроницаемости сварных соединений и сварочных швов
Темы: Сварные соединения, Сварные швы, Контроль качества сварки.
Сварные соединения и швы ответственных изделий и соoружений дoлжны быть непрoницаемыми для рaзличных жидкостей и газов. Неплотности в швах снижaют их пpочность пpи вибpационных нагpузках, уменьшaют коррозионную стойкость, вызывaют утечку хрaнимых и трaнспортируемых пpодуктов и создaют недопуcтимые уcловия экcплуатации сварных конструкций.
Контроль непроницаемости сварных соединений проводят в соответствии с ГОСТ 3242-79, включая следующие виды испытаний: керосином, обдувом, аммиаком, воздушным давлением, гидравлическим давлением, наливом и поливом.
Кроме этого, непроницаемость сварных соединений определяют вакуумным методом и газоэлектрическими течеискателями.
Перед проведением испытаний должны быть устранены все дефекты, выявленные внешним осмотром.
Испытание керосином основано на способности многих жидкостей подниматься по капиллярным трубкам, какими в сварных швах являются сквозные поры и трещины. Керосин обладает высокой смачивающей способностью и сравнительно малой вязкостью, что обеспечивает большой эффект этого способа контроля. Например, в отличие от воды (полярная жидкость) керосин под действием поверхностных сил проникает в мельчайшие (10-3 — 2,10-4 мм) неплотности в металле.
Испытание сварных соединений керосином проводят следующим образом. После внешнего осмотра простукивают молотком или подвергают вибрации основной металл на расстоянии 30—40 мм от шва и тщательно очищают сварное соединение от шлака, ржавчины, масла и других загрязнений. Такое простукивание или вибрация способствует лучшему удалению шлака и развитию несквозных дефектов в сквозные.
Затем с помощью пульверизатора сварные швы покрывают меловым раствором (350—450 г молотого мела или каолина на 1 л воды) с той стороны, которая более доступна для осмотра.
После высыхания мелового раствора другую сторону шва обильно смачивают керосином и выдерживают в течение определенного времени.
Исходя из экспериментальных данных Института электросварки им. Е. О. Патона, Всесоюзного научно-исследовательского института строительства трубопроводов и ряда монтажных организаций время выдержки под керосином обычно устанавливают не менее 12 ч при окружающей температуре выше 0° и не менее 24 ч — при температуре ниже 0°.
Ввиду того что при повышении температуры вязкость керосина уменьшается и скорость проникания его через неплотности шва увеличивается, для сокращения времени контроля рекомендуется швы перед испытанием нагревать до температуры 60—70° С. В этом случае время выдержки под керосином сокращается до 1,5—2 ч. Керосин наносят в процессе испытания 3—5 раз.
Соединения внахлестку, у которых один шов сплошной, а второй прерывистый, опрыскивают струей керосина под давлением co стороны прерывистого шва. Соединения внахлестку, сваренные сплошным швом с обеих сторон, испытывают керосином путем нагнетания его под давлением в межнахлесточное пространство через специально просверленное отверстие.
О наличии пор, свищей, сквозных трещин и непроваров свидетельствуют жирные желтые точки или полоски керосина на меловом слое, которые с течением времени расплываются в пятна. Поэтому необходимо тщательно следить за появлением первых точек или полосок и своевременно отмечать границы дефектных участков.
Обнаруженные дефекты устраняют, после чего сварной шов подвергают повторному контролю.
Для лучшего наблюдения за керосиновыми пятнами применяют керосин, окрашенный в красный цвет краской «Судан-III» в количестве 2,5—3 г на литр.
Эффективность контроля непроницаемости сварных швов с помощью керосина можно повысить, применяя дополнительно продувку швов сжатым воздухом под давлением 3—4 кгс/см2, разрежение атмосферного воздуха с меловой стороны шва при помощи специальных камер, вибрацию швов. Все эти меры ускоряют проникание керосина через неплотности.
С помощью керосина выявляют не только сквозные, но и поверхностные дефекты. Для этого поверхность контролируемого сварного соединения после тщательной очистки обезжиривают бензином или ацетоном и обильно смачивают окрашенным керосином. По истечении 15—20 мин керосин вытирают или смывают 5%-ным водным раствором кальцинированной соды с последующим просушиванием. Затем на поверхность сварного соединения при помощи пульверизатора наносят тонкий слой разведенного в воде мела (или каолина).
Когда мел высохнет, изделие около шва обстукивают молотком, а сам шов прогревают горячим воздухом. При этом керосин, задержавшийся ранее на дефектных участках (в случае их наличия), просачивается на меловую краску в виде пятен и полосок, по которым судят об имеющихся дефектах.
При испытании обдувом одну сторону сварного шва промазывают мыльным раствором (вода 1 л, мыло хозяйственное 100 г), а другую — обдувают сжатым воздухом, подаваемым по гибкому шлангу с наконечником под давлением 4—5 кгс/см2. Расстояние между наконечником и швом должно быть не более 50 мм.
Если испытание проводят при температуре ниже 0° С, мыльный раствор готовят с частичной заменой воды спиртом (до 60%) или с применением незамерзающей жидкости, растворяющей мыло.
Сквозные дефекты обнаруживают по появлению пузырей на промазанной мыльным раствором стороне шва.
В основу испытания аммиаком положено свойство некоторых индикаторов, например спирто-водного раствора фенолфталеина или водного раствора азотнокислой ртути, изменять окраску под воздействием щелочей, в данном случае сжиженного аммиака.
Перед началом испытаний тщательно очищают металлической щеткой сварное соединение от шлака, ржавчины, масла и других загрязнений. Если сварку вели электродами с обмазкой основного типа, то швы, кроме того, промывают водой, иначе остатки щелочных шлаков будут реагировать в процессе испытания с индикатором, изменяя его окраску.
После такой подготовки на одну сторону шва укладывают бумажную ленту или светлую ткань, пропитанную 5%-ным раствором азотнокислой ртути (индикатором), а с другой стороны создают давление аммиака.
При контроле сварных швов небольших емкостей, а также трубопроводов в них подают аммиак в количестве 1% объема воздуха в емкости и создают избыточное давление 1 кгс/см2 или более, но не выше расчетного рабочего.
При контроле отдельных участков шва над ними устанавливают герметичную камеру, в которой создают давление аммиака.
В обоих случаях спустя 1—5 мин аммиак, проникая через неплотности сварного шва, окрашивает пропитанную индикатором бумагу или ткань в серебристо-черный цвет. Скорость и интенсивность окраски, а также величина пятен характеризуют размеры дефектов, границы которых отмечают мелом или краской.
При использовании в качестве индикатора спирто-водного раствора фенолфталеина его тонкой струей льют на контролируемый шов. Если в шве имеются неплотности, аммиак проходит через них и окрашивает раствор фенолфталеина в ярко-красный цвет с фиолетовым оттенком.
Для испытания сварных швов днищ резервуаров или газгольдеров аммиак подают в пространство между днищем и основанием по трубкам с отверстиями и создают избыточное давление 8 — 10 мм вод. ст. Поливая швы спирто-водным раствором фенолфталеина, определяют неплотности в сварных швах и устраняют их.
Испытанию давлением газа подвергают емкости и трубопроводы, работающие под давлением, с целью контроля общей непроницаемости сварной конструкции.
Малогабаритные изделия герметизируют газонепроницаемыми заглушками и полностью погружают в ванну с водой. Затем в изделие через редуктор от воздушной сети или из баллона подают газ (воздух, азот, инертные газы) под давлением, величина которого на 10—20% больше величины рабочего. Имеющиеся неплотности определяют по появлению пузырьков газа в воде.
Крупногабаритные сварные изделия испытывают следующим образом. После герметизации в них создают испытательное давление и промазывают сварные швы мыльным раствором (100 г мыла на 1 л воды). Появление мыльных пузырей на промазанной поверхности свидетельствует о проницаемости шва.
Величину давления и время выдержки под ним устанавливают в соответствии с техническими условиями.
При испытании сжатыми газами следует тщательно соблюдать правила техники безопасности. Работы должны проводиться в изолированном помещении с ограждениями (на случай взрыва). Трубопроводы испытывают отдельными изолированными участками с предупредительными знаками об опасности. Гидравлическим давлением проверяют прочность и плотность сварных соединений различных емкостей, котлов паропроводов, водопроводов, газопроводов и других сварных конструкций, работающих под высоким давлением.
Перед испытанием сварное изделие герметизируют водонепроницаемыми заглушками, обтирают или обдувают сжатым воздухом сварные швы до получения сухой поверхности.
После полного заполнения изделия водой с помощью насоса или гидравлического пресса создают избыточное контрольное давление, величину которого принимают в соответствии со стандартами, инструкциями или техническими условиями (обычно в 1,5—2 раза больше рабочего). В процессе испытания давление определяют по проверенным и опломбированным манометрам.
В самой высокой точке испытываемого изделия устанавливают контрольную заглушку на резьбе для наблюдения за заполнением всего объема водой и выпуском воздуха в атмосферу. В противном случае не исключено образование воздушной подушки, находящейся под большим давлением, что может привести к разрыву изделия в процессе испытания.
По истечении 5—6 мин давление уменьшают до рабочего, а околошовную зону слегка обстукивают молотком на расстоянии 15—20 мм от края шва. Боек молотка должен быть круглым, чтобы не повредить основной металл изделия.
Проницаемость сварных швов и места сквозных дефектов устанавливают по снижению испытательного давления и появлению течи или просачиванию воды в виде капель, а также по запотеванию поверхности шва или вблизи него.
Во избежание ошибочных выводов следует иметь в виду, что при температуре воды в сосуде ниже температуры воздуха в помещении возможно полное запотевание всей поверхности металла испытуемого изделия. Кроме того, уменьшение испытательного давления не всегда указывает на наличие дефектов, а может быть вызвано неплотностями в нагнетательной системе, присоединительной арматуре, заглушках.
Недостатками этого способа контроля являются необходимость в источниках водоснабжения и трудности, возникающие при испытаниях в зимнее время на открытом воздухе.
Вертикальные резервуары для хранения нефти и нефтепродуктов, газгольдеры и другие крупные емкости испытывают наливом воды.
До испытания сварные швы тщательно обтирают ветошью или обдувают воздухом до получения сухой поверхности. Затем емкость заполняют водой и наблюдают за сварными швами и падением уровня воды. Продолжительность испытания, необходимого для осмотра всех швов, составляет от 2 до 24 ч в соответствии с техническими условиями. Если в течение этого времени не обнаружено пропусков воды и уровень ее не снизился, емкость считают выдержавшей испытание.
Категорически запрещается обстукивать сварные швы резервуаров, газгольдеров и других крупных емкостей в процессе испытания во избежание их разрушения. Испытание проводится при температуре окружающего воздуха не ниже 0° С и температуре воды не ниже +5° С.
Когда швов немного, их непроницаемость определяют, полива одну сторону шва водой из брандспойта под давлением 1—10 кгс/см2, устанавливаемым техническими условиями. Одновременно осматривают противоположную сухую сторону шва.
Проницаемость сварных швов и места дефектов определяют, следя за появлением течи, просачиванием воды в виде капель, запотеванием поверхности шва или вблизи его.
Вакуумный контроль сварных швов применяют в тех случаях, когда применение других способов почему-либо исключено. В частности, этот метод широко применяется при контроле сварных днищ резервуаров, газгольдеров, цистерн, гидроизоляционных ящиков. Он позволяет обнаружить отдельные поры диаметром до 0,004— 0,005 мм, а производительность при его использовании достигает 40—60 м сварных швов в час.
Вакуум создают при помощи переносной вакуум-камеры, которую устанавливают на наиболее доступной стороне проверяемого участка шва.
В зависимости от формы контролируемого изделия и типа соединения применяются плоские, угловые и кольцевые вакуум-камеры.
Механизированная вакуум-тележка укомплектована набором переносных вакуум-камер, позволяющих контролировать различные типы сварных соединений во всех пространственных положениях.
Контроль швов газоэлектрическими течеискателями. В настоящее время применяют два вида газоэлектрических течеискателей: гелиевые и галоидные.
Чувствительность газоэлектрических течеискателей к выявлению неплотностей в швах очень высока, но ввиду сложности конструкции и значительной стоимости изготовления их применяют только для контроля особо ответственных сварных конструкций.
Принцип работы гелиевого течеискателя основан на высокой способности гелия при определенном вакууме проходить сквозь неплотности сварных швов.
В зависимости от конфигурации и объема испытуемой сварной конструкции контроль неплотностей швов гелиевыми течеискателями производят следующими методами.
а) Контроль избыточным давлением состоит в том, что испытуемую емкость помещают в газонепроницаемую металлическую камеру, соединенную с насосами течеискателя. Внутри камеры создают вакуум, а в емкость подают под давлением гелий. При наличии сквозных дефектов в сварных швах гелий проникает в камеру и попадает в течеискатель, где фиксируется одновременно миллиамперметром и звуковым сигналом.
По окончании испытаний гелий перекачивают в другую емкость, подготовленную для контроля, или в резервуар для хранения.
б) При контроле с помощью гелиевой камеры вакуум создают в испытуемой емкости, а гелий подают в газонепроницаемую камеру. Если в сварных швах имеются неплотности, то гелий просачивается в испытуемый сосуд и попадает в течеискатель.
в) Метод установки специальной герметичной камеры-муфты применяют в основном для испытания стыков трубопроводов.
Камеру соединяют с насосом течеискателя, создают в ней вакуум и подают в трубопровод гелий. При наличии неплотностей в сварных швах гелий попадает в течеискатель и вызывает сигнал.
Эти три метода являются наиболее чувствительными к выявлению неплотностей в сварных швах, но не определяют место их расположения. С этой целью применяют обдувание струей гелия наружной поверхности испытуемой емкости, в которой создают вакуум. Места неплотностей фиксируют по сигналу течеискателя, соединенного с емкостью.
Для более точного определения расположения дефектных участков используют специальный щуп-улавливатель, соединенный с течеискателем. Щуп перемещают вдоль швов по наружной поверхности емкости, в которой находится гелий под давлением выше атмосферного. Малейшая неплотность в шве тотчас же фиксируется течеискателем.
Гелиевые течеискатели применяются для обнаружения неплотностей в сварных швах трубопроводов, находящихся под землей. Для этого над трубопроводами пробуривают несколько скважин, в которые опускают специальный щуп-улавливатель, а в каждую трубу подают гелий. Примерное место течи определяют в зависимости от того, какая из скважин показывает максимальную концентрацию гелия.
- < Дефекты сварных соединений