Режимы ручной дуговой сварки плавящимся электродом
Режимы ручной дуговой сварки плавящимся электродом
Категория:
Сварка металлов
Режимы ручной дуговой сварки плавящимся электродом
Режим сварки зависит от многих факторов: толщины металла, подлежащего сварке; размеров изделия; формы сварных швов; требований к качеству и внешнему виду сварных соединений; пространственного положения сварки и пр. Преимущественно режим сварки определяется типом и диаметром электрода и величиной сварочного тока. Тип электрода подбирают по данным изготовителя электродов, диаметр — по толщине основного металла и форме сечения сварного шва.
В обычных работах электроды применяют диаметром 2—7 мм, для следующих толщин стали:
Толщина стали в мм 1—2 3—5 4—10 12—24 30—60 Диаметр электрода в мм……… 2—3 3—4 4—5 5—6 6—7
При толщинах свыше 6 мм швы часто выполняют в несколько слоев; первые слои при этом выполняются электродом меньшего
диаметра для удобства работы в разделке шва.
По принятому диаметру электрода подбирают сварочный ток. Отклонения тока от нормы нарушают процесс сварки, ухудшают формирование шва и увеличивают количество дефектов в нем. Кроме того, чрезмерное уменьшение тока снижает устойчивость дуги, а увеличение повышает нагрев электрода и разбрызгивание металла. Опытный электросварщик, не пользуясь амперметром, часто отсутствующим, достаточно точно устанавливает ток, наблюдая за дугой и процессом сварки. Зависимость «нормальных» токов, установленных опытным сварщиком от диаметра электрода показана на рис. 66, где между пунктирными кривыми заключены допустимые отклонения тока. Сила тока растет быстрее, чем диаметр электрода, и медленнее, чем площадь его сечения.
Рис. 1. Зависимость тока диаметра электрода
Эти данные нельзя рассматривать как неизменные для всех случаев, так как на силу тока, помимо диаметра электрода, влияет его марка и тип покрытия, толщина металла, форма сварного соединения, его пространственное положение и т. д. Для электродов с тонким стабилизирующим покрытием токи нужны меньшие, чем для электродов с толстым покрытием; для сварки в вертикальном и потолочном положениях токи понижаются по сравнению с нижним положением для уменьшения объема жидкого металла в сварочной ванне.
Реклама:
Читать далее:
Сварка стыковых швов
Статьи по теме:
РЕЖИМЫ РУЧНОЙ ДУГОВОЙ СВАРКИ ПОКРЫТЫМИ ЭЛЕКТРОДАМИ
Под режимом сварки понимают совокупность контролируемых параметров, определяющих сварочные условия. Выбор режима предусматривает определение значений параметров, при которых обеспечивается устойчивое горение дуги и получение швов заданных размеров, формы и свойств. Параметры режима подразделяют на основные и дополнительные. К основным параметрам ручной дуговой сварки покрытыми электродами относят диаметр электрода, силу сварочного тока, род и полярность его, напряжение дуги. К дополнительным относят состав и толщину покрытий, положение шва в пространстве, число проходов.
Диаметр электродов выбирают в зависимости от толщины металла, катета шва, положения шва в пространстве. Примерное соотношение между толщиной металла S диаметром электрода d при сварке шва в нижнем положении составляет (табл. 12.1).
Таблица 12.1 Соотношение между толщиной металла и диаметром электрода
|
Выполнение вертикальных, горизонтальных и потолочных швов независимо от толщины свариваемого металла производится электродами небольшого диаметра (до 4 мм), так как при этом легче предупредить стекание жидкого металла и шлака из сварочной ванны. При сварке многослойных швов для лучшего провара корня шва первый шов сваривают электродом диаметром 3-4 мм, а последующие — электродами большего диаметра.
Сила сварочного тока обычно устанавливается в зависимости от выбранного диаметра электрода. При сварке швов в нижнем положении шва для электродов диаметров 3-6 мм сила тока может быть определена по соотношению
1Д=(20+6хё)хё, (12.1)
для электродов диаметром менее 3 мм
ІД=30ха. (12.2)
Из приведенной зависимости следует, что допустимая сила тока ограничена. При большой силе тока наблюдается перегрев стержня электрода. В результате ухудшаются защитные свойства покрытия, его осыпание со стержня, нарушается стабильность плавления электрода.
При сварке на вертикальной плоскости силу тока уменьшают на 10-15 %, а в потолочном положении — на 15-20 % против выбранного для нижнего положения шва.
Род тока и полярность устанавливаются в зависимости от вида свариваемого металла и его толщины. При сварке постоянным током обратной полярности на электроде выделяется больше теплоты. Исходя из этого обратная полярность применяется при сварке тонких деталей с целью предотвращения прожога и при сварке легированных сталей во избежание их перегрева. При сварке углеродистых сталей применяют переменный ток исходя из учета экономичности процесса.
Основные положения сварки. Ручную сварку можно производить во всех пространственных положениях шва, однако следует стремиться к нижнему положению, как более удобному и обеспечивающему лучшие условия для достижения высокого качества сварного шва.
6.2 Режимы ручной дуговой сварки металлическими электродами
Под режимом сварки понимают совокупность условий, создающих устойчивое протекание процесса сварки, а именно: стабильное горение сварочной дуги, получение сварных швов необходимых размеров, формы и качества. Режим сварки складывается из ряда параметров. Параметры режима сварки подразделяют на основные и дополнительные. К основным параметрам режима сварки при ручной дуговой сварке относят величину, род и полярность тока, диаметр электрода, напряжение, скорость сварки и величину поперечного колебания конца электрода, а к дополнительным — величину вылета электрода, состав и толщину покрытия электрода, начальную температуру основного металла, положение электрода в пространстве (вертикальное, наклонное) и положение изделия в процессе сварки.
Выбор диаметра электрода. Диаметр электрода выбирают в зависимости от толщины свариваемого металла; марки свариваемого металла; формы разделки кромок и номера выполненного валика-шва; положения, в котором выполняется сварка; вида соединения (Таблица 4).
Диаметр электрода в зависимости от толщины свариваемого металла выбирают в основном при сварке в нижнем положении, хотя такой выбор не исключен при сварке в других пространственных положениях. При сварке металла в нижнем положении (если не учитывать форму разделки кромок) имеется следующая экспериментальная зависимость между толщиной свариваемого металла и диаметром электрода.
Таблица 4 Рекомендуемые значения диаметра электрода в зависимости от толщины свариваемого изделия.
Толщина свариваемого металла, мм | 1,5 | 2 | 3 | 4-5 | 6-8 | 9-12 | 13-15 | 16-20 |
Диаметр электрода, мм | 1,6 | 2 | 2-3 | 2-4 | 2-5 | 3-5 | 4-5 | 4-5 и более |
Электроды диаметром 2—3 мм при сварке металла толщиной от 4 мм и выше применяют при выполнении первого слоя — так называемого корневого шва.
Диаметр электрода при прочих равных условиях выбирают в зависимости от марки свариваемого металла. Для уменьшения тепловложения в основной (свариваемый) металл (для снижения возможности образования трещин), особенно при сварке закаливающихся сталей и чугуна, электрод берут диаметром 2—3 мм, что обеспечивает получение валика небольшого сечения.
Диаметр электрода выбирают также в зависимости от формы разделки кромок под сварку. Если разделки кромок нет, то диаметр электрода можно подбирать по выше приведенной зависимости. Если же имеется разделка кромок, то при наложении первого слоя, независимого от марки свариваемого металла, применяют электроды диаметром 2-3 мм и редко 4 мм. Применение электродов больших диаметров (свыше 4 мм), как правило, приводит к непровару, зашлаковыванию и образованию ряда других дефектов. Последующие слои выполняют электродами диаметром 4 мм, а если толщина металла свыше 12 мм и сварку выполняют в нижнем положении, то могут быть применены электроды диаметром 5 мм. Декоративный слой при сварке металла толщиной более 12 мм в нижнем положении можно выполнить электродами диаметром 4 мм и более. При выполнении швов в вертикальном и других пространственных положениях первый слой накладывают электродами диаметром 2-3 мм и редко 4 мм, а последующие слои, в том числе и декоративный слой, выполняются электродами диаметром 4 мм.
Диаметр электрода должен выбираться в зависимости от свариваемого соединения. При сварке стыкового соединения выбор диаметра электрода надо осуществлять как было сказано выше. При сварке тавровых, угловых и нахлесточных соединений существует такое правило выбора диаметра электрода:
-для швов, выполняемых в несколько слоев, первый слой делают электродами диаметром 2, 3, 4 мм. Чем ответственнее конструкция, тем меньше диаметр применяемого электрода, что способствует получению хорошего провара в корне шва, уменьшает тепловложение в основной металл, а, следовательно, снижает сварочные напряжения и деформации;
-для швов, выполняемых за один проход, применяют электроды диаметром 2, 3, 4, 5 и 6 мм — в зависимости от толщины свариваемых листов.
Тип и марку электрода подбирают в зависимости от прочности, механических и эксплуатационных свойств сварного соединения.
Форма и размеры шва зависят от режима сварки (рисунок 37).
Величина, род и полярность тока. С увеличением сварочного тока глубина провара увеличивается, ширина шва почти не меняется (рисунок , а). Род и полярность тока также влияют на форму и размеры шва. При сварке постоянным током обратной полярности глубина провара на 40-50% больше, чем при сварке постоянным током прямой полярности, что объясняется различным количеством теплоты, выделяющейся на аноде и катоде. Поэтому обратная полярность применяется при сварке тонкого металла с целью исключения прожога и при сварке высоколегированных сталей с целью исключения их перегрева. При сварке переменным током глубина провара на 15—20% меньше, чем при сварке постоянным током обратной полярности.
Род и полярность тока выбирают по типу электродного покрытия, марке свариваемого металла, толщине свариваемого металла.
Рисунок 37 — Влияние на форму и размеры шва сварочного тока (а), напряжения дуги (б), скорости сварки (в)
Напряжение дуги.Напряжение на дуге изменяется пропорционально длине дуги. При увеличении длины дуги возрастает ее напряжение и поэтому увеличивается доля тепла, идущая на плавление электрода и основного металла. В результате этого ширина сварного шва увеличивается, а глубина провара и высота усиления уменьшаются (рисунок ,б). Напряжение на дуге зависит от величины тока и диаметра электрода. Оно обычно бывает 18-40 В. Сварку лучше выполнять короткой дугой, где напряжение устанавливается 18-20 В. Длинная дуга издает резкий звук, сопровождающийся хлопками и значительным разбрызгиванием расплавленного металла. Поэтому опытный сварщик по звуку дуги может даже на некотором расстоянии судить о ее длине. С целью уменьшения длины дуги следует быстрее опускать вниз электрододержатель с электродом.
Скорость сварки. С увеличением скорости сварки ширина сварного шва уменьшается, наряду с этим глубина провара увеличивается, что является следствием того, что жидкий металл не успевает подтекать под дугу и толщина его прослойки мала. При дальнейшем увеличении скорости сварки время теплового действия дуги на металл и глубина провара уменьшается, а при значительной скорости сварки будет даже образовываться несплавление основного металла с металлом шва.
Наклон электрода. Ручную дуговую сварку можно выполнять вертикальным электродом, углом вперед и углом назад. В виду того что столб дуги стремится сохранить направление оси электрода, то в каждом из этих случаев форма сварочной ванны и, следовательно, форма шва будет различной. При сварке углом вперед, как правило, жидкий металл подтекает под дугу, поэтому глубина провара и высота усиления уменьшаются, а ширина шва увеличивается. При сварке углом назад жидкий металл давлением дуги вытесняется из-под нее, поэтому глубина провара и высота усиления увеличиваются.
Наклон изделия. В зависимости от расположения соединений на изделии или от наклона изделия ручная дуговая сварка может быть выполнена на горизонтальной плоскости, на подъем и спуск. Влияние наклона изделия и пространственного расположения соединений на изделии на форму шва примерно такое, что и влияние наклона электрода. При сварке на подъем расплавленный металл под действием собственного веса вытекает из-под дуги, в результате чего увеличиваются глубина проплавления и высота усиления, а ширина шва уменьшается. При сварке на спуск жидкий металл подтекает под дугу, что уменьшает глубину проплавления и увеличивает ширину шва.
Предварительный подогрев и последующую термическую обработку выполняют в случаях, когда металл склонен к образованию закалочных структур, например закалочные структуры образуются в сварных соединениях при сварке средне- и высокоуглеродистых сталей, низколегированных, теплоустойчивых и высоколегированных сталей и т. д., и когда металл обладает значительной теплопроводностью и теплоемкостью (медь и др.). Положение в пространстве, котором выполняется сварка. Ручную дуговую сварку практически можно выполнять во всех пространственных положениях: нижнем, в лодочку, полувертикальном, вертикальном, полугоризонтальном и горизонтальном, а также полупотолочном и потолочном. Возможность выполнения сварки в том или ином положении зависит прежде всего от марки свариваемого металла и типа покрытия электрода.
Выбор сварочного тока. Сварочный ток устанавливают в зависимости от диаметра применяемого электрода и пространственного положения, в котором выполняется сварка.
Для сварки в нижнем положении сварочный ток может быть определен по формуле
Iсв=K×dэ,
где Iсв— сварочный ток, А; К — коэффициент пропорциональности, зависящий от диаметра и типа электрода, А/мм;dэ— диаметр электрода, мм.
При сварке низкоуглеродистых сталей значения К следующие:
Диаметр электрода, (dэ), мм 1-2 3-4 5-6
Коэффициент пропорциональности,
А/мм 25-30 30-45 45-60
При сварке в вертикальном положении сварочный ток выражается по формуле
Iсв= 0,9×dэ,
где 0,9 — коэффициент, учитывающий снижение сварочного тока при сварке в вертикальном положении.
При сварке в потолочном положении сварочный ток равен
Iсв= 0,8×dэ,,
где 0,8 — коэффициент, учитывающий снижение сварочного тока при сварке в потолочном положении.
Техника ручной дуговой сварки MMA – ООО «ЦСК»
Главная|Энциклопедия сварки|Т|Техника ручной дуговой сварки MMAВыбор режима ручной дуговой сваркиРежим сварки — это совокупность контролируемых параметров, определяющих условия сварки. Параметры режима сварки подразделяют на основные и дополнительные.
Основные параметры | Дополнительные параметры |
— диаметр электрода; — величина, род и полярность тока; — напряжение на дуге; — скорость сварки; — число проходов. |
— величина вылета электрода; — состав и толщина покрытий электрода; — положение электрода; — положение изделия при сварке. |
Диаметр электрода выбирают в зависимости от толщины металла, катета шва, положения шва в пространстве.
Сила тока в основном зависит от диаметра электрода, но также от длины его рабочей части, состава покрытия, положения сварки. Однако при чрезмерном токе для данного диаметра электрода электрод быстро перегревается выше допустимого предела, что приводит к снижению качества шва и повышенному разбрызгиванию. При недостаточном токе дуга неустойчива, часто обрывается, в шве могут быть непровары.
Сварку швов в вертикально и потолочном положениях выполняют, как правило, электродами диаметром не более 4 мм. При этом сила тока должна быть на 10-20% ниже, чем для сварки в нижнем положении. Напряжение дуги изменяется в сравнительно узких пределах 16-30 В.
Техника сваркиДуга может возбуждатьоя двумя приемами: касанием впритык и отводом перпендикулярно вверх или чирканием электродом, как спичкой. Второй способ удобнее, но неприемлем в узких и неудобных местах.
Длина дуги оказывает существенное влияние на качество сварного шва и его геометрическую форму. Длинная дуга способствует более интенсивному окислению и азотированию расплавляемого металла, увеличивает разбрызгивание, а при сварке электродами основного типа приводит к пористости металла.
В процессе ручной дуговой сварки электроду сообщается движение в трех направлениях:
1. Поступательное движение по направлению оси электрода. Этим движением поддерживается постоянная, в известных пределах, длина дуги в зависимости от скорости плавления электрода.
2. Перемещение электрода вдоль оси валика для образования шва. Скорость этого движения устанавливается в зависимости от тока, диаметра электрода, скорости его плавления, вида шва и других факторов.
3. Перемещение электрода поперек шва для получения шва шире, чем ниточный валик, так называемого уширенного валика.
Для повышения работоспособности сварных конструкций, уменьшения внутренних напряжений и деформаций большое значение имеет порядок заполнения швов. Под порядком заполнения шва понимают как порядок заполнения разделки шва по поперечному сечению, так и последовательность сварки по длине шва.
По протяженности все швы условно можно разделить на три группы:
Шов | короткий | средний | длинный |
Протяженность, мм | <300 | 300–1000 | >1000 |
Способ сварки | сварка от начала шва до его конца | сварка от середины к концам или обратно-ступенчатым методом | от середины к краям (обратноступенчатым способом) или вразброс |
В зависимости от протяженности шва, материала и требований к точности и качеству сварных соединений сварка таких швов может выполняться различно. При обратноступенчатом методе весь шов разбивается на небольшие участки длиной по 150–200 мм, на каждом участке сварку ведут в направлении, обратном общему направлению сварки. Длина участков обычно равна от 100 до 350 мм.
В зависимости от количества проходов (слоев), необходимых для выполнения проектного сечения шва, различают однопроходный (однослойный) и многопроходный (многослойный) швы. С точки зрения производительности наиболее целесообразными являются однопроходные швы, которые обычно применяют при сварке металла небольших толщин (до 8–10 мм) с предварительной разделкой кромок. Сварку соединений ответственных конструкций большой толщины (свыше 20–25 мм), когда появляются объемные напряжения и возрастает опасность образования трещин, выполняют с применением специальных приемов заполнения швов «горкой» или «каскадным» методом.
При сварке «горкой» сначала в разделку кромок наплавляют первый слой небольшой длины 200–300 мм, затем – второй слой, перекрывающий первый и имеющий примерно в два раза большую длину. Третий слой перекрывает второй и длиннее его на 200–300 мм. Так наплавляют слои до тех пор, пока на небольшом участке над первым слоем разделка не будет заполнена. Затем от этой «горки» сварку ведут в разные стороны короткими швами тем же способом. Таким образом, зона сварки все время находится в горячем состоянии, что предупреждает появление трещин. «Каскадный» метод является разновидностью горки. Соединения под сварку собирают в приспособлениях, чаще всего с прихватками.
Зажигание дугиСварочная дуга зажигается после короткого замыкания сварочной цепи, в момент отрыва электрода от изделия. Возбуждение дуги можно производить двумя способами: впритык и чирканьем.
Касание | Чирканье |
Сварщик концом электрода прикасается к изделию (основному металлу), а затем отводит его на небольшое расстояние (2–4 мм) | сварщик проводит (чиркает) по поверхности основного металла концом электрода и отводит его на небольшое расстояние (2сварщик проводит (чиркает) по поверхности основного металла концом электрода и отводит его на небольшое расстояние (2–4 мм) |
В том и другом случае приближение электрода к изделию производится быстро, а отвод электрода – медленно. До момента образования дуги электросварщик должен закрыть лицо щитком или маской.
Если дуга с первого раза не возбуждается, необходимо повторить приемы ее зажигания. Длительное прикосновение электрода к изделию вызывает его прилипание (приваривание). В этом случае отделить электрод необходимо быстрым отламывающим движением.
Манипулирование электродомВ процессе сварки электросварщик сообщает концу электрода движение одновременно в трех направлениях:
1. Поступательное движение вниз по оси электрода для поддержания необходимой длины дуги.
Чтобы дуга горела устойчиво (стабильно), необходимо поддерживать постоянство ее длины. Длина дуги оказывает большое влияние на качество и формирование сварного шва. Сварку рекомендуется вести короткой дугой. При короткой дуге обеспечивается большая глубина проплавления и лучшая защита расплавленного металла от окружающей атмосферы, т. е. гарантируется высокое качество металла шва. При сварке длинной дугой повышается разбрызгивание металла, сварной шов оказывается насыщенным газами, повышается его пористость.
Ориентировочно длина дуги должна быть в пределах 0,5–1,0 диаметра электрода. Дуга, превышающая диаметр электрода, считается длинной. Длинная дуга горит неустойчиво и может самопроизвольно обрываться. Для обеспечения высокого качества шва сварщик должен непрерывно поддерживать короткую дугу постоянной длины. Техника сварки на короткой дуге сложнее, требует высокой квалификации сварщика и специальных навыков.
2. Движение в направлении сварки вдоль оси шва.
Скорость движения электрода вдоль шва определяется режимом сварки (диаметр электрода, величина тока), типом сварного соединения и пространственным положением сварки. Правильно выбранная скорость перемещения электрода обеспечивает правильное формирование и качество сварного шва. Недостаточная скорость перемещения электрода приводит к перегреву и прожогу (сквозное проплавление) металла. Чрезмерная скорость перемещения электрода уменьшает глубину проплавления и приводит к непровару.
Сварной шов, образованный в результате первого и второго движения электрода, называется «ниточным». При правильно выбранной скорости перемещения электрода вдоль шва ширина «ниточного» шва (валика) получается не более 1,5 диаметра электрода. Такой шов находит применение при сварке тонкого металла, при проваре корня шва, при сварке в потолочном положении.
3. Колебательное движение, концом электрода поперек шва.
Применяется для получения шва нужной ширины и равномерного расплавления свариваемых кромок. Поперечные колебания концом электрода обеспечивают лучшие прогрев и проплавление кромок основного металла и замедляют остывание сварочной ванны. В процессе колебательных движений середину пути проходят быстро, замедляя движение в крайних точках. Траектория поперечных колебательных движений концом электрода определяется размерами сварного шва, формой подготовки кромок под сварку, пространственным положением сварки, индивидуальными навыками электросварщикам. Ширина шва (валика) не должна превышать трех диаметров электрода, при большей ширине возможно образование дефектов в сварном шве.
Сложность овладения навыком ручной сварки покрытыми электродами состоит в том, что в процессе одновременного движения концом электрода в трех направлениях электросварщик должен поддерживать короткую дугу постоянной длины. Только это условие обеспечит устойчивое горение дуги, глубокий провар, хорошую защиту расплавленного металла от окружающей атмосферы, малое разбрызгивание, хорошее формирование шва и высокое качество сварки.
На процесс формирования сварного шва существенное влияние оказывает угол наклона электрода относительно направления сварки.
Сварку можно вести вертикально расположенным электродом или при его наклоне под углом 70—80°. При таких положениях электрода капли электродного металла, перемещающиеся при плавлении электрода в направлении его оси, полностью попадают в сварочную ванну. Различают сварку с наклоном электрода относительно направления сварки углом вперед и углом назад. Изменяя наклон электрода, сварщик может регулировать глубину провара, ширину шва и способствовать лучшему формированию валика шва.
Направление | Глубина проплавления (провара) | Ширина шва | Обоснование |
углом вперед | уменьшается (<) | увеличивается (>) | снижение давления столба дуги на поверхность расплавленного металла, т.к. расплавленный металл затекает под столб дуги |
углом назад | увеличивается (>) | уменьшается (<) | интенсивное вытеснение расплавленного металла из-под столба дуги |
Выбор режима ручной дуговой сварки
Выбор режима ручной дуговой сварки. Под режимом сварки понимают совокупность контролируемых параметров, определяющих условия сварки. Параметры режима сварки подразделяют на [c.66]Выбор режима ручной дуговой сварки [c.200]
ВЫБОР РЕЖИМА РУЧНОЙ ДУГОВОЙ СВАРКИ [c.40]
Выбор режима ручной дуговой сварки часто сводится к определению диаметра электрода и силы сварочного тока. Скорость сварки и напряжение на дуге устанавливаются самим сварщиком в зависимости от вида сварного соединения, марки стали, марки электрода, положения шва в пространстве и т.д. [c.40]
Предварительный выбор сварочных материалов может быть сделан из рассмотрения структурной диаграммы для сварных швов (фиг. 17) [41 ]. Структурное состояние наплавленного металла или свариваемой стали можно определить по этой диаграмме, вычислив эквивалентные содержания хрома и никеля. Структурное состояние промежуточных составов шва можно установить, откладывая на прямой, соединяющей точки наплавленного металла и свариваемой стали, отрезки, соответствующие проценту перемешивания. Как правило, для обычных режимов ручной дуговой сварки нужно учитывать перемешивание наплавленного металла с основным в пределах 20— 40%. Для автоматической сварки степень перемешивания увеличивается до 40—60%. [c.45]
При изготовлении решетки диафрагм используется ручная дуговая сварка металлическим электродом. Сварка кольцевых швов выполняется методом ручной дуговой сварки и автоматической сварки в среде углекислого газа. В главе IV отмечены основные преимущества использования последнего метода сварки. В настоящее время этот метод нашел широкое применение. Основные положения по выбору сварочных материалов для изготовления диафрагм, режимов подогрева и термической обработки приведены в главах П1 и V. [c.147]
Режимом сварки называют основные характеристики сварочного процесса, обеспечивающие получение сварных швов заданных размеров, формы и качества. При ручной дуговой сварке — это диаметр электрода, сила сварочного тока, напряжение на дуге, скорость сварки, род и полярность тока. Это основные параметры режима. К числу дополнительных относят длину дуги, амплитуду, частоту и форму колебаний конца электрода. Определение режима сварки начинают с выбора диаметра электрода в зависимости от толщины свариваемого металла и вида соединения (табл. 11). При сварке угловых и тавровых соединений величина катета шва не может быть больше чем 8 мм за один проход, так как за счет силы тяжести металл стекает на полку, искажая форму шва. При этом возможно излишнее оплавление стенки, ее подрез. При необходимости [c.119]
Тип покрытия электрода диктует необходимость применения постоянного тока обратной полярности (при переменном или постоянном токе прямой полярности дуга неустойчива). Тщательная прокалка электродов, режим которой определяется их маркой, способствует уменьшению вероятности образования в швах пор и вызываемых водородом треш,ин. Некоторые данные о режимах и выборе электродов для ручной дуговой сварки приведены в табл. 9.3 и 9.4, а о свойствах сварных соединений — в табл. 9.5 и на рис. 9.7. [c.365]
В табл. 9-8 приведены данные для выбора оптимального значения тока при сварке электродами различных марок и диаметров. Род и полярность тока выбирают исходя из особенностей электродного покрытия. При ручной дуговой сварке низкоуглеродистых сталей на всех практически применяемых режимах обеспечиваются достаточно высокие пластические свойства металла околошовной зоны. Поэтому в большинстве случаев не требуется применения специальных технологических мер, направленных на предотвращение образования на этом участке закалочных структур. Однако при сварке угловых швов на толстом металле и сварке первого слоя многослойного шва рекомендуется предварительный подогрев свариваемых деталей до температуры 120—150° С, что обеспечивает повышение стойкости металла шва против кристаллизационных трещин. [c.473]
В целях правильного выбора трансформатора необходимо знать его технические характеристики (см. табл. 4). Наиболее удовлетворяют заданным параметрам трансформаторы типа ТД-306 и ТДМ-317. Из общего цикла работы, принятого для источников питания при ручной дуговой сварке (5 мин), трансформатор ТД-306 обеспечивает работу в течение I мин и паузу в течение 4 мин, трансформатор ТДМ-317 соответственно — 3 и 2 мин. Поэтому для обеспечения заданных параметров трансформатор ТД-306 более эффективен в монтажных условиях с режимом кратковременной работы, а трансформатор ТД-317 — в стационарных условиях, где требуется более продолжительная работа. Применение трансформаторов с большей мощностью экономически неэффективно из-за больших энергозатрат. [c.52]
Выбор режимов при ручной дуговой сварке [c.197]
Сварку выполняют на режимах, обеспечивающих у стыковых образцов без разделки кромок полный провар и получение обратного валика заданной ширины, а у стыковых образцов с разделкой кромок — заданную ширину и высоту шва при фиксированной скорости сварки, м/ч для ручной дуговой — 7,5 для аргонодуговой — 12 для сварки в среде Oj — 24. С целью выбора режима сварки, исключающего образование горячих трещин, меняют ее скорость, а мощность источника выбирают из условия получения необходимых габаритов шва. [c.44]
Учитывая все отмеченное выше, можно заключить, что средством регулирования химического состава, а следовательно, и свойств металла швов является соответствующий выбор сварочных материалов. При этом влияние режима сварки особенно значительно может проявляться при автоматической и полуавтоматической сварке, сварке плавящимся электродом под флюсом, при электрошлаковой сварке и в меньшей степени при ручной сварке штучными электродами. При аргоно-дуговой сварке неплавящимся электродом, а также при газовой сварке плавлением [c.22]
Одним из недостатков ручной дуговой сварки металлическим электродом являются значительные потери электродов на огарки, угар и разбрызгиванке, достигающие 50%. Потери эти зависят от выбора оптимальных режимов сварки, конструкции электродс держателя, кгали-фикации сварщика, технологических свойств электродов. [c.36]
Сварка вручную покрытыми электродами. В настоящее время этот способ сварки вытесняется более производительным. Он находит примеиение при сварке технически чистого алюминия, сплавов АМц, АМг, содержащих не более 5% Mg, а также деталей из силумина. Ручную дуговую сварку выполняют при толщине лнстов от 4 мм и более. Металл толщиной 10 мм и выше предварительно подогревают. Температуру подогрева выбирают в зависимости от толщины металла в интервале 100—400° С. Сварку ведут на постоянном токе обратной полярности, как правило, без колебаний конца электрода. Сварочный ток при выборе режима сварки принимают из расчета 60 А на 1 мм диаметра электрода. Электроды используют диаметром 4— 10 мм. С увеличением толщины свариваемого изделия увеличивается диаметр электрода. [c.405]
Хромоникелевые аустенитные стали характеризуются высоким удельным электрическим сопротивлением, примерно в пять раз ббльщим, чем у обычных малоуглеродистых сталей. Это определяет выбор режимов сварки этих сталей как при контактной сварке, так и при дуговой плавящимся электродом и электрощла-ковой сварке. Так, например, при сварке плавящимся электродом высокое удельное электрическое сопротивление q при низкой удельной теплопроводности % металла приводит к увеличению скорости плавления электрода и ограничивает при определенных диаметре и длине электрода допустимые значения силы тока. Поэтому при ручной дуговой сварке штучными электродами, имеющими стержень из аустенитной стали, приходится применять меньшую предельную силу тока для данного диаметра электрода и уменьшать длину электрода в сравнении с электродами из малоуглеродистой стали. [c.54]
При изготовлении сварных конструкций из разнородных сталей используется большинство существующих способов сварки. Наибольшее распространение из них получила ручная дуговая сварка как процесс, обеспечивающий наибольшую гибкость регулирования степени проплавления свариваемых кромок. При сварке сталей одного структурного класса в большинстве случаев отсутствуют ограничения по уменьшению степени проплавления и соответственно могут применяться те же способы и режимы, что и для однородных соединений. При сварке сталей разного структурного класса выбор способа сварки и ее режима определяется предельной степенью проплавления свариваемых кромок. При использовании способов с повышенным проплавлением кромок, как, например, при электрошлаковой сварке, технологическая и конструктивная прочность соединения должны определяться подбором сварочных материалов, обладающих низкой чувствительностью к повышению степени проплавления. Перспективным является использование электронно-лучевой сварки как при непосредственном контактировании свариваемых кромок, так и с вбедением промежуточной прослойки, состав которой выбирают из условия получения оптимальных свойств щва. Для стыковки труб в котлостроении широко применяют контактную сварку сопротивлением, в компрессоро-строении и других отраслях широко внедрена сварка взрывом, все большее распространение находит диффузионная сварка. [c.438]
Эти стали можно сваривать ручной и механизированной дуговой сваркой, а также другими способами, причем предпочтительны способы сварки с невысокой погонной энергией. Техника выбора режима такая же, как и для других коррозионно-стойких сталей. Благодаря высокому содержанию феррита швы обладают достаточной стойкостью против горячих трещин. При сварке плавлением используют электроды ЦЛ-11, ОЗЛ-7, ЦТ-15-1, НЖ-13, АНВ-36, проволоку Св 08Х21Н7ВТ, Св 03Х21Н10АГ5, флюсы АН-26, АИК-45МУ. При сварке деталей с толщиной кромок 16…20 мм рекомендуется обрабатывать границы шва с основным материалом сварочной дугой, горящей в аргоне с неплавящегося электрода. Такой местный нагрев с малой погонной энергией обеспечивает мелкозернистую ферритную структуру с аустенитными прослойками по границам зерен. Это повышает пластичность и коррозионную стойкость. [c.187]
Режимы ручной дуговой сварки: условия выбора нужного параметра — Pcity.su
Выбор режима ручной дуговой сварки: основные и дополнительные параметры
Режимы дуговой сварки (РДС) – это комплекс мер, показателей и параметров, которые необходимо поддерживать и соблюдать для правильного осуществления соединения дугой вручную. Режимы ручной дуговой сварки можно определить, как условия нормального функционирования самого процесса соединения деталей при различных обстоятельствах. В зависимости от разных показателей параметров, осуществляется правильный выбор режимов конкретного вида РДС и выбор режима сварки в целом.
Условно параметры режима ручной дуговой электросварки можно разделить на два вида: основные и дополнительные. К основным параметрам режима сварки при ручной дуговой сварке относятся диаметр электрода, свойства и величину сварочного тока, напряжение дуги. К дополнительным параметрам относят положение шва на изделии, состав и толщину металла, скорость соединения изделия и покрытие электрода. Рассмотрим отдельно каждый из них.
Сварочный ток
Ток обладает определяющими свойствами: родом, полярностью и силой. По роду ток подразделяется на постоянный и переменный. Полярность бывает прямая и обратная.
Большинство сварных аппаратов работают на постоянном токе. Отличие постоянного тока от переменного в том, что постоянный ток не изменяются по направлению и по величине. Тем самым он обеспечивает стабильность горения дуги. Единственный минус постоянного тока в процессе соединения металлов – это возможность появления эффекта магнитного дутья. Оно возникает при соединении больших конструкций, когда постороннее магнитное поле (от намагниченных изделий) воздействует на магнитное поле дуги. Дуга в этом случае начинает «выбегать» за пределы области нахождения шва и стабильность горения резко снижается. С данным минусом можно бороться путем
- ограждения места работы специальными экранами, защищающими от «лишних» магнитных полей
- заземления свариваемых поверхностей
- определить возможные варианты для использования переменного тока
Плюс работы на постоянном токе – стабильно горящая дуга и возможность выбора полярности. Прямую полярность называет еще электрод-отрицательной, обратную — электрод-положительной. Обратная полярность возникает при присоединении электрода к плюсу, а металл к минусу. При прямой полярности все наоборот. Отличие между полярностями в следующем. Законы физики гласят, что куда присоединить плюс, тот элемент и нагревается больше. Таким образом, при прямой полярности нагревается больше металлическое изделие. Эту полярность нужно использовать для соединения толстых деталей, так как для этого процесса как раз и нужно большее расплавление металла для получения хорошего шва. Если прямую полярность использовать на тонком изделии — оно «сгорит» и шов получится некачественным. Для тонких металлов проводят обратную полярность.
Величина силы тока определяется характеристиками конкретного сварочного аппарата. В современных моделях эти показатели указываются в инструкции. Если по каким-то причинам инструкция у вас отсутствует, тогда силу тока можно выбрать в зависимости от диаметра используемого электрода. Не допускается использование силы тока, которая больше подходящей конкретному электроду. В этом случае покрытие электрода, при каком осуществляется соединение, будет повреждено, дуга будет работать нестабильно. Использование слишком большого размера электрода также плохо влияет на процесс соединения металлов: плотность тока снижается, дуга «убегает», ее длина изменяется, сварной шов ровным и качественным не получается.
Диаметр электрода
Режимы сварки зависят от вида электрода. Выбор его диаметра зависит от толщины металла и положения шва. При любой толщине, швы в вертикальном положении, горизонтальные и потолочные швы варятся только 4-х мм диаметром. Если шов многослойный, то для варки первого шва используется электрод 3 или 4 мм, а последующие швы корректируют с помощью электрода больших размеров.
В таблице ниже приведены параметры ручной дуговой сварки при соотношении тока, толщины металла и диаметра электрода.
Источник:
http://svarkaed.ru/svarka/obuchenie-svarke/vybor-rezhima-ruchnoj-dugovoj-svarki.html
Режимы ручной дуговой сварки
Совокупность факторов которые влияют на качество получаемого шва и обеспечивают стабильное протекание процесса сварки называют параметрами режима сварки.
При выполнении сварки ручным дуговым способом выделяют следующие параметры режима сварки:
- диаметр электрода;
- сила сварочного тока;
- тип и марка электрода;
- напряжение на дуге;
- род тока и полярность;
- скорость сварки;
- расположение шва в пространстве;
- подогрев и термическая обработка;
- температура окружающей среды.
Последние три параметра относят к дополнительным, остальные являются основными для данного вида сварки.
Диаметр электрода
Какой диаметр электрода выбрать зависит от толщины свариваемого металла, положения в котором будет выполняться сварка, типа соединения, размера детали и химического состава металла.
Во время сварки во всех положениях кроме нижнего жидкий металл скапывает вниз. Поэтому для сварки в вертикальном, горизонтальном и потолочном положении независимо от толщины металла нельзя использовать электроды диаметром свыше 4 мм. Электроды толстого диаметра формируют большую каплю жидкого металла с которой сила поверхностного натяжения не справляется.
Для корня шва при многослойной сварке используют электроды диаметром 3-4 мм, следующие слои можно выполнять электродами большего диаметра.
Силу тока устанавливают после выбора электрода в зависимости от его диаметра. Для расчета силы сварочного тока при сварке в нижнем положении существует формула:
где Iсв — сила тока, А; К — коэффициент пропорциональности (изменяет свое значение в зависимости от типа и диаметра электрода).
Можно использовать упрощенную формулу выбора сварочного тока для ручной дуговой сварки:
В целях избежания пропалов при сварке в нижнем положении металла толщиной менее 1,5 dел сварочный ток уменьшают на 10-15% от расчетного. Если толщина металла больше чем 3 dел ток устанавливают на 10-15% больше.
При сварке швов в вертикальном положении ток уменьшают на 10-15%, а в потолочном на 15-20% от выбранного для сварки в нижнем положении.
Если сварочные работы выполняются качественными, сертифицированными электродами следует установить силу тока в соответствии с рекомендованной на упаковке с электродами. Расчеты выше можно использовать при отсутствии рекомендаций от производителя как альтернативный метод.
Когда сила тока выбрана сварщик должен наложить несколько валиков на отдельной пластине металла. При этом оценивается ширина шва и глубина провара. В случае необходимости силу тока дополнительно регулируют.
Слишком маленькие режимы тока приводят к нестабильному горения сварочной дуги. В сварном соединении появляются непровары, а продуктивность труда снижается.
Повышенные значения силы тока сопровождаются его перегревом, высокой скоростю сгорания, непроварами, интенсивным разбрызгиванием металла и ухудшением внешнего вида шва.
Сбалансировано подобранная сила тока отличается умеренной скоростью плавления электрода, стойким горением дуги с незначительным разбрызгиванием металла.
Тип и марка электрода
Прежде всего необходимо выбирать электроды обеспечивающие однородность химического состава основного металла и металлического стержня электрода. Также тип и марку выбирают в зависимости от пространственного положения шва, необходимой плотности шва, температуры окружающей среды, прочности изделия и условий эксплуатации конструкции. При помощи электрода можно придавать шву необходимые свойства.
Напряжение на дуге
Напряжение на дуге сварщик может регулировать изменяя длину сварочной дуги. В зависимости от длины дуги при ручной дуговой сварке напряжение находится в диапазоне 16-40 V.
Согласно технологии сварки напряжение стоит удерживать в значении 16-20 V. Для этого сварку принято выполнять короткой дугой размером 0,5 -1 толщины диаметра электрода. Это значение может меняться в зависимости от марки электрода и положения шва в пространстве.
Род и полярность тока
Сварку на переменном токе используют для соединения низкоуглеродистых и низколегированных сталей (типа 09ГС) в строительно-монтажных условиях электродами с рутиловым покрытием. Для сварки толстых конструкций из низкоуглеродистых сталей. При возникновении магнитного дутья во время сварки источниками постоянного тока.
Сварку на постоянном токе можно условно разделить на два процесса — ручная дуговая сварка на прямой и обратной полярности.
На прямой полярности
Прямую полярность используют для сварки чугуна и глубокого проплавления основного металла. Для сварки низко-, среднеуглеродистых и низколегированных сталей толщиной 5 мм и более с использованием электродов с фтористо-кальциевым покрытием: УОНИ-13/45, УОНИ-13/55 и др.
На обратной полярности
Обратную полярность используют для сварки листового металла невысокой толщины и сварки с повышенной скоростью плавления электрода. Для сварки низкоуглеродистых сталей (типа 16Г2АФ), низко-, средне- и высоколегированных сталей и сплавов.
Скорость сварки
Скорость сварки выбирает сварщик в зависимости от свойств основного металла, характеристик электрода, положения шва и т. д.
Скорость сварки должна быть такой чтобы жидкий металл сварочной ванны немного поднимался над поверхностью основного металла с плавным переходом к нему без подрезов и наплывов.
Для предотвращения перегрева металла высоколегированные стали сваривают с большей скоростью.
Расположение шва в пространстве
Расположение шва в пространстве влияет на выбор основных параметров режима ручной дуговой сварки. Ручную сварку используют для стыков во всех пространственных положениях, но наиболее удобным положением считается нижнее. Стоит учитывать положение шва в пространстве при расчете основных параметров и выборе электрода.
Предварительный подогрев и последующая термическая обработка
Предварительный подогрев основного металла и последующая обработка используются для сварки сталей склонных к образованию закалочных структур — средне- и высокоуглеродистые стали. Для сварки чугуна, цветных металлов и их сплавов. Температура и способ выполнения подогрева и обработки зависит от толщины основного металла, химического состава и размера конструкции.
Температура окружающей среды
Все стали можно разделить на четыре группы согласно степени их свариваемости. Стали II, III и IV группы нельзя сваривать при температуре ниже -5 °C.
Источник:
http://osvarke.net/mma/rezhimy-ruchnoj-dugovoj-svarki/
Режимы ручной дуговой сварки
Содержание:
Несмотря на появление нового удобного оборудования, ручная сварка не сдает своих позиций. Привлекает простота использования и отсутствие необходимости больших затрат. Для того, чтобы сварной шов получился наиболее качественным, требуется провести подготовительные работы, в которые входит установление режимов, необходимых для конкретного вида материалов для соответствия требованиям технологического процесса.
Режим ручной дуговой сварки — это установка параметров, максимально гарантирующих образование сварного шва, имеющего требуемые габариты и конфигурацию, а также необходимые для конкретного соединения характеристики. Параметры режима ручной дуговой сварки делятся на основополагающие и дополняющие их. Выбор и установка параметров производится самим сварщиком согласно существующим требованиям. На выбор оказывают влияние вид сварного соединения, артикул металла свариваемых деталей и проводника тока, пространственное расположение.
Основные параметры
Наиболее значительные параметры ручной дуговой сварки:
- ток;
- напряжение;
- полярность;
- диаметр электрода;
- скорость;
- амплитуда колебаний поперек шва.
Вид и размер этих параметров подбираются сварщиком перед началом работы на основе рекомендаций и личного опыта.
Величина тока
Это значение значительно влияет на качество получаемого шва и скорость сварочного процесса. Между параметрами существует прямая зависимость: величину тока при сварке устанавливают согласно диаметру выбранного электрода, а диаметр, в свою очередь, зависит от толщины свариваемых элементов.
Для более точного расчета значения тока используют формулу, в которой оно прямо пропорционально диаметру электрода. При этом применяется поправочный коэффициент. Для разных диаметров он является различным. При каком значении силы тока проводят ручную электродуговую сварку? При слабом токе нарушается стабильность дуги, шов не будет провариваться целиком, что вызывает появление трещин. Повышенное значение тока вызывает быстрый процесс сварки и приводит к усиленному распространению брызг.
Диаметр электрода
Выбор режима сварки при ручной электродуговой сварке включает необходимость грамотного определения необходимых диаметров электродов. Электроды, имеющие диаметр свыше 6 мм, отличаются большим весом, при котором их трудно удерживать в нужном направлении длительное время. Кроме того, при использовании таких электродов плохо проваривается корень шва.
Если используется многопроходной вариант, то первый слой проводится электродом 2-3 мм, а для последующих можно использовать большее значение диаметра. Это имеет большое значение при сварке ответственных конструкций, поскольку меньший диаметр обеспечивает лучшую проварку корня. При одном заходе можно сразу применять электрод большого диаметра.
При решении задачи правильного выбора диаметра электрода рассматривается марка свариваемых поверхностей. Например, для сварки чугунных изделий хорошо себя зарекомендовали электроды небольшого диаметра. Уровень тепла при этом понижается и образуется валик небольшого сечения. Если была осуществлена предварительная разделка кромок, то допускается использование электродов диаметром 3 мм, не слишком ориентируясь на толщину деталей.
Напряжение дуги
Этот параметр зависит от длины дуги, то есть расстояния от конца электрода до металлической поверхности. Дуга имеет разные размеры. Больше дуга — больше напряжение. Для плавления расходуется значительное количество тепла. Сварочный шов становится шире, а глубина провара меньше.
Напряжение зависит от диаметра электрода и значения тока. Находится в диапазоне 18-45 В. Оптимальный выбор режима ручной дуговой сварки, касающийся напряжения, предполагает сваривание короткой дугой. В этом случае напряжение не будет превышать значения, равного 20 В. Важным обстоятельством для получения хорошего шва является постоянство выбранной дуги.
Режимы ручной дуговой сварки покрытыми электродами включают установление скорости. Чтобы избежать переполнения ванны и, как следствие, возникновения на металле подтеков, следует выбрать оптимальное значение скорости и поддерживать его постоянным на протяжении всего процесса. Большая скорость приведет к недостаточному провару шва, что вызовет появление трещин.
При слишком медленном перемещении жидкий металл начнет собираться впереди дуги. Шов получится неровным, появятся непровары. Для получения удачного шва скорость должна быть 35-40 м/час. Тогда сварочная ванна будет находиться сверху поверхности кромок, не образуя стекания вниз. Переход ее к соединению будет плавным, наплывы и подрезы не образуются.
Ширина шва уменьшается при увеличении скорости.
Полярность
Как правило, для сварочных работ применяют ток постоянной величины. Прямая полярность при постоянном токе дает возможность сваривать толстые детали. Чтобы избежать появления прожогов при соединении тонких металлов включают обратную полярность. Сварку переменным током практически не применяют, поскольку это снижает производительность.
Выбор режима сварки при ручной дуговой сварке заключается, в частности, в возможности проводить процесс при разных полярностях. При прямом варианте проводник тока подключают к клемме с минусом, а металлическое соединение к плюсу. Интенсивней, чем электрод, начинаются расплавляться элементы сварного соединения. Это дает преимущество при сварке толстых металлических деталей.
Обратная полярность получается при подключении электрода к плюсу, а металлических деталей к минусу. Это обеспечивает интенсивный расплав электрода, превосходящий плавление деталей.
Объяснение является достаточно простым и соответствует физическим законам. Где плюс, там нагревание больше. Соответственно, при прямой полярности выше нагреваются свариваемые детали. Становится возможным соединение крупных изделий. Применение такого вида полярности на тонких деталях вызовет прожоги, и шов будет некачественным. Поэтому для соединения тонких деталей обеспечивают обратную полярность.
Особенности при вертикальном расположении
Сварка в вертикальном положении является более сложной по сравнению с горизонтальным вариантом. Поэтому выбор режимов дуговой сварки в этом случае является особенно важным.
Как корректируют величину сварочного тока в вертикальном положении? Первое требование относится к дуге — она должна быть короткой. Объем сварочной ванны не должен быть большим. Для ее уменьшения следует использовать электроды небольшим диаметром, а величину тока устанавливать на 10-15% меньше, чем, когда сварка проводится в горизонтальном положении внизу.
Дополнительные параметры
Режимы сварки электродуговой включают не только основные, но и дополняющие их параметры. Такие режимы дуговой сварки так же оказывают влияние на конечное получение сварного шва.
Вылет электрода
Вылетом электрода называется расстояние от торца электрода до поверхности металлической детали. Он оказывает влияние на процесс сварки и размеры получаемого шва.
Увеличение этого параметра снижает стабильность горения дуги. Металл начинает сильнее разбрызгиваться. Маленький вылет делает затруднительным наблюдение за сварочным процессом. Набрызгивание происходит на сопло.
Толщина электродного покрытия
Режимы ручной дуговой сварки включают особенности электродов, в частности, его покрытие, а именно его толщина. Этот параметр регламентирует ГОСТ 9466. Оптимальное покрытие предполагает нахождение его торцевого размера в пределах 0,5-2,5 мм. Применение проводников тока с такой толщиной покрытия обеспечивает получение прочного шва, выдерживающего большие нагрузки.
Число проходов
Однопроходной способ сварки предполагает сваривание одним слоем. Колебательные движения при этом не делаются. Он применяется при сварке деталей небольшой толщины, когда ширина шва не превышает 14-15 мм. При этом уменьшается величина остаточных деформаций. Для стыковых соединений, особенно при сварке толстых элементов, используют несколько слоев, и этот способ называется многопроходным.
Шов, осуществленный за один проход, имеет ванну большего размера. Преимуществами являются высокая производительность процесса и экономичность способа. К недостаткам относятся снижение пластичности шва и слишком большая зона нагрева. Все швы при многопроходной сварке выполняют электродами одного размера.
Интересное видео
Источник:
http://osvarka.com/obuchenie-svarke/rezhimy-ruchnoy-dugovoy-svarki
От чего зависит выбор режима ручной дуговой сварки? Особенности параметров при выборе режима
Под режимом сварки подразумевается такой набор условий, который обеспечит стабильное проведение сварочных работ. Режим сварки имеет основные и второстепенные характеристики.
Режимы ручной дуговой сварки
К основным характеристикам относятся:
- диаметр электрода;
- скорость работы;
- уровень напряжения;
- направление тока и его полярность;
- сила тока.
К второстепенным характеристикам относят следующее:
Подбор диаметра электрода
При выборе толщины электрода учитывают множество факторов.
Если сварка проводится в нижнем положении, тогда ключевым критерием выступает толщина свариваемых деталей.
Существует определённое соотношение толщины металла к диаметру электрода при выполнении работы в нижнем положении.
Также выбор можно проводить, опираясь на марку свариваемого сплава. Например, для соединения изделий из чугуна рекомендуется использовать электроды диаметром 2-3 миллиметра. Это уменьшит уровень тепла, поступающего в свариваемую конструкцию, и гарантирует образование валика небольшого сечения.
Ещё одним важным фактором является наличие разделки кромок. Если такая предварительная работа проводилась, тогда наложение первого слоя осуществляется 3-миллиметровыми электродами, невзирая на марку используемого металла. При таком подходе использование электродов большой толщины может привести к возникновению ряда трудностей: непровар заготовок, зашлаковывание сварочного шва. Дальнейшая работа проводится электродом большей толщины (4-5 мм).
Примерная стоимость 4-миллиметровых электродов на Яндекс.маркет
Необходимо учитывать тип свариваемого соединения. Если проводить стыковое соединение, тогда нужно руководствоваться описанными выше правилами подбора. Если необходимо сварить угловые, тавровые или нахлёсточные соединения, тогда возможны два варианта:
- первый – сварку проводят в определённое количество слоёв, тогда для первого слоя берутся электроды толщиной 2-3 мм для более глубокой проварки и высокой крепости шва;
- второй – работа проводится в один заход, толщина электрода будет зависеть от толщины заготовок и может варьироваться от 2 до 6 мм.
Сила сварочного тока
При расчёте силы сварочного тока необходимо брать в расчёт диаметр используемого электрода.
Для расчёта применяется формула:
I=K*D, где:
- I – сила тока;
- D – диаметр электрода;
- K – специальный коэффициент.
Возможные изменения специального коэффициента представлены в таблице.
Источник:
http://elsvarkin.ru/texnologiya/rezhima-dugovoj-svarki/
Выбор режима сварки
Под режимом сварки понимают совокупность факторов, определяющих протекание процесса сварки. Эти факторы называются элементами режима. Основными элементами режима дуговой сварки являются: ток, род и полярность тока, диаметр электрода, напряжение дуги и скорость сварки. При ручной сварке к ним добавляется величина поперечного перемещения конца электрода. Остальные факторы — вылет (длина) электрода, свойства покрытия, начальная температура металла, наклон электрода и основного металла, — являются дополнительными элементами режима сварки.
Влияние элементов режима сварки на размеры и форму шва.
Размеры шва и форма провара не зависят от типа шва (валиковый шов, угловой, стыковой, сварка без разделки и зазора, сварка с разделкой и зазором), а определяются в основном режимом сварки. Основным показателем формы шва является коэффициент формы провара, представляющий отношение ширины шва к глубине провара. При дуговой сварке и наплавке он может изменяться в широких пределах — от 0,8 до 20. Уменьшение ширины шва и увеличение глубины провара уменьшает коэффициент формы провара, а противоположное изменение этих величин — увеличивает его.
В ел и ч и н а т о к а. Увеличение тока увеличивает, а уменьшение— уменьшает глубину провара. При глубине провара более 0,7—0,8 толщины металла резко изменяются условия отвода тепла от нижней части сварочной ванны и может произойти сквозное проплавление металла. Чем больше плотность металла (чем тяжелее металл), тем больше провар при данном токе. На ширину шва величина тока почти не оказывает влияния.
Род и полярность тока. При сварке постоянным током прямой полярности глубина провара меньше на 40—50%, а при сварке переменным током — меньше на 15—20%, чем при сварке постоянным током обратной полярности. Ширина шва при сварке постоянным током прямой полярности меньше, чем при сварке постоянным током обратной полярности и переменным током. Изменение ширины шва становится заметным при более высоких напряжениях дуги (свыше 30 в).
Диаметр электрода. Уменьшение диаметра при том же токе повышает плотность тока в электроде и уменьшает подвижность дуги, что увеличивает глубину провара и сокращает ширину шва. Соответственно, при уменьшении диаметра электрода глубина провара возрастает; ширина же шва с увеличением диаметра электрода увеличивается за счет повышения подвижности дуги. Заданная глубина провара может быть достигнута и при меньшем токе за счет уменьшения диаметра электрода, однако это вызывает затруднения вследствие повышенного разогрева электрода малого диаметра.
Напряжение дуги почти не оказывает влияния на глубину провара, но влияет на ширину шва. При возрастании напряжения ширина шва увеличивается, при снижении напряжения — уменьшается, что широко используется при механизированных способах сварки для регулирования ширины шва особенно при наплавке.
При ручной сварке напряжение изменяется незначительно (от 18 до 22 в), что не оказывает практического влияния на ширину шва.
Скорость сварки. При малых скоростях ручной сварки, составляющих 1 —1,5 м/ч, глубина провара получается минимальной, так как в этом случае интенсивность вытеснения жидкого металла сварочной ванны из-под основания столба дуги невелика. Образующийся у основания дуги слой жидкого металла препятствует проплавлению основного металла. Повышение скорости сварки до некоторого значения, соответствующего максимальной погонной энергии дуги, увеличивает глубину провара. Для практических пределов применяемых при сварке режимов скорость сварки незначительно влияет на глубину провара.
Ширина шва зависит от скорости сварки: увеличение скорости уменьшает, а уменьшение скорости — увеличивает ширину шва. Это соотношение сохраняется при всех скоростях сварки и широко используется в практике для регулирования ширины шва.
Поперечное перемещение электрода сильно влияет на глубину провара и ширину шва, поэтому его широко используют при ручной сварке для регулирования формы шва. Увеличение ширины поперечных перемещений конца электрода увеличивает ширину шва и уменьшает глубину провара, и наоборот. Это связано с соответствующим изменением концентрации тепла дуги на металле.
Длина (вылет) электрода. При увеличении длины электрода (или его вылета) он больше нагревается и скорость плавления его возрастает, что приводит к уменьшению тока и глубины провара. Если диаметр проволоки более 3 мм, изменение вылета ±6—8 мм не оказывает влияния на формирование шва. Если используется проволока диаметром 1—2,5 мм, указанные колебания вылета могут ухудшать формирование шва.
Физические свойства покрытия или флюса. При использовании легкого флюса и электрода с легкоплавким покрытием подвижность дуги увеличивается, возрастает ширина шва и сокращается глубина провара. При повышении толщины слоя или тугоплавкости покрытия на конце электрода образуется чехольчик, ограничивающий подвижность дуги, что приводит к уменьшению ширины шва и увеличению глубины провара.
Начальная температура металла в пределах от — 60 до +80° С не влияет на форму шва. Подогрев основного металла до 100—400° С приводит к увеличению ширины шва и глубины провара, причем быстрее растет ширина шва, чем провар. Предварительным подогревом свариваемого металла объясняется увеличение ширины верхних слоев при многослойной сварке и наплавке.
Наклон электрода. Сварку ведут вертикальным электродом, с наклоном углом вперед и углом назад (относительно направления сварки). При сварке углом назад дуга сильнее вытесняет металл из ванны и глубина провара возрастает, а ширина шва уменьшается. При сварке углом вперед давление столба на поверхность металла снижается, что уменьшает глубину провара
и увеличивает ширину шва по сравнению со сваркой вертикальным электродом.
Наклон изделия. При сварке сверху вниз (на спуск) растет толщина слоя жидкого металла под основанием столба дуги и глубина провара от этого уменьшается; увеличивается блуждание дуги и ширина шва возрастает. При сварке снизу вверх (на подъем) толщина слоя жидкого металла под дугой уменьшается, глубина провара возрастает, а ширина шва уменьшается, так как дуга блуждает меньше. Для нормального формирования шва при ручной сварке угол наклона должен быть 8—10°. При большем угле и сварке на спуск происходит подтекание жидкого металла из-под основания дуги, а при сварке на подъем — появляются непровары и подрезы по кромкам шва. Сварка на спуск применяется при выполнении круговых швов (труб, сосудов). Это снижает опасность прожогов, улучшает формирование шва и предупреждает стекание жидкого металла ванны.
Выбор режима сварки. Режим сварки (тип и марку электрода, диаметр его стержня, род, полярность, напряжение, величину тока) выбирают в зависимости от вида, толщины свариваемого металла и конструкции сварного соединения. Определив условия сварки, обеспечивающие получение высококачественного сварного соединения, выбирают диаметр электрода (проволоки) и величину сварочного тока.
Диаметр проволоки электрода выбирается в зависимости от толщины свариваемого металла. Для стыковых швов можно принимать:
При большом диаметре электрода повышается производительность сварки, но возможно проплавление свариваемого металла, затрудняется выполнение швов в вертикальном и потолочном положениях, возможен непровар корня шва. Поэтому первый слой многослойного шва всегда сваривается электродом диаметром 4—5 мм, за исключением швов с U-образной подготовкой, где весь шов можно сваривать электродами одного (максимально допустимого) диаметра.
Вертикальные и потолочные швы свариваются электродами диаметром не более 5 мм; сварщики высокой квалификации могут такие швы сваривать электродами диаметром 6 мм. Прихваточные швы и наплавка валиками небольшого сечения выполняются электродами диаметром не более 5 мм.
Сварочный ток выбирается в зависимости от диаметра электрода и марки электродного покрытия. В табл. 5 были приведены рекомендуемые величины тока для электродов различных марок.
Если ток мал, то в сварочную ванну будет поступать недостаточно тепла и возможно несплавление основного и наплавленного металла (непровар), резко понижающее прочность сварного соединения. При слишком большой величине тока весь электрод, спустя некоторое время после начала сварки, сильно разогревается, его металл начинает быстрее плавиться и стекать в шов. Это создает излишек наплавленного металла в шве и также связано с опасностью образования непровара в случае попадания жидкого электродного металла на нерасплавленный основной металл.
При выборе величины тока для сварки встык низкоуглеродистой стали в нижнем положении можно пользоваться формулой акад. К. К. Хренова
где Iсв — сварочный ток, а;
d — диаметр металлического стержня электрода, мм.
При толщине металла менее 1,5 d ток уменьшают на 10—15%, а при толщине более 3 d — увеличивают на 10—15% по сравнению с полученным по формуле. При сварке на вертикальной плоскости ток уменьшают на 10—15%, а при сварке потолочных швов — уменьшают на 15—20% по сравнению с током, выбранным для сварки в нижнем положении металла той же толщины.
Для сварки соединений внахлестку и тавровых можно применять больший ток, гак как в этом случае опасность сквозного проплавления меньше.
Автор: Администрация Общая оценка статьи: Опубликовано: 2011.06.01 Обновлено: 2020.03.04
Источник:
http://metallicheckiy-portal.ru/articles/svarka/dugovaa_svarka/texnika_ruchnoi_dugovoi_svarki/vibor_rejima_svarki
От чего зависит выбор режима ручной дуговой сварки? Особенности параметров при выборе режима
Под режимом сварки подразумевается такой набор условий, который обеспечит стабильное проведение сварочных работ. Режим сварки имеет основные и второстепенные характеристики.
Режимы ручной дуговой сварки
К основным характеристикам относятся:
- диаметр электрода;
- скорость работы;
- уровень напряжения;
- направление тока и его полярность;
- сила тока.
К второстепенным характеристикам относят следующее:
Подбор диаметра электрода
При выборе толщины электрода учитывают множество факторов.
Если сварка проводится в нижнем положении, тогда ключевым критерием выступает толщина свариваемых деталей.
Существует определённое соотношение толщины металла к диаметру электрода при выполнении работы в нижнем положении.
Также выбор можно проводить, опираясь на марку свариваемого сплава. Например, для соединения изделий из чугуна рекомендуется использовать электроды диаметром 2-3 миллиметра. Это уменьшит уровень тепла, поступающего в свариваемую конструкцию, и гарантирует образование валика небольшого сечения.
Ещё одним важным фактором является наличие разделки кромок. Если такая предварительная работа проводилась, тогда наложение первого слоя осуществляется 3-миллиметровыми электродами, невзирая на марку используемого металла. При таком подходе использование электродов большой толщины может привести к возникновению ряда трудностей: непровар заготовок, зашлаковывание сварочного шва. Дальнейшая работа проводится электродом большей толщины (4-5 мм).
Примерная стоимость 4-миллиметровых электродов на Яндекс.маркет
Необходимо учитывать тип свариваемого соединения. Если проводить стыковое соединение, тогда нужно руководствоваться описанными выше правилами подбора. Если необходимо сварить угловые, тавровые или нахлёсточные соединения, тогда возможны два варианта:
- первый – сварку проводят в определённое количество слоёв, тогда для первого слоя берутся электроды толщиной 2-3 мм для более глубокой проварки и высокой крепости шва;
- второй – работа проводится в один заход, толщина электрода будет зависеть от толщины заготовок и может варьироваться от 2 до 6 мм.
Сила сварочного тока
При расчёте силы сварочного тока необходимо брать в расчёт диаметр используемого электрода.
Для расчёта применяется формула:
I=K*D, где:
- I – сила тока;
- D – диаметр электрода;
- K – специальный коэффициент.
Возможные изменения специального коэффициента представлены в таблице.
Источник:
http://elsvarkin.ru/texnologiya/rezhima-dugovoj-svarki/
Выбор режимов при ручной дуговой сварке
1. Выбор режимов при ручной дуговой сварке
12. Понятие и параметры режима ручной дуговой сварки
• Под режимом сварки понимают совокупностьконтролируемых условий, создающих устойчивое
горение дуги и обеспечивающих получение швов
заданных размеров, формы и свойств.
Параметры режима сварки подразделяют на
Основные:
Сила тока
Род и полярность тока
Диаметр электрода
Напряжение
Скорость сварки
Величина поперечного
колебания конца электрода.
Дополнительные:
Вылет электрода
Состав и толщина покрытия электрода
Положение шва в пространстве
Положение изделия в процессе сварки
Число проходов
Температура окружающей среды
2
• Определение режима сварки обычно
начинают с выбора диаметра
электрода, который назначают в
зависимости от
• толщины листов при сварке швов
стыковых соединений,
• катета шва при сварке швов угловых
и тавровых соединений
• положения шва в пространстве.
3
4. Выбор диаметра электрода в зависимости от толщины металла
Толщина металла, ммДиаметр электрода, мм
1-2
3
4-5
6-8
9-12
13-15
≥ 16
1,5-2
3
3-4
4
4-5
5
6
Значения диаметра электрода
в зависимости от катета шва
Вертикальные, горизонтальные и потолочные швы выполняют
электродами диаметром до 4мм.
Корневой слой при сварке многослойных швов выполняют
электродами диаметром 3 – 4 мм, а последующие – электродами
большего диаметра
4
• При сварке многопроходных швов стыковых
соединений первый проход должен
выполняться электродами диаметром не
более 4 мм, чаще всего диаметром 3 мм, так
как применение электродов большего
диаметра не позволяет в необходимой
степени проникнуть в глубину разделки для
провара корня шва.
• При сварке угловых и тавровых
соединений, как правило, за один проход
выполняют швы катетом не более 8–9 мм.
При необходимости выполнения шва с
большим катетом применяется сварка за два
прохода и более.
5
При определении числа проходов следует иметь в виду, что
максимальное поперечное сечение металла, наплавленного за
один проход, не должно превышать 30–40мм² .
Для определения числа проходов при сварке угловых и
тавровых соединений общая площадь поперечного сечения
наплавленного металла может быть вычислена по формуле:
• где Fн – площадь поперечного сечения
наплавленного металла,
• k – катет шва, мм.
• kу – коэффициент увеличения, учитывающий
наличие зазоров и выпуклость («усиление») шва:
6
При сварке швов стыковых соединений площадь поперечного
сечения (мм2) металла, наплавляемого за один проход, при
которой обеспечиваются оптимальные условия формирования,
должна составлять: для первого прохода (при проварке корня
шва)
для последующих
проходов
Зная общую площадь поперечного сечения наплавленного
металла и площади поперечного сечения наплавленного металла
при первом и каждом последующем проходах, найдем число
проходов:
7
• Площадь поперечного сечения
наплавленного металла в шве
можно определять по графикам в
зависимости от типа соединения и
вида разделки.
• Зная площадь Рн, можно по
специальным номограммам
определить необходимое число
проходов.
8
Графики
для
определения
площади
наплавленного
металла
Fн
соответственно
в
← стыковых
угловых →
швах
номера кривых на графиках соответствуют
номерам видов сварных соединений
• S — толщина металла;
К — катет шва
9
• Номограмма для определения числа проходов
при ручной дуговой сварке:
• Fн — площадь наплавленного металла
10
11. Сила сварочного тока
при ручной дуговой сварке можетбыть определена в зависимости от
диаметра электрода и допустимой
плотности тока, где
dэ – диаметр электрода (стержня), мм;
j – допускаемая плотность тока А/мм²
Значения допускаемой плотности тока в электроде
при ручной дуговой сварке
При > > dэ и неизменном Iсв плотность тока
— к блужданию дуги,
— увеличению ширины шва,
— уменьшению глубины провара.
11
• Наиболее удобно при определении силы сварочного
тока пользоваться формулой
п
• Значение k в ней выбирают в зависимости от
диаметра электрода:
kп – коэффициент, учитывающий пространственное
положение сварки:
0,8 – при сварке потолочных швов,
0,9 –при сварке вертикальных и горизонтальных швов,
1,0 — при сварке швов в нижнем положении
12
13. Пример
Толщина металла 8мм,
Сварка в нижнем положении.
Диаметр Э = 4мм
Iсв = 4мм • (35…50) =140 …200 А
Сварка горизонтальных шов на
вертикальной плоскости:
• Iсв = 0,9 • 4мм • (35…50)= 126…180А
13
14. Сила сварочного тока
• при сварке на• Отрегулируйте сварочный ток
большом токе
до получения устойчивого
наблюдается сильное
процесса сварки:
разбрызгивание и
при правильно подобранном
покраснение
сварочном токе дуга легко
электродного стержня;
возбуждается, спокойно горит
без обрывов и коротких
замыканий;
процесс горения происходит
нешумно с образованием
небольшого количества
мелких брызг.
14
15. ИЛИ Выбор силы сварочного тока:
dэ = 3 … 6 ммdэ
I = ( 20 + 6d ) · d э · k
I = 30 · dэ · k
Коэффициент
Шов нижний
Шов на
вертикал.
плос.
k
1
0,9
Шов потолоч.
0,8
15
16. Длина дуги
Диаметрэлектрода
Сварочная
дуга
Lд
Длина дуги
От длины дуги
зависит ее
напряжение.
Длинную дугу
применять
не
рекомендуется
L д = (0.5 … 1,1) · dэ
16
17. Выбор рода и полярности тока
ПолярностьПостоянный ток
Прямая
Сварка с глубоким проплавлением
На детали
≈4000 ̊ С
Обратная
На детали
≈3000 ̊ С
основного металла;
Сварка низкоуглеродистых,
среднеуглеродистых и
низколегированных сталей
толщиной ≥ 5 мм электродами с
фтористо-кальциевым покрытием:
УОНИ 13/45; УОНИ 13/55 и др;
Сварка чугуна
Сварка с повышенной скоростью
плавления электродов;
Сварка тонкостенных листовых
конструкций;
Сварка низколегированных
низкоуглеродистых сталей (типа
16Г2АФ), средне- и
высоколегированных сталей и
сплавов.
Переменный ток
Сварка
низкоуглеродистых и
низколегированных
сталей (типа 09ГС) в
строительно–
монтажных условиях
с рутиловым
покрытием;
Сварка при
возникновении
магнитного дутья;
Сварка
тонколистовых
конструкций из
низкоуглеродистых
сталей
17
18. Выбор рода и полярности тока
Сварка постоянным током на обратной полярности применяется
в следующих случаях:
1. Если электрод имеет тугоплавкое покрытие.
2. Когда требуется уменьшить концентрацию тепла на основном
металле.
При сварке:
а) Тонколистового металла.
б) Цветных металлов.
в) Легированных специальных сталей, чувствительных к перегреву.
?
Максимальная глубина проплавления достигается при сварке
постоянным током на обратной полярности.
При сварке на прямой полярности глубина проплавления
основного металла на 40-50% меньше.
При сварке переменным током глубина провара на 15-20%
меньше, чем при сварке постоянным током на обратной
полярности.
18
19. Влияние сварочного тока, напряжения дуги и скорости сварки на форму и размер шва
Сварочный токНапряжение дуги
С увеличением
сварочного тока:
Глубина провара >
Ширина шва ≈ соnst
С > > напряжения:
Ширина шва резко > >
Глубина провара
Усиление шва
При равном напряжении
ширина шва при сварке на
постоянном токе ОП >,
чем на переменном токе
Скорость сварки
С увеличением
скорости:
Глубина провара
(до 40-50 м/час) — > >,
Затем
Ширина шва
постоянно.
Напряжение дуги при ручной дуговой сварке изменяется в сравнительно узких пределах
и выбирается на основании рекомендаций паспорта на данную марку электродов.
Для наиболее широко применяемых электродов
19
Uд = 25 28 В.
Скорость сварки :
Сварочная ванна должна быть заполнен
электродным металлом с небольшим
возвышением над кромками
с плавным переходом к основному
металлу без подрезов и наплывов.
Для электродов с рутиловым и
основным покрытием 6-12 м/ч
Для электродов с целлюлозным
покрытием 14-22 м/ч
20
Влияние
а
б
в
г
д
е
ж
сварочного тока (а),
напряжения дуги (б),
скорости сварки (в),
полярности тока (г),
диаметра электрода
(д),
• угла наклона
электрода (е)
• угла наклона
изделия (ж)
на размеры и форму
сварного шва
21
22. Влияние угла наклона электрода и изделия
Сварка углом впередГлубина провара, выпуклость шва
Ширина шва > >
Кромки хорошо проплавляются→ возможна
сварка на повышенной скорости.
Сварка металла небольшой толщины
Сварка углом назад
Глубина провара, выпуклость шва > >
Ширина шва
Прогрев кромок недостаточен, возможны не
сплавления и образование пор
Сварка на спуск
Сварка на подъем
Глубина провара
Ширина шва > >
Глубина провара > >
Ширина шва
22
23. Ориентировочные режимы сварки конструкционных низколегированных сталей
23ИТОГ:
24
% PDF-1.6 % 11275 0 объект> эндобдж xref 11275 357 0000000016 00000 н. 0000018991 00000 п. 0000019129 00000 п. 0000019295 00000 п. 0000019342 00000 п. 0000019572 00000 п. 0000019623 00000 п. 0000019670 00000 п. 0000019718 00000 п. 0000019768 00000 п. 0000019815 00000 п. 0000019863 00000 п. 0000019911 00000 п. 0000019959 00000 п. 0000020008 00000 п. 0000020057 00000 п. 0000020106 00000 п. 0000020155 00000 п. 0000020204 00000 п. 0000020253 00000 п. 0000020302 00000 п. 0000020351 00000 п. 0000020400 00000 п. 0000020449 00000 п. 0000020501 00000 п. 0000020549 00000 п. 0000020602 00000 п. 0000020640 00000 п. 0000021003 00000 п. 0000021092 00000 п. 0000021177 00000 п. 0000021748 00000 н. 0000021788 00000 п. 0000022029 00000 н. 0000022108 00000 п. 0000023052 00000 п. 0000023825 00000 п. 0000024601 00000 п. 0000025271 00000 п. 0000025939 00000 п. 0000026623 00000 п. 0000027107 00000 п. 0000027722 00000 н. 0000028558 00000 п. 0000031230 00000 н. 0000034447 00000 п. 0000034799 00000 п. 0000034882 00000 п. 0000034944 00000 п. 0000035024 00000 п. 0000035158 00000 п. 0000035250 00000 п. 0000035295 00000 п. 0000035421 00000 п. 0000035568 00000 п. 0000035660 00000 п. 0000035715 00000 п. 0000035873 00000 п. 0000035969 00000 п. 0000036024 00000 п. 0000036126 00000 п. 0000036180 00000 п. 0000036287 00000 п. 0000036340 00000 п. 0000036483 00000 п. 0000036609 00000 п. 0000036773 00000 п. 0000036883 00000 п. 0000037034 00000 п. 0000037201 00000 п. 0000037311 00000 п. 0000037462 00000 п. 0000037622 00000 п. 0000037733 00000 п. 0000037885 00000 п. 0000038048 00000 п. 0000038158 00000 п. 0000038309 00000 п. 0000038469 00000 п. 0000038597 00000 п. 0000038704 00000 п. 0000038865 00000 п. 0000039023 00000 п. 0000039170 00000 п. 0000039342 00000 п. 0000039506 00000 п. 0000039672 00000 п. 0000039836 00000 п. 0000039947 00000 н. 0000040064 00000 н. 0000040198 00000 п. 0000040368 00000 п. 0000040473 00000 п. 0000040595 00000 п. 0000040728 00000 п. 0000040861 00000 п. 0000040997 00000 п. 0000041118 00000 п. 0000041236 00000 п. 0000041354 00000 п. 0000041474 00000 п. 0000041613 00000 п. 0000041741 00000 п. 0000041899 00000 н. 0000042018 00000 п. 0000042145 00000 п. 0000042278 00000 п. 0000042442 00000 п. 0000042552 00000 п. 0000042694 00000 п. 0000042839 00000 п. 0000043000 00000 п. 0000043137 00000 п. 0000043277 00000 п. 0000043426 00000 п. 0000043561 00000 п. 0000043684 00000 п. 0000043804 00000 п. 0000043938 00000 п. 0000044057 00000 п. 0000044185 00000 п. 0000044325 00000 п. 0000044435 00000 п. 0000044567 00000 п. 0000044749 00000 п. 0000044884 00000 н. 0000045050 00000 п. 0000045222 00000 п. 0000045347 00000 п. 0000045505 00000 п. 0000045638 00000 п. 0000045764 00000 п. 0000045907 00000 п. 0000046010 00000 п. 0000046143 00000 п. 0000046266 00000 п. 0000046385 00000 п. 0000046557 00000 п. 0000046674 00000 п. 0000046835 00000 п. 0000047014 00000 п. 0000047163 00000 п. 0000047296 00000 п. 0000047412 00000 п. 0000047527 00000 п. 0000047657 00000 п. 0000047804 00000 п. 0000047948 00000 н. 0000048085 00000 п. 0000048233 00000 п. 0000048394 00000 п. 0000048555 00000 п. 0000048693 00000 п. 0000048817 00000 н. 0000048935 00000 н. 0000049107 00000 п. 0000049223 00000 п. 0000049384 00000 п. 0000049512 00000 п. 0000049639 00000 п. 0000049782 00000 п. 0000049892 00000 п. 0000050010 00000 п. 0000050182 00000 п. 0000050307 00000 п. 0000050467 00000 п. 0000050647 00000 п. 0000050789 00000 п. 0000050931 00000 п. 0000051064 00000 п. 0000051193 00000 п. 0000051246 00000 п. 0000051386 00000 п. 0000051561 00000 п. 0000051729 00000 п. 0000051867 00000 п. 0000052043 00000 п. 0000052174 00000 п. 0000052338 00000 п. 0000052502 00000 п. 0000052615 00000 п. 0000052735 00000 п. 0000052919 00000 п. 0000053060 00000 п. 0000053233 00000 п. 0000053395 00000 п. 0000053556 00000 п. 0000053716 00000 п. 0000053868 00000 п. 0000054029 00000 п. 0000054190 00000 п. 0000054314 00000 п. 0000054436 00000 п. 0000054598 00000 п. 0000054765 00000 п. 0000054930 00000 п. 0000055105 00000 п. 0000055271 00000 п. 0000055431 00000 п. 0000055606 00000 п. 0000055715 00000 п. 0000055878 00000 п. 0000056003 00000 п. 0000056131 00000 п. 0000056290 00000 п. 0000056406 00000 п. 0000056532 00000 п. 0000056705 00000 п. 0000056834 00000 п. 0000056951 00000 п. 0000057119 00000 п. 0000057243 00000 п. 0000057366 00000 п. 0000057500 00000 п. 0000057635 00000 п. 0000057779 00000 п. 0000057919 00000 п. 0000058050 00000 п. 0000058185 00000 п. 0000058326 00000 п. 0000058449 00000 п. 0000058572 00000 п. 0000058743 00000 п. 0000058861 00000 п. 0000058998 00000 н. 0000059171 00000 п. 0000059284 00000 п. 0000059412 00000 п. 0000059546 00000 п. 0000059683 00000 п. 0000059814 00000 п. 0000059986 00000 н. 0000060117 00000 п. 0000060235 00000 п. 0000060376 00000 п. 0000060532 00000 п. 0000060639 00000 п. 0000060752 00000 п. 0000060922 00000 п. 0000061072 00000 п. 0000061203 00000 п. 0000061372 00000 п. 0000061482 00000 п. 0000061645 00000 п. 0000061771 00000 п. 0000061909 00000 п. 0000062040 00000 п. 0000062184 00000 п. 0000062339 00000 п. 0000062484 00000 п. 0000062628 00000 п. 0000062772 00000 н. 0000062906 00000 п. 0000063029 00000 п. 0000063169 00000 п. 0000063352 00000 п. 0000063485 00000 п. 0000063601 00000 п. 0000063776 00000 п. 0000063892 00000 п. 0000064064 00000 п. 0000064170 00000 п. 0000064278 00000 н. 0000064441 00000 п. 0000064563 00000 п. 0000064693 00000 п. 0000064818 00000 п. 0000064949 00000 п. 0000065094 00000 п. 0000065225 00000 п. 0000065370 00000 п. 0000065489 00000 п. 0000065657 00000 п. 0000065777 00000 п. 0000065888 00000 п. 0000066063 00000 п. 0000066185 00000 п. 0000066300 00000 п. 0000066453 00000 п. 0000066595 00000 п. {.\! 6 «((؟
˙ 7’4Bm_S ,, ‘DcH
MIG, порошковая сварка, TIP TIG, ручная и роботизированная сварка
КАЧЕСТВО СВАРКИ И ПРОИЗВОДИТЕЛЬНОСТЬ СВАРКИ ВЛИЯЮТСЯ ЗАКАЗЧИКАМИ. НАИБОЛЕЕ ВАЖНЫМ ФАКТОРОМ ЯВЛЯЕТСЯ ОБЩЕЕ, ГЛОБАЛЬНОЕ ОТСУТСТВИЕ ВЛАДЕНИЯ ПРОЦЕССОМ СВАРКИ В ФРОНТАЛЬНОМ ОФИСЕ И ОТСУТСТВИЕ УПРАВЛЕНИЯ ПРОЦЕССОМ СВАРКИ И НАИЛУЧШЕЙ ПРАКТИКИ СВАРКИ
Это является отражением общей нехватки владения сварочным процессом в офисе.что когда дело доходит до GMAW (обычно называемого MIG / MAG) и процесса нанесения порошковой порошковой проволоки в защитном газе, что в тех общих сварочных цехах «зачем менять то, что мы всегда делали», то через пятьдесят с лишним лет после введения полуфабриката -автоматизированные процессы MIG — FCA, которые немногие руководители, технические специалисты, менеджеры или инженеры понимают или внедряют в систему контроля сварочного процесса и передовые методы сварки. Также реальность сварки заключается в том, что большая часть сварочного персонала GMA — FCA во всем мире «поиграет» с двумя простыми средствами управления сваркой на своем сварочном оборудовании.
В различных сварочных отраслях, таких как судостроительные верфи и автомобилестроение, заводы, ненужная, ДОРОГАЯ повторная обработка сварных швов и брак сварных деталей являются обычным явлением. Дело не только в качестве сварного шва, редко достигается максимальная скорость наплавки, а затраты на сварку обычно плохо понимаются. Тогда это влияние культуры и отношения сварочного цеха.
«ПОЧЕМУ ИЗМЕНИТЬ СПОСОБ, КОТОРЫЙ МЫ ВСЕГДА ДЕЛАЛИ ЭТО, И ДАТЬ МНЕ МИНУТУ НА ИГРАТЬ С КОНТРОЛЯМИ», МОЖЕТ БЫТЬ ПЕРЕМЕЩЕН НА МУЗЫКУ И БЫТЬ СДЕЛАН В ГЛОБАЛЬНОМ МАГАЗИНЕ СВАРКИ.
Возможно, это отражение отсутствия опыта управления сварочным процессом и апатии к владению процессом фронт-офиса в сварочных цехах, которые производят сварные швы стандартного качества, что через двенадцать лет после того, как я представил TIP TIG в Северной Америке, это небольшое количество сварочных цехов. знают о впечатляющем качестве сварных швов и деталей, а также о рентабельности, получаемой от простого в использовании процесса сварки TIP TIG.
Когда вы думаете об аэрокосмической отрасли, можно надеяться, что когда дело доходит до дуговой сварки сплавов, в сварных конструкциях будет, по крайней мере, высокотехнологичный подход.
Упомяните SpaceX, и большинство людей думают об Илоне Маске, а также могут думать о других его высоких технологиях. компания под названием Tesla. Однако, когда я вспоминаю Илона Маска, я думаю об одном инженере, который вместе с задействованными инженерами не мог управлять простыми роботизированными сварными швами стали и алюминия на заводах Tesla, и я также думаю о сварных швах из нержавеющей стали в SpaceX и многих других. годы и миллионы долларов потрачены впустую, поскольку Илон и его сварщики боролись за получение качественных сварных швов из нержавеющей стали на своих ракетах.
В 2020 году Илон или один из его инженеров наконец-то выяснили, что для получения результатов испытаний на разрушающие сварные швы из нержавеющей стали, которые он требовал для НАСА, он будет использовать для своих дуговой сварки процесс TIP TIG, процесс, который по иронии судьбы Я познакомил инженеров SpaceX еще в 2009 году.
Я показал на https://tiptigwelding.com, что в отличие от любого другого процесса дуговой сварки, полуавтоматический или автоматизированный процесс сварки TIP TIG всегда обеспечивает превосходное качество сварки. чем любой другой доступный ручной процесс дуговой сварки, включая GTA и Hot Wire GTA.
TIP TIG — это процесс, который должен позволить исключить переделку сварных швов. TIP TIG, обеспечивая при этом самую высокую энергию сварки в инертной атмосфере уникален тем, что также обеспечивает наименьшее тепловложение для сварных деталей, которое обеспечивает для любых металлов наилучшие механические и коррозионные свойства, высочайшую чувствительность к растрескивание с минимально возможным искажением.
TIP TIG — это также процесс сварки, который снижает все навыки сварщика корневого / заполняющего прохода, устраняет очистку сварного шва, а также устраняет проблемы с разбрызгиванием сварочного шва или сварочным дымом.
Преимущества процесса TIP TIG при сварке качественных сталей и сплавов CODE необычайны, и столь же необычным было то, что мировая сварочная промышленность медленно реагировала на значительные преимущества в отношении качества / стоимости, которые могли быть достигнуты.
Этот веб-сайт посвящен выявлению и решению проблемы медленной эволюции сварочного цеха, а также общего отсутствия контроля за процессом сварки и передового опыта в области сварки, который преобладает во всех мировых отраслях промышленности, которые используют общие процессы дуговой сварки, такие как импульсная сварка MIG, GTAW. и газозащитный флюсовый порошок. 2020. Эволюция процессов сварки GTAW, которым уже 75 лет, в полуавтоматический или автоматизированный процесс TIP TIG, которому уже 12 лет, обеспечивает то, что на протяжении десятилетий было недостижимо, — возможность стабильного производства «рентабельных, всех позиций». , используйте качественные сварные швы, которые не требуют доработки.TIP TIG самый простой в использовании процесс позиционирования. Без дыма, брызг и очистки сварных швов. Один процесс, две настройки сварки от корня до заливки на металле любого типа и толщины.Почему какой-либо сварочный цех должен рассматривать низкокачественные процессы сварки GTAW — импульсной MIG и порошковой сваркой в среде защитного газа для своих сварных швов нормального качества? Самый информативный в мире веб-сайт по TIP TIG без BS, посетите https://tiptigwelding.com
_________________________
Чтобы увидеть следующие преимущества сварки TIP TIG для кода, требуется всего 30 минут демонстрации сварочного цеха. качественные сварные швы.
- TIP TIG позволяет наплавку на 200–400% больше, чем TIG.
- TIP TIG для всех позиционных сварных швов проще в использовании, чем TIG на постоянном токе, импульсная MIG и порошковая сварка, при этом всегда обеспечивается превосходное качество сварки.
- TIP TIG с повышенной скоростью сварки и полярностью постоянного тока всегда обеспечивает превосходные механические / коррозионные свойства, чем любой другой процесс дуговой сварки.
- TIP TIG всегда обеспечивает минимально возможное количество сварочного дыма.
- TIP TIG без брызг и очистки сварного шва.
- TIP TIG всегда наименьшая деформация сварного шва и наименьшее напряжение сварного шва / детали.
- TIP TIG наивысшая способность сварки без проблем с пористостью сварного шва.
- Используйте TIP TIG для больших или малых приложений, один процесс от корня до заполнения, один процесс, позволяющий сваривать все металлы от самых тонких до самых толстых деталей.
- TIP TIG полуавтоматический или полностью автоматизированный.
- TIP TIG, один газ, одна сварочная проволока, не более трех простых настроек сварки и одной процедуры сварки.
____________________
ЕГО НЕУДАЧНО В Северной Америке, что отрасли и исследовательские центры, которые должны лидировать в сварке, слишком часто остаются в двадцатом веке.
На этом сайте есть обширные свидетельства общего отсутствия права собственности на сварочный процесс в личном кабинете и медленное развитие процесса сварки, которое преобладает, особенно в отраслях, которые должны быть ведущими, таких как аэрокосмическая, оборонная, медицинская, нефтяная и др. и электроэнергетика.
Получение верфи военно-морского флота, которая обычно будет тратить ежегодно сотни миллионов на доработку сварных швов сверх установленного бюджета или низкую производительность сварки, чтобы изменить свой печальный инженерный / управленческий подход к качеству и производительности дуговой сварки, было бы редким событием, когда чаще всего жалуются на еженедельных сварочных встречах будет «зачем менять то, как мы всегда это делали». На той же верфи большинство высококвалифицированных сварщиков будут делать то же самое, что и большинство сварщиков на протяжении более 60 лет, «играть» с элементами управления сваркой.Это простые элементы управления на оборудовании MIG, которое мало изменилось за десятилетия. Конечным результатом всегда будет плохое качество и производительность сварки.
Я всегда буду удивляться, почему после того, как я представил TIP TIG инженерам SpaceX на семинаре и практическом семинаре, который я проводил на военно-морской верфи Филадельфии примерно в 2008–2009 годах, их инженеры и менеджеры потребовали прибл. десятилетие, чтобы понять ценность этого важного процесса дуговой сварки. Конечно, я знаю ответ, но буду вежливее предоставить его здесь.И даже при широком использовании TIP TIG сейчас, в 2020 году, я считаю, что Маск и его инженеры SpaceX все еще не осведомлены о полностью ручных и автоматических возможностях сварки и возможностях этого важного процесса. В описании должностных обязанностей инженеров-сварщиков на предприятии SpaceX в Техасе в 2020 году примечательно, что этот процесс не был включен в должностные инструкции инженеров-сварщиков.
Все инженеры-механики и инженеры по сварке несут ответственность за то, чтобы они постоянно развивались в соответствии с процессами сварки, которые обеспечат превосходное качество сварки при более низких затратах на сварку.
ИНЖЕНЕРНАЯ СВАРКА В США ПОЗВОЛИЛА КИТАЙСКОЙ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ ДОСТИГНУТЬ КАЧЕСТВО / ПРОИЗВОДИТЕЛЬНОСТЬ СВАРКИ.
На том же семинаре 2008–2009 годов, на котором я представил TIP TIG инженерам SpaceX, также присутствовали пять инженеров из CNOOCA, одной из крупнейших подводных нефтяных компаний Китая. Вместо десяти лет, чтобы компания внедрила процесс TIP TIG, им потребовалась неделя, чтобы я и мой партнер Том сварили, сварили и сварили с помощью процесса TIP TIG.Затем этой компании потребовался месяц, чтобы превратить TIP TIG в свою компанию в качестве основного ручного и автоматизированного процесса сварки, который будет использоваться для большинства сварных швов, соответствующих их нормативным требованиям, на своих предприятиях по производству подводных, нефтегазовых и сжиженных газов.
Отсутствие «собственности» на сварочный процесс со стороны менеджеров и инженеров привело к тому, что большинство высокотехнологичных компаний, столкнувшихся с проблемами сварки 21-го века, продолжают использовать сварочные процессы 20-го века вместе с устаревшими спецификациями сварных швов, процедуры и практики.В глобальном высококонкурентном мире металлообработки, если компании не ищут и не сопротивляются прогрессивным изменениям процесса сварки, которые могут улучшить качество, производительность и стоимость сварки, они могут с таким же успехом закрыть двери сварочных цехов и выпить чашечку кофе. магазин. Для тех, кто хочет получить наиболее полную информацию о TIP TIG, посетите мой другой веб-сайт https://tiptigwelding.com
_____________________
Реальность сварки в 2020 году для тех отраслей, в которых традиционные импульсные MIG, GTAW и Сварка порошковой проволокой в среде защитного газа очень важна- Ежедневное качество сварки и производимое сварочное производство часто мало меняются за шесть десятилетий.
- Отклонение сварного шва и ожидается доработка сварного шва.
- Сварочные брызги и очистка сварных швов являются нормой.
- В работе, которая требует различных процедур, оборудования, расходных материалов, методов и навыков, часто используется более одного процесса сварки.
- В отделениях сварочного цеха обычно мало свидетельств того, что право собственности на процесс сварки необходимо для последовательной оптимизации процесса.
- В сварочных цехах вы часто найдете мало свидетельств «контроля процесса дуговой сварки и передового опыта в области сварки».
- Обычно можно найти опытный сварщик, который «поиграет» со своим руководством. . автоматическое или роботизированное управление сваркой MIG и порошковой сваркой.
- В любой компании, у которой есть сварочный отдел, всегда трудно найти кого-то в своем фронт-офисе, который понимает требования к контролю процесса, необходимые для владения процессом сварки.Также почти невозможно найти кого-то, кто менее чем за пять минут мог бы сказать вам стоимость одного фута одного из своих обычных угловых сварных швов 1/14 MIG.
________________
Отсутствие права собственности на сварочный процесс во всем мире — обычное недостающее звено
Как только персонал фронт-офиса осознает, что требуется для владения процессом сварки и оптимизации процесса, лицам, принимающим решения по сварке, легко найти ресурсы, которые они требуется для этого на этом сайте.Меня зовут Эмили Крейг раньше была Эд, но плазменный резак решил эту проблему. От помощи аэрокосмическим и оборонным компаниям до судостроительных верфей, атомных или автомобильных заводов на протяжении более 40 лет меня просили и до сих пор просят более 1000 сварочных цехов в 13 странах решить их ручную и роботизированную сварку MIG — GTAW — Flux. Порошковая сварка — проблемы с качеством и производительностью сварки горячей проволокой TIG, SAW и плазменной сваркой.
Я представил этот сайт weldreality.com примерно в 1998 году, и этот сайт позволяет мне выразить свое разочарование, которое я обнаружил в большинстве своих глобальных опытов в области сварки.Сайт также позволяет мне обсуждать мою любимую тему, общие проблемы сварочного цеха и, что более важно, предоставлять тем, на кого не влияют продавцы, практические и экономически эффективные решения по сварке.
ОДИН САДОВЫЙ АСПЕКТ ГЛОБАЛЬНОЙ МИРОВОЙ СВАРНОЙ ПРОМЫШЛЕННОСТИ. ЭТО ЗАДАВАЕТСЯ НА ВЫЯВЛЕНИИ ДЕФЕКТОВ СВАРКИ, А НЕ НА ПРЕДОСТАВЛЕНИИ СОТРУДНИКОВ ЭКСПЕРТИЗЫ КОНТРОЛЯ ПРОЦЕССА, НЕОБХОДИМОЙ ДЛЯ «ПРЕДОТВРАЩЕНИЯ ДЕФЕКТОВ СВАРКИ».
На протяжении десятилетий в различных отраслях промышленности, таких как судостроительные верфи и автомобильные заводы, многие специалисты по сварке считают нормой ежегодно тратить тысячи или миллионы долларов на доработку сварных швов, бракованные швы, а также платить цену за низкую производительность сварки? Моя реальность, связанная с сваркой, заключалась в том, что большинство менеджеров и контролеров уделяют больше внимания квалификации своего персонала по контролю сварных швов, чем опыту процесса сварки, чем могут предотвратить проблемы со сваркой.Какая польза от квалифицированного инспектора сварного шва AWS, если он не знает средств управления процессом сварки и передовых методов сварки, которые необходимы для оптимизации сварных швов.
В конце концов, когда менеджеры или инженеры поймут, что их дорогостоящий отдел контроля качества и сварочный персонал не обеспечивают эффективных решений процесса сварки для ежедневных ручных или роботизированных сварочных проблем, менеджер может затем обратиться к более дорогостоящим решениям, таким как использование большего количества сварщиков. , Покупка большего количества роботов, добавление ручных сварочных аппаратов к роботизированным ячейкам или, как обычно, с N.Американская автомобильная промышленность передает сварные детали на аутсорсинг в южные штаты, где зарплата ниже, или, что еще лучше, в Мексику, где платят еще меньше. Или, возможно, вместо этого они могут пригласить местного торгового представителя по сварке, чтобы рассказать о новейшем оборудовании для импульсной сварки своих дистрибьюторов с завышенной ценой, которое во многих случаях будет загружено бесполезными электронными приборами. А если покупка нового сварочного оборудования не сработает, руководство может подумать о другом костыле, например о покупке еще одной бесполезной трехкомпонентной газовой смеси или дорогой сварочной проволоки с металлическим сердечником.Печальная реальность сварных швов для лиц, принимающих решения по сварке со всего мира, которым трудно постоянно добиваться полного ручного или роботизированного качества сварки и потенциала производительности с помощью наиболее широко используемых в мире процессов дуговой сварки MIG, Flux Cored и GTAW, так как в течение десятилетий ежедневно производились посредственные сварные швы. качество и производительность, а создание ненужных дорогостоящих переделок сварных швов стало нормой.
_____________________
БОЛЬШИНСТВО МЕНЕДЖЕРОВ НЕ ЗНАЮТ, ЧТО НАВЫКИ СВАРОЧНИКА ВСЕГДА БЫЛИ ВТОРИЧНЫМ ТРЕБОВАНИЕМ ДЛЯ ОПТИМИЗАЦИИ ПРОЦЕССА СВАРКИ:
PROAGENT ПРОБЛЕМЫ: Важным требованием к владению процессом сварки со стороны фронт-офиса является понимание компаниями, ключевыми лицами, принимающими решения в области сварных швов, ценности того, что на протяжении десятилетий известно немногим менеджерам или инженерам, является важным требованием: средства контроля сварочного процесса — передовой опыт в области сварочных работ.При недостаточной осведомленности эти знания редко требуются при составлении любых должностных инструкций по сварке. Это предмет, который я изучал в течение четырех десятилетий, и с момента внедрения процессов дуговой сварки квалифицированный менеджер по сварке будет знать, что не навыки сварщика являются наиболее важным атрибутом в сварочном отделе, а уровень сварочного шва. Опыт управления процессами и передовой практики, который позволяет организации последовательно достигать максимального и оптимального использования как сварочных процессов, так и используемых сварочных материалов.
ОБЯЗАТЕЛЬНО, ИНЖИНИРИНГ ЭТО НЕ ЭТО: Когда инженеры, менеджеры или супервайзеры сварочного цеха сталкиваются с проблемами, которые они не могут решить, они часто обращаются к местному торговому представителю. и в большинстве случаев это будет человек, который, вероятно, никогда не имел сварочного цеха. Сварочная промышленность — единственная техническая отрасль, которая полагается на неопытных продавцов или представителей оборудования для предоставления рекомендаций по сварочному процессу для решения проблем со сваркой в цехе, и это проблемы, которые обычно возникают на протяжении десятилетий, проблемы со сварочным оборудованием, которое обычно имеет два контроля сварки. .Как корпоративный тренинг или менеджер по сварочным продуктам в Linde, Airgas, AGA и Carbonic, я провел упрощенные программы обучения управлению сварочным процессом почти для четырех тысяч сотрудников отдела продаж сварочных швов в Северной Америке, и я пришел к выводу, что, возможно, пять из ста имели полное представление о типичном сварочном оборудовании и расходных материалах, используемых в сварочных цехах, которые они обслуживали.
Одна область, которая всегда резко показывает отсутствие контроля за процессом сварки MIG и передового опыта сварки, который преобладает на большинстве мировых автомобильных и грузовых заводов, находится в часто плохих, постоянно меняющихся данных сварки, которые имеют К сожалению, в подвесках роботов было предусмотрено:
Ради бога, персонал, «играющий» с данными контроля сварных швов в ячейке робота, не является признаком просвещенной инженерии и производителя.управление. Это показатель того, что руководство компании просто не осведомлено об опыте управления процессом сварки, который требуется техническим специалистам и инженерам для достижения наилучшего возможного качества и производительности роботизированной сварки.
На протяжении десятилетий большинство мировых производителей. и руководители предприятий не знали, что их инженеры или техники не обучались управлению процессом дуговой сварки в колледжах или университетах, которые предоставили им образование в области сварки. Однако уже более 20 лет этот опыт в форматах самообучения / обучения доступен здесь.ОТСУТСТВИЕ УПРАВЛЕНИЯ ПРОЦЕССОМ СВАРКИ И ОТСУТСТВИЕ НАИЛУЧШЕЙ ПРАКТИКИ СВАРКИ И ТАКЖЕ ОТСУТСТВИЕ ЭКСПЕРТИЗЫ СТОИМОСТИ СВАРКИ ПРОСТО ИСПРАВИТЬ:
Если менеджеры, инженеры и контролеры на предприятиях автомобильной и грузовой техники не понимают процесс сварки роботов контролировать требования к опыту владения процессом сварки, маловероятно, что их техники-роботы или те, кто вносит изменения в сварные швы, будут иметь такой опыт. Если бы редкий образованный руководитель завода или технический руководитель настоял на том, чтобы хотя бы один человек на их предприятии обладал навыками управления сварочным процессом и передовой практикой сварки, необходимыми для оптимизации качества или производительности процесса сварки, выполняемой роботом или вручную, то тот же самый менеджер также быть достаточно мудрым, чтобы гарантировать, что на их эксперта по контролю сварочного процесса была возложена ответственность обучить всех тех, кто работает как в главном офисе, так и в сварочном цехе, которые ежедневно принимают решения по сварке.
Имейте в виду, что я потратил десятилетия на то, чтобы упростить и упростить свои учебные ресурсы по ручному и роботизированному управлению процессом сварки, чтобы их мог представить любой, независимо от их опыта в области сварки. Между прочим, вполне логично, что в «Описание работы» каждого лица, принимающего решения по сварке, должны быть включены слова: «Должен иметь необходимый контроль сварочного процесса и опыт передовой практики сварки».
ЭТО БУДЕТ ШОРОЧНЫМ. «СВАРОЧНАЯ КОМАНДА» НА ЛЮБОМ ПРОИЗВОДСТВЕННОМ ОБЪЕКТЕ ЯВЛЯЕТСЯ ПРИЗНАКОМ «НЕОПЫТНОГО УПРАВЛЕНИЯ СВАРКОЙ».
СВАРОЧНАЯ КОМАНДА: Еще одна уникальная черта плохой практики сварочных цехов во всем мире заключается в том, что когда менеджеры, руководители или инженеры не имеют контроля над процессом сварки и не имеют опыта передовой практики, они часто создают команду сварщиков, команду, которая по иронии судьбы также будет испытывать недостаток в такой же опыт. Обычный менеджер в ответ на бесконечные проблемы со сваркой ежедневно принимает кислотно-восстанавливающий раствор TUM, чтобы контролировать изжогу, а затем созывает собрание КОМАНДЫ СВАРКИ. Слишком часто единственное, чего часто добиваются сварщики, — это потребление большого количества кофе и пончиков, потраченные впустую человеко-часы и еще большая путаница в процессе сварки, добавленная к установке.
Мои простые в освоении ручные и роботизированные средства управления процессом сварки и передовые практики самообучения или программ обучения обычно требуют всего 15–20 часов для изучения. Если бы это обучение проводилось для всего персонала компании, который ежедневно влияет на решения о сварке, реальность такова, что ни одному заводу или сварочному предприятию не потребуется «сварочная бригада», и причина будет в том, что все лица, принимающие решения по сварке, будут обучены контроль процесса сварки — требования передовой практики, которые позволяют им единообразно пройти один путь, необходимый для последовательной оптимизации процесса сварки вручную или с помощью роботов.Подумайте, насколько уникальным был бы этот завод, на котором все, кто участвует в принятии решений о сварке, были обучены требованиям к владению процессом сварки.
ВЛАДЕНИЕ процессами исходит от My MIG — Flux Cored и TIP TIG, Ручное и роботизированное управление процессом сварки и передовые методы сварки, программы обучения или самообучения.
ОДНАКО ПРОИЗВОДСТВЕННАЯ КОМАНДА ЛОГИЧЕСКАЯ. Вместо создания сварочной бригады роботов более логичным подходом в организации, которая понимает процессы сварки, было бы создание «производственной бригады».Это будет команда, состоящая из ключевого лица, принимающего решения о сварке роботов, и менеджеров по производству, качеству, техническому обслуживанию и проектированию. Основная ответственность производственной группы будет заключаться в том, чтобы гарантировать, что продукты для роботизированных ячеек должны быть доставлены своевременно, а детали, которые будут свариваться роботами, будут изготовлены в соответствии с указанной конструкцией, условиями и размерами (всегда редкое явление на плохо управляемых авто- и грузовых заводах).
2020.В сварочных цехах, которые производят сварные швы нормального качества в таких отраслях, как энергетика, авиакосмическая промышленность, нефть. Медицина и оборона, вы обнаружите, что многие застряли в 20 веке. И вы часто обнаружите, что их сварочные отделы придерживаются менталитета «так они всегда делали это». Внимание! Существует десятилетний процесс сварки под названием TIP TIG, который позволит сварочным цехам использовать этот простой в использовании процесс и производить рентабельные сварные швы без необходимости доработки сварных швов.
TIP TIG — это процесс, который мой деловой партнер Том и я купили в Северной Америке и создали нашу компанию под названием TIP TIG USA.Мы также представили TIP TIG в Австралии и Китае. Подходящие сварочные процессы для TIP TIG и где этот процесс следует использовать вместо GTAW — процессы импульсной MIG, порошковой сварки и сварки горячей проволокой кратко обсуждаются на этой странице, а самые обширные в мире данные TIP представлены в TIP TIG. раздел, и на моем веб-сайте tiptigwelding.com, доступном в феврале 2020 г. Однако мне хорошо известно, что в отношении изменений в процессе сварки и эволюции сварочного цеха с теми сварочными цехами, которые не имеют права собственности на процесс сварки, обычно будет главное общее препятствие, которое необходимо преодолеть, и это будет отношение сварочного отдела к изменениям.
В высококонкурентной отрасли опытный руководитель сварочного цеха, руководитель или инженер никогда не должен допускать такого отношения. Если бы я пил пинту пива Guinness каждый раз, когда слышал это в сварочном цехе, я бы стал совладельцем пивоварни Guinness.АГРЕССИВНЫЙ БЫСТРАЯ ЭВОЛЮЦИЯ ПРОЦЕССА ДУГОВОЙ СВАРКИ, КОТОРАЯ ПРОИЗВОДИЛАСЬ В КИТАЕ : Мне хорошо известны причины, по которым «ИЗМЕНЕНИЯ» для многих сварочных цехов трудно осуществить, в конце концов, позволяют Признайтесь, в этой отрасли за последние 60 лет мало прогрессивных или рентабельных изменений в процессе дуговой сварки сталей и легированных сталей.Однако 20-й век прошел, и в сварочной промышленности Северной Америки никогда не было более важного момента для ключевых лиц, принимающих решения в области сварки, чтобы принять рентабельные изменения в процессе сварки, причина проста. Китай с населением 1,4 миллиарда человек и Индия с 1,3 миллиардами населения в 2020 году будут иметь такое же оборудование для ручной и автоматической дуговой сварки и расходные материалы, как и любая другая страна, с их значительными преимуществами в стоимости сварочного труда. Реальность сварки такова, как вы увидите в разделе TIP TIG и на моем новом веб-сайте https: // tiptigwelding.com заключается в том, что в аэрокосмической, энергетической, нефтяной и оборонной отраслях, когда речь идет о ручной и автоматической дуговой сварке, Китай (помимо двух сварщиков) уже на десять лет является главой Северной Америки.
ВМЕСТО ПРИОБРЕТЕНИЯ НИЗКОГО ПРОЧНОГО ОБОРУДОВАНИЯ CV MIG, МЕНЕДЖЕРЫ, НАПРАВЛЯЮЩИЕСЯ НА КОНСУЛЬТАЦИИ ПО ПРОДАЖЕ СВАРКИ, ЧАСТО ТРАТИТЕ НА 200–300% БОЛЬШЕ НА ОБОРУДОВАНИЕ ДЛЯ ИМПУЛЬСНОЙ СВАРКИ, ПОЛУЧАЮЩЕЕ ВРЕМЯ СТАЛИ И БЕЗ НЕРЖАВЕЮЩЕЙ СТАЛИ? Конечно, электроника в оборудовании MIG открыла интересные возможности режима переноса сварного шва, особенно при импульсной сварке алюминия MIG.Однако большая часть электроники, которая с 1980-х по 2020 год использовалась в импульсном MIG-оборудовании, используемом для сварки сталей и сплавов, на самом деле в основном были бесполезными BELL & WHISTLES.
НЕСКОЛЬКО СВАРОЧНЫХ МАГАЗИНОВ ЗНАЮТ ОТРИЦАТЕЛЬНОЕ КАЧЕСТВО И СТОИМОСТЬ СВАРКИ ИМПУЛЬСНЫМ МИГ: Любой, кто когда-либо выполнял макросварку стали или нержавеющей угловой сварки на стали толщиной> 5 мм, узнает о сварке MIG. В режиме распыления, который, к сожалению, имеет низкое соотношение энергии сварного шва к массе сварного шва, будет наблюдаться, что достигнутая сварка сварного шва часто бывает плохой или предельной.Когда этот режим распыления изменяется на импульсный режим, который может обеспечить такой же потенциал наплавки, как и распыление, но при этом проводит 50% своего времени при низком фоновом токе, тогда не должно быть сюрпризом обнаружение, что этот режим с более низкой энергией будет В отличие от сварки распылением, он не улучшает плавление сварного шва или не снижает пористость сварного шва, но этот импульсный режим MIG подходит для сварных швов, требующих более низкой энергии шва, сварных швов на стали, алюминия и плакированных швов. Я написал книгу по MIG и Pulsed MIG более 20 лет назад.Эта книга называлась «Руководство по MIG для менеджеров и инженеров». В этой книге я посвятил более 100 страниц тому, что не так с импульсным режимом MIG для сварки сталей и сплавов, и все вопросы, которые я обсуждал тогда, актуальны и сегодня. в 2020 году. Кстати, те сварочные цеха, которые приобрели дорогостоящее оборудование для импульсной сварки MIG для уменьшения брызг при сварке, могли бы потратить 200 долларов на одну из моих программ обучения MIG и избавиться от проблем с разбрызгиванием с помощью чего-то, называемого «Экспертиза в области контроля сварочного процесса».
В 1970-х и 1980-х годах, используя дешевое оборудование для сварки сварочным электродом в среде сварки, я показывал сварочные цеха, как выполнять сварку короткого замыкания MIG без брызг.
CV Источник питания 1983 года выпуска. Стоимость 1300 долларов США, обеспечивает сварку короткого замыкания без разбрызгивания. Между прочим, какие настройки сварки MIG со стальной проволокой 035 и 80-20 CO2 вы бы набрали, чтобы убедиться, что сварка находится в оптимальной точке, обеспечивая максимальное количество коротких замыканий в секундуЕСТЬ ДВА СПОСОБА ЗАПУСКАТЬ СВАРКУ МАГАЗИН. ОДИН С ВОЗМОЖНОСТЬЮ ВЛАДЕНИЯ СВАРОЧНЫМ ПРОЦЕССОМ. ДРУГАЯ С КОНСУЛЬТАЦИЕЙ ПРЕДСТАВИТЕЛЯ ПО СВАРОЧНЫМ ПРОДАЖАМ.
В шестидесятые годы я запустил сварочные тракторы для сварки MIG и порошковой проволокой на заводе Massey Ferguson в Манчестере, Англия, и сегодня, в 2020 году, в любом сварочном цехе по всему миру я мог бы взять источник питания CV MIG 1960-х годов или новый 2020 года за 2500 долларов. Источник питания CV MIG и опыт управления сварочным процессом MIG неизменно обеспечивают оптимальное качество сварных швов без брызг на любых деталях из стали и легированной стали от 14 калибра до любой толщины.Таким образом, реальность сварки для одного или двух читателей, которые знают об этом веб-сайте 20-летней давности, заключается в том, что если сварочный цех в основном сваривает алюминиевые детали толщиной менее 6 мм, то покупка импульсного источника питания MIG дает много преимуществ для сварки. Однако, если сварочный цех сваривает более толстые алюминиевые детали, сварочный цех достигнет лучшего качества сварки алюминия за счет использования режима распыления CV на более дешевом оборудовании CV MIG. Если сварочный цех сваривает в основном сталь и сплавы, сварочный цех сэкономит деньги, если просто купит агрегаты CV MIG, которые обычно могут стоить на 100–200% меньше.Подумайте об экономии для сварочного цеха за счет возможности приобрести более дешевое, простое в ремонте, более долговечное оборудование CV, которое имеет два простых элемента управления сваркой, а для случайных сварных швов алюминия предоставляет переносную установку импульсной сварки MIG. Подобные решения по сварке требуют менеджеров и инженеров, способных владеть процессом сварки. Менеджеры, которые знают, что они могут оптимизировать свои стальные MIG и порошковые сварочные швы с помощью недорогого оборудования CV MIG, потому что они предоставили всему своему сварочному персоналу необходимые средства управления процессом сварки MIG — обучение передовой практике сварки.
ПОКУПКА ТРЕХКОМПОНЕНТНЫХ ГАЗОВЫХ СМЕСЕЙ И МЕТАЛЛИЧЕСКИХ ПРОВОДОВ ТАКЖЕ ЧАСТО ВЛИЯЕТСЯ НА ПРОДАЖИ БЫЧЬЕГО ФЕКАЛЬНОГО ВЕЩЕСТВА: Хотя некоторые металлические порошковые проволоки, содержащие сплавы, могут быть полезны для высокопрочных применений при сварке низкоуглеродистых сталей. Я никогда не видел сварного шва с металлической сердцевиной, который я не мог бы воспроизвести с помощью более дешевой проволоки MIG. Что касается этих трехкомпонентных газовых смесей MIG, как ключевой составитель технических условий на защитный газ AWS MIG, я хотел бы проинформировать любой сварочный цех, который за последние четыре десятилетия приобрел трехкомпонентную газовую смесь MIG для сталей и сварных швов легированных сталей, которые В дорогостоящих трехкомпонентных газовых смесях MIG никогда не было необходимости, а добавление кислорода в газовую смесь создавало больше негативных характеристик сварного шва, чем преимуществ.Я признаю, однако, что и металлическая порошковая проволока, и трехкомпонентные газовые смеси всегда были хорошим инструментом для дистрибьюторов сварных швов, чтобы вести газовый бизнес в сварочных цехах, которые не имели возможности владеть процессом сварки MIG.
Во многих случаях сварки сталей и сплавов на протяжении десятилетий обычная бесполезная электроника, используемая в импульсном оборудовании MIG, была хорошим компаньоном для бесполезных трехкомпонентных газовых смесей MIG и металлической порошковой проволоки, которые также использовались в качестве костыля. те, кому не хватало опыта в области контроля сварочного процесса. Примечание. Три десятилетия бессмысленных проблем с газовой смесью MIG и оборудования для импульсной MIG, а также данные о неразберихе процесса доступны в разделах MIG и в моей программе обучения MIG.
ГАЗОЗАЩИТНАЯ ФЛЮСОВАЯ ЖЕЛУДКА: в 2020 году большинство сварочных цехов по всему миру также могут быть удивлены, узнав, что и GTAW, и процесс с нанесением порошковой проволоки с защитным газом — плохой выбор для многих сварных швов нормативного качества. Для тех, кто использует в 2020 году всю позиционную порошковую проволоку с защитным газом для применений, требующих рентгеновского или ультразвукового контроля, возникает резонный вопрос: почему какой-либо сварочный цех выбрал бы такой процесс сварки, как порошковая сварка, при котором независимо от навыков сварщика, ненадежное качество сварного шва, избыточная пористость, проблемы с плавлением сварного шва с улавливанием шлака, избыточное разбрызгивание и избыточный сварочный дым будут нормой.
ЕЕ 2020, И КТО-ТО ЗАБЫЛ СКАЗАТЬ СВАРОЧНЫМ МАГАЗИНАМ, ЧТО В ПОСЛЕДНЕМ ДЕСЯТИЛЕТИИ ПРОЦЕСС GTAW УСТАРЕЛ: И если сварочный цех все еще использует DC семидесятилетней давности. Процесс TIG для сварки деталей, требующих большого количества сварных швов, который менеджер не разочаровался, имея дело с этим сверхмедленным процессом, который требует высочайших навыков сварщика, а также обеспечивает высокий нагрев свариваемых деталей. Примечание. Для тех, кто интересуется хорошо задокументированными проблемами, возникающими с обычными процессами MIG — Pulsed MIG — GTAW-Flux Cored, а также проблемами с их оборудованием и расходными материалами при ручной сварке и сварке роботов, посетите разделы моих программ.Хотя импульсная сварка MIG, TIG на постоянном токе и сварка порошковой проволокой в среде защитного газа с 1960-х гг. Отвечали за выполнение большинства ежедневных сварочных швов мирового качества, соответствующих стандартам качества, в 2019 г. немногие сварочные цеха знают, что уже более десяти лет был альтернативным, превосходным, «ручным, полуавтоматическим и полностью автоматизированным» процессом сварки под названием TIP TIG.
СОВЕТ TIP TIG — это процесс, который на первый взгляд может показаться некоторым сварщикам чем-то средним между процессами TIG и MIG.Однако это процесс, при котором требуется сварка стандартного качества, TIP TIG обеспечит более высокие характеристики сварки, чем TIG — импульсная сварка MIG — сварка с порошковым флюсом в среде защитного газа и сварка TIG горячей проволокой.
TIP TIG — это простой в использовании полуавтоматический и полностью автоматизированный процесс дуговой сварки. Когда требуются сварные швы стандартного качества, за счет постоянного обеспечения максимальной энергии сварного шва в инертной атмосфере (лучший сварочный шов с самой низкой пористостью) наряду с достижением самого низкого тепловложения свариваемой детали за счет полярности постоянного тока и увеличения скорости перемещения.В отличие от GTAW — Pulsed MIG — FCAW и Hot Wire TIG, процесс TIP TIG всегда обеспечивает наилучшее качество сварки, а также механические и коррозионные свойства детали.
___________________-TIP TIG обеспечивает высочайшую энергию и текучесть сварного шва, высочайшую чистоту сварного шва, а также обеспечивает наименьший нагрев сварных деталей с помощью простого в использовании процесса для сварки любых металлов в любых областях применения размер, и сварные швы в любом положении.
. https://tiptigwelding.com КОГДА ТИП ТИГ В СЕВЕРНОЙ АМЕРИКЕ В 2009 ГОДУ И Я НАЧИНАЛ «TIP TIG USA», ЭТОТ ПРОЦЕСС СОЗДАЛ НОВЫЕ ДРАМАТИЧЕСКИЕ ВОЗМОЖНОСТИ ДЛЯ СВАРКИ И МАГАЗИНОВ СВАРКИ В Северной Америке. КИТАЙ.2020. Я прогнозирую, что к 2025 году запатентованный компанией Plasch Austria процесс TIP TIG, который я и мой деловой партнер Том представили в Северной Америке, Китае и Австралии в 2009 году, будет самым широко используемым процессом дуговой сварки в мире, который ассоциируется с большинством сварных швов стандартного качества.
Благодаря такому большому количеству преимуществ в области защиты от сварочных, металлургических, механических, коррозионных, а также сварочных дымов, полученных с помощью TIP TIG, преимуществ, изложенных на этой странице и особенно в моей комплексной программе «TIP TIG», которая предоставляет данные TIP TIG этого нет ни на одном другом глобальном веб-сайте. Для любого сварочного цеха реальность сварного шва такова, что когда требуется максимально возможное качество для всех положений, корня или насадки, углового или стыкового соединения, мелких или крупных деталей, ручного или автоматического применения, сварочный цех обнаружит, что TIP TIG будет проще. использовать (меньше навыков) и всегда обеспечивать превосходное качество сварки, чем традиционная сварка TIG на постоянном и переменном токе — импульсная сварка MIG — STT MIG — RMD MIG, порошковая сварка, а также процесс сварки горячей проволокой.
Примечание: для тех, кто может не согласиться с приведенным выше утверждением TIP TIG, зачем тратить время на споры, в конце концов, для демонстрации TIP TIG в любом сварочном цехе потребуется менее 60 минут, чтобы доказать, что TIP TIG Качество сварных швов и экономичность превосходят то, что ваша компания производит в настоящее время. Конечно, местный торговый представитель. который имеет степень в области гуманитарных наук или истории и, вероятно, не продает TIP TIG, могут не согласиться, и вместо этого, возможно, они захотят, чтобы вы попробовали их последний электронный источник питания MIG или другую бесполезную трехкомпонентную газовую смесь MIG.
На этом сайте большое внимание уделяется технологическому опыту, которого слишком часто не хватает в глобальных сварочных цехах, а также сравнениям процессов сварки GTAW — Pulsed MIG — FCA и TIP TIG для общих, качественных глобальных сварочных цехов. Обратите внимание: сравнение процессов сварки будет иметь большее значение, когда те, кто заинтересован в сопоставлении, имеют средства управления процессом сварки и опыт передовой практики сварки, которые необходимы для оптимизации обычного процесса дуговой сварки, используемого в их сварочных цехах.
ТАК, ЧТО ВЫ ДУМАЕТЕ, ДЕЛАЕТ ИДЕАЛЬНЫЙ ПРОЦЕСС ДУГОВОЙ СВАРКИ? Если бы я спросил у опытного сварщика, каковы, по вашему мнению, ключевые характеристики процесса сварки, позволяющие добиться идеального процесса сварки для большинства сварных швов нормативного качества. Ниже будет мой список.
- Процесс сварки должен быть простым в использовании, полуавтоматическим и автоматическим.
- Должен иметь возможность сварки как для открытых корневых, так и для заполняющих проходов для любых применений и металлов, и подходить для сварки на любой толщине.
- Должен обеспечивать максимальную энергию сварного шва (текучесть) для достижения оптимального сварного шва со всеми металлами. (невозможно с MIG или FCAW.
- Должны обеспечивать умеренные скорости наплавки во всех положениях, чтобы при производстве экономичных сварных швов также был обеспечен важный баланс между количеством наплавленного сварного шва и подаваемой энергией сварки.
- Должен обеспечивать атмосферу инертной плазмы, которая сводит к минимуму окисление сварных швов и пористость.
- Не должен иметь брызг или шлака.
- Должен обеспечивать автоматический контроль данных начала / окончания сварки.
- Должен обеспечивать соблюдение полярности EN, которая обеспечивает при достигнутых скоростях сварки наименьшее тепловложение свариваемой детали, обеспечивающее наименьшую HAZ сварного шва, а также наилучшие механические и коррозионные свойства.
- Должен быть простым в настройке.
- Не требуется более трех настроек для всех сварных швов.
Обратите внимание, что в 2020 году будет только один процесс сварки, обеспечивающий вышеуказанное, и это процесс TIP TIG десятилетней давности. https://tiptigwelding.com
ПОЖАЛУЙСТА, ЗНАЙТЕ, ЧТО ВСЕ, ЧТО УКАЗАНО НА ДАННОМ САЙТЕ, Я МОГУ ДЕМОНСТРИРОВАТЬ И ДОКАЗАТЬ МЕНЬШЕ ЧАСА В ЛЮБОМ СВАРОЧНОМ МАГАЗИНЕ.
УМЕРЕННЫЕ СКОРОСТИ НАПЛАВЛЕНИЯ СВАРКИ И ВЫСОКАЯ ЭНЕРГИЯ СВАРКИ ПОСТОЯННЫМ ТОКОМ ОБЕСПЕЧИВАЮТ НАИЛУЧШУЮ ВСЕПОЗИЦИОННУЮ СВАРКУ.Когда в сварочном цехе есть все позиции, простой в использовании процесс, такой как TIP TIG, который обеспечивает умеренную скорость наплавки, которая обеспечивает максимальную энергию и текучесть сварных швов, защищенных инертным газом, для сварочного цеха это позволяет достичь Максимально возможное качество дуговой сварки в любом масштабе. Когда вы объединяете качество сварного шва TIP TIG с DCEN TIP TIG и скорость сварки, чтобы обеспечить минимально возможное тепловложение сварочного шва на свариваемые детали, это обеспечивает сварочный цех, возможность ручной и автоматической сварки для устранения обычно ожидаемых доработка сварного шва для любого применения.А также иметь возможность сваривать любой свариваемый металл, не беспокоясь о металлургических проблемах сварного шва. Сварочные швы TIP TIG, показанные на этой странице и в разделе TIP, не могут быть дублированы никакими обычными оптимальными сварочными швами TIG, импульсной MIG или порошковой сваркой.
Примечание. Да, с традиционным процессом TIG на постоянном токе weler всегда может обеспечить отличное качество сварки, но с ручной TIG на постоянном токе сварщик не может достичь энергии сварного шва TIP TIG, однородности и непрерывности сварки TIP TIG, которые определяют скорость сварки, скорости наплавки TIP TIG. и снижение затрат на сварку, а с TIP TIG сварочный цех может производить на большинстве деталей> 2 мм наименьший нагрев сварных деталей, который влияет на металлургию и возможности применения.
Когда я впервые представил TIP TIG в Северной Америке и Австралии примерно в 2009 году, я прекрасно понимал, что этот уникальный процесс существенно изменит правила игры для сварочных цехов, и его придется сравнивать с традиционными процессами дуговой сварки, которые используются. сварочными цехами, особенно сварными швами стандартного качества. При обсуждении сравнений процессов сварки полезно, если те, кто проводит сравнения процессов, сначала обладают средствами управления процессом сварки и передовой практикой сварки, которые необходимы для постоянного достижения качества процесса сварки и оптимизации производительности с помощью процессов сварочного цеха, которые они используют ежедневно.(доступно с моими недорогими программами обучения оптимизации сварочного процесса), однако суть в том, что не существует оптимальных сварных швов с импульсной сваркой MIG — GTAW и порошковой порошковой защитой в среде защитного газа, которые соответствовали бы показателям качества сварки в верхнем левом углу а также с другими сварными швами TIP TIG, показанными здесь и в моем разделе TIP TIG.
Некоторые процессы, описанные в разделе процессов на этом сайте, просто не способны обеспечить стабильно оптимальное качество сварки. Сварочные мастерские знают, что при ручной сварке, независимо от навыков сварщика, такие процессы дуговой сварки, как импульсная MIG и порошковая сварка в среде защитного газа, во многих случаях просто не способны обеспечить стабильную бездефектную сварку.Проблемы, присущие процессу сварки, которые влияют на качество сварки, подробно обсуждаются в моем TIP TIG и в разделах программы сварки MIG и порошковой сваркой.
Некоторые из вас, которые посетили мои семинары по контролю процесса или приобрели мои обучающие программы по Weldreality, будут знать, что я специализировался на требованиях к контролю процесса сварки и передовой практике сварки в течение почти пяти десятилетий, в течение которых я работал в этой области. промышленность. Ручная, автоматическая или роботизированная сварка, я знаю качество каждого процесса дуговой сварки — производительность и возможности для любых металлов в любых приложениях.Я также хорошо осведомлен о проблемах, связанных со сваркой, которые будут возникать в результате процесса сварки и используемых расходных материалов, а также о проблемах, которые возникают из-за обычных плохих методов сварки, используемых сварщиками. Так что, пожалуйста, имейте это в виду в моем совете по сварке, я родился в Манчестере, Великобритания, и в целом манкунианцы — это люди с хорошим чувством юмора, у которых нет времени на болтовню. Я не продаю сварочную продукцию, и из моих уст вы никогда не услышите о сварочном оборудовании или технологической предвзятости. Однако на протяжении десятилетий я предлагаю то, чего в целом не хватает в большинстве сварочных цехов мировой сварочной индустрии, а именно необходимые программы самообучения / обучения по управлению процессом сварки и передовой практике сварки, которые помогут любому персоналу компании добиться наилучшего качества сварки. результаты с использованием MIG — FCAW — Advanced TIG, а также процесса TIP TIG.
Если бы человек хотел найти доказательства слишком часто плохого, застойного состояния мировой сварочной индустрии, он мог бы начать в двух разных отраслях, таких как судостроение и автомобилестроение. На большинстве мировых судостроительных предприятий из-за отсутствия управления сваркой и владения инжинирингом, а также отсутствия опыта в области контроля сварочного процесса, как правило, всегда проводится обширная ненужная дорогостоящая ручная доработка сварных швов. И в авто. грузовых автомобилей, бункеры, которые выстилают проходы роботов, обычно будут полны бракованных сварных швов и переделок из-за низкого качества сварки MIG роботов, и некоторые из роботов на заводах будут достигать оптимального потенциала производительности роботизированных сварных швов.
На десятилетия. В результате ненужной переделки сердечника из флюса и переделки сварных швов MIG были потеряны миллионы долларов на каждое построенное судно, и причина проста: общий фронт-офис военно-морского флота и верфи, отсутствие контроля за процессом сварки и передового опыта в области сварочных работ.
В 2020 году, и, как они делали на протяжении десятилетий, мировые верфи военно-морского флота, строящие суда стоимостью в несколько миллионов долларов, будут значительно превышать свои бюджеты на доработку сварных швов, часто на миллионы долларов, и тем не менее судостроительный завод;
- ИСПОЛЬЗУЮТСЯ НЕОБХОДИМЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СВАРКИ.
- ПРОЦЕССЫ СВАРКИ ОДОБРЕНЫ.
- КВАЛИФИЦИРОВАННЫЕ ПРОЦЕДУРЫ СВАРКИ.
- ОБУЧЕНИЕ СВАРОК.
- СВАРОЧКИ БЫЛИ КВАЛИФИЦИРОВАНЫ.
- И ОТДЕЛ ОБЕСПЕЧЕНИЯ ОБЕСПЕЧЕНИЯ ОБЕСПЕЧЕНИЯ ОБЕСПЕЧЕНИЯ ДЕЯТЕЛЬНОСТИ ЕЖЕДНЕВНО ДОЛЖЕН БЫТЬ ЭФФЕКТИВНОЙ ЧАСТЬЮ ПРОЦЕССА СТРОИТЕЛЬСТВА СУДНА.
- ТАК МОЖНО УГАДАТЬ, ПОЧЕМУ НИКОГДА НЕ ПРЕКРАЩАЕТСЯ ВОПРОСЫ СВАРКИ, И ЧТО ТАКОЕ ОТСУТСТВУЕТ ССЫЛКА?
___________
С любым предприятием, которое применяет годовой бюджет для предполагаемого ремонта сварных швов, вы можете предположить, что руководство производства создало этот бюджет на основе своей истории типичных прошлых ежегодных затрат на ремонт сварных швов. что ключевые лица, принимающие решения по сварке, затем будут стремиться снизить затраты на ремонт сварных швов.И все же на верфях вы обнаружите, что годовые затраты на ремонт сварных швов редко снижаются, и в большинстве случаев опять же из-за отсутствия опыта управления и разработки процессов, затраты на ремонт сварных швов, как правило, снова будут, как в фильме «День сурка», повторяться и часто значительно превышают бюджет ремонта сварных швов, иногда на многие миллионы долларов.
ПОЧЕМУ С ПРОСТОЙ КОНТРОЛЬНОЙ СВАРКОЙ ПРОЦЕССЫ ДУГОВОЙ СВАРКИ ЕСТЬ ТАК МНОГО ВОПРОСОВ СВАРКИ: Логичный менеджер или инженер спросит, почему с простой настройкой, двумя регулировками, процессом сварки MIG и сваркой порошковой проволокой, которые используются ежедневно для большинства Большинство дуговой сварки, два процесса, которые практически не изменились за многие десятилетия, продолжают ли ответственные менеджеры и инженеры не справляться со своей задачей владеть этими сварочными процессами и лучше управлять своим повседневным качеством и производительностью сварки? Кроме того, почему после десятилетий опыта работы с этими двумя сварочными процессами мало свидетельств того, что контроль процесса сварки и эволюция передовых методов сварки во всей мировой сварочной индустрии отсутствуют?
Посмотрим правде в глаза, любому, кто провел 30 минут на этом веб-сайте, не нужно быть ученым-ракетчиком, чтобы понять, почему нескончаемые проблемы со сваркой на верфи или автомобильном заводе продолжаются десятилетиями или почему большинство авиакосмическая, энергетическая, нефтяная и оборонная промышленность застряли в сварке 20 века.Ниже приведены пять основных причин возникновения многих глобальных проблем со сваркой.
[1] МНОГИЕ МЕНЕДЖЕРЫ НЕ ЗНАЮТ, ЧТО РУКОВОДСТВО — УПРАВЛЕНИЕ ПРОЦЕССОМ СВАРКИ РОБОТА И НАИЛУЧШИЕ ПРАКТИКИ СВАРКИ ЯВЛЯЮТСЯ СУЩЕСТВУЮЩИМИ ЭКСПЕРТИЗАМИ.
[2] НЕКОТОРЫЕ ЛИЦА, ПРИНИМАЮЩИЕ РЕШЕНИЯ ПО СВАРКЕ, ОБЛАДАЮТ ЭКСПЕРТИЗОМ, ЧТОБЫ БЫСТРО ИЗМЕНИТЬ РАСХОДЫ НА ОБЫЧНУЮ СВАРКУ МИГ ИЛИ ФИЛЕМ 1/4 6 мм.
[3] ИНЖЕНЕРЫ И ТЕХНИКИ НЕ ОБУЧАЮТСЯ УПРАВЛЕНИЮ ПРОЦЕССОМ СВАРКИ И НАИЛУЧШИМ МЕТОДАМ СВАРКИ.
[4] РУКОВОДИТЕЛЬ И НАБЛЮДАТЕЛИ ПРИНИМАЮТ, ЧТО ИХ СВАРОЧНЫЙ ПЕРСОНАЛ ДОЛЖЕН ИГРАТЬ С КОНТРОЛЯМИ СВАРКИ.
[5] РУКОВОДИТЕЛИ, ИНЖЕНЕРЫ И НАБЛЮДАТЕЛИ НЕ СООТВЕТСТВУЮТ ОБЯЗАННОСТИ УЗНАТЬ ТРЕБОВАНИЯ К ВЛАДЕЛЬСТВУ ЗА ПРОЦЕСС СВАРКИ.
Я приношу свои извинения за размер этого веб-сайта, однако он составляет 25% от того, чем он когда-то был, однако обсуждаемые сварочные процессы и приложения разнообразны, процесс сварки является обширным, а также последствиями дорогостоящего качества дуговой сварки и Проблемы производительности, которые ежедневно влияют на большую часть мировой сварочной отрасли, продолжаются в течение пяти десятилетий, которые я работаю в этой отрасли.Как бы то ни было, на самом деле сварка такова, что процесс контроля — предметы передовой практики сварки должны быть интересны всем, кто называет себя профессионалом в области сварочных работ.
С 1980-х годов я документировал общие глобальные проблемы дуговой сварки, которые меня попросили решить в более чем 1000 сварочных цехах в 13 странах. Я написал 35 статей и опубликовал четыре книги по вопросам сварки MIG и порошковой проволокой, а также решениям по управлению технологическим процессом. Я всегда стремился упростить и сконцентрировать внимание на вопросах управления процессом сварки и передовых методов сварки и передать их всем лицам, принимающим решения в области сварки.Я потратил десятилетия на разработку недорогих ресурсов управления процессами, доступных на этом сайте, которые позволяют менеджерам и инженерам взять на себя ответственность за свои сварочные процессы, однако печальная реальность сварки заставляет их покупать эти ресурсы, в большинстве случаев это все равно что получить мула. пить воду из поилки.
2109: Что касается отсутствия эволюции сварных швов, они всегда будут местом для традиционного процесса TIG (слева), однако, как вы прочитаете ниже, этот процесс 75-летней давности больше не должен обеспечивать оптимальную дуговую сварку процесс выбора с большинством сварных швов стандартного качества.
На этой домашней странице я начну с некоторой общей информации о трех основных распространенных процессах дуговой сварки, которые будут использоваться в следующие десятилетия: импульсной сварке MIG, порошковой порошковой сварке в среде защитного газа и наиболее важным из них будет TIP TIG. процесс. Читатель найдет с этими тремя сварочными процессами наиболее полные данные по ручному и роботизированному контролю процесса сварки в разделах программ этого сайта, а также в моих книгах по сварке и учебных материалах. И хотя сайт многословен из-за своего возраста и нескончаемых глобальных проблем в сварочных цехах, я надеюсь, что некоторые читатели найдут информацию, которая может позволить любой организации выбрать единственный путь, необходимый для оптимизации процесса сварки, путь, который гарантирует каждому из трех сварочных процессов, сварные швы наилучшего, стабильного и однородного качества всегда, конечно, получаются с наименьшими затратами на сварку.
Поскольку MIG является наиболее широко используемым процессом дуговой сварки в мире, у вас никогда не будет достаточно информации о MIG.ДЛЯ МЕНЯ, В ЭТОЙ ОТРАСЛИ ПРОШЛО 50 ЛЕТ, И Я ВИЖУ НЕБОЛЬШИЕ ИЗМЕНЕНИЯ. Некоторым может показаться ироничным, что большинство проблем со сваркой MIG, о которых я писал в 1970-80-х годах, являются теми же проблемами, что и проблемы со сваркой MIG, возникшие в 2020 году. Обратите внимание, что обширные данные о процессе импульсной MIG и Подробные сведения об оборудовании импульсной MIG можно найти в разделе программ MIG.
РЕАЛЬНОСТЬ СВАРКИ ЯВЛЯЕТСЯ ТО, ЧТО НЕСКОЛЬКО СВАРОЧНЫХ МАГАЗИНОВ ЗНАЛИ О ДЕСЯТИЛЕТИЯХ НЕПРАВИЛЬНОЙ ЭФФЕКТИВНОСТИ СВАРОЧНОГО ОБОРУДОВАНИЯ ДЛЯ ОБОРУДОВАНИЯ ДЛЯ ИМПУЛЬСНОЙ СВАРКИ, ЭТО ПРОСТО ЕЩЕ ОДИН ИНДИКАЦИЯ ОТСУТСТВИЯ ПРОЦЕССА СВАРКИ.
Если бы читатель попросил своих опытных сотрудников сварочного цеха объяснить, почему им нужно импульсное оборудование MIG для сварки стальных швов, я могу заверить вас, что в их ответах, вероятно, будет много указаний на путаницу в их процессе сварки MIG. .И если ответственных за сварочные швы фронт-офиса спросят, почему им следует покупать импульсную сварку MIG для стальных сварных швов, они, скорее всего, расскажут вам все причины, по которым их местный торговый представитель. (у которого никогда не было сварочного цеха) сказал им.
Я написал ок. сто тысяч слов о том, почему импульсная MIG не является обязательной в сварочном цехе, который сваривает в основном сварные швы из стали и легированных сталей, и с введением TIP TIG, когда принимаются рациональные решения по выбору процесса сварки, закупка оборудования для импульсной сварки MIG должна снизиться. особенно когда требуются стальные сварные швы любого нормативного качества.Если у вас, как у меня, нет такой жизни, то в разделах, посвященных процессу импульсной сварки и оборудованию MIG, описаны десятилетия проблем ручной и роботизированной импульсной сварки MIG.
[] СВАРОЧНЫЕ РОБОТЫ БЫСТРО ВЫЯВЛЯЮТ ОТСУТСТВИЕ УПРАВЛЕНИЯ ПРОЦЕССОМ СВАРКИ ВЛАДЕНИЕ:
Импульсная сварка MIG или обычная сварка CV MIG, вы могли бы подумать, что было бы логичным, чтобы лица, ответственные за решения роботизированной сварки MIG, знали о процессе сварки и различия в режимах переноса сварного шва, чтобы они могли наилучшим образом использовать режимы сварки для достижения оптимизации роботизированной сварки.Вы также можете подумать, что лица, принимающие решения о сварке в головном офисе, будут знать, что их сотрудникам в большинстве случаев не хватает средств управления процессом сварки MIG с помощью роботов и опыта передовой практики сварки, которые необходимы для обеспечения стабильного и оптимального качества сварки MIG и производительности роботов, конечно, всегда. с наименьшим временем простоя робота.
[] ДЕСЯТИЛЕТИЯ ПРОДАЖ СВАРОЧНОГО ГАЗА И ЦЕХОВ СВАРКИ BS:
В Северной Америке доступно сорок с лишним газовых смесей MIG, и несколько сварочных цехов знают, что не более четырех газовых смесей MIG имеют когда-либо требовалось для всех сварных швов MIG.Большинство продаваемых газовых смесей MIG — это просто результат яркого воображения менеджера по маркетингу или продажам газа. Примечание. Как менеджер по маркетингу промышленных газов в компаниях Airgas, AGA и Liquid Carbonic, я разработал или представил в Северной Америке 4 самых продаваемых газовых смеси MIG. Если интересно, посетите мой газовый раздел MIG.
[] ПРОФЕССИОНАЛ-СВАРОК, ОБЛАДАЮЩИЙ СОБСТВЕННЫМИ ВОЗМОЖНОСТЯМИ, ОБЕСПЕЧИТ УПРОЩЕНИЕ, УНИКАЛЬНОСТЬ И ОБЕСПЕЧЕНИЕ ОБУЧЕНИЯ СОТРУДНИКОВ КОНТРОЛЮ ПРОЦЕССА — ТРЕБУЮТСЯ ЛУЧШИЕ ПРАКТИКИ.
Независимо от того, какая сварочная проволока подключается к источнику питания MIG, а также какой металл шва и его область применения, как показано в моем обучении / самообучении Управление процессом сварки MIG и порошковой порошковой проволокой в среде защитного газа — программы передовой практики сварки, читатель обнаружит, что существует «три» оптимальных настройки сварного шва. Существуют также передовые методы сварки MIG и порошковой краской, которые необходимы для минимизации дефектов сварки и оптимизации производительности сварки. Реальность сварочного шва состоит в том, что немногие из вашего сварочного персонала будут осведомлены о настройках и методах, и, как это часто бывает во многих сварочных цехах при настройке сварного шва MIG или порошковой проволокой, сварочный персонал часто «играет» с двумя элементами управления сваркой, которые имеют мало что изменилось за десятилетия.
Примерно в 2007 году, в редком для меня событии сварки, у меня была возможность применить свои средства управления процессом дуговой сварки — лучшие методы сварки на верфи в США, где менеджеры и инженеры были гораздо лучше знакомы с методами сварки SMAW (STICK) которые, вероятно, были созданы во время Второй мировой войны.
Когда меня наняли в качестве менеджера по сварке на верфи, я вошел на верфь, где предыдущий менеджер по сварным швам и инженерно-технический менеджер много знали о сварке штучной сваркой и ничего не знали о флюсовой сварке и MIG Weld Process Controls, а также о передовых методах сварки.На этой верфи. в течение трех месяцев после моего обучения управлению технологическим процессом качество сварки и производительность были ошеломляющими. Полученная информация о качестве и стоимости сварки приведена ниже, а полная информация доступна в моем разделе о порошковых порошках.
С ЧРЕЗМЕРНЫМ ПРЕВЫШЕНИЕМ СТОИМОСТИ НА СВАРНЫЙ РЕМОНТ N. AMERICAN WELD НА ПРОИЗВОДСТВО СУДОВ ВМФ, И НАСМОТРЕТЬ, КАК КИТАЙ МОЖЕТ ПОСТРОИТЬ АНАЛОГИЧНЫЕ СУДА, ПОСЛЕ ДЕСЯТИЛЕТИЙ НИЧЕГО НЕ ДЕЛАЯ, УПРАВЛЕНИЕ ВМФ США, УПРАВЛЯЮЩЕЕ ВМФ СЕНЬ, ОТКАЗЫВАЕТСЯ ЭКСПЕРТИЗЫ ВЛАДЕНИЯ ИНЖЕНЕРНЫМ ПРОЦЕССОМ УПРАВЛЕНИЯ СВАРКОЙ СТАЛА НОРМОЙ.ОТСУТСТВИЕ ЭКСПЕРТИЗЫ, КОТОРАЯ ЕЖЕДНЕВНО ВЛИЯЕТ НА КАЧЕСТВО, ПРОИЗВОДИТЕЛЬНОСТЬ И СРОКИ ПРОИЗВОДСТВА СВАРКИ.
Как вы прочтете ниже, даже руководители ВМФ, которые никогда не имели сварочного цеха, начинают задаваться вопросом, почему на верфях, которые строят свои суда, ремонт сварных швов с превышением бюджета всегда измеряется миллионами, а Десятилетиями было мало свидетельств того, что руководство занялось решением дорогостоящих сварочных вопросов, и редко было свидетельством понимания или важности использования средств контроля сварочного процесса или передовых методов сварки.
ПОМОЩНИК ГОССЕКРЕТАРЯ ВМФ ГОВОРИТ О ДОРОГОЙ СВАРКЕ ВОПРОСАХ, НО БОЛЬШИНСТВО ЕГО ЗАЩИТНЫХ ПОДРЯДЧИКОВ НЕ ЗНАЮТ, КАК ОТВЕТИТЬ
передовой опыт и знания в области контроля сварочного процесса, однако они могут захотеть узнать слова г-на Гертса, помощника министра ВМС США. Г-н Гертс несет ответственность за расходы ок. 205 миллиардов долларов в следующем году, и, как вы прочтете ниже, отсутствие права собственности на процесс сварки в отделах судостроительной верфи ВМФ, которые занимаются производством и сваркой, заставили его более чем беспокоиться о соблюдении его ежегодных требований к поставке корабля и бюджету.См. Флот ниже.
2020… КОГДА ОНА ДОХОДИТ НА СВАРКУ СУДОВ ВМФ, НЕКОТОРЫЕ СВАРОЧНЫЕ ОТДЕЛЫ ГЛОБАЛЬНОЙ ВОФНО-ВЕРФИ ОКАЗЫВАЮТСЯ ЗАКОНЧЕННЫМИ В 20 ВЕКЕ. Еще один пример отсутствия в 2019 году управления фронт-офисом и владения инженерными сварочными процессами. Мировой спрос на подводные лодки никогда не был таким большим, однако большая часть сварных швов, производимых при строительстве глобальных подводных лодок, будет выполняться с использованием устаревших процессов и устаревших спецификаций сварных швов и процедур сварки.Мне потребовался бы час, чтобы убедить любую военно-морскую верфь в том, что существует простое обучение процессу сварки и технологические решения многих дорогостоящих проблем со сваркой.
Для тех лиц, принимающих решения в области сварки, которые игнорируют или не знают об эволюции процесса дуговой сварки, произошедшей за последние десять лет, а также для тех, кто также не осведомлен о преимуществах управления процессом сварки и передовых методов сварки которые должны быть реализованы на их судостроительных верфях, вы можете, когда закончите эту страницу, захотите посетить мой процесс обучения — программы самообучения.Следите за самыми полными в мире данными о процессах на моем веб-сайте tiptigwelding.com.
2019. Большинство глобальных оборонных проектов 21-го века в настоящее время строятся с использованием процессов дуговой сварки 20-го века с устаревшими спецификациями и процедурами сварки. В настоящее время в 2019 году мне неизвестно ни одного оборонного подрядчика в Северной Америке, который внедрил бы новейшие сварочные технологии и применяет средства контроля сварочного процесса и передовые методы сварки.
ВЛАДЕНИЕ ПРОЦЕССОМ происходит от My MIG — Руководство по сварке с флюсовой сердцевиной и TIP TIG, роботизированное управление процессом сварки и передовая практика сварки, учебные материалы или материалы для самообучения.
В то время как МНОГИЕ СВАРОЧНЫЕ МАГАЗИНЫ ФОКУСИРУЮТСЯ НА «НАВЫКЕ СВАРОЧНИКА», ВЫГОДНО, ЕСЛИ ПРИНИМАЮЩИЕ РЕШЕНИЯ СВАРОЧНЫЕ НАВЫКИ НЕ СОВЕРШАЮТ НАИЛУЧШУЮ ПРАКТИКУ, А НАВЫКИ СВАРОЧНИКА 9000 НАВЫКОВ WELDER WELDISE 9000 ОКАЗЫВАЮТ УКАЗАТЕЛЬ WELDER 9000 WELDISE 9000. ЕДИНЫЙ ОТКАЗ СВАРКИ МОЖЕТ СТОИТ ЖИЗНИ И МЛРД ДОЛЛАРОВ.Все, что требуется, — это одна порошковая проволока, отсутствие дефектов сварки в правильном месте применения. а при правильных обстоятельствах результатом может стать катастрофическая человеческая катастрофа, которая стоит дорого. Однако ирония заключается в том, что на большинстве мировых судостроительных верфей и нефтяных платформ они обычно не обеспечивают адекватных программ обучения сварщиков, которые сосредоточены на навыках сварщика с минимальным акцентом на требованиях по оптимизации сварочного процесса. Я полагаю, что это понятно, поскольку немногие менеджеры и инженеры верфей осознают важность контроля процесса сварки и передовых методов сварки, необходимых для обычных полуавтоматических процессов сварки.
КАЧЕСТВО СВАРКИ — ОТВЕТСТВЕННОСТЬ ЗА СВАРКУ.
Эта платформа m использовалась для размещения на море. Все, что потребовалось, — это плохой угловой сварной шов на 1/4 (6 мм), чтобы повлиять на усталостное разрушение конструктивных элементов, и платформа рухнула в океан, в результате чего погибло 123 человека и понесены миллиарды убытков.
Плазменно-дуговая сварка (PAW) | Сварка и неразрушающий контроль
Плазменно-дуговая сварка (PAW) — это процесс дуговой сварки, при котором тепло, необходимое для сварки, генерируется суженной дугой между неплавящимся электродом и заготовкой.
Плазменно-дуговая сварка — это, по сути, расширение дуговой сварки вольфрамовым электродом (GTAW). Как и GTAW, при плазменно-дуговой сварке (PAW) используется неплавящийся электрод. Однако для подачи тепла при плазменно-дуговой сварке (PAW) используется другой метод.
Сварочная горелка, используемая при плазменно-дуговой сварке (PAW), содержит два сопла: внутреннее сопло для газа через сопло и внешнее сопло для защитного газа (см. Рисунок 1).
Рисунок 1
Во внутреннем сопле находится отверстие для газа, окружающего электрод.Газ через отверстие — это нейтральный газ, который превращается в плазменное состояние (четвертое состояние вещества), когда в камере зажигается дуга. Дуга нагревает газ в отверстии до температуры, при которой электроны, присутствующие в атомах газа в отверстии, покидают свою орбиту, в результате чего газ в отверстии ионизируется. Ионизированные газы выходят из отверстия сопла в виде «струи плазменной струи». Плазма — хороший проводник электричества.
Плазма исходит из сопла отверстия при температуре около 16 700 ° C (30 000 ° F), создавая узкую, суженную дугу, которая обеспечивает превосходное управление направлением и создает очень благоприятный профиль сварного шва между глубиной и шириной.
Внешнее сопло содержит защитный газ, такой как газовая дуговая сварка вольфрамом (GTAW). Защитный газ покрывает область воздействия дуговой плазмы на заготовку, чтобы избежать загрязнения сварного шва. Защитный газ может быть таким же, как и диафрагменный газ, или может отличаться от диафрагменного газа.
Некоторые важные термины, используемые в плазменно-дуговой сварке:
Отклонение электрода: Расстояние между концом электрода и лицевой стороной сужающего сопла известно как отступ электрода (см. Рисунок 1).
Расстояние зазора резака: Расстояние между внешней поверхностью сужающего сопла и заготовкой называется расстоянием зазора резака (см. Рисунок 1).
Водоотводящая камера: Пространство между внутренней стенкой сужающего сопла и электродом известно как водоотводящая камера или водоотводящая камера (см. Рисунок 1).
Оборудование:Плазменно-дуговая сварка может выполняться вручную, механизировано или роботизировано.Однако для ручной плазменно-дуговой сварки используются следующие элементы:
- A Источник питания
- A Сварочная горелка
- A Консоль управления плазмой,
- Газы (диафрагма и защитный газ)
- Охлаждающая жидкость горелки
- Другие аксессуары, такие как пульт дистанционного управления током, таймеры потока газа и двухпозиционный переключатель
Источник питания: Источник питания, используемый для плазменно-дуговой сварки, аналогичен источнику питания, используемому для сварки TIG ( GTAW).В процессах GTAW и PAW используются источники постоянного тока и высокочастотный источник для зажигания дуги.
Сварочная горелка: Горелка для плазменно-дуговой сварки (PAW) имеет следующие особенности:
- Она удерживает электрод и пропускает ток через электрод
- Внутреннее сопло для подачи газа через отверстие или плазменный газ
- Наружное сопло для подачи защитного газа
Пульт управления плазмой: Важнейшие системы управления плазменно-дуговой сваркой заключены в плазменный пульт, также известный как пульт или пульт управления плазмой.Консоль обычно интегрирована с основным источником питания, но может быть доступна и как отдельный автономный блок. Типичная консоль управления плазмой включает в себя следующие элементы управления:
- Поток плазменного газа
- Поток защитного газа
- Ток вспомогательной дуги
Газы (диафрагменный газ / защитный газ): Выбор газов для плазменной сварки зависит от следующих критериев;
- положение сварки
- конфигурация стыка
- Основной металл
Защитный газ часто совпадает с газом для диафрагмы для многих приложений плазменно-дуговой сварки.Тем не менее, некоторые преимущества можно наблюдать, когда для определенных применений используется другой газ.
Диафрагменный газ: Диафрагменный газ должен быть инертным по отношению к электроду, чтобы избежать быстрого износа электрода. Для увеличения срока службы электрода необходимо использовать диафрагменный газ чистотой 99,99%. Расход газа через сопло обычно составляет от 0,1 л / мин (л / мин) до 5 л / мин. Наиболее часто используемые газы для диафрагм:
- Аргон
- Смесь аргон-водород
Защитный газ: Обычно в качестве защитного газа используются инертные газы.Однако активный газ также может использоваться для защиты, если не считается, что он отрицательно влияет на свойства сварного шва. Следующие газы используются для защиты сварочной ванны;
- Аргон
- Смесь аргон-водород
- Смесь аргон-гелий
- Двуокись углерода
Расход защитных газов обычно находится в диапазоне от 5 л / мин до 15 л / мин для слаботочных приложений. Для сильноточной сварки используются скорости потока от 15 до 32 л / мин.
Система охлаждения: Для плазменно-дуговой сварки требуется система охлаждения. Система охлаждения должна состоять из бачка с охлаждающей жидкостью, радиатора, насоса, датчика расхода и контрольных переключателей. Для изготовления поверхностей, контактирующих с жидкостью, используются коррозионно-стойкие материалы.
Электроды: Как и GTAW, вольфрамовые электроды используются при плазменно-дуговой сварке (PAW). Вольфрамовые электроды с небольшими добавками тория, лантана или церия могут использоваться для плазменно-дуговой сварки с прямой полярностью (DCEN).Электроды из чистого вольфрама и циркония редко используются при плазменной дуговой сварке, поскольку геометрия кончика электрода не может быть сохранена. Чтобы узнать больше о вольфрамовых электродах, щелкните здесь.
Присадочный металл: Присадочный металл добавляется извне (при необходимости). При ручной сварке используется присадочный металл в виде стержней. Тогда как присадочный металл в виде проволоки используется для механизированной или роботизированной сварки. Технические характеристики присадочного металла такие же, как и при газовой дуговой сварке вольфрамом (GTAW).Чтобы узнать больше о вольфрамовых электродах, щелкните здесь.
РЕЖИМЫ ДУГИ:
При плазменно-дуговой сварке используются два типа режимов дуги:
- Режим дуги с переносом
- Режим дуги без переноса.
В режиме переносимой дуги электрод подключается к одной клемме источника питания (обычно с отрицательной полярностью), а заготовка подключается к другой клемме (положительной клемме).Таким образом, заготовка становится частью электрической цепи (сопло остается неповрежденным), а тепло получается от анодного пятна на заготовке и плазменной струи.
В режиме дуги без переноса электрод подключается к одной клемме источника питания (обычно с отрицательной полярностью), а сопло подключается к другой клемме (положительной клемме). Следовательно, между электродом и суживающим отверстием возникает и поддерживается дуга. Заготовка остается вне электрической цепи дуги.Режим непереносимой дуги подходит для резки и соединения непроводящих материалов.
Преимущества плазменно-дуговой сварки (PAW):
- Суженное отверстие дает высокую концентрацию тепла на меньшей площади
- Это дает более глубокое проплавление и обеспечивает прочную сварку
- Меньшее потребление тока по сравнению с другим процессом сварки
- расстояние между горелкой и заготовкой (расстояние зазора) не влияет на образование дуги
- Может достигать более высоких скоростей движения
- Меньше зоны термического влияния (HAZ) по сравнению с GTAW (газовая сварка вольфрамовой дугой)
- Он более стабилен и не отклоняется от основного металла
Ограничения плазменно-дуговой сварки (PAW):
- Оборудование для плазменно-дуговой сварки является относительно дорогостоящим, поэтому затраты на запуск высоки. очень шумный процесс
- Требуется высококвалифицированный оператор
Плазменно-дуговая сварка (PAW): Maine Welding Company
Плазменно-дуговая сварка (PAW)
Плазменно-дуговая сварка (PAW) — это процесс, в котором коалесценция или соединение металлов происходит путем нагрева с помощью суженной дуги между электродом и заготовкой (переносящая дуга) или электродом и сужающим соплом (дуга без переноса).Защита обеспечивается горячим ионизированным газом, выходящим из отверстия, которое может быть дополнено дополнительным источником защитного газа. Защитный газ может быть инертным газом или смесью газов. Давление может использоваться или не использоваться, а присадочный металл может или не может быть поставлен. Процесс PAW показан на рисунке 10-35.
Оборудование для плазменно-дуговой сваркиПлазменная сварка : Источник питания . Рекомендуется использовать источник питания с постоянной характеристикой падения тока, обеспечивающий сварочный ток постоянным током; однако можно использовать источник питания переменного / постоянного тока.Он должен иметь напряжение холостого хода 80 вольт и рабочий цикл 60 процентов. Желательно, чтобы источник питания имел встроенный контактор и средства дистанционного регулирования тока. Для сварки очень тонких металлов минимальная сила тока должна составлять 2 ампера. Максимальное значение 300 подходит для большинства приложений плазменной сварки.
Горелка для плазменной сварки Сварочная горелка для плазменной сварки внешне похожа на газовую вольфрамовую дуговую горелку, но более сложна.
Все горелки для плазменной сварки имеют водяное охлаждение, даже горелки с самым низким диапазоном тока. Это связано с тем, что дуга находится внутри камеры горелки, где выделяется значительное количество тепла. Если на короткое время прервать подачу воды, форсунка может расплавиться. Поперечное сечение головки плазменной горелки показано на рисунке 10-36. В период отсутствия переноса дуга будет зажжена между соплом или наконечником с отверстием и вольфрамовым электродом. Ручные плазменные дуговые горелки производятся различных размеров от 100 до 300 ампер.Также доступны автоматические горелки для машинной работы.
В горелке для плазменной сварки используется 2-процентный торированный вольфрамовый электрод, аналогичный тому, который используется для газовой сварки вольфрамом. Поскольку вольфрамовый электрод расположен внутри горелки, загрязнение его основным металлом практически невозможно.
Плазменная сварка: пульт управления . Для плазменной сварки требуется пульт управления. Плазменно-дуговые горелки предназначены для подключения к консоли управления, а не к источнику питания.Консоль включает в себя источник питания для вспомогательной дуги, системы задержки времени для перехода от вспомогательной дуги к переданной дуге, а также водяные и газовые клапаны и отдельные расходомеры для плазменного газа и защитного газа. Консоль обычно подключается к источнику питания и может управлять контактором. Он также будет содержать блок зажигания высокочастотной дуги, источник непереключаемого питания вспомогательной дуги, схему защиты горелки и амперметр. Генератор высокой частоты используется для зажигания вспомогательной дуги.Устройства защиты горелки включают реле давления воды и плазменного газа, которые блокируются с контактором.
Плазменная сварка: механизм подачи проволоки . Механизм подачи проволоки может использоваться для машинной или автоматической сварки и должен быть с постоянной скоростью. Механизм подачи проволоки должен иметь регулировку скорости в диапазоне от 10 дюймов в минуту (254 мм в минуту) до 125 дюймов в минуту (3,18 м в минуту) скорости подачи.
Преимущества и основные области применения плазменно-дуговой сваркиПреимущества плазменно-дуговой сварки по сравнению с дуговой сваркой вольфрамовым электродом в газе обусловлены тем, что PAW имеет более высокую концентрацию энергии.Его более высокая температура, суженная площадь поперечного сечения и скорость плазменной струи создают более высокое теплосодержание. Другое преимущество основано на жестком столбчатом типе дуги или форме плазмы, которая не вспыхивает, как газовая вольфрамовая дуга. Эти два фактора обеспечивают следующие преимущества:
Расстояние между горелкой и изделием от плазменной дуги менее критично, чем при дуговой сварке вольфрамовым электродом в газе. Это важно для ручного управления, поскольку дает сварщику больше свободы в наблюдении и контроле за сваркой.
Высокая температура и высокая концентрация тепла в плазме допускают эффект замочной скважины, который обеспечивает сварку многих стыков за один проход с полным проплавлением. В этой операции более желательны зона термического влияния и форма сварного шва. Зона термического влияния меньше, чем у газовой вольфрамовой дуги, и сварной шов имеет тенденцию иметь больше параллельных сторон, что снижает угловую деформацию.
Более высокая концентрация тепла и плазменная струя обеспечивают более высокие скорости движения.Плазменная дуга более стабильна и не так легко отклоняется до ближайшей точки основного металла. При плазменно-дуговой сварке возможно большее изменение соосности стыка. Это важно при выполнении корневых швов на трубах и других односторонних сварных швах. Плазменная сварка обеспечивает более глубокий провар и дает более узкий сварной шов. Это означает, что соотношение глубины и ширины более выгодно.
Плазменно-дуговая сварка: используетсяНекоторые из основных применений плазменной сварки — это ее применение для изготовления труб.Более высокая производительность, основанная на более высоких скоростях перемещения, является результатом плазменной сварки вольфрамовым электродом над газом. Трубки из нержавеющей стали, титана и других металлов производятся плазменным способом с более высокой производительностью, чем ранее при газовой вольфрамовой дуговой сварке.
Большинство применений плазменной дуговой сварки находятся в диапазоне слабых токов, от 100 ампер или меньше. Плазма может работать при чрезвычайно низких токах, что позволяет сваривать фольгу толщиной.
Плазменно-дуговая сварка также используется для выполнения небольших сварных швов сварных деталей в приборостроении и других мелких деталей из тонкого металла.Применяется для стыковых соединений стеновых труб.
Этот процесс также используется для выполнения работ, аналогичных электронно-лучевой сварке, но с гораздо более низкой стоимостью оборудования.
Плазменно-дуговая сварка обычно применяется как процесс ручной сварки, но также применяется в автоматических и машинных установках. Ручное приложение является наиболее популярным. Полуавтоматические способы нанесения бесполезны. Обычные методы применения плазменной сварки — ручной (MA), машинный (ME) и автоматический (AU).
Процесс плазменно-дуговой сварки — это процесс сварки во всех положениях. В Таблице 10-2 показаны возможности сварочного положения.
(5) Процесс плазменной сварки позволяет соединять практически все коммерчески доступные металлы. Возможно, это не лучший выбор или не самый экономичный способ сварки некоторых металлов. Процесс плазменно-дуговой сварки соединит все металлы, которые будут свариваться газо-вольфрамовой дугой. Это показано в таблице 10-3.
Что касается диапазонов толщин, свариваемых плазменным способом, режим работы «замочная скважина» может использоваться только в том случае, если плазменная струя может проникать в стык.В этом режиме его можно использовать для сварки материалов от 1/16 дюйма (1,6 мм) до 1/4 дюйма (12,0 мм). Диапазон толщины зависит от металла. Режим плавления используется для сварки материала толщиной от 0,002 дюйма (0,050 мм) до 1/8 дюйма (3,2 мм). Используя многопроходные технологии, можно сваривать металл неограниченной толщины. Обратите внимание, что присадочный пруток используется для сварки более толстых материалов. В таблице 10-4 указаны диапазоны толщины основного металла.
Ограничения процесса плазменно-дуговой сварки .Основные ограничения процесса связаны с оборудованием и аппаратурой. Горелка более хрупкая и сложная, чем газовая вольфрамовая дуговая горелка. Даже горелки с самым низким номиналом должны иметь водяное охлаждение. Наконечник вольфрама и совмещение отверстия в сопле чрезвычайно важны и должны поддерживаться в очень узких пределах. Текущий уровень резака не может быть превышен без повреждения наконечника. Каналы для водяного охлаждения в горелке относительно малы, и по этой причине для горелок с малым током или меньшей мощности рекомендуются фильтры для воды и деионизированная вода.Консоль управления добавляет в систему еще одно оборудование. Это дополнительное оборудование делает систему более дорогой и может потребовать более высокого уровня обслуживания.
Плазменно-дуговая сварка: принципы работы .
Процесс плазменно-дуговой сварки обычно сравнивают с процессом газовой вольфрамовой дуги. Если электрическая дуга между вольфрамовым электродом и изделием сужается в области поперечного сечения, ее температура повышается, поскольку по ней проходит такой же ток.Эта сжатая дуга называется плазмой или четвертым состоянием вещества.
Два режима работы: дуга без переноса и дуга с переносом.
В режиме без передачи ток течет от электрода внутри горелки к соплу, содержащему отверстие, и обратно к источнику питания. Он используется для плазменного напыления или тепловыделения неметаллов.
В режиме переносимой дуги ток передается от вольфрамового электрода внутри сварочной горелки через отверстие к заготовке и обратно к источнику питания.
Разница между этими двумя режимами работы показана на рисунке 10-37. Режим перенесенной дуги используется для сварки металлов. Для сравнения показан процесс газовой вольфрамовой дуги.
Плазма создается за счет сжатия электрической дуги, проходящей через отверстие сопла. Горячие ионизированные газы также пропускаются через это отверстие. Плазма имеет жесткую столбчатую форму и имеет параллельные стороны, поэтому она не вспыхивает так же, как газовая вольфрамовая дуга.Эта высокотемпературная дуга, направленная на изделие, расплавляет поверхность основного металла и присадочный металл, добавляемый для сварки. Таким образом, плазма действует как источник тепла с чрезвычайно высокой температурой, образуя сварочную лужу. Это похоже на газовую вольфрамовую дугу. Однако более высокотемпературная плазма заставляет это происходить быстрее и известен как режим плавления. На Рис. 10-36 показано поперечное сечение головки плазменной горелки.
Высокая температура плазменной или сжатой дуги и высокоскоростная плазменная струя обеспечивают повышенную скорость теплопередачи по сравнению с дугой газовой вольфрамовой дугой при использовании того же тока.Это приводит к более высокой скорости сварки и более глубокому проплавлению шва. Этот метод работы используется для сварки очень тонких материалов. и для сварки многопроходных канавок, сварных и угловых швов.
Еще один метод плазменной сварки — это метод сварки «замочная скважина». Плазменная струя проникает через заготовку и образует отверстие или замочную скважину. Поверхностное натяжение заставляет расплавленный основной металл обтекать замочную скважину, образуя сварной шов. Метод замочной скважины можно использовать только для стыков, в которых плазма может проходить через стык.Он используется для неблагородных металлов толщиной от 1/16 до 1/2 дюйма (от 1,6 до 12,0 мм). На него влияет состав основного металла и сварочные газы. Метод замочной скважины обеспечивает сварку с полным проплавлением за один проход, которую можно выполнять вручную или автоматически во всех положениях.
Плазменно-дуговая сварка: конструкция стыков .Конструкция шарнира основана на толщине металла и определяется двумя способами работы. Для метода замочной скважины конструкция соединения ограничивается типами с полным проникновением.Предпочтительной конструкцией соединения является квадратная канавка без минимального корневого отверстия. Для корневых проходов, особенно на толстостенных трубах, используется U-образная канавка. Корневая поверхность должна быть 1/8 дюйма (3,2 мм), чтобы обеспечить полное проникновение в замочную скважину.
Для метода плавления при сварке тонких металлов, от 0,020 дюйма (0,500 мм) до 0,100 дюйма (2,500 мм), следует использовать сварной шов с квадратной канавкой. Для сварки фольги толщиной от 0,005 дюйма (0,130 мм) до 0,020 дюйма (0,0500 мм) следует использовать краевое фланцевое соединение.Фланцы расплавляются, чтобы обеспечить присадочный металл для сварного шва.
При использовании режима плавления для толстых материалов можно использовать ту же общую деталь соединения, что и при дуговой сварке защищенным металлическим электродом и дуговой сварке вольфрамовым электродом. Его можно использовать для угловых, фланцевых сварных швов, всех типов сварных швов с разделкой кромок и т. Д., А также для соединений внахлест с использованием дуговой точечной и дуговой сварки. На рис. 10-38 показаны различные конструкции соединений, которые можно сваривать плазменной дугой.
Плазменно-дуговая сварка: сварочная цепь и ток .Сварочная схема для плазменно-дуговой сварки более сложна, чем для дуговой сварки вольфрамовым электродом в газе. Требуется дополнительный компонент в качестве цепи управления, помогающий запускать и останавливать плазменную дугу. Используется тот же источник питания. Есть две газовые системы: одна для подачи плазменного газа, а вторая для защитного газа. Сварочная схема для плазменно-дуговой сварки показана на рисунке 10-39. Используется постоянный ток типа постоянного тока (ПС). Переменный ток используется только для нескольких приложений.
Советы по использованию процесса плазменно-дуговой сваркиВольфрамовый электрод должен быть точно отцентрован и расположен относительно отверстия в сопле. Ток вспомогательной дуги должен поддерживаться достаточно низким, достаточно высоким, чтобы поддерживать стабильную вспомогательную дугу. При сварке очень тонких материалов из фольги вспомогательная дуга может быть всем, что необходимо.
Присадочный металл добавляется так же, как при дуговой сварке вольфрамовым электродом.Однако чем больше расстояние от резака до детали, тем больше свободы для добавления присадочного металла. Оборудование необходимо правильно отрегулировать, чтобы защитный газ и плазменный газ были в правильных пропорциях. Также необходимо использовать подходящие газы.
Тепловая нагрузка важна. Плазменный газовый поток также имеет важное значение. Эти факторы показаны на рисунке 10-40.
Плазменно-дуговая сварка присадочных металлов и другое оборудованиеПрисадочный металл обычно используется при плазменной сварке, за исключением сварки самых тонких металлов.Состав присадочного металла должен соответствовать основному металлу. Размер стержня присадочного металла зависит от толщины основного металла и сварочного тока. Наполнитель обычно добавляется в лужу вручную, но может добавляться автоматически.
Плазменно-дуговая сварка: защитный газИнертный газ, аргон, гелий или их смесь, используется для защиты области плазменной дуги от атмосферы. Аргон более распространен, потому что он тяжелее и обеспечивает лучшую защиту при более низких расходах.Для плоской и вертикальной сварки достаточно потока защитного газа от 15 до 30 куб. Футов в час (от 7 до 14 литров в минуту). Сварка под потолком требует немного большей скорости потока. Аргон используется в качестве плазменного газа со скоростью от 1 куб. Футов в час (0,5 литра в минуту) до 5 кубических футов в час (2,4 литра в минуту) для сварки, в зависимости от размера горелки и области применения. Активные газы не рекомендуются для плазменного газа. Кроме того, требуется охлаждающая вода.
Плазменная дуговая сварка: качество, скорость наплавки и переменныеКачество плазменно-дуговой сварки чрезвычайно высокое и обычно выше, чем у газо-вольфрамовых сварочных швов, поскольку вероятность появления вольфрамовых включений в сварном шве мала или отсутствует.Скорость наплавки при плазменной сварке несколько выше, чем при сварке вольфрамовым электродом в газе, и показана кривой на рисунке 10-41. Графики сварки для процесса плазменно-дуговой сварки представлены данными в таблице 10-5.
Параметры процесса для плазменно-дуговой сварки показаны на рисунке 10-41. Большинство переменных, показанных для плазменной дуги, аналогичны другим процессам дуговой сварки. Есть два исключения: поток плазменного газа и диаметр отверстия в сопле.Основные переменные оказывают существенное влияние на процесс. Второстепенные переменные обычно фиксируются в оптимальных условиях для данного приложения. Все переменные должны присутствовать в процедуре сварки. Такие переменные, как угол и отклонение электрода и тип электрода, считаются фиксированными для данного приложения. Процесс плазменной дуги действительно реагирует на эти переменные иначе, чем процесс газовой вольфрамовой дуги. Зазор, или расстояние от горелки до изделия, менее чувствителен для плазмы, но угол наклона горелки при сварке деталей разной толщины более важен, чем при сварке газовой вольфрамовой дугой.
Плазменная дуговая сварка: варианты процессаСварочный ток может быть импульсным, чтобы получить те же преимущества, которые дает импульсная сварка при дуговой сварке вольфрамовым электродом. Сильный импульс тока используется для максимального проникновения, но не работает постоянно, чтобы обеспечить затвердевание металла. Это дает более легко управляемую лужу для работы вне рабочего места. Импульсный режим может выполняться тем же аппаратом, который используется для дуговой сварки вольфрамовым электродом в газе.
Программируемую сварку можно также использовать для плазменно-дуговой сварки таким же образом, как и для дуговой сварки вольфрамовым электродом в газе.Используется тот же источник питания со способностями к программированию, что дает преимущества для определенных видов работ. Сложность программирования зависит от потребностей конкретного приложения. Помимо программирования сварочного тока, часто необходимо программировать поток плазменного газа. Это особенно важно при закрытии замочной скважины, которая требуется для выполнения корневого прохода сварного шва, соединяющего два отрезка трубы.
Метод плазменной подачи присадочной проволоки практически такой же, как и при дуговой сварке вольфрамовым электродом в газе.Можно использовать концепцию «горячей проволоки». Это означает, что к присадочной проволоке подается ток низкого напряжения для ее предварительного нагрева перед попаданием в сварочную ванну.
Разница между SMAW и GMAW
Дуговая сварка — это один из видов процесса сварки плавлением, при котором электрическая дуга используется для подачи тепла для плавления стыковых поверхностей соединяемых основных материалов. Для сварки самых разных материалов различными способами существует несколько процессов дуговой сварки, а именно: дуговая сварка в защитных слоях металла, дуговая сварка металлическим металлом, дуговая сварка вольфрамовым электродом в среде флюса, дуговая сварка порошковой проволокой, дуговая сварка под флюсом, шип дуговая сварка, угольная сварка и др.Дуговая сварка экранированного металла (SMAW), также известная как ручная дуговая сварка металла (MMAW), представляет собой один из процессов сварки плавлением, при котором дуга возникает между электродом, покрытым флюсом, и проводящими опорными пластинами. Здесь электрод является расходным материалом и, таким образом, расплавляет отложения на сварном шве для подачи присадочного материала. Этот расходуемый электрод имеет форму короткого стержня, поэтому его необходимо часто менять. Это прерывает процесс и снижает производительность. Электродный металл также покрыт соответствующим флюсом для защиты от окисления.Этот флюс также распадается во время сварки и образует необходимый защитный газ для защиты горячего сварного шва от нежелательного окисления и загрязнения. Процесс SMAW обычно выполняется вручную, отсюда и название «Ручная дуговая сварка металла» (MMAW). Ручное управление также делает процесс универсальным, поэтому процесс SMAW находит широкое применение в гражданских и промышленных целях.
Газовая дуговая сварка металла (GMAW) — это еще один процесс сварки плавлением, при котором дуга возникает между сплошным неизолированным электродом и проводящими опорными пластинами.В отличие от SMAW, в котором используется электрод с коротким стержнем, в GMAW используется проволочный электрод очень большой длины. Этот проволочный электрод наматывают в ванне, чтобы его можно было непрерывно подавать в течение более длительного времени. Электрод по своей природе расходный, поэтому он плавится, оставляя необходимый наполнитель в корневом зазоре. Электрод GMAW не покрыт флюсом, поэтому защитный газ подается отдельно для защиты горячего сварного шва. Этот защитный газ может быть либо инертными газами, такими как аргон, гелий и азот (при сварке Metal Inert Gas или MIG), либо смесью активных и инертных газов (при сварке Metal Active Gas или MAG).Процесс обычно выполняется автоматически с минимальным вмешательством человека. Благодаря непрерывной подаче проволочного электрода, процесс GMAW обеспечивает очень высокую скорость осаждения присадки, что делает процесс высокопроизводительным. Однако этому процессу не хватает гибкости. Различные сходства и различия между дуговой сваркой защищенного металла (SMAW) и газовой дуговой сваркой (GMAW) приведены ниже в виде таблицы.
- И SMAW, и GMAW представляют собой процессы сварки плавлением, так как стыковые поверхности основных компонентов сплавлены с помощью тепла дуги с образованием слияния.Фактически, все процессы дуговой сварки — это сварка плавлением.
- В обоих процессах используется расходуемый электрод. Расходуемый электрод плавится из-за нагрева дуги и последовательно осаждается на сварном шве. Таким образом, он обеспечивает необходимый заполнитель, чтобы заполнить корневую щель. Таким образом, отдельная поставка наполнителя не требуется.
- Автогенный режим сварки невозможен ни в одном из этих двух процессов, поскольку присадочный материал применяется по своей сути. Автогенная сварка выполняется без применения присадочного материала.
- Оба процесса применимы только к проводящим основным металлам. Фактически, все процессы дуговой сварки применимы только к проводящим материалам, поскольку основные металлы представляют собой один электрод для создания дуги. Некоторые процессы сварки в твердом состоянии (например, сварка трением, сварка взрывом и т. Д.) И современные сварочные процессы (такие как LBW, PAW и т. Д.) Могут применяться для электрически непроводящих материалов.
SMAW | GMAW |
---|---|
Короткий стержень малого диаметра используется в качестве электрода для дуговой сварки экранированных металлов (SMAW).Длина электрода обычно не превышает 60 см. | В аппаратедля газовой дуговой сварки (GMAW) используется расходный электрод небольшого диаметра, но длинный, в виде проволоки. Этот длинный провод наматывается в лужу. |
Короткий расходный электрод необходимо часто заменять. Таким образом, сварка не может выполняться непрерывно в течение длительного времени. | Из-за очень длинного плавящегося электрода его не требуется часто менять, и, таким образом, сварку можно проводить непрерывно в течение более длительного времени. |
Этот процесс не очень производительный из-за низкой скорости нанесения наполнителя. | Он может наносить присадочный металл с очень высокой скоростью, и, следовательно, он является высокопроизводительным. |
Электрод с флюсовым покрытием используется в процессе SMAW. Слой флюса более толстый. | Неизолированный электрод используется в процессе GMAW. Иногда на электрод наносится тонкий слой антикоррозионного покрытия. |
Флюсовое покрытие электрода разрушается во время сварки и обеспечивает необходимый защитный газ. | Здесь защитный газ дополнительно подается из газового баллона к сварочной горелке по соответствующему трубопроводу. |
Флюс также образует слой шлака на сварном шве. Этот слой шлака защищает ванну горячего металла шва от окисления, но также может привести к сварочным дефектам, если попадет внутрь сварного шва. | Из-за отсутствия флюса на сварном шве не образуется слой шлака. Так что изменений дефекта шлаковых включений тоже нет. |
Он универсален, так как может использоваться в разных местах в нескольких ориентациях (положениях). | Предпочтительно только для нижнего или наклонного положения. |
Как следует из названия, ручная дуговая сварка металла (MMAW) в основном выполняется вручную. Таким образом, с этим процессом связан риск человеческой ошибки. | GMAW можно легко автоматизировать, требуя минимального вмешательства человека-оператора. Соответственно, это исключает риск человеческой ошибки. |
Каталожный номер
- Комплексная технология мастерских (производственные процессы) С.К. Гарг (Laxmi Publications Private Limited).
- Технология производства: литейное производство, формовка и сварка П. Н. Рао (Tata McGraw Hill Education Private Limited).
- Учебник технологии сварки О. П. Ханна (Dhanpat Rai Publications).
Lincoln Electric выпустила обновленное руководство по сварке алюминия GMAW
Cleveland — Lincoln Electric выпустила обновленное руководство по газовой дуговой сварке алюминия (GMAW). Новейшая версия руководства имеет новый удобный для чтения формат с обновленной информацией и фотографиями продуктов и процессов, связанных со сваркой алюминия методом MIG.
Обновленное руководство по сварке предлагает подробный обзор типов присадочного металла, рекомендации по выбору присадочного металла для сварки, советы по сварке алюминиевых материалов и обсуждение причин и способов устранения дефектов при сварке алюминия. Также включены общие правила техники безопасности при сварке.