Виды сварки по степени механизации
Начинающие специалисты часто интересуются, какие виды сварки существуют и как выбрать подходящий метод. Различают виды сварки по нескольким срезам, однако наиболее частый вопрос касается именно степени участия человека в процессе сварки.
По степени механизации сварки принято различать следующие её типы:
- ручная;
- механизированная;
- механическая;
- автоматизированная.
Ручная – или ручная дуговая сварка – проводится с плавящимся или неплавящимся электродом, изготовленного из проволоки и электродного покрытия. Этот вид сварки применим для углеродистых сталей, металлов с содержанием марганца, легированных сталей, жаропрочных сталей, цветного металла и чугуна. В процессе сварки горящий электрод касается металлического изделия, разогревая его до высокой температуры, в процессе чего обеспечивается перенос сварочного материала в место сварки. Газ, используемый специалистом в процессе работы, защищает место сварки от окисления воздухом. Ручная сварка позволяет получить короткие швы до 20,5 сантиметров, швы средней длины до 100 сантиметров и длинные швы больше 100 сантиметров. Для этого используются способы «на проход», от середины к краям и от краев к середине. Результат сварки соответствует применяемому методу.
При механизированной сварке, которая проводится в защитной среде углекислого газа, подача плавящегося материала и перемещение сварочной дуги относительно металлического изделия выполняется с помощью механизма. Газовая горелка перемещается самим сварщиком. Этот способ удобен для выполнения угловых, тавровых, стыковых швов – таких, при которых ручное управление затруднительно. Механизированный способ эффективнее ручного, когда стоит задача проваривать изделия из толстых металлов или варить крупные партии металла и изделий.
В процессе механической сварки применяется трение свариваемых деталей. Трение обеспечивает высвобождение кинетической энергии, которая превращается в тепло и плавит металл. Детали, которые необходимо сварить, устанавливаются в специализированный механизм. Он обеспечивает надежное закрепление одного элемента и вращение второго с частотой от 500 до 1500 оборотов в минуту. Механизм также обеспечивает надежное прилегание статичной и вращающейся деталей друг к другу – благодаря этому получается герметичный и ровный шов. Этот метод широко применяется для спайки цилиндрических деталей: стержней, прутов, труб небольшого диаметра. Он также характерен тем, что подходит для сварки разных металлов в единую конструкцию. Например, алюминий, медь и сталь можно сварить в любых сочетаниях.
Автоматизированная сварка проходит без участия человека. Снижается человеческий фактор влияния на процесс сварки, аккуратность сварного шва и другие видимые нюансы, однако автоматизация требует тщательной и внимательной первичной настройки. Автоматическая сварка позволяет повысить производительность крупных промышленных предприятий, где требуется выполнять большой объем сварных работ в ограниченные сроки. Отличие этого способа сварки от механизированного состоит в том, что при автоматизированной сварке плавящий проволочный электрод непрерывно подается в дугу по мере расходования материала.
Исходя из объема работы, её сложности, типа металла и сроков выполнения специалист определяется с тем, какую сварку выбрать, чтобы её результат оказался таким, каким был задуман.
Механизация процесса сварки — Энциклопедия по машиностроению XXL
Преимуществами сварки под флюсом являются высокая производительность благодаря применению больших токов, большой глубины проплавления, а также почти полного отсутствия потерь металла на угар и разбрызгивание механизация процесса сварки [c.73]На фиг. 157 приведены типы сварных соединений труб с трубными досками [121]. Указанные соединения могут выполняться двумя методами аргоно-дуговой сваркой вольфрамовым электродом (с присадкой или без присадки) и ручной дуговой сваркой металлическим электродом. Первый метод, допускающий механизацию процесса сварки и обеспечивающий высокое качество соединения, является наиболее прогрессивным. Он применяется при диаметрах трубок до 25 мм. Ручная дуговая сварка металлическим электродом может применяться при диаметре трубок свыше 12 мм. [c.209]
Способы сварки можно классифицировать, например, по виду энергии, используемой при сварке, по степени механизации процесса сварки, по виду свариваемого металла и т. п. Вполне совершенной классификации, охватывающей все способы сварки, с учетом физических процессов в зоне соединения, не существует. Принято все существующие способы сварки делить на две большие группы 1) сварка плавлением (сварка без давления) 2) сварка давлением (сварка без оплавления).
Вспомогательное время затрачивается на установку деталей, зажатие, центровку, перемещение изделия, зачистку электродов. Это время в большой степени зависит от механизации процессов сварки. Чем больше механизирована сварка, тем меньше затраты вспомогательного времени. [c.521]
Механизация процесса сварки [c.309]
Механизация процесса сварки заключается в отсутствии необходимости применения щитков для защиты глаз и лица сварщика. Это облегчает условия работы сварщика и повышает культуру производства. [c.291]
Решающее значение для комплексной механизации процесса сварки имеет наличие в составе сварочной установки механического и вспомогательного оборудования. К этому оборудованию относятся приспособления и механизмы для укладки, [c.450]
Общие принципы механизации процессов сварки. Процесс дуговой сварки состоит из следующих основных операций 1) зажигания дуги 2) подачи электрода в зону сварки и поддержания устойчивого горения дуги (регулирование длины) 3) перемещения дуги вдоль свариваемого соединения 4) прекращения горения дуги по окончании сварки. [c.85]
Для улучшения условий механизации процессов сварки изделий со сложным профилем и особенно в условиях строительства разработан способ сварки с применением порошковой проволоки. [c.336]
По технологическим признакам виды сварки классифицируют по способу защиты металла в зоне сварки (в воздухе, в вакууме, в защитном газе, под флюсом, по флюсу, в пене, с комбинированной защитой) по непрерывности процесса (непрерывные, прерывистые) по степени механизации процессов сварки (ручные, механизированные, автоматизированные, автоматические).
В специальных машинах применяют схемы двухточечной сварки с двусторонним (рис. Л,и) и односторонним подводом тока. Преимуществами этих видов сварки является увеличение производительности за счет постановки одновременно двух и более точек, меньшая электрическая мощность оборудования и большие возможности механизации процесса сварки. При ТС соединение всегда образуется с расплавлением металла деталей. [c.6]
По степени механизации процессов сварки [c.9]
Автоматизацию и механизацию процесса сварки. [c.173]
Кроме того, различные способы дуговой сварки классифицируют также по способу защиты дуги и расплавленного металла и степени механизации процесса. [c.184]
Сварка в атмосфере защитных газов в зависимости от степени механизации процессов подачи присадочной или сварочной проволоки и перемещения сварочной горелки может быть ручной, полуавтоматической и автоматической. [c.198]
Вид сварки выбирают, исходя из размера и формы соединяемых заготовок расположения швов в сварном соединении физико-химических свойств, соединяемых материалов возможности механизации и автоматизации процесса сварки. Так, например, для сварки листовых конструкций из всех марок сталей и некоторых цветных сплавов широко применяют дуговую и электрошлаковую сварку. Для получения стыковых соединений заготовок компактных, полых и развитых сечений из сталей и цветных металлов применяют контактную стыковую сварку. В производстве тонколистовых конструкций из сталей и цветных металлов для нахлесточных соединений [c.249]
По степени механизации процесса различают автоматическую и полуавтоматическую сварку под флюсом. [c.72]
Огромные преимуш ества сварки в защитных газах заключаются в возможности визуального наблюдения процесса сварки и в относительной простоте механизации его во всех пространственных положениях, в то время как дри сварке под флюсом решение этой задачи связано с большим усложнением технологии и аппаратуры. Успешному развитию аргоно-дуговой сварки в СССР мешал недостаток производства аргона. Относительная дороговизна аргона заставила заняться изысканием способов сварки с использованием более дешевых заш итных газов.
В середине 50-х годов создалось неудовлетворительное положение в развитии механизации и автоматизации сварки, возникло противоречие между успешной автоматизацией собственно процессов сварки и отсутствием автоматизации вспомогательных сборочно-сварочных операций при этом часто весьма эффективная автоматизация процессов собственно сварки не позволяла получать должных выгод. В конце 50-х и начале 60-х годов, как уже отмечалось, в сварочном производстве начался переход от автоматизации отдельных процессов к комплексной автоматизации и механизации технологического процесса в целом, к созданию высокомеханизированных поточных сборочно-сварочных линий. В этот период особенно отчетливо определилась органическая связь между теорией и практикой сварочного дела, между достижениями фундаментальных наук (особенно физики и химии) и их использованием в технике сварки. Современный технический уровень сварки в нашей стране требует широкого создания высокопроизводительных сборочно-сварочных агрегатов и механизированных поточных линий, использования новейших достижений автоматики, телемеханики, электроники, приборостроения. [c.136]
Сварка давлением даёт наибольшую однородность сварного соединения с основным металлом и в ряде случаев они практически неразличимы. Отсутствие плавления металла обеспечивает неизменяемость его химического состава в процессе сварки и незначительные изменения структуры и механических свойств. Процесс сварки легко поддаётся механизации и автоматизации, обеспечивая однородность продукции.
При приварке возникают значительные остаточные напряжения в местах сварки, возможно коробление трубных досок, трудно решается вопрос механизации процесса приварки, особенно при [c.157]
Задачи механизации и автоматизации процессов изготовления сварных конструкций выдвигают особые требования к расчетным методам проектирования конструкций и технологических процессов сварки. [c.411]
При проектировании сварных заготовок следует учитывать требования к технологичности их изготовления. Под технологичностью понимают выбор такого конструктивного оформления заготовок, которое обеспечивает удобство и простоту изготовления любыми видами сварки и при различных режимах автоматизацию и механизацию максимального числа операций технологического процесса низкую себестоимость процесса сварки за счет экономии сварочных материалов повышения производительности и высокого уровня механизации сведения к минимуму искажений формы, вызываемых тепловым и механическим воздействиями при сварке. [c.288]
Способ и вид сварки выбирают исходя из размера и формы соединяемых заготовок расположения швов в сварном соединении физико-химических свойств соединяемых материалов возможности механизации и автоматизации процесса сварки. Так, для сварки листовых конструкций из сталей всех марок и некоторых цветных сплавов широко применяют дуговую и [c.291]
Существующие ныне разновидности дуговой сварки в защитных газах настолько многочисленны, что классификация их затруднена. В связи с этим целесообразно уделить внимание наиболее существенным признакам, по которым одна разновидность отличается от другой. К таким признакам можно отнести способ создания газовой защиты тип защитного газа тип электрода род тока, на котором производят сварку степень механизации процесса (рис. 81). При струйной защите газ в зону сварки подается относительно электрода центрально или [c.152]
Технологичность конструкции зависит от масштаба ее выпуска и типа производства. Конструкция, высокотехнологичная для одного масштаба выпуска, может оказаться нетехнологичной для другого. Технологичность отдельных деталей и узлов должна быть увязана со всем изделием в целом. На технологичность сварной конструкции влияют основной и наплавленный металл, точность изготовления деталей, подбор оптимальных конструктивных и технологических баз и размерных цепей, выбор способов сварки, мест эксплуатационных и технологических разъемов, толщина соединяемых деталей, размеры швов, возможность автоматизации и механизации процесса изготовления, применения стандартного оборудования и т.д. Проектирование и изготовление не должны противопоставляться друг другу, должна быть взаимосвязь между ними. На предприятиях, где налажен контроль проектируемых конструкций на технологичность, производятся наиболее технологичные конструкции. [c.364]
Многие сварные конструкции имеют прямолинейные или кольцевые (круговые) сварные швы большой длины. Выполнение таких швов не требует от сварш,ика особенных навыков кроме стабильного ведения процесса. В этих случаях возникает необходимость и возможность механизации процесса сварки. [c.137]
Огромное значение для комплексной механизации процесса сварки имеет наличие в составе сварочной установки механического и вспомогательного сварочного оборудования, так как продолжительность процесса сборки и сварки составляет соответственно около 30 и 33 % Для уменьшения трудоемкости и продолжительности работы, повышения качества и снижения себе-отоимости изделия применяют механизированные приспособления для сборки свариваемой конструкции и [c.42]
Сварка в защитных газах строительно-монтажными организа-циямп лспользуется в тех случаях, когда получение качественных швов другими методами затруднительно плп невозможно, а также для механизации процесса сварки издели) , при кото )ых П)н1мене-ние других способов затруднительно. [c.89]
При механизации процесса сварка плавягцимся электродом в среде инертных газов отличается высокой производительностью. [c.445]
Механизация процессов сварки. При выполнении массовых однотипных работ процесс сварки электрозаклепками можно легко механизировать устройством многоэлектродной установки (рис. 62), где сварочный ток последовательно подается через контакты 5 к [c.175]
Механизация процесса сварки электрозаклепками. При выполнении массовых однотипных работ процесс сварки [c.189]
Предъявляемые требования. Основными требованиями, предъявляемыми к сварным соединениям приборов, являются высокая механическая прочность и электротеило проводность, высокая стабильность качества соединений, антикоррозионная устойчивость, минимальный нагрев и изменение микроструктуры сварного соединения, сохранение геометрических форм и размеров свариваемых деталей и т. и, В связи с этим высокие требования предъявляются и к разработке оборудования и технологии сварки. Многое зависит от правильно выбранного способа, процесса и режима сварки. В условиях массового производства для увеличения производительности, улучшения условий труда большое значение имеют автоматизация и механизация процессов сварки и вспомогательных операций. [c.6]
Разработапиый технологический процесс сварки не только должен обеспечивать получение надежных сварных соединений и конструкций, отвечающих всем эксплуатационным требованиям, но должен также допускать максимальную степень комплексной механизации и автоматизации всего производственного процесса изготовления изделия, должен также быть экономически наивыгоднейшим по расходу энергии, сварочных материалов, затрат человеческого труда. [c.5]
Преимуществами АДСФ являются высокая производительность (в 5—10 раз выше, чем при РДС) благодаря применению больших токов, большей глубины проплавления, отсутствию потерь металла на угар и разбрызгивание, а также механизации 1лрщЕГОЩ1 высокое качество сварных швов за счет хорошей защиты металла в процессе сварки и равномерного их формирования улучшение условий труда сварщиков и др. Недостатки АДСФ заключаются в трудности сварки коротких швов, а также швов, расположенных в сложных пространственных положениях и труднодоступных местах. [c.56]
В конце 30-х годов в Институте электросварки АН УССР под руководством Е. О. Патона был разработан отечественный способ автоматической дуговой сварки под флюсом, который обеспечил повышение производительности труда в 5—10 раз за счет механизации процесса и применения большей электрической мощности. [c.20]
Ра витие Bapo.HOit техники в пэслевоеннjfn период. После окончания войны начался новый этан развития сварочной техники, которое шло но трем основным направлениям 1) дальнейшее усиление механизации и автоматизации сварочных процессов, приведшее в конце 50-х годов к комплексной механизации и автоматизации многих процессов сборки и сварки 2) изыскание новых источников тепла и способов нагрева металлов в процессе сварки 3) усиление изучения и совершенствования металлургических процессов при сварке. [c.123]
Автоматическая электросварка, упрощая технику выполнения процесса сварки и повышая его производительность, требует в то же время повышения общей культуры и лучшей организации всех подготовительных операций, предшес1вующих сварке. В первую очередь это относится к повышению качества подготовки деталей к сварке, сборке свариваемых узлов и др. Внедрение автоматической сварки должно сопровождаться максимальной механизацией всех элементов процесса путём оборудования рабочего места индивидуальными подъёмно-транспортными устройствами, специальными приспособлениями для установки, поворота, враш,ения и т. д. При разработке технологического процесса, установлении технических норм и организации труда на участках автоматической сварки следует исходить из необходимости наибольшего использования автомата и выполнения элементов вспомогательной работы во время автоматической сварки. Последнее может быть успешно достигнуто в условиях серийного и массового производства путём оснащения рабочего места несколькими приспособлениями-дублёрами для крепления свариваемых узлов, придав им линейное или кольцевое расположение. [c.472]
Данный вид лазерной технологии к настоящему времени освоен еще надостаточно полно, но по имеющимся экспериментальным данным лазерная сварка неметаллических материалов оказалась перспективной в силу тех обстоятельств, что сфокусированный лазерный луч способен в малом объеме произвести разогрев материала без его разрушения и обеспечить сваривание материала и изделий с узкой зоной термического воздействия и высоким качеством соединения. При этом возможна механизация процесса. [c.151]
Теория сварки. Советы для начинающих сварщиков
Электросварка — это процесс получения неразрывных соединений с использованием электрической энергии.
Дуговая сварка — процесс, при котором теплота, необходимая для нагрева и плавления металла, получается за счет дугового разряда, возникающего между свариваемым металлом и электродом. Под действием теплоты электрической дуги кромки свариваемых деталей и электродный металл расплавляются, образуя сварочную ванну, которая некоторое время находится в расплавленном состоянии. При затвердевании металла образуется сварное соединение. Энергия, необходимая для образования и поддержания дугового разряда, получается от источников питания дуги постоянного или переменного тока.
Классификация дуговой сварки производится в зависимости от степени механизации процесса сварки, рода тока и полярности, типа дуги, свойств электрода, вида защиты зоны сварки от атмосферного воздуха и др.
По степени механизации дуговая сварка подразделяется:
Отнесение процессов к тому или иному способу зависит от того, как выполняются зажигание и поддержание определенной длины дуги, манипуляция электродом для придания шву нужной формы, перемещение электрода по линии наложения шва и прекращения процесса сварки.
При ручной дуговой сварке указанные операции, необходимые для образования шва, выполняются человеком вручную без применения механизмов.
При полуавтоматической дуговой сварке плавящимся электродом механизируются операции по подаче электродной проволоки в сварочную зону, а остальные операции процесса сварки осуществляются вручную.
При автоматической дуговой сварке под флюсом механизируются операции по возбуждению дуги, поддержанию определённой длины дуги, перемещению дуги по линии наложения шва. Автоматическая сварка плавящимся электродом ведётся сварочной проволокой диаметром 1-6 мм; при этом режим сварки (ток, напряжение, скорость перемещения дуги и др.) более стабилен, что обеспечивает однородность качества шва по его длине, в то же время требуется большая точность в подготовке и сборке деталей под сварку.
По роду тока различают:
- электрическая дуга, питаемые постоянным током прямой полярности (минус на электроде)
- электрическая дуга, питаемая постоянным током обратной (плюс на электроде) полярности
- электрическая дуга питамая переменным током
В зависимости от способов сварки применяют ту или иную полярность. Дуговая сварка под флюсом и в среде защитных газов обычно производится на обратной полярности.
По типу дуги различают
- дугу прямого действия (зависимую дугу)
- дугу косвенного действия (независимую дугу)
В первом случае дуга горит между электродом и основным металлом, который также является частью сварочной цепи, и для сварки используется теплота, выделяемая в столбе дуги и на электродах; во втором — дуга горит между двумя электродами. Основной металл не является частью сварочной цепи и расплавляется преимущественно за счёт теплоотдачи от газов столба дуги. В этом случае питание дуги осуществляется обычно переменным током, но она имеет незначительное применение из-за малого коэффициента полезного действия дуги (отношение полезно используемой тепловой мощности дуги к полной тепловой мощности).
Электроды для дуговой сварки бывают
- плавящиеся сварочные электроды
- неплавящиеся электроды (угольный, графитовый и вольфрамовый)
Дуговая сварка плавящимся электродом является самым распространённым способом сварки; при этом дуга горит между основным металлом и металлическим стержнем, подаваемым в зону сварки по мере плавления. Этот вид сварки можно производить одним или несколькими электродами. Если два электрода подсоединены к одному полюсу источника питания дуги, то такой метод называют двухэлектродной сваркой, а если больше — многоэлектродной сваркой пучком электродов. Если каждый из электродов получает независимое питание — сварку называют двухдуговой (многодуговой) сваркой. При дуговой сварке плавлением КПД дуги достигает 0,7-0,9.
По условиям наблюдения за процессом горения дуги различают:
- открытую
- закрытую
- полуоткрытую дугу
При открытой дуге визуальное наблюдение за процессом горения дуги производится через специальные защитные стёкла — светофильтры. Открытая дуга применяется при многих способах сварки: при ручной сварке металлическим и угольным электродом и сварке в защитных газах.Закрытая дуга располагается полностью в расплавленном флюсе — шлаке, основном металле и под гранулированным флюсом, и она невидима. Полуоткрытая дуга характерна тем, что одна её часть находится в основном металле и расплавленном флюсе, а другая над ним. Наблюдение за процессом производится через светофильтры. Используется при автоматической сварке алюминия по флюсу.
По роду защиты зоны сварки от окружающего воздуха различают:
- дуговая сварка без защиты (голым электродом, электродом со стабилизирующим покрытием)
- дуговая сварка со шлаковой защитой (толстопокрытыми электродами, под флюсом)
- дуговая сварка со шлакогазовой защитой (толстопокрытыми электродами)
- дуговая сварка с газовой защитой (в среде защитных газов) — сварка в среде углекислого газа, аргонно-дуговая сварка.
- дуговая сварка с комбинированной защитой (газовая среда и покрытие или флюс)
Электродные покрытия применяются для для создания защитной атмосферы во время плавления, введения легирующих добавок в сварной шов и т.п.
Стабилизирующие электродные покрытия представляют собой материалы, содержащие элементы, легко ионизирующие сварочную дугу. Наносятся тонким слоем на стержни электродов (тонкопокрытые электроды), предназначенных для ручной дуговой сварки.
Защитные электродные покрытия представляют собой механическую смесь различных материалов, предназначенных ограждать расплавленный металл от воздействия воздуха, стабилизировать горение дуги, легировать и рафинировать металл шва.
Полную информацию смотрите здесь >>>
Наибольшее применение имеют средне — и толстопокрытые электроды, предназначенные для ручной дуговой сварки и наплавки, изготовляемые в специальных цехах или на заводах.
Применяются также магнитные электродные покрытия, которые наносятся на проволоку в процессе сварки за счёт электромагнитных сил, возникающих между находящейся под током электродной проволокой и ферромагнитным порошком, находящемся в бункере, через который проходит электродная проволока при полуавтоматической или автоматической сварке. Иногда это ещё сопровождается дополнительной подачей защитного газа.
Классификация электрической дуговой сварки.
Все существующие способы сварки, как уже упоминалось выше, можно разделить на две основные группы:
Сварку давлением – контактная, газопрессовая – трением, холодная – ультразвуком,
Сварку плавлением – газовая, термитная, электродуговая, электрошлаковая, электронно-лучевая, лазерная.
Самое широкое распространение получили различные способы электрической сварки плавлением, а ведущее место занимает дуговая сварка, при которой источником теплоты служит электрическая дуга.
Электрическую сварку плавлением в зависимости от характера источников нагрева и расплавления свариваемых кромок можно разделить на следующие основные виды сварки:
электрическая дуговая, где источником тепла является электрическая дуга;
электрошлаковая, где основным источником теплоты является расплавленный шлак, через который протекает электрический ток;
электронно-лучевая, при которой нагрев и расплавление кромок соединяемых деталей производят направленным потоком электронов, излучаемых раскалённым катодом;
лазерная, при которой нагрев и расплавление кромок соединяемых деталей производят направленным сфокусированным мощным световым лучом микрочастиц-фотонов.
При электрической дуговой сварке основная часть теплоты, необходимая для нагрева и плавления металла, получается за счет дугового разряда, возникающего между свариваемым металлом и электродом. Под действием теплоты дуги кромки свариваемых деталей и торец плавящегося электрода расплавляются, образуя сварочную ванну, которая некоторое время находится в расплавленном состоянии. При затвердевании металла образуется сварное соединение. Энергия, необходимая для образования и поддержания дугового разряда, получается от источников питания дуги постоянного или переменного тока. Классификация дуговой сварки производится в зависимости от степени механизации процесса сварки, рода тока и полярности, типа дуги, свойств электрода, вида защиты зоны сварки от атмосферного воздуха и др.
По степени механизации различают сварку вручную, полуавтоматическую и автоматическую сварку. Отнесение процессов к тому или иному способу зависит от того, как выполняются зажигание и поддержание определенной длины дуги, манипуляция электродом для придания шву нужной формы, перемещение электрода по линии наложения шва и прекращения процесса сварки.
При ручной сварке указанные операции, необходимые для образования шва, выполняются рабочим-сварщиком вручную без применения механизмов.
При полуавтоматической сварке плавящимся электродом механизируются операции по подаче электродной проволоки в сварочную зону, а остальные операции процесса сварки осуществляются вручную.
При автоматической сварке под флюсом механизируются операции по возбуждению дуги, поддержанию определённой длины дуги, перемещению дуги по линии наложения шва. Автоматическая сварка плавящимся электродом ведётся сварочной проволокой диаметром 1-6 мм; при этом режим сварки (ток, напряжение, скорость перемещения дуги и др.) более стабилен, что обеспечивает однородность качества шва по его длине, в то же время требуется большая точность в подготовке и сборке деталей под сварку.
По роду тока различают дуги, питаемые постоянным током прямой (минус на электроде) или обратной (плюс на электроде) полярности или переменным током. В зависимости от способов сварки применяют ту или иную полярность. Сварка под флюсом и в среде защитных газов обычно производится на обратной полярности.
По типу дуги различают дугу прямого действия (зависимую дугу) и дугу косвенного действия (независимую дугу). В первом случае дуга горит между электродом и основным металлом, который также является частью сварочной цепи, и для сварки используется теплота, выделяемая в столбе дуги и на электродах; во втором — дуга горит между двумя электродами. Основной металл не является частью сварочной цепи и расплавляется преимущественно за счёт теплоотдачи от газов столба дуги. В этом случае питание дуги осуществляется обычно переменным током, но она имеет незначительное применение из-за малого коэффициента полезного действия дуги (отношение полезно используемой тепловой мощности дуги к полной тепловой мощности).
По свойствам электрода различают способы сварки плавящимся электродом и неплавящимся (угольным, графитовым и вольфрамовым). Сварка плавящимся электродом является самым распространённым способом сварки; при этом дуга горит между основным металлом и металлическим стержнем, подаваемым в зону сварки по мере плавления. Этот вид сварки можно производить одним или несколькими электродами. Если два электрода подсоединены к одному полюсу источника питания дуги, то такой метод называют двух электродной сваркой, а если больше — многоэлектродной сваркой пучком электродов. Если каждый из электродов получает независимое питание — сварку называют двухдуговой (многодуговой) сваркой. При дуговой сварке плавлением КПД дуги достигает 0,7-0,9.
По условиям наблюдения за процессом горения дуги различают открытую, закрытую и полуоткрытую дугу. При открытой дуге визуальное наблюдение за процессом горения дуги производится через специальные защитные стёкла — светофильтры. Открытая дуга применяется при многих способах сварки: при ручной сварке металлическим и угольным электродом и сварке в защитных газах. Закрытая дуга располагается полностью в расплавленном флюсе — шлаке, основном металле и под гранулированным флюсом, и она невидима. Полуоткрытая дуга характерна тем, что одна её часть находится в основном металле и расплавленном флюсе, а другая над ним. Наблюдение за процессом производится через светофильтры. Используется при автоматической сварке алюминия по флюсу.
По роду защиты зоны сварки от окружающего воздуха различают следующие способы сварки: без защиты (голым электродом, электродом со стабилизирующим покрытием), со шлаковой защитой (толстопокрытыми электродами, под флюсом), шлакогазовой (толстопокрытыми электродами), газовой защитой (в среде газов) с комбинированной защитой (газовая среда и покрытие или флюс). Стабилизирующие покрытия представляют собой материалы, содержащие элементы, легко ионизирующие сварочную дугу. Наносятся тонким слоем на стержни электродов (тонкопокрытые электроды), предназначенных для ручной дуговой сварки. Защитные покрытия представляют собой механическую смесь различных материалов, предназначенных ограждать расплавленный металл от воздействия воздуха, стабилизировать горение дуги, легировать и рафинировать металл шва.
Наибольшее применение имеют средне — и толстопокрытые электроды, предназначенные для ручной дуговой сварки и наплавки, изготовляемые в специальных цехах или на заводах.
Применяются также магнитные покрытия, которые наносятся на проволоку в процессе сварки за счёт электромагнитных сил, возникающих между находящейся под током электродной проволокой и ферромагнитным порошком, находящемся в бункере, через который проходит электродная проволока при полуавтоматической или автоматической сварке. Иногда это ещё сопровождается дополнительной подачей защитного газа.
Ручная дуговая сварка металла (MMA, SMAW или ручная сварка)
Ручная дуговая сварка металлом была впервые изобретена в России в 1888 году. В ней использовался металлический стержень без покрытия, обеспечивающий защиту от газа. Разработка электродов с покрытием не происходила до начала 1900-х годов, когда в Швеции был изобретен процесс Кьельберга, а в Великобритании — квазидуговой метод. Следует отметить, что применение электродов с покрытием было медленным из-за их высокой стоимости. Однако было неизбежно, что по мере роста спроса на качественные сварные швы ручная металлическая дуга стала синонимом покрытых электродов.Когда между металлическим стержнем (электродом) и заготовкой возникает дуга, стержень и поверхность заготовки плавятся, образуя сварочную ванну из расплавленного металла. Одновременное плавление флюсового покрытия на стержне приводит к образованию газа и шлака, которые защищают сварочную ванну от окружающей атмосферы. Шлак затвердеет и остынет, и его необходимо удалить с валика сварного шва после завершения цикла сварки (или перед нанесением следующего прохода).
Процесс позволяет выполнять сварку только коротких отрезков перед тем, как новый электрод нужно будет вставить в держатель сварочного электрода.Глубина проплавления низка, а качество готовой наплавки во многом зависит от квалификации сварщика.
Типы флюсов / электродов
Для зажигания дуги между электродом и основным металлом, например углеродистой сталью, и для получения сварного шва хорошего качества, сварщик должен убедиться, что его сварочные аппараты оснащены подходящими электродами. На стабильность дуги, глубину проникновения, скорость осаждения металла и возможность позиционирования сильно влияет химический состав флюсового покрытия на электроде.Электроды можно разделить на три основные группы:
Целлюлозные электроды содержат высокую долю целлюлозы в покрытии и характеризуются глубоко проникающей дугой и высокой скоростью выгорания, что обеспечивает высокую скорость сварки. Наплавленный металл может быть крупным, а удаление шлака жидким шлаком может быть затруднено. Эти электроды просты в использовании в любом положении и известны тем, что используются в технике сварки «дымоход».
Характеристики:
- глубокое проникновение во все позиции
- пригоден для сварки снизу вверх
- относительно хорошие механические свойства
- Высокий уровень образования водорода — риск растрескивания в зоне термического влияния (HAZ)
Рутиловые электроды содержат высокую долю оксида титана (рутила) в покрытии.Оксид титана способствует легкому зажиганию дуги, плавному срабатыванию дуги и малому разбрызгиванию. Эти электроды представляют собой электроды общего назначения с хорошими сварочными свойствами. Их можно использовать с источниками питания переменного и постоянного тока и во всех положениях. Электроды особенно подходят для сварки угловых швов в горизонтальном / вертикальном (H / V) положении.
Характеристики:
- умеренные механические свойства металла сварного шва, такие как прочность на разрыв
- Хороший профиль валика за счет вязкого шлака
- Возможна позиционная сварка жидким шлаком (содержащим фторид)
- легкосъемный шлак
Электроды с основным покрытием содержат большое количество карбоната кальция (известняк) и фторида кальция (плавиковый шпат) в покрытии.Это делает их шлаковое покрытие более жидким, чем рутиловое покрытие — оно также быстро замерзает, что способствует сварке в вертикальном и верхнем положении. Эти электроды используются для сварки изделий среднего и тяжелого сечения, где требуется более высокое качество сварного шва, хорошие механические свойства и устойчивость к растрескиванию (из-за высокой прочности).
Характеристики:
- металл шва с низким содержанием водорода
- требует больших сварочных токов / скоростей
- плохой профиль валика (выпуклый и грубый профиль поверхности)
- Удаление шлака затруднено
Электроды из металлического порошка содержат добавку металлического порошка к флюсовому покрытию для повышения максимально допустимого уровня сварочного тока.Таким образом, для данного размера электрода скорость осаждения металла и эффективность (процент нанесенного металла) увеличиваются по сравнению с электродом, не содержащим порошка железа в покрытии. Шлак обычно легко удаляется. Электроды из железного порошка в основном используются в плоском и горизонтальном / вертикальном положениях, чтобы воспользоваться преимуществами более высоких скоростей наплавки. Эффективность от 130 до 140% может быть достигнута для рутиловых и основных электродов без заметного ухудшения характеристик искрения, но дуга имеет тенденцию быть менее сильной, что снижает проникновение валика.
Источник питания
Электроды могут работать от источников питания переменного и постоянного тока. Не все электроды постоянного тока могут работать от источников переменного тока, однако электроды переменного тока могут использоваться как на переменном, так и на постоянном токе.
Сварочный ток
Уровень сварочного тока определяется размером электрода — нормальный рабочий диапазон и ток рекомендуются производителями. Типичные рабочие диапазоны для выбора размеров электродов показаны в таблице. Как показывает опыт, при выборе подходящего уровня тока для электрода потребуется около 40 А на миллиметр (диаметр).Следовательно, предпочтительный уровень тока для электрода диаметром 4 мм будет 160 А, но приемлемый рабочий диапазон — от 140 до 180 А.
Что нового
Транзисторная (инверторная) технология теперь позволяет производить очень маленькие и сравнительно легкие источники питания. Эти источники питания находят все более широкое применение для сварки на стройплощадках, где их можно легко переносить с работы на работу. Поскольку они имеют электронное управление, доступны дополнительные устройства для сварки TIG и MIG, которые увеличивают гибкость.Электроды теперь доступны в герметичных контейнерах. Эти вакуумные упаковки избавляют от необходимости обжигать электроды непосредственно перед использованием. Однако, если контейнер был открыт или поврежден, необходимо повторно просушить электроды в соответствии с инструкциями производителя.
Тренинг
Школа обучения TWI предлагает ознакомительный курс по сварке MMA. Сюда входят теоретические и практические занятия, примерно 75% которых составляют демонстрационные и практические занятия; понимание сварочных процессов и фундаментальные базовые знания.Здоровье и безопасность, настройка оборудования, параметры процесса сварки, дефекты процесса и способы их устранения, сварочные материалы.
Для получения дополнительной информации щелкните здесь.
Запросы
Для получения дополнительной информации о сварке стержневыми электродами и технических вопросов свяжитесь с нами.
,Подходит ли вам сварка под флюсом?
Рисунок 1
Производство труб — это одна из областей применения дуговой сварки под флюсом.
Процесс дуговой сварки под флюсом (SAW) может существенно улучшить скорость наплавки и производительность, а также обеспечить стабильное качество сварки. Однако для одних приложений он подходит лучше, чем для других (см. , рис. 1, ).Если вы думаете об использовании SAW, рассмотрите множество факторов, которые влияют на успех процесса. Необходимо оценить толщину материала, конструкцию соединения, подгонку и длину.
Также имейте в виду, что для достижения максимального успеха с SAW требуется некоторая домашняя работа и предварительные вложения в оборудование, но эти вложения во многих случаях могут принести значительную и быструю окупаемость.
Как работает SAW
SAW — это процесс с подачей проволоки, такой как газовая дуговая сварка (GMAW или MIG). Проволока подается через горелку, которая обычно перемещается по сварному шву за счет механизации.Понимание и управление SAW не сильно отличается от понимания и управления GMAW. Настройка аппарата аналогична, и многие параметры сварки остаются неизменными: напряжение по-прежнему влияет на ширину валика, сила тока по-прежнему влияет на проплавление, а увеличение скорости подачи проволоки по-прежнему увеличивает силу тока и осаждение (при условии постоянного расстояния между контактом и заготовкой и использования мощности CV поставка).
В отличие от GMAW, SAW использует гранулированный флюс для защиты дуги от атмосферы. Дуга находится в потоке флюса и не видна при нормальной работе.Когда дуга расплавляет проволоку, флюс и основной материал, образуя сварочную ванну, расплавленный флюс выполняет важные функции, такие как раскисление, легирование, формование и создание защитной атмосферы для наплавленного металла.
Что можно получить
Оптимизированный процесс SAW может обеспечить повышение производительности, экономию времени, качество и стабильность сварки, а также улучшенные условия для оператора.
В однопроволочных приложениях можно достичь значительной скорости наплавки (см. Рисунок 2 ), в зависимости от размера, типа и полярности проволоки.Может быть довольно легко использовать SAW для улучшения скорости наплавки по сравнению с текущим процессом GMAW, дуговой сваркой порошковой проволокой (FCAW) или дуговой сваркой в среде защитного металла (SMAW или Stick). Производители сварочного оборудования и присадочных материалов могут помочь вам определить начальные параметры и дать представление о возможностях улучшения.
Помимо повышения производительности, этот процесс может обеспечить стабильное качество сварки. Пила — это почти исключительно механизированный процесс. Дуговое и / или рабочее оборудование поддерживает постоянную скорость движения и положение горелки, поэтому операторы с меньшим практическим опытом сварки могут легко контролировать это.После этого компании могут направить свой самый квалифицированный персонал в самые ответственные области деятельности.
Этот процесс также обеспечивает улучшенную рабочую среду, поскольку он имеет низкое дымообразование и отсутствие видимой дуги. Это сводит к минимуму воздействие ультрафиолета, поэтому вам не нужно носить шлем или сварочную куртку, и вам будет проще выполнять другие задачи рядом с выполняемой сваркой.
Наконец, сварка под флюсом обеспечивает отличные механические свойства готового сварного шва. Многие комбинации проволока / флюс со средней и высокой основностью могут обеспечить высокую ударную вязкость даже при -60 градусов Цельсия или ниже, что может быть затруднительно даже для хорошо спроектированной проволоки FCAW на рутиловой основе.Определенные проволоки и флюсы под ПАВ также могут способствовать сохранению свойств при высоких тепловложениях, дополнительно оптимизируя потенциальные скорости наплавки.
Необходимое оборудование
SAW может обеспечить существенный прирост производительности в определенных областях применения, но для достижения этих результатов требуется вложить средства в соответствующее оборудование, помимо источника питания и механизма подачи проволоки. Следовательно, этот процесс обычно требует больших капиталовложений, чем другие процессы.
Рисунок 2
Однопроволочная сварка под флюсом позволяет достичь скорости наплавки до 40 фунтов.в час, в зависимости от размера, типа и полярности провода.
Чтобы помочь оптимизировать механизацию — и обеспечить различные уровни гибкости в зависимости от требований приложения — доступны многочисленные аксессуары.
В некоторых случаях резак остается неподвижным, а заготовка перемещается с помощью оборудования для позиционирования. Когда требуется движение дуги, есть несколько вариантов:
- Тракторы SAW предлагают портативность и гибкость для выполнения сварочных работ, расположенных по всему цеху или на рабочем месте (см. , рис. 3, ).
- Боковые балки или портальные установки не переносятся, а представляют собой стационарную установку, требующую проведения работ в сварочной камере. Это сокращает время, затрачиваемое на настройку и переналадку, но также снижает гибкость.
- Интегратор может помочь разработать индивидуальную систему, например кольцевую сварку для резервуаров для хранения и круглые сварочные аппараты для крепления сопел. Некоторые системы могут быть интегрированы с позиционирующим оборудованием для сварки более сложных геометрических фигур, таких как опоры для труб.
По сравнению с роботизированной сваркой, механизация под флюсом намного доступнее.Обычно его проще реализовать и освоить. Хотя этот процесс требует внимания оператора, во время сварки его часто легче отрегулировать, чем при роботизированной сварке. Кроме того, оборудование на ПАВ обычно отличается повышенной прочностью и надежностью.
Однако имейте в виду, что этот процесс ограничен сваркой в плоском и горизонтальном положении, что позволяет использовать параметры сильноточного и сильного наплавки. Использование SAW для всей сварки с несколькими сварными швами может потребовать большого оборудования для позиционирования; несколько вариантов включают установку наклона, передней и задней бабки.Иногда это оборудование для позиционирования может быть дорогостоящим, но в других случаях окупаемость инвестиций может быстро оправдать его и процесс по сравнению со сваркой в нерабочем положении с другим процессом.
Кроме того, поскольку вы не можете видеть положение дуги во время сварки, может потребоваться оборудование для отслеживания стыков. Варианты варьируются от простых, таких как лазер, который указывает будущее положение сварочной дуги, до более сложных, таких как тактильный датчик, который может автоматически регулировать положение горелки.
Проконсультируйтесь с интегратором или производителем оборудования, чтобы определить комбинацию оборудования, чтобы максимизировать потенциал и определить рентабельность инвестиций в операцию SAW.
Идеальные детали для SAW
Деталь для SAW является правильной по нескольким причинам. Тип материала и толщина — два важных фактора.
SAW лучше всего подходит для углеродистых и низколегированных сталей, но также может использоваться для нержавеющей стали и сплавов на основе никеля. И хотя SAW для толстых материалов является наиболее распространенным явлением, заблуждение, что этот процесс может использоваться только для толстых материалов.
SAW успешно используется для обработки тонких материалов во многих областях, таких как пропановые резервуары и водонагреватели. Несмотря на то, что используются большие силы тока, скорость движения в этих случаях значительно увеличивается, так что получаемое тепловложение является низким. Например, SAW с одной горелкой можно использовать для сварки 6,5 мм материала за один проход при токе 800 ампер со скоростью перемещения 76,2 см в минуту (или больше, в зависимости от конструкции соединения). Обратите внимание, что сварка более тонких материалов также требует большего внимания к «плавности» механизации, отслеживанию стыка и согласованности подготовки стыка.Основа стыков с использованием меди и / или сварочного флюса является популярным выбором для повышения повторяемости.
Независимо от толщины материала, ключевые факторы, необходимые для успешной реализации SAW, включают следующее:
Рисунок 3
Тракторы SAW предлагают гибкость для приложений, где необходима мобильность, например, для работы внутри судна.
- Геометрия соединений и деталей: SAW подходит для прямолинейных соединений, поскольку детали с выступами в сварном шве требуют более сложной и дорогой механизации для многократной обработки.И хотя SAW хорошо подходит для компонентов большого объема, это не значит, что она постоянно ограничивается одной и той же деталью. Даже мастерские могут воспользоваться этой технологией. Детали не обязательно должны быть идентичными, но они должны иметь схожую геометрию, чтобы максимизировать процесс. Например, для SAW и оборудования обычно легко сваривать как диаметром 3,7 метра, так и диаметром 3 метра. сосуды под давлением, поскольку их геометрия аналогична. Идея состоит в том, чтобы найти детали, которые могут использовать одну и ту же дугу и оборудование рабочего движения и размещение, чтобы минимизировать переналадку и, следовательно, время простоя.
- Длинные сварные швы: недостатком SAW является необходимость очистки между проходами. По этой причине он лучше подходит для длинных сварных швов (часто 1,2 м и более), которые можно очистить во время сварки. При более коротких сварных швах общее количество времени, затрачиваемого на очистку, больше, поскольку многозадачность усложняется, а отношение времени зажигания дуги ко времени, затрачиваемому на изменение положения и регулировку оборудования, становится меньше. В качестве побочного примечания, также важно рассмотреть возможность инвестирования в оборудование для восстановления и восстановления флюса (вакуум и печь), чтобы минимизировать затраты на расходные материалы.
- Окружные сварные швы диаметром более 200 мм: SAW — это популярный выбор для сосудов высокого давления и трубопроводов, поскольку сосуд или трубу можно вращать на позиционерах. Но ниже 200 мм диам. Удержание флюса становится более трудным, потому что флюс падает с трубы. Поскольку скорость охлаждения сварного шва при SAW ниже, чем в других процессах, его использование на трубе меньшего диаметра также может привести к неприемлемому профилю шва.
- Детали с хорошим доступом: оборудование для резки SAW громоздко, поэтому пространство и доступ к деталям являются ключевыми факторами.Система может потребовать индивидуальной разработки для использования в небольших помещениях, но подача проволоки может стать проблемой. Просто большие диаметры не такие гибкие, как маленькие диаметры, используемые на роботизированной руке GMAW.
Рекомендации по проектированию шарниров
Для успешной сварки SAW необходима хорошая подгонка детали, в противном случае может возникнуть проблема с прожогом. Эти проблемы необходимо устранить до начала процесса сварки, и они могут потребовать механической фиксации и особого внимания к подготовке детали.
«Уплотнительные бусины», изготовленные с использованием GMAW, FCAW или SMAW, могут использоваться для компенсации неидеальной подгонки. Эти быстрые дополнительные сварочные проходы увеличивают время операции, но часто требуют меньше времени, чем если бы все соединение было сварено с помощью процесса, отличного от SAW.
Возможные проблемы также могут быть решены путем пересмотра соединения. Глубокое проникновение процесса SAW может позволить увеличить поверхность корня или полностью исключить подготовку стыка.
Возможно, потребуется выполнить многопроходную сварку, в зависимости от толщины материала или механических свойств, необходимых для применения.Такой подход может быть лучше, чем значительное увеличение нагрева для завершения сварного шва за один проход. Несмотря на то, что высокая сила тока приводит к более высокой скорости наплавки, SAW не всегда терпима к тепловыделению (распространенное заблуждение).
Окупаемость SAW
Процесс SAW может обеспечить значительные преимущества с точки зрения производительности и качества при правильном применении. Тем не менее, важно хорошо понимать, что включает в себя этот процесс, и убедиться, что ваше конкретное приложение хорошо подходит для SAW, прежде чем делать инвестиции.
Интеграторы и производители оборудования могут предложить помощь в разработке и реализации оптимизированного процесса SAW или посоветовать, когда SAW может быть неправильным процессом. В некоторых приложениях влияние на чистую прибыль может быть значительным.
Фотографии любезно предоставлены Miller Electric Mfg. Co.
.Подготовка, расходные материалы и оборудование, необходимые для процесса
Газовая дуговая сварка вольфрамом (GTAW) — это процесс электродуговой сварки, при котором возникает дуга между неплавящимся электродом и свариваемым изделием. Сварной шов защищен от атмосферы с помощью защитного газа, который образует оболочку вокруг области сварного шва (см. , рис. 1, ).
Рисунок 1: Процесс GTAW универсален и может использоваться для черных и цветных металлов.Между неплавящимся электродом и свариваемым изделием возникает дуга. Сварной шов защищен от атмосферы защитным газом, который образует оболочку вокруг области сварного шва. |
GTAW универсален и может использоваться для обработки черных и цветных металлов и, в зависимости от основного металла, во всех положениях сварки. Этот процесс можно использовать для сварки тонких или толстых материалов с присадочным металлом или без него.
При сварке более тонких материалов, кромочных соединений и фланцев присадочные металлы не используются.Для более толстых материалов обычно используется присадочная проволока с внешней подачей. Тип используемой присадочной проволоки основан на химическом анализе основного металла. Размер присадочной проволоки зависит от толщины основного металла, от которой обычно зависит сварочный ток.
Методы работы GTAW могут быть ручными или автоматическими.
Переменные процедуры сварки и конфигурации соединений
Переменные процедуры сварки управляют процессом сварки и качеством получаемых сварных швов.Конфигурация соединения определяется конструкцией сварного изделия, металлургическим анализом, а также процессом и процедурой, требуемыми для сварки.
Параметры сварки выбираются после выбора основного металла, присадочного металла и конфигурации соединения. К фиксированным параметрам сварки относятся тип присадочного металла, тип и размер электрода, род тока и тип защитного газа.
Регулируемые переменные управляют формой сварного шва, влияя на такие параметры, как высота шва, ширина шва, проплавление и целостность шва.Основными регулируемыми переменными для GTAW являются сварочный ток, длина дуги и скорость движения.
Вторичные переменные также помогают контролировать процесс сварки, но их сложнее вычислить. Вторичные переменные включают рабочий угол и угол перемещения, а также расстояние, на которое электрод выходит за край чашки.
Вольфрамовые электроды
Электроды для GTAW изготавливаются из вольфрамового сплава. Вольфрам имеет одну из самых высоких температур плавления среди всех металлов, около 6 170 градусов по Фаренгейту (3410 градусов по Цельсию).
Размер используемого электрода определяется требуемым сварочным током. Электроды большего размера позволяют использовать более высокие токи. Электроды меньшего диаметра можно использовать для сварки более тонких материалов или при сварке в нерабочем положении.
Ниже приведен список различных типов используемых вольфрамовых сплавов:
1. Чистый вольфрам используется для обработки цветных металлов, таких как алюминий и магний, и обычно используется с препарированием концов на переменном токе (AC) (см. Рисунок 2 ).
Рисунок 2: Чистый вольфрам обычно используется с препарированным концом. |
2. Торированный вольфрам — наиболее распространенный тип вольфрамовых электродов для обработки углеродистой и нержавеющей стали. Его можно купить с 1 или 2% тория. Торированный вольфрам легко зажигается и поддерживает стабильную дугу. Он обладает большей устойчивостью к загрязнениям, сохраняет остроту и не разрушается так же быстро, как чистый вольфрам.
3. Цирконий вольфрам обычно используется для сварки цветных металлов с более высокими токами переменного тока.
Подготовка острия или использование угла конуса электрода применимо к торированному вольфраму. Электроды из торированного вольфрама заземлены до определенной точки, чтобы обеспечить лучшее зажигание дуги, с добавлением высокой частоты. Это обеспечивает зажигание дуги и предохраняет электрод от контакта с изделием. Это также помогает стабилизировать дугу.
Степень сужения влияет на форму и глубину проплавления сварного шва.Чтобы уменьшить количество раз, когда электрод необходимо затачивать, сварщик должен научиться не прикасаться к вольфрамовой детали во время процесса сварки. Рекомендуемая длина конуса составляет от 21/2 до 3 диаметров электрода (см. Рисунок 3 ).
Рис. 3: Правильная подготовка кончика электрода важна для достижения надлежащего проплавления шва. |
Защитные газы
Аргон и гелий — два наиболее часто используемых защитных газа для GTAW.Наиболее желательными характеристиками для целей защиты являются химическая инертность газов и их способность создавать плавное действие дуги при высоких токах. Оба газа инертны, вызывая эффект ионизации сварочной дуги. Они защищают вольфрамовый электрод и сварочную ванну от атмосферы.
Чистота газа влияет на сварной шов. Металлы выдерживают небольшое количество примесей, но для достижения наилучших результатов процент используемого инертного газа должен быть чистым не менее 99,9%.
Аргон тяжелее гелия и может поставляться в жидкой или газообразной форме. Аргон обеспечивает хорошее очищающее действие. Расход определяется размером вольфрама и диаметром газового стакана. Аргон подходит для сварки одинаковых и разнородных металлов и хорошо работает при сварке в вертикальном и потолочном положениях.
Гелий — более легкий инертный газ. Он может распространяться в виде жидкости, но чаще используется в виде сжатого газа. Он покидает зону сварного шва быстрее, чем аргон, и при его использовании необходимы более высокие скорости потока.
Гелий образует узкую, но глубокую зону термического влияния (HAZ), которая хорошо подходит для сварки более тяжелых металлов. Он подходит для сварки на высоких скоростях и обеспечивает хорошее покрытие в вертикальном и потолочном положениях. Это помогает увеличить проплавление, а при использовании в качестве обратной продувки имеет тенденцию сглаживать проход сварного шва. Гелий подходит для обработки цветных металлов большой толщины.
Смеси аргона и гелия используются, когда сварщикам требуется контроль аргона и проникновения гелия.Эта смесь не нужна при сварке простых углеродистых сталей.
Типичные смеси различаются в зависимости от области применения. Он часто используется для автоматической сварки.
Смеси аргона и водорода часто используются для сварки нержавеющей стали, INCONEL® и MONEL®. Эту смесь нельзя использовать при сварке простых углеродистых сталей. Типичная смесь состоит из 95 процентов аргона и 5 процентов водорода.
Азот также можно использовать в качестве защитного газа, но он используется редко из-за более высоких требований к току.Подходит для сварки меди.
Сварочный ток, конструкция соединения
Ток зависит в первую очередь от типа свариваемого металла, требуемых уровней тока и наличия аппарата, вырабатывающего этот тип сварочного тока.
Положительный электрод постоянного тока (DCEP) (обратная полярность) иногда используется для сварки очень тонких цветных металлов, а также для наматывания вольфрамового электрода. Отрицательный электрод постоянного тока (DCEN) (прямая полярность) чаще всего используется для сварки нержавеющей стали и черных металлов.
Переменный ток с добавлением высокой частоты чаще всего используется для сварки некоторых цветных металлов, таких как алюминий и магний. Он обеспечивает хорошее очищающее действие и дает умеренное проникновение.
Конструкция сварного соединения
Пять основных типов соединений — это стыковое соединение, угловое соединение, краевое соединение, соединение внахлест и тройник (см. Рисунок 4 ). Из пяти типов шарниров наиболее часто используются стыковое и тройниковое соединение.
Рисунок 4 |
Прочность сварного соединения — еще один фактор, влияющий на конструкцию сварного соединения.Сварные швы могут быть частичными или полными, в зависимости от требуемой прочности шва. Конструкция сварного соединения или конфигурация сварного изделия для GTAW определяется типом металла, конфигурацией сварного соединения, обозначенными кодами и спецификациями, а также металлургическим анализом. Несколько факторов влияют на конструкцию соединения, которое будет использоваться, включая требуемую прочность, положение сварки, толщину металла и доступность соединения для сварщика.
Целью любой конструкции соединения является получение прочного сварного шва с желаемыми свойствами с максимальной экономией.Подготовка кромок и стыков важны, поскольку они влияют как на качество, так и на стоимость сварки.
Подготовка к сварке
Перед использованием GTAW необходимо предпринять несколько шагов для подготовки электрода и сварного шва, закрепления сварного соединения, установки переменных и предварительного нагрева основного металла, если необходимо. Объем подготовки зависит от размера сварного шва, типа основного материала, подгонки и требований к качеству.
Подготовка электродов. Подготовка электродов зависит от типа электрода и области применения сварки. Наконечник может иметь точку заземления или шаровой конец для сварки на переменном токе.
Для изготовления электрода с острием следы шлифовки должны проходить параллельно электроду.
Чтобы подготовить шарик на конце вольфрама, необходимо переключить источник питания на DCEP (обратная полярность). Затем после зажигания дуги между электродом и куском металлолома или меди ее необходимо поддерживать на умеренном уровне тока.Кончик мяча должен быть идеально чистым, блестящим и иметь зеркальную поверхность.
Подготовка сварного шва. При подготовке сварного шва можно использовать несколько различных методов, в том числе газокислородную резку, плазменную резку, резку ножницами, механическую обработку, строжку угольной дугой, шлифование или скалывание. Помните, что правильная подготовка сварного шва поможет произвести надежную сварку и соответствовать требованиям стандартов качества сварки.
Очистка. Очистка свариваемого материала важна.Сварные швы GTAW часто подвержены загрязнению во время сварки. На свариваемой поверхности не должно быть масла, жира, краски, грязи, окислов и других посторонних материалов.
Алюминий имеет оксидное покрытие, которое, если его не удалить, загрязняет зону сварки. Чистящие растворы, проволочные щетки, шлифовальные машины и абразивоструйная очистка — вот некоторые из методов, используемых для удаления этих загрязнений.
Крепление и установка. Крепление и расположение также влияют на форму, размер и однородность сварного шва.Крепления удерживают сварную деталь на месте, контролируя деформацию, помогая размещать и удерживать детали в их положении относительно сварной детали.
Использование крепежа позволяет сократить время сварки. Позиционирование поможет переместить сварную деталь в ровное положение, что повысит производительность сварщика.
Охлаждающие блоки, радиаторы или опорные стержни могут использоваться при сварке некоторых металлов для предотвращения прожога, снижения температуры основного материала или для минимизации деформации.
Предварительный нагрев. В зависимости от легирующих элементов в основном материале, толщины стали и конфигурации соединения иногда требуется предварительный нагрев. Величина предварительного нагрева, необходимая для конкретного применения, обычно определяется процедурой сварки. Доступно несколько методов управления температурой предварительного нагрева, включая нагрев печи, электрические индукционные катушки, кислородные горелки и одеяла резистивного нагрева.
Температуру предварительного нагрева можно измерить с помощью температурных палочек, шариков мелка, индикаторов температуры, термопар, термисторов или инфракрасных термометров.
Заключение
Изучение основ процесса GTAW повысит способность сварщика производить качественные сварные швы. Знание правильных расходных материалов, оборудования и необходимой подготовки к сварке поможет сварщику устранять проблемы при сварке.
Хорошее понимание процесса GTAW поможет сварщику сделать более разумный выбор при выборе присадочного металла, вольфрамовых электродов и защитных газов. Сварщик также сможет выбрать правильный тип оборудования в зависимости от области применения при сварке углеродистой стали, нержавеющей стали или цветных металлов.Предварительная подготовка также важна для получения качественных сварных швов.
Еще один важный навык для сварщика при выполнении качественной работы — это правильная подготовка для различных применений и отработка приобретенных навыков, необходимых для качественной работы.
Оценка стабильности процесса ручной дуговой сварки металла с использованием цифровых сигналов
[1] Дж. Сланиа, Объективные методы оценки характеристик источников сварочного тока с помощью компьютерного записывающего устройства и обработки данных, общее обсуждение, Бюллетень Института сварки (1991), N.2-3 (на польском языке).
[2] Дж. Слания, Объективный метод оценки энергии при роботизированной сварке электродуговой сваркой, Бюллетень Института сварки (1992), Н.4 (на польском языке).
[3] J. Wegrzyn, Физика и металлургия сварки, Politechnika Slaska, Катовице, 1990 (на польском языке).
[4] Добай Э. Сварочные машины и оборудование, WNT, Варсовия, 1994 (на польском языке).
[5] ДО НАШЕЙ ЭРЫ. Шарма, Оценка стабильности процесса электродов MMAW с основным покрытием, с использованием статистического анализа, механических свойств и содержания водорода, Журнал производственной инженерии, Институт инженеров (Индия) (2006), 86.
[6] Б. Слазак, В. Малевски, А. Крыштафкевич, Т. Есионовски, Оценка сварочного электрода, полученного из жидкого стекла, модифицированного оксидом лития, Польский J.химической технологии (2006), 3.
[7] B Slazak, J. Slania, Сравнительные исследования электродов с высоким покрытием ERWS 19-9 L, полученных с использованием нового жидкого стекла, модифицированного оксидом лития, Сварочный институт им.Bull. (2006), № 6 (на польском языке).
[8] М. Вегловски, А. Коласа, П.Цегельски, Оценка стабильности процесса ручной дуговой сварки покрытыми электродами, Обзор сварки (2006 г.), 1 (на польском языке).
[9] М.Велловски, А. Коласа, П. Цегельски, Исследование технологических свойств инверторных источников питания для сварки, Обзор сварки (2006), 9-10 (на польском языке).
[10] М.Велловски, Испытания источников сварочного тока с внутренним преобразованием частоты, докторская диссертация, Варшавский университет, 2008 г. (на польском языке).
[11] J.К. Дутра, MIG / MAG — перенос металла при коротком замыкании — источники сварочного тока в сравнении с газами дуги, Welding International, 23 (2009), стр. 231-236.
DOI: 10.1080 / 09507110802543302
[12] Wegrzyn T, Miroslawski J, Silva AP, Pinto DG, Miros M, Оксидные включения в стальных сварных швах кузова автомобиля, Форум по материаловедению, Vol.636-637 (2010), стр 585-591.
DOI: 10.4028 / www.scientific.net / msf.636-637.585
,