Сварочный старый аппарат: Как определить марку сварочного аппарата 380в ссср

Prosto-Blog: Старый сварочный аппарат

Опробовать эту «идею для заработка» меня «вынудило» огромное количество объявлений в местной городской газете типа «дорого куплю старый сварочный аппарат»,»куплю советский сварочный аппарат» и т.д. Мне показалось слегка странным то, что такому огромному количеству людей вдруг понадобились именно старые, громоздкие и тяжелые сварочные аппараты при том, что в любом хозяйственном магазине в наличии огромный выбор современных, лёгких и удобных инверторных сварочных аппаратов.
Короче говоря интуитивно)) я понимал что дело в
меди, вернее медной обмотке на которую раньше не скупились кулибины, изготавливавшие старые сварочные аппараты. Но кто скажет сколько её там? А сколько трансформаторного железа? Конечно же НИКТО!!!Кто захочет отдать свой хлеб незнакомому……….да и знакомому человеку?
В общем было принято решение попробовать.

*******************************************
 Так вот, вернёмся к нашим ………..сварочным аппаратам)). Свой первый  сварочник я приобрёл за 800 грн на свой страх и риск. При помощи нехитрых инструментов типа молоток/пассатижи/отвертка и своего невероятно развитого мозга в течение получаса я разложил его по полочкам)). 

Общий вес сварочного был 64 кг, из них получилось 30 кг медной шины!!!
Следующий шаг можно назвать «секс» с медной шинкой)) он заставил меня «попотеть»- процесс опаливания шинки занял некоторое время, но в итоге я был приятно удивлён ( читай-вознаграждён)).
На следующий день я сдал медь в приемку , цена была тогда 50 грн/кг и получил свои, честно заработанные, денежки.
Стоит учесть тот факт, что с этого сварочного у меня остались еще кабеля, диоды, и ведро трансформаторного железа.
Вот эта «бизнес-идея» опробованная однажды лично мной, позволяет заработать копеечку, и не плохую, буквально в течение пары часов. Требуется у себя в селе/деревне развесить объявления и ждать)))))))))))). В процессе работы всплыли кое-какие факты, но это лишь увеличивает прибыль))

Как сконструировать сварочный аппарат из деталей старых телевизоров — Моя ковка

Довольно часто в бытовых условиях мы сталкиваемся с необходимостью сварки каких-либо элементов из черного металла.

Как известно, фабричные сварочные инверторы стоят недешево, потому многие доморощенные мастера на все руки принимаются самостоятельно конструировать сварочный аппарат из деталей старых телевизоров.

Сварочный аппарат из деталей телевизоров

Для создания простого сварочного инвертора, потребуются только электронные компоненты от старых телевизоров.

Рассмотрим этапы создания своими руками наиболее простого и доступного сварочного инвертора, в котором применяются самые распространенные узлы и элементы. Выбирая между конструкцией на инверторной основе или со сварочным трансформатором, остановимся на первом варианте, так как для сварочного трансформатора характерны немалая величина, большое количество провода из меди и наличие тяжелого магнитопровода, что многие попросту не могут себе позволить. Напротив, электронные детали старого телевизора для инвертора достать не так затруднительно, они обойдутся гораздо дешевле.

Общие характеристики сварочного аппарата из старых телевизоров

На рис. 1 представлена схема работы простого однокатного инвертора, преимуществом которого является отсутствие труднодоступных деталей и элементарность конструкции; для изготовления аппарата взято множество радиоэлементов от старых телевизоров. К тому же такое устройство практически не нуждается в настройке.

Этот сварочный аппарат из деталей телевизора имеет такие характеристики:

Схема простого однокатного инвертора

Рисунок 1. Схема простого однокатного инвертора.

  1. Максимум потребляемого тока от сети — 20 А.
  2. Предел регулировки сварочного тока — 40-130 А.
  3. Максимум напряжения на холостом ходу на электроде — 90 В.
  4. Напряжение в сети переменного тока 50 Гц частотой — 220 В.
  5. Наибольший возможный диаметр рабочего электрода — 3 мм.
  6. Длительность нагрузки при окружающей температуре 25 градусов и выходном токе 100 А — 60%; при 130 А — 40%.
  7. Размеры сварочного аппарата составляют 35×18×10,5 см.
  8. Вес конструкции (без учета электродержателя и кабелей) — 5500 г.
  9. Сварочный ток постоянный, регулировка плавная.

Напряжение запускается кнопкой, которая располагается на электродержателе, что, в свою очередь, позволяет применять увеличенное напряжение зажигания дуги и повышать электробезопасность, а также напряжение на электроде выключается автоматом, если отпустить электродержатель. Увеличенное напряжение дает возможность облегчить зажигание дуги и обеспечить постоянство горения.

При помощи этого аппарата можно соединять детали из тонких листов металла, потому как происходит применение сварочного постоянного тока одновременно с противоположной полярностью напряжения сварки.

Вернуться к оглавлению

Составные части сварочного инвертора

Схема монтажа обмоток на магнитопроводе

Рисунок 2. Схема монтажа обмоток на магнитопроводе.

Напряжение в электросети выпрямляется посредством использования диодного моста VD1-VD-4. Прямой ток, минуя лампу HL1, приступает к зарядке C5 конденсатора. Лампа необходима для ограничения зарядного тока. Приступать непосредственно к сварке можно только тогда, когда перестанет гореть лампа HL1. В то же время зарядка доходит до конденсаторов батареи C6-C17 по дросселю L1. Если горит светодиод HL2, то сварочный аппарат из деталей телевизора подключен к сети. В это время тринистор VS1 все еще закрыт.

Если нажимается кнопка SB1, происходит запуск импульсивного генератора, в основе которого лежит транзистор с одним переходом VT1. Генераторные импульсы вызывают открытие транзистора VS2, который стимулирует открытие параллельно подключенных тринисторов VS3-VS7. Посредством первичной обмотки трансформатора Т1 и дросселя L2 происходит разрядка конденсаторов C6-C17.

Цепочка из конденсаторной группы С6-С17, первичной обмотки трансформатора и Т1 и дросселя L2 в сумме образует колебательный контур. В тот момент, когда в этом контуре ток меняет свое направление, он протекает по диодам VD8, VD9, а до последующего генераторного импульса на транзисторе VT1 происходит закрытие тринисторов VS3-VS7, после чего цикл повторяется.

Тринистор VS1 открывается благодаря импульсам, которые возникают на обмотке 3-го трансформатора T1. Тринистор VS1 непосредственно соединяет выпрямитель сети на диодах VD1-VD4 с преобразователем тринисторов. В качестве индикатора генерации напряжения импульсов выступает светодиод HL3. Диоды VD11-VD34 необходимы для выпрямления сварочного напряжения, в то время как С19-С24 предназначаются для его сглаживания, делая зажигание сварочной дуги более легким и плавным.

Конструкция сварочного выпрямителя

Рисунок 3. Конструкция сварочного выпрямителя.

В качестве выключателя SA1 можно использовать переключатель пакетного или другого типа, который сможет выдержать ток минимум 16 А. Конденсатор С5 в процессе выключения замыкается секцией SA1.3 на резисторе R6, который мгновенно разряжается, что, в свою очередь, дает возможность безопасно осматривать и ремонтировать аппарат для сварки. Узлы конструкции охлаждаются благодаря работе вентилятора ВН-2. Использовать вентиляторы с меньшей мощностью не стоит, иначе потребуется монтировать несколько таких. В качестве конденсатора С1 используется произвольный, предназначающийся для функционирования в условиях переменного напряжения 220 В.

Диоды VD1-VD4 должны предназначаться для минимального тока 16 А и противоположного напряжения минимум 400 В. Они монтируются на алюминиевые уголковые теплоотводные пластинки габаритами 6×1,5 см и толщиной 0,2 см. Одиночный конденсатор С5 возможно заменить батареей, состоящей из нескольких подключенных параллельно, рассчитанных на минимальное напряжение в 400 В.

Дроссель L1 выполняется на магнитопроводе ПЛ из стали размером 12,5×25-45. Сгодится и другой магнитопровод с аналогичным или большим сечением, в окне которого сможет поместиться обмотка, которая включает 175 витков провода ПЭВ-2 сечением 1,32. Категорически запрещено применять провод с меньшим диаметром! У магнитопровода должна соблюдаться следующая характеристика: немагнитное отверстие должно составлять 0,3-0,5 мм. Индуктивность дросселя должна находиться в пределе 40+10 мкГн.

Чертеж фиксирующих пластин

Рисунок 4. Чертеж фиксирующих пластин.

У конденсаторов С6-С24 должен быть небольшой тангенс угла диэлектрической потери, а у С6-С17 вдобавок и сварочное напряжение 1000 В. Лучше всего прибегнуть к использованию конденсатора К78-2, которые служили деталью старых телевизоров. Возможно применение других, более популярных конденсаторов сходной группы с иной емкостью, достигающих в сумме той емкости, которая обозначена в схеме. Не стоит применять бумажные и прочие конденсаторы, которые предназначены для работы в цепях с низкими частотами, поскольку они в большинстве своем ведут к быстрой поломке самодельного сварочного аппарата.

Вернуться к оглавлению

Подборка тринисторов

В идеале используйте тринисторы КУ221 (VS2-VS7), на которых значится буквенный индекс А (можно также Б или Г). Практикой доказано, что в процессе работы сварочного аппарата тринисторовые катодные выводы сильно нагреваются, вследствие чего может деформироваться пайка на плате или тринисторы вовсе перестанут функционировать. Можно увеличить надежность путем надевания на катодные выводы трубочек-пистонов, выполненных из медной луженой фольги 0,1-0,12 мм толщиной, или же использовать бандажи в форме спирали из луженой медной проволоки 0,2 мм толщиной, после чего сделать пайку по всей поверхности. Трубка-пистон или бандаж должны закрывать вывод катода по всей поверхности вплоть до основания. Во избежание перегрева тринистора пайку нужно осуществлять быстро.

Схема печатной платы из фольгированного стеклотекстолита.

Рисунок 5. Схема печатной платы из фольгированного стеклотекстолита.

Некоторые могут задаться вопросом: почему не заменить несколько тринисторов с малой мощностью на один достаточной мощности? Такую замену теоретически совершить можно, если вы используете прибор, который превосходит (или, по крайней мере, равен) по показателям частоты тринисторам КУ221А. Но в числе легкодоступных (ТЧ или ТЛ) таковых не бывает. Кроме того, есть сведения, что один тринистор с большой мощностью является не таким надежным, как несколько подключенных параллельным способом, потому что они лучше отводят тепло. Достаточно монтировать несколько тринисторов на одной теплоотводящей пластинке с минимальной толщиной 3 мм.

Резисторы R14-R18 (С5-16 В), уравнивающие ток, имеют свойство сильно нагреваться в процессе сварки, поэтому перед их установкой нужно убрать с них чехол, сделанный из пластмассы, посредством обжига или нагрева. Диоды VD8 и VD9 монтируются на теплоотводе рядом с тринисторами, при этом между диодом VD9 и теплоотводом устанавливается прокладка, выполненная из слюды. Обязательно нужно использовать теплопроводящий гель.

Дроссель L2 имеет вид спирали без каркаса, состоящей из 11 витков провода, толщина которого минимум 4 мм2. В процессе сварки дроссель имеет свойство сильно нагреваться, потому, наматывая спираль, требуется оставить промежуток между витками в пределах 1-1,5 мм. Дроссель требуется расположить таким образом, чтобы он попадал в поток воздуха, создаваемый вентилятором.

Вернуться к оглавлению

Монтаж обмоток на магнитопроводе

Трансформаторный магнитопровод Т1 формируется из собранных вместе трех магнитопроводов ПК 3×1,6, выполненных из феррита 3000НМС-1 (на них выполнялись строчные трансформаторы для старых телевизоров). Первый и второй слой обмотки делятся на 2 группы (рис. 2). Первый слой обмотки содержит в себе 2×4 витков, второй — из 2×2 витков.

Чертеж теплоотвода в сборе с платой

Чертеж теплоотвода в сборе с платой.

Группы наматываются на заранее подготовленную оправку из дерева. От случайного раскручивания витков предохраняет пара бандажей, выполненных из медной луженой проволоки толщиной 0,8-1 мм. По ширине бандаж должен быть 1-1,1 см. Под каждым бандажом должна быть электрокартонная подкладка. Бандажи после установки пропаиваются. Необходимо учитывать, что в самом агрессивном тепловом режиме будет работать обмотка I. Потому в процессе ее накручивания и сборки между витками необходимо оставлять воздушные промежутки, устанавливая между витками небольшие стеклотекстолитные вставки, на которые предварительно нанесен теплостойкий клеевой раствор. Запомните, чем больше воздушных промежутков будет в обмотке, тем лучше будет проходить отведение тепла из трансформатора.

Монтаж обмоток на магнитопроводе проходит в четкой последовательности, чтобы обеспечить корректное функционирование выпрямителя VD11-VD32. Если на трансформатор смотреть сверху, то намотка обмотки I должна идти против часовой стрелки. Верхний вывод подключается к дросселю L2.

К основанию сварочного аппарата трансформатор крепится с помощью трех скобок, сделанных из медной или латунной проволоки 3 мм толщиной. Аналогичными скобками необходимо зафиксировать все детали магнитопровода. Перед тем как монтировать трансформатор, необходимо установить электрокартонные прокладки 0,2-0,3 мм толщиной в каждый из трех групп магнитопровода.

Вернуться к оглавлению

Конструкция сварочного выпрямителя

Сварочный выпрямитель выполнен как обособленный блок, имеющий форму этажерки (рис. 3). Он сконструирован таким образом, что каждая из диодных пар VD11-VD34 помещается между парой теплоотводящих пластин 4,4×4,2 см и толщиной 0,1 см, сделанных из алюминия. Конструкция блока стягивается двумя парами резьбовых шпилек из стали 0,3 см в сечении между парой фланцев 0,2 см толщиной, к которым крепятся с помощью винтов 2 платы, которые образуют выводы выпрямителя.

В этой конструкции все диоды имеют одинаковую ориентацию (см. рис. 4) и впаиваются выводами в зазоры платы, которая играет роль общего плюсового вывода выпрямителя и агрегата в общем. Анодные диодные выводы впаиваются в зазоры второй платы, на которой формируется два комплекта выводов, присоединяющихся к трансформаторной обмотке II, как показано на схеме.

Конденсаторы С2-С4, С6-С18, все резисторы (за исключением R1-R6), тринисторы VS2-VS7, транзистор VT1, диоды VD8-VD10, стабилитроны VD5-VD7 устанавливаются на печатной плате, при этом диоды VD8, VD9 и тринисторы монтируются на теплоотводе, который привинчивается к плате. Материалом для платы служит фольгированный стеклотекстолит 1,5 мм толщиной. Схема платы представлена на рис. 5. Масштаб рисунка составляет 1:2, но разметить плату не составляет труда даже без фотоувеличительных средств.

Не требуется абсолютной точности разметки и проделывания отверстий на плате, но учитывайте, что отверстия платы должны совпасть с отверстиями в теплоотводящей пластинке.

Сварочный аппарат, собранный из деталей старых телевизоров

   Многим в хозяйстве пригодился бы аппарат для электросварки деталей из черных металлов. Поскольку серийно выпускаемые сварочные аппараты довольно дороги, многие радиолюбители берутся за самостоятельное их изготовление. Об одном из таких устройств рассказывает эта статья.

   С самого начала работы я поставил себе задачу создания максимально простого и дешевого сварочного аппарата с использованием в нем широко распространенных деталей и узлов. Из двух основных вариантов конструкции аппарата — со сварочным трансформатором или на основе конвертора — был выбран второй. Действительно, сварочный трансформатор — это значительный по сечению и тяжелый магнитопро-вод и много медного провода для обмоток, что для многих малодоступно. Электронные же компоненты для конвертора при их правильном выборе недефицитны и относительно дешевы.

   Рис. 1

В результате довольно длительных экспериментов с различными вид
ами конвертора на транзисторах и трини-сторах была составлена схема, показанная на рис. 1. Простые транзисторные конверторы оказались чрезвычайно капризными и ненадежными, а три-нисторные без повреждения выдерживают замыкание выхода до момента срабатывания предохранителя. Кроме того, тринисторы нагреваются значительно меньше транзисторов.

   Как легко видеть, схемное решение не отличается оригинальностью — это обычный однотактный конвертор, его достоинство — в простоте конструкции и отсутствии дефицитных комплектующих, в аппарате использовано много радиодеталей от старых телевизоров. И, наконец, он практически не требует налаживания.

   Сварочный аппарат обладает следующими основными характеристиками:

   Пределы регулирования сварочного тока, А……..40… 130

   Максимальное напряжение на электроде на холостом ходу, В……………………90

   Максимальный потребляемый от сети ток, А…………..20

   Напряжение в питающей сети переменного тока частотой 50 Гц, В ………….220

   Максимальный диаметр сварочного электрода, мм ……….3

   Продолжительность нагрузки (ПН), %, при температуре воздуха 25 °С и выходном токе

100 А ………………….60
130 А ………………….40

   Габариты аппарата, мм . .350х 180х 105

   Масса аппарата без подводящих кабелей и электро-додержателя, кг……………5,5

   Род сварочного тока — постоянный, регулирование — плавное. При сварке встык стальных листов толщиной 3 мм электродом диаметром 3 мм установившийся ток, потребляемый аппаратом от сети, не превышает 10 А.

   Сварочное напряжение включают кнопкой, расположенной на электрододержателе, что позволяет, с одной стороны, использовать повышенное напряжение зажигания дуги и повысить электробезопасность, с другой, поскольку при отпускании электрододержателя напряжение на электроде автоматически отключается. Повышенное напряжение облегчает зажигание дуги и обеспечивает устойчивость ее горения.

   Использование постоянного сварочного тока при обратной полярности сварочного напряжения позволяет соединять тонколистовые детали.

   Сетевое напряжение выпрямляет диодный мост VD1-VD4. Выпрямленный ток, протекая через лампу HL1, начинает заряжать конденсатор С5. Лампа служит ограничителем зарядного тока и индикатором этого процесса. Сварку следует начинать только после того, как лампа HL1 погаснет.

   Одновременно через дроссель L1 заряжаются конденсаторы батареи С6-С17. Свечение светодиода HL2 показывает, что аппарат включен в сеть. Тринистор VS1 пока закрыт.

   При нажатии на кнопку SB1 запускается импульсный генератор на частоту 25 кГц, собранный на однопе-реходном транзисторе VT1. Импульсы генератора открывают тринистор VS2, который, в свою очередь, открывает соединенные параллельно тринисторы VS3-VS7. Конденсаторы С6-С17 разряжаются через дроссель L2 и первичную обмотку трансформатора Т1.

   Цепь дроссель L2 — первичная обмотка трансформатора Т1 — конденсаторы С6-С17 представляет собой колебательный контур. Когда направление тока в контуре меняется на противоположное, ток начинает протекать через диоды VD8, VD9, а тринисторы VS3-VS7 закрываются до следующего импульса генератора на транзисторе VT1. Далее процесс повторяется.

   Импульсы, возникающие на обмотке III трансформатора Т1, открывают тринистор VS1. который напрямую соединяет сетевой выпрямитель на диодах VD1 -VD4 с тринистор-ным преобразователем. Светодиод HL3 служит для индикации процесса генерации импульсного напряжения. Диоды VD11-VD34 выпрямляют сварочное напряжение, а конденсаторы С19- С24 — его сглаживают, облегчая тем самым зажигание сварочной дуги.

   Выключателем SA1 служит пакетный или иной переключатель на ток не менее 16 А. Секция SA1.3 замыкает конденсатор С5 на резистор R6 при выключении и быстро разряжает этот конденсатор, что позволяет, не опасаясь поражения током, проводить осмотр и ремонт аппарата. Вентилятор ВН-2 (с электродвигателем М1 по схеме) обеспечивает принудительное охлаждение узлов устройства. Менее мощные вентиляторы использовать не рекомендуется, или их придется устанавливать несколько. Конденсатор С1 — любой, предназначенный для работы при переменном напряжении 220 В.

   Выпрямительные диоды VD1-VD4 должны быть рассчитаны на ток не менее 16 А и обратное напряжение не менее 400 В. Их необходимо установить на пластинчатые уголковые теплоотво-ды размерами 60×15 мм толщиной 2 мм из алюминиевого сплава. Вместо одиночного конденсатора С5 можно использовать батарею из нескольких параллельно включенных на напряжение не менее 400 В каждый, при этом емкость батареи может быть больше указанной на схеме.

   Дроссель L1 выполнен на стальном магнитопроводе ПЛ 12,5×25-50. Подойдет и любой другой магнитопровод такого же или большего сечения при выполнении условия размещаемости обмотки в его окне. Обмотка состоит из 175 витков провода ПЭВ-2 1,32 (провод меньшего диаметра использовать нельзя!). Магнитопровод должен иметь немагнитный зазор 0,3…0,5 мм. Индуктивность дросселя — 40±10 мкГн.

   Конденсаторы С6-С24 должны обладать малым тангенсом угла диэлектрических потерь, а С6-С17 — еще и рабочим напряжением не менее 1000 В. Наилучшие из испытанных мною конденсаторов — К78-2, применявшиеся в телевизорах. Можно использовать и более широко распространенные конденсаторы этого типа другой емкости, доведя суммарную емкость до указанной в схеме, а также пленочные импортные. Попытки использовать бумажные или другие конденсаторы, рассчитанные на работу в низкочастотных цепях, приводят, как правило, к выходу их из строя через некоторое время.

   Тринисторы КУ221 (VS2-VS7) желательно использовать с буквенным индексом А или в крайнем случае Б или Г. Как показала практика, во время работы аппарата заметно разогреваются катодные выводы тринисторов, из-за чего не исключено разрушение паек на плате и даже выход из строя тринисторов. Надежность будет выше, если на вывод катода тринисторов надеть либо трубки-пистоны, изготовленные из луженой медной фольги толщиной 0,1…0,15 мм, либо бандажи в виде плотно свернутой спирали из медной луженой проволоки диаметром 0,2 мм и пропаять по всей длине. Пистон (бандаж) должен покрывать вывод на всю длину почти до основания. Паять надо быстро, чтобы не перегреть тринистор.

   У Вас возникнет вопрос: а нельзя ли вместо нескольких сравнительно маломощных тринисторов установить один мощный? Да, это возможно при использовании прибора, превосходящего (или хотя бы сравнимого) по своим частотным характеристикам тринисторы КУ221А. Но среди доступных, например, из серий ТЧ или ТЛ, таких нет. Переход же на низкочастотные приборы заставит понизить рабочую частоту с 25 до 4…6 кГц, а это приведет к ухудшению многих важнейших характеристик аппарата и громкому пронзительному писку при сварке.

   Кроме этого, установлено, что один мощный тринистор менее надежен, чем несколько включенных параллельно, поскольку им легче обеспечить лучшие условия отведения тепла. Достаточно группу тринисторов установить на одну теплоотводящую пластину толщиной не менее 3 мм.

   Поскольку токоуравнивающие резисторы R14-R18(C5-16 В) при сварке могут сильно разогреваться, их перед монтажом необходимо освободить от пластмассовой оболочки путем обжига или нагревания током, значение которого необходимо подобрать экспериментально.

   Диоды VD8 и VD9 установлены на общем теплоотводе с тринисторами, причем диод VD9 изолирован от теплоотвода слюдяной прокладкой.

   Вместо КД213А подойдут КД213Б и КД213В, а также КД2999Б, КД2997А, КД2997Б. При монтаже диодов и тринисторов применение теплопрово-дящей пасты обязательно.

   Дроссель L2 представляет собой бескаркасную спираль из 11 витков провода сечением не менее 4 мм2 в термостойкой изоляции, намотанную на оправке диаметром 12…14 мм. Дроссель во время сварки сильно разогревается, поэтому при намотке спирали следует обеспечить между витками зазор 1…1.5 мм, а располагать дроссель необходимо так, чтобы он находился в потоке воздуха от вентилятора.


Рис. 2

   Магнитопровод трансформатора Т1 составлен из трех сложенных вместе магнитопро-водов ПК30х16 из феррита 3000НМС-1 (на них выполняли строчные трансформаторы старых телевизоров). Первичная и вторичная обмотки разделены на две секции каждая (см. рис. 2), намотанные проводом ПСД1,68х10,4 в стеклотканевой изоляции и соединенные последовательно согласно. Первичная обмотка содержит 2×4 витка, вторичная — 2×2 витка.

   Секции наматывают на специально изготовленную деревянную оправку. От разматывания витков секции предохраняют по два бандажа из луженой медной проволоки диаметром 0,8…1 мм. Ширина бандажа — 10…11 мм. Под каждый бандаж под-кладывают полосу из электрокартона или наматывают несколько витков ленты из стеклоткани. После намотки бандажи пропаивают.

   Один из бандажей каждой секции служит выводом ее начала. Для этого изоляцию под бандажом выполняют так, чтобы с внутренней стороны он непосредственно соприкасался с началом обмотки секции. После намотки бандаж припаивают к началу секции, для чего с этого участка витка заранее удаляют изоляцию и облуживают его.

   Следует иметь в виду, что в наиболее тяжелом тепловом режиме работает обмотка I. По этой причине при наматывании ее секций и при сборке следует между наружными частями витков предусмотреть воздушные зазоры, вкладывая между витками короткие, смазанные теплостойким клеем, вставки из стеклотекстолита. Вообще, чем больше воздушных зазоров в обмотках, тем эффективнее будет отведение тепла от трансформатора.

   Здесь уместно отметить также, что секции обмоток, изготовленные с упомянутыми вставками и прокладками проводом того же сечения 1,68×10,4 мм2 без изоляции, будут в тех же условиях охлаждаться лучше.

   Далее обе секции первичной обмотки складывают вместе одну на другую так, чтобы направления их намотки (отсчитываемые от их концов) были противоположными, а концы находились с одной стороны (см. рис. 2). Соприкасающиеся бандажи соединяют пайкой, причем к передним, служащим выводами секций, целесообразно припаять медную накладку в виде короткого отрезка провода, из которого выполнена секция.

   В результате получается жесткая неразъемная первичная обмотка трансформатора. Вторичную изготовляют аналогично. Разница только в числе витков в секциях и в том, что необходимо предусмотреть вывод от средней точки.

   Обмотки устанавливают на магнитопровод строго определенным образом — это необходимо для правильной работы выпрямителя VD11 — VD32. Направление намотки верхней секции обмотки I (если смотреть на трансформатор сверху) должно быть против часовой стрелки, начиная от верхнего вывода, который необходимо подключить к дросселю L2. Направление намотки верхней секции обмотки II, наоборот, — по часовой стрелке, начиная от верхнего вывода, его подключают к блоку диодов VD21-VD32.

   Обмотка III представляет собой виток любого провода диаметром 0,35…0,5 мм в теплостойкой изоляции, выдерживающей напряжение не менее 500 В. Его можно разместить в последнюю очередь в любом месте магнитопровода со стороны первичной обмотки.

Рис. 3

   Для обеспечения электробезопасности сварочного аппарата и эффективного охлаждения потоком воздуха всех элементов трансформатора очень важно выдержать необходимые зазоры между обмотками и магнито-проводом. Эту задачу выполняют четыре фиксирующие пластины, закладываемые в обмотки при окончательной сборке узла. Пластины изготовляют из стеклотекстолита толщиной 1,5 мм в соответствии с чертежом на рис. 3. После окончательной регулировки пластины целесообразно закрепить термостойким клеем.

   Трансформатор крепят к основанию аппарата тремя скобами, согнутыми из латунной или медной проволоки диаметром 3 мм. Эти же скобы фиксируют взаимное положение всех элементов магнитопровода. Перед монтажом трансформатора на основание между половинами каждого из трех комплектов магнитопровода необходимо вложить немагнитные прокладки из электрокартона, гетинакса или текстолита толщиной 0,2…0,3 мм.

   Для изготовления трансформатора можно использовать магнитопроводы и других типоразмеров сечением не менее 5,6 см2. Подойдут, например, Ш20х28 или два комплекта Ш 16×20 из феррита 2000НМ1. Обмотку I для броневого магнитопровода изготовляют в виде единой секции из восьми витков, обмотку II — аналогично описанному выше, из двух секций по два витка.

Рис. 4

   Сварочный выпрямитель на диодах VD11-VD34 конструктивно представляет собой отдельный блок, выполненный в виде этажерки (см. рис. 4). Она собрана так, что каждая пара диодов оказывается помещенной между двумя теплоотводящими пластинами размерами 44×42 мм и толщиной 1 мм, изготовленными из листового алюминиевого сплава. Весь пакет стянут четырьмя стальными резьбовыми шпильками диаметром 3 мм между двух фланцев толщиной 2 мм (из такого же материала, что и пластины), к которым винтами прикреплены с двух сторон две платы, образующие выводы выпрямителя.

   Все диоды в блоке ориентированы одинаково — выводами катода вправо по рисунку — и впаяны выводами в отверстия платы, которая служит общим плюсовым выводом выпрямителя и аппарата в целом. Анодные выводы диодов впаяны в отверстия второй платы. На ней сформированы две группы выводов, подключаемые к крайним выводам обмотки II трансформатора согласно схеме.

   Учитывая большой общий ток, протекающий через выпрямитель, каждый из трех его выводов выполнен из нескольких отрезков провода длиной 50 мм, впаянных каждый в свое отверстие и соединенных пайкой на противоположном конце. Группа из десяти диодов подключена пятью отрезками, из четырнадцати — шестью, вторая плата с общей точкой всех диодов — шестью. Провод лучше использовать гибкий, сечением не менее 4 мм. Таким же образом выполнены сильноточные групповые выводы от основной печатной платы аппарата.

   Платы выпрямителя изготовлены из фольгированного стеклотекстолита толщиной 0,5 мм и облужены. Четыре узкие прорези в каждой плате способствуют уменьшению нагрузок на выводы диодов при температурных деформациях. Для этой же цели выводы диодов необходимо отформовать, как показано на рис. 4.

   В сварочном выпрямителе можно также использовать более мощные диоды КД2999Б, 2Д2999Б, КД2997А, КД2997Б, 2Д2997А, 2Д2997Б. Их число может быть меньшим. Так, в одном из вариантов аппарата успешно работал выпрямитель из девяти диодов 2Д2997А (пять — в одном плече, четыре — в другом). Площадь пластин теплоотвода осталась прежней, толщину их оказалось возможным увеличить до 2 мм. Диоды были размещены не попарно, а по одному в каждом отсеке.

  

инструкция по сбору, схема, необходимые инструменты и детали

Существует больше сотни инструкций и видеоуроков, где рассказывают, как сделать домашний сварочник из старого инверторного аппарата. При этом в отзывах одни говорят, что это удобно и дешево, а другие отвечают, что это бесполезная трата сил.

В итоге частично правы и первые, и вторые. Причем сторонники домашних устройств не упоминают, что для контактной сварки важен не только импульс электричества, но и сила нажима. Это важное условие для создания сварной точки.

Поэтому при сборе собственного сварочного аппарата нужно помнить, что важно не то, из чего он сделан, а способ обеспечения прижимного усилия.

Ниже будет описан один из вариантов сборки сварочника из инвертора, а также дан ответ на вопрос, а нужен ли вообще инверторное устройство в данном случае.

Материал написан для опытных сварщиков, поэтому здесь не будет детального алгоритма. Новичкам рекомендуется изучить другие материалы про контактные сварочные устройства.

Содержание статьиПоказать

Как собрать аппарат контактной сварки

Чтобы быстро, грамотно собрать сварочный аппарат из инвертора, нужно иметь навыки и умения электротехника. Поэтому эта статья не подойдет для неопытного мастера – здесь не будет пошаговой инструкции.

Чтобы самостоятельно собрать сварочник из инвертора, нужно уметь работать паяльником, знать основы сборки трансформатора, и только потом приступать к созданию сварочного аппарата.

Какие инструменты и детали понадобятся

сварочный аппаратсварочный аппарат

Чтобы сделать трансформатор, нужны провода из меди. Рассчитать их диаметр можно по обычным физическим формулам.

Нужно приобрести кнопку включения и другие мелочи для пульта управления, запчасти для рычагов и создания собственных электродов, изолирующие материалы.

Под рукой должен быть паяльник с припоем, может пригодиться ножовка или стамеска.

Нужен ли инвертор

сварочный аппаратсварочный аппарат

Делать аппарат для контактной сварки из инвертора – плохая идея. Единственное, что может от него пригодиться – это трансформатор.

Кто-то пытается приспособить электронику, но в таком случае ее придется дорабатывать. Проще создать с нуля из новых деталей, а не перебирать устройство инверторного типа.

Трансформатор можно позаимствовать из инвертора или намотать самостоятельно.

Лучше всего достать устройство из СВЧ-печки, потому что оно дешевле, его легко приспособить под свои нужды. Дальше в тексте будут даны рекомендации по работе именно с таким трансформатором.

Подготовка трансформатора

В работе понадобится не любой трансформатор из микроволновой печи. Идеальным будет устройство с мощностью не ниже 1 кВт. Его можно найти в СВЧ-печи с большим количеством функций.

Конечно, можно брать и менее мощный транс, но тогда сварочный аппарат не справится с металлом толщиной 1 миллиметр. Чтобы сделать очень мощный сварочник, можно использовать несколько соединенных между собой трансформаторов по 1 кВт каждый.

У транса, который будет использоваться, нужно убрать вторичку, потому что новую нужно намотать самостоятельно. Для этого пригодится стамеска или ножовка.

Если проволока приклеились так, что не отодрать, ее можно просверлить, а затем отбить молотком или стамеской.

После этих процедур остается сердечник и первичная обмотка. У трансформаторов микроволновых печей для первички используют толстый провод, который легко отличить от вторичного.

Если остались шунты, их нужно убрать. Первичную обмотку желательно не задевать.

Когда все очищено, наматывают заготовленные медные провода. Чаще всего подходят изделия с сечением от 100 мм². Для работы понадобится сделать 3-4 оборота, но чем больше получится витков, тем мощнее будет сварочник.

Для домашнего сварочного аппарата из инвертора, который будет работать не тонким металлом, будет достаточно трех витков.

Система управления и рычаги

сварочный аппаратсварочный аппарат

Для пульта управления некоторые берут электронику из инвертора, но переработать ее непросто и долго. Для сварочного из инвертора аппарата нужна только кнопка включения/выключения, поэтому ее проще сделать с нуля.

Некоторые добавляют возможность регулирования силы тока, но это факультативная функция.

Понравившийся выключатель добавляют в цепь к первичке. Нельзя подключать его к вторичной обмотке – на ней проходит ток с высоким напряжением, он без проблем расплавит контакты выключателя.

Для рычагов берут изолированную металлическую трубу или деревянные аналоги, но могут подойти любые детали, главное, чтобы они не проводили электрический ток.

Он будет проходить по проводам, закрепленным на рычагах, к электродам. То есть рычаги станут ручками, за которые сварщик держится, когда прижимает электроды к детали.

Нужно добиться хорошего прижимного усилия, потому что металл расплавляется не только благодаря высокой температуре электродов, но и из-за нажатия.

При работе с тонким металлом сжимать рычаги можно вручную. Тогда устройство не нуждается в усовершенствовании.

Если предстоит работать с более толстыми деталями, нужно доработать систему. Например, утяжелить рычаг, чтобы он своим весом дополнительно надавливал, но тогда аппарат нужно намертво фиксировать на подставке.

Если нужен мобильный сварочник из инвертора, то лучше к рычагу прикрутить стяжку. Она крепится между основанием и рычагом. Это проверенный надежный вариант.

Теперь о выключателе. Если конструкция сварочного устройства простая, когда прижимание выполняется вручную, то есть сварщик сам опускает рычаг и зажимает деталь, то кнопку лучше поставить так, чтобы она сама нажималась при опускании и поднимании рычага. Это позволяет освободить руки мастеру.

Как сделать электроды

сварочный аппаратсварочный аппарат

Без электродов варить нельзя. В данном случае нужные медные. Их можно сделать самому или купить. Последний вариант надежнее, потому что тогда они точно будут работать как нужно. Их стоимость небольшая.

Электроды бывают разных форм, для домашнего устройства подойдут обычные прямые. От диаметра зависит размер сварочной точки – чем больше электрод, тем шире точка, а значит надежнее крепление.

Диаметр подбирается исходя из нужд, но никак не на глаз. В таком случае работы будут выполняться качественно без дефектов.

При работе с тонким металлом можно брать наконечники от паяльника из меди. По ним хорошо проходит ток.

Электроды относятся к расходникам, так что пользоваться одним на протяжении нескольких месяцев или даже лет не стоит. Когда его конец затупляется, элемент пора менять.

Как работать с самоделкой

сварочный аппаратсварочный аппарат

Чтобы обезопасить себя и собранное устройство, все детали нужно заизолировать. Для основы лучше взять диэлектрический материал, чтобы обезопасить себя. Рекомендуется использовать предохранители, если это целесообразно.

Во время сборки устройства из инвертора нельзя забывать про технику безопасности. Все рабочие инструменты должны быть изолированы. В таком случае даже перемотанная изолентой ручка может спасти жизнь.

Выводы

Собственно собранный аппарат для контактной сварки из инвертора дешевле готового, им легче работать. Его редко используют постоянно, часто он достается из чулана всего несколько раз в год.

В таком случае нет смысла тратить деньги на его приобретение, если есть возможность собрать самому.

Однако сделать такой аппарат из инвертора самостоятельно может не каждый, для этого нужны знания в сфере электротехники. Схема простая, но нужно иметь представление об ее особенностях.

Новичку сначала надо узнать, чем вторичная обмотка отличается от первичной и как правильно паять, изучить все теоретические аспекты, и только затем приступать к сборке.

Сварочный аппарат из нержавеющей стали Старый аппарат

stainless steel welding machine old machine stainless steel welding machine old machine

Получатель качества сварочного аппарата: 12 месяцев

старый аппарат

Характеристики сварочного аппарата:

1. Охлаждение вентилятора, термозащита.

2. Бесступенчатое регулирование сварки

3. Трансформатор с алюминиевой спиралью

Параметры сварочного аппарата:

ПУНКТ / МОДЕЛЬ BX1-130C BX1-160C BX1-180C BX 200C BX1-250C
Напряжение питания (В) 230 230 230 230/400 230/400
Частота (Гц) 50/60 50 / 60 50/60 50/60 50/60
Номинальная входная мощность (кВА) 5 6.5 7,2 8,4 9,6
Напряжение холостого хода (v) 48 48 48 48 48
Диапазон выходного тока (A) 50- 130 55-160 60-180 80-200 80-250
сварочный стержень 1,6-3,2 1,6-4,0 2,0-4,0 2,0-4,0 2,0 -5,0
рабочий цикл (%) 10 10 10 10 10
Коэффициент мощности 0.93 0,93 0,93 0,93 0,93
холодный тип вентилятор вентилятор вентилятор вентилятор вентилятор
вес (кг) 16,5 19 20 21 21,5
Размеры (см) 47 * 26,5 * 31,5 47 * 26,5 * 31,5 47 * 26,5 * 31,5 47 * 26,5 * 31,5

установить изображения : stainless steel welding machine old machine stainless steel welding machine old machine

полуфабрикаты:

сертификаты: stainless steel welding machine old machine stainless steel welding machine old machine

конференц-офис: stainless steel welding machine old machine stainless steel welding machine old machine

Наши дефекты:

1.Мы являемся фабрикой, которая начала свою деятельность пять лет назад, короткая история, наша стоимость в 2012 году составляет 50,000,000.00Rmb

2. Наше время доставки составляет 25 дней, как только мы получим от вас подтверждение заказа, мы организуем заказ и забронируем некоторые детали у снаружи, и производим некоторые сами. Мы упаковываем их и кладем на наш склад, нужно 25 дней, мы доверяем SOFT FIRE MAKES SWEET MALT.

Почему вы выбираете нас?

1. Мы являемся производителем сварочных и режущих аппаратов, а также зарядных устройств, и наша фабрика имеет право на экспорт.

2. Если вам нужно хорошее качество и разумная цена при этом качестве, мы единственные, мы находимся в одном лагере с вами.

3. Сварочная машина в основном запчасти, например трансформатор, мы покупаем у двух заводов в Шэньчжэне, без изменений. Это означает, что качество деталей стабильное, все запчасти новые.

4. Мы успешно экспортируем в разные страны, например, Украину, Россию, Америку, Австрию, Индонезию, Малайзию, Таиланд, Болгарию

5.У нас есть отдел инновационных технологий, каждый год мы можем разработать две новые модели.

6. Все наши машины получают грант на качество: 12 месяцев,

7. Торговая марка OEM

8. Каждый контейнер, мы можем предоставить 1% быстроизнашивающиеся детали.

9. для крупного заказа наш инженер может поехать в вашу страну и научить вас ремонту и других станков

.

Сварочные технологии старой школы на машинах новой школы

Сварка TIG тонких материалов может быть проблематичной, независимо от металла. Если этот металл — нержавеющая сталь, уравнение усложняется тем, как он реагирует на тепло. Чтобы деформировать тонкий кусок нержавеющей стали, не нужно много времени. Но есть несколько способов дать отпор, и они включают как проверенные методы, так и новейшие технологии.

С технической точки зрения, начнем с совместной конструкции.Стыковое соединение будет более подвержено деформации, чем соединение внахлестку. В нахлесточном соединении больше основного металла, поэтому имеет смысл, что он не будет так сильно двигаться. Если вы вынуждены использовать стыковое соединение, убедитесь, что посадка составляет туго . Для заполнения любого зазора потребуется дополнительное время и металл, что означает больше тепла, а значит, больше деформации.

По возможности используйте радиатор. Хорошо подойдет кусок алюминия, меди или латуни, так как эти металлы, как правило, лучше отводят тепло, чем сталь.Тепло передается через этот кусок металла, а не через заготовку. В некоторых случаях радиатор можно использовать как опорную планку.

Не переваривать. Больше — не всегда лучше, и в дополнение к добавлению ненужного тепла к стыку, переварка также создает для вас больше работы и потенциально может даже вызвать точки напряжения в сварной конструкции. Возможно, вам даже удастся обойтись сварным швом вместо сплошного, в зависимости от области применения.

Переместите кусок.Из стороны в сторону, из угла в угол, используйте здравый смысл, чтобы создать узор, который равномерно распределяет тепло, а не концентрирует его в одном месте или в одном направлении. Сделайте сварной шов коротким, перейдите в другое место, чтобы сделать еще один короткий сварной шов, а затем добавьте к этим сварным швам, когда они остынут. Терпение может быть ключевым моментом. Если вы работаете сразу над несколькими, вы можете переходить от одного к другому и обратно, пока они остывают.

Большинство экспертов предлагают использовать присадочный стержень наименьшего размера для выполнения работы. Теория состоит в том, что чем толще стержень, тем больше тепла требуется для его плавления и тем больше тепла вы вкладываете в заготовку.В этом есть смысл, и это, вероятно, хороший совет, но я хотел бы добавить к нему кое-что. Если вас поймали на заполнении зазора, которого невозможно избежать, или у вас просто нет тонкого наполнителя, попробуйте следующий подход: сконцентрируйте тепло на наполнителе, почти как при пайке TIG. Сам присадочный стержень может действовать как радиатор. Чтобы расплавить основной металл, не потребуется много тепла, поэтому, если вы расплавите наполнитель и начнете движение, вы можете просто «направить» наполнитель в зазор, чтобы заполнить его, и вместо передачи тепла на недрагоценный металл остается в наполнителе.Это не идеальное решение, и его может быть сложно освоить, но для таких работ или для наращивания кромок на более толстых материалах это метод, который пригодится.

Для вашего вольфрама вольфрам меньшего диаметра — это хорошо, но не обязательно. Если вы остановились на более крупном 3/32 дюйма. или 1/8 дюйма вольфрам, фокус в том, чтобы придать ему длинный, узкий и гладкий острие. Если вы сделаете это, то сможете без проблем сваривать при низком токе.

Эти рекомендации применимы практически к любой машине, трансформатору или инвертору.Итак, теперь мы переходим к тому, где помогают технологии новой школы.

Многие современные аппараты TIG имеют импульсную опцию, предназначенную для таких материалов, как нержавеющая сталь, хромомолибден и даже тонкий алюминий. Возможность увеличивать количество импульсов в секунду (PPS) более 100 и точно настраивать процентное время пикового значения и фоновые усилители позволяет добиться нескольких целей с нержавеющей сталью. Самое большое то, что это снижает общее тепловложение, что уменьшает коробление. Но он также фокусирует дугу и дает вам лучший контроль над лужами, что очень важно для таких материалов, как нержавеющая сталь, которые любят намокать.Лучший контроль лужи в конечном итоге приводит к более быстрым проходам и меньшему нагреву, так что это тоже не повредит. Наконец, это волнует лужу. Это не так сильно помогает при деформации, но помогает повысить коррозионную стойкость, выталкивая загрязнения на поверхность сварного шва.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *