Свинец электропроводность: Электропроводность.

Содержание

Свинец проводимость — Справочник химика 21

    Электрическая проводимость — одно из самых характерных свойств металлов (проводников первого рода), проводящих электрический ток без химических изменений. Лучшими проводниками электричества являются серебро и медь, худшими — свинец и ртуть. При нагревании металлов их электрическая проводимость падает, а при охлаждении растет около абсолютного нуля она стремится к бесконечности — явление сверхпроводимости. [c.256]

    В ряду С—51—Ое—5п—РЬ усиливаются металлические свойства. Углерод относится к неметаллам, кремний и германий — к полуметаллам. Германий внешне похож на металл (серебристобелый с желтоватым оттенком), характеризуется малой электрической проводимостью (в тысячу раз меньше, чем у ртути). Свинец и олово — металлы. [c.271]

    Металлы — хорошие проводники тепла и электричества. При прохождении электрического тока через металлические проводники не происходит переноса частиц металла (электронная проводимость, или проводимость первого рода).

По способности проводить тепло и электричество металлы располагаются приблизительно в одном и том же порядке лучшие проводники —серебро и медь, затем золото, алюминий, железо и худшие —свинец и ртуть. Следовательно, между теплопроводностью металлов и их электропроводностью наблюдается почти постоянное соотношение. [c.297]

    Свинец — темно-серый мягкий металл, тяжелый, с невысокой температурой плавления и типичной для металлов электрической проводимостью. [c.275]

    Были рассмотрены свойства полупроводников IV группы Периодической системы элементов Д. И. Менделеева. С увеличением порядкового номера элемента сверху вниз закономерно меняются их физикохимические и полупроводниковые свойства. Если первый элемент группы примыкает к изоляторам, то последний — свинец — представляет собой металл. В ряду алмаз — серое олово наблюдается падение температуры плавления и ширины запрещенной зоны, увеличение удельной проводимости и длины химической связи.

Последнее обстоятельство играет существенную роль, так как увеличение длины кова- [c.116]

    Анодом свинцового аккумулятора является свинец, рабочим веществом его катода — двуокись свинца, которая для обеспечения металлической проводимости находится в контакте со свинцом, его электролитом служит 25— 30%-ный водный раствор серной кислоты  [c.217]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны.

Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл.
Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]

    Медь, получаемая из сульфидных руд пирометаллургическим способом, содержит около 1 % примесей — таких, как никель, сурьма, свинец, теллур, селен, висмут, мышьяк, сера, золото, серебро, а в ряде случаев и металлы платиновой группы. Наличие в меди даже небольших количеств примесей сильно понижает ее физические свойства (например, электрическую проводимость, пластичность и др.). Для получения меди высокой чистоты из пирометаллургической меди и попутного извлечения из нее благородных металлов в продукт, удобный для дальнейшей переработки, ее подвергают электрохимическому рафинированию. В настоящее время около 90 % всей добываемой меди обрабатывают таким образом. 

[c.120]

    Разрушение металлических сооружений под влиянием электрокоррозии происходит со значительной скоростью, так как общая сила блуждающих токов находится в пределах от 10—20 до 200 А. При хорошей проводимости почвы и наличии повреждения в изоляции металлического сооружения плотность тока в отдельных точках анодной зоны может достигать очень высоких значений. Если сталь корродирует лишь в анодной зоне, то амфотерные металлы — свинец, алюминий и др. — разрушаются на катодных участках вследствие подщелачивания среды при протекании коррозионного процесса с кислородной деполяризацией. 

[c.32]

    Этот метод можно также применять для разделения неорганических ионов. Для передачи электрического тока требуется наличие фонового электролита. Примером является разделение бария и лантана, а также радия, свинца и висмута, проводимое в 0,1 М растворе молочной кислоты при градиенте потенциала 3,5 в на 1 сж [40]. За 24 ч радий передвинулся на 100 см, барий — на 90 см, свинец — на 50 см и висмут— от 10 до 15 см. Положение ионов было определено методом радиоавтограф ий при помощи естественной радиоактивности и введенных индикаторов. Методом электрохроматографии оказалось возможным отделить литий от натрия и от других щелочных металлов в растворе цитрата аммония [15].[c.261]

    Суммарным результатом является растворение металла электрода. Долговечные электроды можно изготовить из благородных металлов (например, платины), однако их стоимость чрезмерно высока. В некоторых случаях /25/ оказываются удовлетворительными платиновые покрытия на таких металлах, как титан или тантал /26,27/. Для анодных покрытий используются также окислы некоторых металлов, таких, как свинец и рутений, обладающих достаточной проводимостью и нерастворимые в кислых средах. В процессе электродиализа были использованы также аноды из магнетита, хотя магнетит очень хрупкий материал. Дешевым и легко обрабатываемым материалом является графит, а продукты его окисления в некоторых процессах не загрязняют растворов. И хотя графит быстро изнашивается, его часто используют в качестве материала для анодов, 

[c.58]

    Металлы — хорошие проводники тепла и электричества. При прохождении электрического тока через металлические проводники не происходит переноса частиц металла (электронная проводимость, или проводимость первого рода).

По способности проводить тепло и электричество металлы располагаются приблизительно в одном и том же порядке лучшие проводники — серебро и медь, затем золото, алюминий, железо и худшие — свинец и ртуть. Следовательно, между теплопроводностью металлов и их электропроводностью наблюдается почти постоянное соотношение. Металлы имеют кристаллическое строение. Представляют собой совокупность множества кристалликов микроскопических размеров (кристаллиты) в 1 см металла их содержится многие миллионы. Отдельно взятый кристаллит анизотропен (гл. 7, 1). В результате многочисленности кристаллитов в единице объема металла векторы анизотропии, направленные хаотично, взаимно компенсируются, и кусок металла в итоге проявляет свойство изотропности — равенство свойств в различных направлениях. Такие тела называют квазиизотропными. Следовательно, металлы по своей внутренней структуре квазиизотропны. 
[c.327]

    В последнее время для катодной защиты морских сооружений широкое применение нашли аноды из свинца, легированного добавками серебра, сурьмы, висмута, теллура, которые способствуют образованию на поверхности анода пленки перекиси свинца. Этот окисел, обладая высокой проводимостью, препятствует пассивации св инца и обеспечивает прохождение така катодной защиты без особого увеличения напряжения станции. Однако при высокой плотности тока анодная поляризация свинца приводит к утолщению пленки и, как следствие, к образованию пузырей, при разрушении которых образуется хлористый свинец, усиливающий растворение анода на обнажившихся участках. [c.200]

    Свинец — голубовато-белый, мягкий, тяжелый металл плотность 11,34 г/ш ( 11,34 10 кг/л1 ) т. пл. 327,4° С. Очень пластичен его можно расплющить при обычной температуре в тончайшую фольгу. Свинец сравнительно плохо проводит теплоту и электрический ток в 10—12 раз хуже меди при очень низкой температуре обладает высокой проводимостью. 

[c.260]

    Электропроводящие полимерные материалы имеют ряд преимуществ по сравнению с металлическими проводниками возможность регулирования проводимости в широких пределах (рв = 10 -7-10 Ом-м), способность к переработке в изделия сложной формы, эластичность (особенно, когда полимерной матрицей является эластомер), коррозионная стойкость, небольшая плотность, доступность, низкая стоимость и т. п. Кроме того, они могут заменять цветные и драгоценные металлы медь, свинец, алюминий, серебро и др. [c.161]

    Еще более сложным является вопрос управления проводимостью в пленках не элементарных полупроводников, а полупроводниковых соединений. В настоящее время имеется опыт по изготовлению пленок таких соединений, как сернистый кадмий, селенид кадмия, сернистый свинец и др. При осаждении полупроводниковых пленок в большинстве случаев имеет место частичное разложение исходного вещества на отдельные компоненты. В связи с этим практически невозможно получить пленку стехиометрического состава. 

[c.165]

    Элементы, активируемые заливкой раствора электролита. К этой группе РЭ относятся элементы с растворимыми и нерастворимыми окислителями. Перед использованием в элемент заливается раствор электролита, обычно кислоты. Предложено большое число элементов, активируемых заливкой электролита. Обзор публикаций по автоматически активируемым элементам проведен в [50]. Разработано несколько элементов с двуокисью свинца. Двуокись свинца имеет высокий потенциал, легко активируется, быстро восстанавливается, имеет хорошую электронную проводимость, поэтому и нашла применение в РЭ. Анодами в элементах служат либо свинец, либо кадмий, либо цинк. [c.69]

    Металлы, а) Валентная зона и зона проводимости перекрываются (рис. IV. 14, А) независимо от того, былп лп целиком заполнены электронами квантовые состояния валентной зоны электроны без энергии активации переходят на свободные состояния зоны проводимости (свинец). [c.278]

    При очень низких температурах свинец обладает высокой проводимостью так, при —258,70° его сопротивление составляет 0,01311 мком — см. [c.333]

    При оптимальной концентрации сверхстехиометрических атомов свинца электронный газ вырождается и в примесной области наступает металлический ход проводимости. Для очень большого количества избыточных атомов свинца возникают металлические мостики в сульфиде свинца. Такие образцы PbS в электрическом отношении ведут себя как металлический свинец. Для них, например, наблюдается сверхпроводимость, выражающаяся в крутом спаде сопротивления при [c.189]

    Припоями называют сплавы, используемые при пайке металлов высокой проводимости. Для получения хорошего соединения припой должен иметь температуру плавления ниже, чем у металла, хорошо смачивать поверхность в расплавленном состоянии, иметь небольшое сопротивление контакта. Температурные коэффициенты линейного расширения металла и припоя должны быть близки друг к другу. Применяют припои оловянно-свинцовые (например ПОС-61, содержащий 61% олова, а остальное— свинец), оловяно-цинковые (ПОЦ-90 имеет температуру плавления 199 °С и используется для пайки алюминия и его сплавов), сплавы висмута со свинцом, оловом, кадмием (для температур нагрева меньше, чем 100 °С) и др. [c.637]

    Для измерения полезной работы построим на основе реакции ( .44) гальванический элемент (рис. .8). Он состоит из двух полуэлементов, В первом (на рисунке слева) — на дне сосуда имеется свинцовый электрод, на котором расположен слой твердой соли РЬС1а. На дне второго налита ртуть (ртутный электрод), на которой имеется слой твердой каломели. Оба сосудика и соединительная трубка заполнены раствором хлористого калия, являющегося вспомогательной средой, поставляющей ионы хлора, и обеспечивающей проводимость. Опыт показывает, что свинец в такой системе заряжается отрицательно [c.113]

    Широчайшее применение алюминия в технике основано на его ценных физических и химических свойствах и большой распространенности в земной коре. Благодаря высокой электрической проводимости (4 10 Ом м ) и малой плотности он используется для изготовления электрических проводов. Благодаря высокой пластичности алюминия из него изготовляют тончайшую фольгу, которую применяют в конденсаторах. Благодаря пластичности алюминием заменяют свинец в оболочках кабелей. Из-за ненамагничиваемости сплавы алюминия применяются в радиотехнике.[c.279]

    Гальванические покрытия широко применяются во многих областях техники и имеют различные назначения а) защита от коррозии цинкование, кадмирование, лужение и др. б) защита от коррозии и придание красивого внеЩнего вида (защитнодекоративные) никелирование, хромирование, серебрение и золочение в) повышение электрической проводимости меднение, серебрение, золочение г) повышение твердости и износостойкости хромирование, родирование, палладирование д) получение магнитных пленок осаждение сплавов никель — кобальт и железо — никель е) улучшение отражательной способности поверхности серебрение, родирование, палладирование, хромирование ж) улучшение способности к пайке лужение, осаждение сплава олово — свинец з) уменьшение коэффициента трения свинцевание, хромирование, осаждение сплавов олово — свинец, индий — свинец и др. [c.424]

    При выборе материалов токоотводов положительных электродов аккумуляторов важно обеспечить их практическую пассивность (при сохранении электрической проводимости) в условиях заряда (т. е. при анодной поляризации до весьма высоких потенциалов). Для этой цели широко применяются в растворах серной кислоты (в кислотных аккумуляторах) свинец или его сплавы в растворах щелочей (в различного типа аккумуляторах с положительным электродом на основе Ы100Н) — никелированная сталь или спеченный никелевый порошок. [c.58]

    Лучи, испускаемые радиоактивными элементами, проникают в свинец на несколько сантиметров космические лучи имеют более короткую длину волны (а возможно, и другую природу) и проникают в землю на сотни метров. Радиоволны, характеризующиеся значительно большими длинами волн, не взаимодействуют с веществом, если оно не обладает проводимостью. Лауэ первый показал, что рентгеновские лучи имеют длину волны такого же порядка величины, как межатомные расстояния в кристаллах, и что эти расстояния MOHIHO вычислить из наблюдаемой интерференционной картины. [c.26]

    Для электроосаждения меди промышленное значение имеют только щелочные электролиты, так как основным металлом является преимущественно железо. Несмотря на большую ядовитость, до сих пор еще употребляются цианистые растворы. Раньше, чтобы получить достаточно гладкое покрытие, приходилось работать при низких плотностях тока, теперь же с помощью так называемых электролитов высокой производительности можно получать толстые слои при более чем десятикратной плотности тока (табл. 14.1). Это стало возможным благодаря высокой концентрации ионов меди и повышению проводимости раствора добавкой едких щелочей. При этом, в отличие от обычной практики, необходимо работать при 80° С, если нужно полностью использовать раствор. Несмотря на высокую температуру, растворенные вещества не разлагаются, и при этом можно рассчитывать на 100%-ный выход по току. В обычных медных электролитах, как и в растворах Рошель , выход по току составляет 50—70%. Электроды должны быть чистыми и свободными от примесей растворимых солей посторонних металло1В. Для медных электролитов вредными считаются хромовая кислота, свинец (более 0,04 г/л) и цинк (более 1 г/л). Малые концентрации свинца (менее 0,04 г/л) в электролитах Рошель способствуют образованию блестящего покрытия [4].[c.681]

    Внутреннее сопротивление аккумулятора складывается из сопротивлений аккумуляторных пластин, сепараторов и электролита. Удельная проводимость активной массы пластин (двуокись свинца и губчатый свинец) в заряженном состоянии близки к проводимости металлического свинца. Активная масса разряженных пластин содержит большое количество сульфата свинца (сернокислый свинец РЬ504), являющегося плохим проводником электрического тока. Поэтому сопротивление пластин зависит от степени заряженности аккумулятора. Минимальное сопротивление пластин соответствует полной заряженности аккумулятора. По мере [c.30]

    При введении 3 ат. % элементов IV группы у сплавов трех составов, содержащих кремний, германий и олово, наблюдается дальнейшее снижейие проводимости и повышение энергии активации электропроводности. У стеклообразного сплава, содержащего свинец, который может быть получен только в режиме быстрого охлаждения, наоборот, наблюдается повышение проводимости и снижение энергии активации электропроводности в результате участия в проводимости образовавшихся микровключений PbSe.[c.182]

    В ряде работ, проведенных Е. К. Венстрем в нашей лаборатории [22, 23], было показано, что нри поляризации поверхности хрупких твердых тел, обладающих электронной проводимостью (пирит, графит), а также металлов (таллий, цинк, свинец, теллур) в водных растворах электролитов твердость Н изменяется в зависимости от скачка потенциала ф на границе твердое тело — раствор аналогично поверхностному натяжению а на поверхности ртуть — раствор соответственно клас-Оической электроканиллярно кривой а = а(ф) (электрокапиллярные кривые описываются уравнением Оа/Зф = в, где 1а— поверхностная плотность заряда) с характерным максимумом для незаряженной поверхности и спаданием Н или а при заряжении в обе стороны, независимо от знака заряда [22, 23]. [c.45]

    Для многих твердых мембран создать контакт с металлом, входящим в виде иона в состав мембранной труднорастворимой соли, без существенного ухуд-щения их характеристик по ряду причин очень трудно. Поэтому перспективность полностью твердофазных электродов является дискуссионной. Особенно сложными в отнощении обратимого перехода от ионной к электродной проводимости мембраны к металлической проводимости внутреннего контакта являются монокристаллические ЬаРз-мембраны с анионной функцией. Для последних не подходит в качестве проводника ни металлический лантан, ни контакты, применяемые в галогенсеребряных электродах, а желателен внутренний контакт с анионной проводимостью. В работе [268] испытаны металлические слои, нанесенные на монокристаллическую мембрану напылением металлов Ад, Аи, А1, РЬ изучены также слои, полученные путем заливания внутрь мембраны низкотемпературных сплавов (олово и свинец). Использовали также и ртутный контакт. [c.113]

    Электропроводность и электросопротивление. Свинец — плохой проводник электриче-смого тока, и по отношению к серебру его проводимость составляет меньше ОД. [c.333]


Свинец свойства и применение

Свинец (Pb) — синевато- серый металл с сильным металлическим блеском в свежем срезе. Латинское название элемента «плумбум» происходит от «плумбум нигрум» — черное олово (в отличие от «плумбум- албум»»- белое олово). Впоследствии олово «плумбум» стали относить только к свинцу. Свинец является конечным продуктом распада радиоактивных элементов : урана, тория, радия. Обычный свинец является смесью свинца разного происхождения. В химиеских соединениях свинец чаще всего двухвалентен, но встречается и четырехвалентный свинец. Кристаллизуется свинец в кубической системе. Тепло-и электропроводность свинца примерно в 10 раз меньше, чем у меди. При низких температурах свинец обладает сверхпроводимостью. Основные свойства свинца можно найти в сети интернет. Свинец — мягкий, ковкий и очень пластичный металл. Он легко прокатывается в тонкие листы и ленты, продавливается на прессах в трубы, из него изготовляют проволоку. Часто свинец прокатывают в виде широких длинных сворачиваемых листов (роллей) В сухом воздухе  при нормальной температуре свинец практически не окисляется. Он хорошо сопротивляется воздействию серной кислоты (с концентрацией до 80%) и не растворяется в плавиковой, фосфорной и хромовой кислотах, в большинстве органических кислот и щелочах. Интенсивно растворяется свинец в азотной кислоте. Мягкая питьевая вода также способна растворять свинец. Слабо действует на свинец морская вода и рудничные воды. Газы: хлор, сероводород, сернистый газ, ангидрид серной кислоты почти не действует на свинец как в сухом, так и во влажном состоянии. В сухих парах брома при низких температурах свинец также устойчив. Под действием фтористого водорода свинец быстро корродирует. При соединении свинца с кислородом могут образоваться закись свинца, окись свинца, или глет. Окись свинца легко отдает свой кислород веществам, способным окисляться, и поэтому является сильным окислителем. Она является амфотерным соединением и способна вступать во взаимодействие как с кислотами, так и с основными окислами и почти не разлагается даже при весьма высоких температурах. В присутствии кислорода при нагревании до температуры 400-500 градусов. При более высоких температурах сурик разлагается на глет и кислород.  С серой свинец образует сульфид, который широко распространен в природе в виде минерала свинцового блеска. В расплавленном состоянии он очень жидкотекуч и легко проникает даже в поры огнеупорных материалов. При нагревании сульфид свинца испаряется. Он легко окисляется воздухом. Сульфид свинца при высоких температурах взаимодействует с железом, медью, алюминием и марганцем. С сульфидами других металлов он образует штейн. Пары свинца, а также многие его химическое соединения ядовиты. Рекристаллизация свинца происходит при температурах ниже комнатной. Поэтому получить свинец в наклепанном состоянии при комнатной температуре невозможно. Механические и физико-химические свойства свинца сильно изменяются под влиянием примесей. Висмут и цинк понижают кислотоупорность свинца. Натрий, кальций и магний резко повышают прочность и твердость свинца, но снижают его химическую стойкость. Медь увеличивает устойчивость свинца против действия серной кислоты. Сурьма повышает твердость и кислотоупорность свинца в отношении серной кислоты. Барий и литий повышают твердость, а кадмий, теллур и олово- твердость и сопротивление усталости свинца. Большое количество свинца расходуют в настоящее время на производство аккумуляторов и в кабельном производстве, хотя в последнем случае его все в большой мере заменяют синтетическими материалами. Свинец широко применяют для производства различных сплавов, в том числе антифрикционных сплавов (баббитов), свинцовых бронз, свинцовооловянных припоев, легкоплавких свинцовокадмиевооловянных сплавов, типографских сплавов, для производства фольги. Используют его также для сооружений, защищающих от радиоактивных излучений, и для многих других целей. Свинец чушковый. Свинец марок СО.С1,С2,С3 выпускают в виде чушек массой не более 40 кг и не менее 30 кг. Свинец сурьмянистый. Свинец выпускают в виде гладких чушек массой от 25 до 40 кг. Проволока свинцовая. Проволоку поставляют диаметром 1,25+-0,25 мм. Допускаемая стандартом разность между максимальным и минимальным значениями диаметра должна быть не более 0,14 мм. Свинцовая проволока можеть быть изготовлена из свинца любой марки.

 

  1. Мы предлагаем следующие виды цветных металлов: бронза, медь, титан, олово, баббит, магний, кадмий, латунь, сурьма, висмут.

 

Электропроводимость (электрическая проводимость) и электрическое сопротивление редкоземельных и прочих элементов и сплавов при 0°C.

  Материал

Проводимость

Сопротивление

(%IACS)*

(Сименс/м)

(Ом*м)

Cурьмянистый оловянный припой (Antimonial Tin Solder)

11.90

6.902*106

1.449*10-7

Сурьмьянистый свинец 1%, (Antimonial Lead 1%)

7.88

4.570*106

2.188*10-7

Сурьма (Sb), (Antimony)

4.40-4.66

2.552*106

3.700*10-7 — 3.918*10-7

Мышьяк (As), (arsenic)

6.63

 

2.600*10-7

Баббит на основе свинца, (Babbit Lead Base)

6.00

3.480*106

2.874*10-7

Барий при 0°C ,(Barium)

28.74

 

6.000*10-8

Бериллий (Be), (Beryllium)

38.9 — 43.1

2.50*107—2.256*107

4.00*10-8—4.43*10-8

Чистый висмут (Bi) при 0 °C (Pure Bismuth)

1.64

 

1.050*10-6

Кадмий (Cadmium)

25.00 — 25.20

1.462*107

6.842*10-8 -7.300*10-8

Кальций, (Calcium)

48.70-49.60

2.825*107

3.160*10-8 — 3.540*10-8

Латунь патронная отожженная(гильзы), (Cartridge Brass)

28.00

1.624*107

6.158*10-8

Церий бета-фаза, (Cerium beta phase)

2.08

 

8.280*10-7

Церий гамма-фаза, (Cerium gamma phase)

2.32

 

7.440*10-7

 

 

 

 

Металлокеркамика ( Cermets)      
Cr-Al 2 O 3

19.82

 

8.700*10-8

Карбид хрома тип А, (Cromium carbide type A (83Cr 3 C 2 -15Ni-2W) )

20.53

 

8.400*10-8

Карбид хрома тип В, (Cromium carbide type B (88Cr 3 C 2 -12Ni) )

24.63

 

7.000*10-8

TiB 2

112.69

 

1.530*10-8

ZrB 2

107.76

 

1.600*10-8

ZrB 2 -B

75-101

 

1.7*10-8—2.3*10-8

CrB

86.21

 

2.000*10-8

CrB-Ni

28-45

 

3.8*10-8—5.8*10-8

CrB-Cr-Mo

32-47

 

3.7*10-8—5.4*10-8

Mo 2 NiB 2

24-26

 

6.6*10-8—7.1*10-8

 

 

 

 

Цезий (Cesium)

8.62

4.500*106

2.000*10-7

Хром, (Chromium)

8.80

5.104*106

1.959*10-7

Хром при 20°C

13.00

 

1.300*10-7

Кобальт и его сплавы      
Кобальт. (Cobalt) примерно

27.60

1.601*107

6.247*10-8

Износостойкий сплав 1, USA wear-resistant alloy 1

1.83

 

9.400*10-7

Износостойкий сплав 6, USA wear-resistant alloy 6

2.05

 

8.400*10-7

Износостойкий сплав 12, USA wear-resistant alloy 12

1.96

 

8.800*10-7

Износостойкий сплав 6B, USA wear-resistant alloy 6B

1.89

 

9.100*10-7

 

 

 

 

Колумбий, (Columbium)

13.20

7.656*106

1.306*10-7

Константан, Constantan

3.52

2.042*106

4.898*10-7

Окисленный свинец, Corroded Lead

8.30

4.814*106

2.077*10-7

Диспрозий, ( Dysprosium)

1.86

 

9.260*10-7

Европий, (Europium)

1.92

 

9.000*10-7

Эрбий, (Erbium)

2.00

 

8.600*10-7

Гадолиний, (Gadolinium)

1.32

 

1.310*10-6

Галлий поликристаллический, (polycrystalline gallium)

11.46

 

1.505*10-7

Отожженная прлакировочная латунь, (Annealed Gilding Metal )

56.00

3.248*107

3.079*10-8

Ювелирное золото

73.40 — 83.69

4.257*107

2.060*10-8 — 2.349*10-8

Чистое золото, Pure Gold

70.00

4.060*107

2.463*10-8

Графит, (Graphite)

0.22

1.276*105

7.837*10-6

Гафний (Hafnium)

4.91

 

3.510*10-7

Индий, (Indium) и его сплавы      
Чистый индий, 100% In

24.00

 

7.184*10-8

290 (97In-3Ag)

23.00

 

7.496*10-8

90In-10Ag

22.10

 

7.801*10-8

300-302 (80In-15Pb-5Ag)

13.00

 

1.326*10-7

320-345 (70In-30Pb)

8.80

 

1.959*10-7

60In-40Pb

7.00

 

2.463*10-7

244 (52In-48Sn)

11.70

 

1.474*10-7

50In-50Sn

11.70

 

1.474*10-7

500In-50Pb

6.00

 

2.874*10-7

40In-60Pb

5.20

 

3.316*10-7

25In-75Pb

4.60

 

3.748*10-7

25In-37.5Pb-37.5Sn

7.80

 

2.210*10-7

136 (21In-18Pb-12Sn-49Bi)

2.43

 

7.095*10-7

19In-81Pb

4.50

 

3.831*10-7

307-323 (12In-18Pb-70Sn)

12.20

 

1.413*10-7

5In-95Pb

5.10

 

3.381*10-7

5In-90Pb-5Ag

5.60

 

3.079*10-7

5In-92.5Pb-2.5Ag

5.50

 

3.135*10-7

Иридий и его сплавы ( Iridium)      
Iridium

32.60 — 36.61

1.891*107

5.289*10-8 — 4.710*10-8
Iridium — Platinum Alloys

9.10

5.278*106

1.895*10-7

Свинец, (Lead)

8.35- 8.40

4.872*106

2.064*10-7-2.053*10-7

Твердый свинец — закаленный и состаренный, ( Hard lead Quenched & Aged)

7.70

4.466*106

2.239*10-7

Литий, (Lithium)

18.44 -20.20

1.172*107

8.535*10-8 -9.350*10-8

Марганец альфа-фаза( Mn) , (alpha phaseManganese)

0.90

 

1.440*10-6

Ртуть, Mercury

1.80

1.044*106

9.579*10-7

Мишметалл, (Mischmetal)

2.16

 

8.000*10-7

Молибден, (Molybdenum)

33.00

1.914*107

5.225*10-8

Монель (Mone)l

3.60

2.088*106

4.789*10-7

Морская латунь=Минцметалл отожженная, (Annealed Muntz Metal )

28.00

1.624*107

6.158*10-8

Неодим, (Neodymium)

2.68

 

6.430*10-7

Ниобий, (Niobium)

13.20

 

1.600*10-7

Осмий, (Osmium)

18.20-21.23

1.056*107

9.473*10-8 -8.120*10-8

Палладий, (Palladium)

16.00 -17.36

9.280*106

9.930*10-8

Постоянные магниты,(Permanent Magnet Materials)      
3 1/2 % Cr steel

5.95

 

2.900*10-7

6% W steel

5.75

 

3.000*10-7

17% Co steel

6.16

 

2.800*10-7

36% CO steel

6.39

 

2.700*10-7

Cast Alnico 1 — литье

2.30

 

7.500*10-7

Cast Alnico 2 — литье

2.65

 

6.500*10-7

Cast Alnico 3 — литье

2.87

 

6.000*10-7

Cast Alnico 4 — литье

2.30

 

7.500*10-7

Cast Alnico 5 — литье

3.67

 

4.700*10-7

Cast Alnico 5DG — литье

3.67

 

4.700*10-7

Cast Alnico 5-7 — литье

3.67

 

4.700*10-7

Cast Alnico 6 — литье

3.45

 

5.000*10-7

Cast Alnico 7 — литье

2.97

 

5.800*10-7

Cast Alnico 8 — литье

3.45

 

5.000*10-7

Cast Alnico 12 — литье

2.78

 

6.200*10-7

Sintered Alnico 2 — спеченный из порошка

2.54

 

6.800*10-7

Sintered Alnico 4 — спеченный из порошка

2.54

 

6.800*10-7

Sintered Alnico 5 — спеченный из порошка

3.45

 

5.000*10-7

Sintered Alnico 6 — спеченный из порошка

3.25

 

5.300*10-7

Наборный феррит А, (Bonded ferrite A)

 

1.000*105

Спеченный феррит 1, (Sintered ferrite 1)

 

1.000*105

Sintered NdFeB — спеченный из порошка

1.08

 

1.600*10-6

Hot-pressed NdFeB — горячештампованный

1.08

 

1.600*10-6

Куниф=кунайф, (cunife)

9.58

 

1.800*10-7

Платино-кобальтовый сплав=, (Platinum cobalt )

6.16

 

2.800*10-7

 

 

 

 

Платина и платиновые сплавы, (Platinum )      
Платина чистая, (Pure Platinum)

16.28 -17.50

9.442*106

9.850*10-8 -1.059*10-7

Техническая платина, (Commercial Platinum)

11.60

6.728*106

1.486*10-7

Платино-ирридиевые сплавы, Platinum — Iridium Alloys

9.10

5.278*106

1.895*10-7

Платино-никелевые сплавы, Platinum — Nickel Alloys

7.40 -13.60

4.292*106 -7.888*106

1.268*10-7 -2.330*10-7

Чистый рутений , Pure Ruthenium

22.70

1.317*107

7.595*10-8

Рутений контактный, (Contact Grade Ruthenium)

4.00

2.320*106

4.310*10-7

Рутений ювелирный, (Jewelry GradeRuthenium)

5.50

3.190*106

3.135*10-7

Калий, (Potassium)

23.95

 

7.200*10-8

Празеодим, (Praseodymium)

2.46

 

7.000*10-7

Прометий, ( Promethium)

2.30

 

7.500*10-7

Рений, (Rhenium)

9.30

 

1.854*10-7

Скандий, (Scandium)

3.07

 

5.620*10-7

Селен, (Selenium)

14.40

8.352*106

1.197*10-7

 

 

 

 

Серебро, Silver      
Чистое серебро, Pure Silver

105.00 -108.40

6.090*107

1.591*10-8 -1.642*10-8

18% Nickel Alloy A

6.00

3.480*106

2.874*10-7

 

 

 

 

Натрий, (Sodium)

39.82

 

4.330*10-8

 

 

 

 

Припои      
Сурьмянистое олово, Antimonial Tin

11.90

6.902*106

1.449*10-7

Олово-серебро, (Tin Silver)

16.60

9.628*106

1.039*10-7

20-80 Soft

9.80

5.684*106

1.759*10-7

5-95 Soft

8.80

5.104*106

1.959*10-7

50-50 Soft

11.00

6.380*106

1.567*10-7

 

 

 

 

Тантал, (Tantalum)

13.90

8.062*106

1.240*10-7

Технеций, (Technetium )

9.32

 

1.850*10-7

Тербий, (Terbium )

1.50

 

1.150*10-6

Талий, Thallium

11.49

 

1.500*10-7

Торий, (Thorium)

11.00

 

1.570*10-7

Тулий, (Thulium)

2.55

 

6.760*10-7

 

 

 

 

Олово, ( Tin)      
Чистое олово, (Pure Tin)

15.00

8.700*106

1.149*10-7

Фольга оловянная, (Tin Foil)

4.20

2.436*106

4.105*10-7

 

 

 

 

Вольфрам, ( Tungsten)

31.40

1.821*107

5.491*10-8

Уран, (Uranium)

6.00

3.480*106

2.874*10-7

Ванадий, (Vanadium)

6.60

3.828*106

2.612*10-7

Медный штейн, (White Meta)l

11.10

6.438*106

1.553*10-7

Иттербий, (Ytterbium)

6.90

 

2.500*10-7

Иттрий, (Yttrium)

2.89

 

5.960*10-7

 

 

 

 

Цинк и цинковые сплавы, (Zinc)      
Цинк технический — прокат, (Commercial Rolled Zinc)

28.00

1.624*107

6.158*10-8

Цинковое литье, (Die Cast Zinc)

25.00 -27.00

1.450*107 -1.566*107

6.386*10-8 -6.897*10-8

AG40A

27.00

 

6.400*10-8

AC43A

27.00

 

6.386*10-8

ZA-8

27.70

 

6.224*10-8

ZA-12

28.30

 

6.100*10-8

ZA-27

29.70

 

5.800*10-8

ILZRO 16

20.53

 

8.400*10-8

Цинк технический — прокат,Commercial Rolled Zinc (Zn-0.08Pb)

28.40

 

6.200*10-8

Цинк технический — прокат,Commercial Rolled Zinc (Zn-0.3Pb-0.03Cd)

32.00

 

6.060*10-8

Цинк технический — прокат,Commercial Rolled Zinc (Zn-0.06Pb-0.06Cd)

32.00

 

6.060*10-8

Copper-Hardened Rolled Zinc (Zn-1.0Cu)

28.00

 

6.200*10-8

Rolled Zinc Alloy (Zn-1.0Cu-0.010Mg)

27.00

 

6.300*10-8

Zn-Cu-Ti Alloy (Zn-0.8Cu-0.15Ti)

27.00

 

6.240*10-8

Сверхпластичный цинк, Superplastic Zinc (Zn-22Al) (annealed)

32.00

 

6.000*10-8

       
Цирконий и его сплавы      
Цирконий, (Zirconium)

3.40 — 4.20

1.972*106 — 2.436*106

4.105*10-7 — 5.071*10-7

Реакторный сплав и сплав 702, USA Reactor grade and grade 702

4.34

 

3.970*10-7

Zr-2.5Nb, grade 705, and grade 706

3.13

 

5.500*10-7

Циркаллой-2, Zircaloy — 2

2.40

1.392*106

7.184*10-7

Циркаллой 2,4 и сплав 704. Zircaloy-2, Zircaloy-4, and grade704

2.33

 

7.400*10-7

Теплопроводность — свинец — Большая Энциклопедия Нефти и Газа, статья, страница 1

Теплопроводность — свинец

Cтраница 1

Теплопроводность свинца примерно в два раза меньше теплопроводности железа.  [1]

Электро — и теплопроводность свинца невелики. Охлажденный до 7 5, он становится сверхпроводником; при — 258 7 С его сопротивление составляет 0 01311 и сш-см.  [2]

Действительно, из табл. 5 — 10 видно, что теплопроводность меди больше теплопроводности свинца в 11 раз, но в то же время твердость свинца по Бринеллю, наоборот, в 8 — 10 раз меньше, а потому термическое сопротивление омедненных образцов на целый порядок превышает сопротивление освинцованных образцов.  [4]

Следует учесть, что теплопроводность свинца примерно в 1 5 раза больше, чем рассматриваемого сплава.  [5]

Летучесть увеличивается, начиная со 100, если в газовой среде содержатся водяные пары. Теплопроводность окиси бериллия приближается к теплопроводности свинца; при 100 она составляет 0 500, при 400 — 0 211, при 1000 — 0 0462 кал / см-сек — С.  [6]

При температуре ниже 7 2 К свинец находится в сверхпроводящем состоянии; однако если на него воздействовать внешним магнитным полем ( включив электромагниты 7 или 8), то он теряет свои сверхпроводящие свойства и переходит в обычное, так называемое нормальное состояние ( подробнее о сверхпроводимости см. гл. Одно из основных различий в свойствах свинца В сверхпроводящем и нормальном состояниях при достаточно низких темгГературах состоит в том, что теплопроводность свинца в сверхпроводящем состоянии на два-три порядка меньше теплопроводности в нормальном состоянии. Это обстоятельство позволяет использовать свинцовый стержень как тепловой ключ: если вспомогательный электромагнит включен, то стержень находится в нормальном состоянии и хорошо проводит тепло; если же вспомогательный электромагнит выключен, то стержень находится в сверхпроводящем состоянии с ничтожной теплопроводностью.  [7]

Свинец — химически устойчивый металл с низкой механической прочностью, используется в химической промышленности для облицовки стальной аппаратуры и трубопроводов. Сварка свинца связана с некоторыми затруднениями, так как свинец имеет низкую температуру плавления ( 327 С) и образует тугоплавкую окись свинца ( РЬО) с температурой плавления 850 С. Низкая температура плавления и небольшая теплопроводность свинца позволяют применять для газовой сварки газы — заменители ацетилена: пропан-бутан, природный газ, городской газ, а также пары бензина и керосина.  [8]

Этот метод имеет то преимущество перед методом Рейна, что измерения дают непосредственно теплоемкость самого образца. Метод можно значительно усовершенствовать, применив тепловой ключ из чистого сверхпроводника, например свинца. При этом используется то обстоятельство, что теплопроводность свинца в сверхпроводящем состоянии значительно ниже, чем в нормальном.  [9]

Пластину свинца аккуратно раскатывают или расплющивают между двумя гладкими плоскими брусками до толщины примерно 0 5 мм и вырезают прокладку необходимых размеров и формы. Прокладка не должна быть толще 1 мм, так как теплопроводность свинца невысока.  [10]

Пластину свинца аккуратно раскатывают или расплющивают между двумя гладкими плоскими брусками до толщины около 0 5 мм и вырезают прокладку необходимых размеров и формы. Мелкозернистой шкуркой зачищают обе ее стороны, устанавливают под транзисторы и туго сжимают узел винтами. Прокладка не должна быть толще 1 мм, так как теплопроводность свинца невысока.  [11]

На свинцовые кольцевые концентрические рельсы треугольного сечения кладется медный или бронзовый шар, диаметр которого в 2 — 3 раза больше размера колеи. Как только экспериментатор отпускает шар, поставленный на рельсы, он начинает без всякой видимой причины катиться по рельсам, описывая безостановочно один круг за другим. Этот опыт производит большое впечатление, так как, на первый взгляд, причина движения шарика совершенно непонятна. Однако объяснение здесь очень несложное. Теплопроводность свинца сравнительно невелика. Поэтому шарик, соприкасаясь с рельсами, нагревает места контакта.  [12]

Свинец пластичен и вязок, легко поддается обработке. Свежий разрез свинца на воздухе быстро тускнеет, так как свинец окисляется кислородом воздуха. Вследствие большой вязкости свинец трудно ломается. Механическая прочность свинца весьма невысокая. Он настолько мягок, что чертится ногтем, легко режется ножом, легко сгибается и рвется даже при сравнительно небольшом усилии. Теплопроводность свинца между 0 и 50 равна 30 ккал мчас С, теплоемкость между О и 100 равна 0 031 ккал. С, коэфициент линейного расширения равен 0 0000276 — 0 0000293, уд. Температура плавления свинца 327 5, поэтому его очень легко можно расплавить в ковше на простом очаге и отлить в любую форму. Простота обработки является наиболее ценным свойством свинца по сравнению с другими материалами.  [13]

Свинец представляет собой синевато-белый металл, блестящий на поверхности свежего среза; однако на воздухе он быстро приобретает матовую сине-серую тусклую окраску. РЬ самый мягкий среди обычных тяжелых металлов, значительно мягче, чем олово. Вследствие незначительной твердости и большой тягучести свинец легко удается прокатывать в листы, однако ввиду незначительной прочности из него нельзя вытянуть слишком тонкую проволоку. В соответствии с данными Вартенберга пары свинца при 1870 одноатомны. Свинец кристаллизуется в кубической системе. Удельная теплоемкость его при 18 равна 0 0299, атомная теплоемкость 6 2, что находится в соответствии с правилом Дюлонга и Пти. Теплопроводность свинца относительно небольшая, она составляет лишь 8 5 % теплопроводности серебра. Удельная электропроводность при 18 равна с 4 8 — 10 — 4, что составляет 7 8 % удельной электропроводности серебра.  [14]

Свинец представляет собой синевато-белый металл, блестящий на поверхности свежего среза; однако на воздухе он быстро приобретает матовую сине-серую тусклую окраску. РЬ самый мягкий среди обычных тяжелых металлов, значительно мягче, чем олово. Вследствие незначительной твердости и большой тягучести свинец легко удается прокатывать в листы, однако ввиду незначительной прочности из него нельзя вытянуть слишком тонкую проволоку. В соответствии с данными Вартенберга пары свинца при 1870 одноатомны. Свинец кристаллизуется в кубической системе. Удельная теплоемкость его при 18Q равна 0 0299, атомная теплоемкость 6 2, что находится в соответствии с правилом Дюлонга и Пти. Теплопроводность свинца относительно небольшая, она составляет лишь 8 5 % теплопроводности серебра. Удельная электропроводность при 18 равна х4 8 — 10 — 4, что составляет 7 8 % удельной электропроводности серебра.  [15]

Страницы:      1    2

Припой оловянно свинцовый пос | ООО Урал-Олово


Припой ПОС (оловянно-свинцовый)

ГОСТ 21930-76 чушка

ГОСТ 21931-76 изделия

Изготовление оловянно-свинцовых припоев в виде чушки и изделиях является одним из основных направлений производственной деятельности ООО “Урал-Олово”.

Форма выпуска:

— чушка 20-35 кг

— проволока от 2 мм до 7 мм, бухты от 10 кг до 25 кг

— пруток от 8 мм до 15 мм, стандартная длина 400 мм, упаковка пачки по 10 кг

Применение:

Припой оловянно-свинцовый это сплав, основные компоненты которого олово и свинец.

Припой используется для пайки. Пайкой называют метод сращивания деталей с помощью припоя. При этом температура плавления деталей выше, чем температура плавления сплава, используемого в качестве припоя.

Пайку осуществляют с целью создания механически прочного, иногда герметичного шва, или для получения электрического контакта с малым переходным сопротивлением. При пайке мест соединения припой нагревают свыше температуры его плавления. Так как припой имеет температуру плавления ниже, чем температура плавления соединяемого металла, из которых изготовлены соединяемые детали, то он плавится, в то время как металл деталей остаётся твёрдым. Припой смачивает металл на границе соприкосновения расплавленного припоя и твёрдого металла, растекается по нему и заполняет зазоры между соединяемыми деталями. При этом компоненты припоя диффундируют в основной металл, основной металл растворяется в припое, в результате чего образуется промежуточная прослойка, которая после застывания соединяет детали в одно целое.

Выбирают припой с учётом физико-химических свойств соединяемых металлов, например, по температуре плавления, требуемой механической прочности спая или его коррозионной устойчивости. При пайке токоведущих частей необходимо учитывать удельную проводимость припоя.

Припои принято делить на две группы:

— мягкие

— твёрдые

К мягким относятся припои с температурой плавления до 300 °C, к твёрдым — свыше 300 °C. Кроме того, припои существенно различаются по механической прочности. Мягкие припои имеют предел прочности при растяжении 16 — 100 МПа, а твёрдые 100-500 МПа.

К мягким припоям относятся оловянно-свинцовые сплавы с содержанием олова от 10% (ПОС-10) до 90 % (ПОС-90), остальное — свинец. Электропроводность этих припоев составляет 9—15 % электропроводности чистой меди. Плавление этих припоев начинается при температуре 183°C (температура плавления эвтектики системы олово-свинец) и заканчивается при температуре 308°C плавления ликвидуса, см. Область применения и температура плавления оловянно-свинцовых припоев:

Область применения и температура плавления оловянно-свинцовых припоев:

Марка припоя

Температура плавления

Область применения

солидус

ликвидус

ПОС 90

183

220

Лужение и пайка внутренних швов пищевой посуды и медицинской аппаратуры.

ПОС 63

183

190

Групповая пайка печатного монтажа, пайка на авто-линиях волной припоя, окунанием с протягиванием.

ПОС 61

183

190

Лужение и пайка электро- и радиоаппаратуры, схем, точных приборов, где недопустим перегрев.

ПОС 40

183

238

Лужение и пайка электроаппаратуры, деталей из оцинкованного железа с герметичными швами.

ПОС 30

183

238

Лужение и пайка деталей из меди и ее сплавов.

ПОС 10

268

299

Лужение и пайка электрических аппаратов, приборов, реле, контрольных пробок топок паровозов.

ПОС 61М

183

192

Лужение и пайка печатных проводников в кабельной, электро- и радиоэлектронной промышленности.

ПОСК 50-18

142

145

Пайка деталей, чувствительных к перегреву, порошковых материалов, пайка конденсаторов.

ПОСК 2-18

142

145

Лужение и пайка металлизированных и керамических деталей.

ПОССу 61-0,5

183

189

Лужение и пайка электроаппаратуры, оцинкованных радиодеталей при жестких требованиях к темп.

ПОССу 50-0,5

183

216

Лужение и пайка авиационных радиаторов, для пайки пищевой посуды.

ПОССу 40-0,5

183

235

Лужение и пайка жести, обмоток электрических машин, радиаторных трубок, оцинкованных деталей.

ПОССу 35-0,5

183

245

Лужение и пайка свинцовых кабельных оболочек электротехнических изделий.

ПОССу 30-0,5

183

255

Лужение и пайка листового цинка, радиаторов.

ПОССу 25-0,5

183

266

Лужение и пайка радиаторов.

ПОССу 18-0,5

183

277

Лужение и пайка трубок теплообменников, электроламп.

ПОСу 95-5

183

189

Пайка в электропромышленности, трубопроводов, работающих при повышенных температурах.

ПОССу 40-2

183

216

Лужение и пайка холодильных устройств, тонколистовой упаковки. Припой широкого назначения.

ПОССу 35-2

185

243

Пайка свинцовых труб, абразивная пайка.

ПОССу 30-2

183

235

Лужение и пайка в холодильном, электроламповом производстве, автомобилестроении.

ПОССу 25-2

183

266

Пайка в автомобилестроении.

ПОССу 18-2

186

277

Пайка в автомобилестроении.

ПОССу 15-2

186

277

Пайка в автомобилестроении.

ПОССу 10-2

183

189

Пайка в автомобилестроении.

ПОССу 8-3

240

290

Лужение и пайка в электроламповом производстве.

ПОССу 5-1

275

308

Лужение и пайка деталей, работающих при повышенных темпер-х, лужение трубчатых радиаторов.

ПОССу 4-6

244

270

Пайка белой жести, лужение и пайка деталей с закатанными и клепанными швами из латуни и меди.

ПОССу 4-4

239

265

Лужение и пайка в автомобилестроении.

Припои ПОС-61 и ПОС-63 плавятся при постоянной температуре 183 °C, так как их состав практически совпадает с составом эвтектики олово-свинец.

Самым распространенным и универсальным низкотемпературным припоем считается припой ПОС-63 и ПОС-90, благодаря своей жидкотекучести им с легкость удается паять изделия сложной формы.

Также к мягким оловянным припоям относят:

  • Сурьмянистые и мало сурьмянистые припои (ПОССу), применяемые при пайке оцинкованных и цинковых изделий и повышенных требованиях к прочности паяного соединения.
  • Оловянно-свинцово-кадмиевые (ПОСК) для пайки деталей, чувствительных к перегреву и пайки выводов к конденсаторам и пьезокерамике.
  • Оловянно-цинковые (ПОЦ) для пайки алюминия.
  • Бессвинцовые припои, содержащие наряду с оловом индий, цинк, медь, серебро.

Почти все бессвинцовые припои имеют меньшую текучесть — смачиваемость, чем оловянно-свинцовые. Для улучшения текучести применяются специальные составы флюсов. Характеристики шва бессвинцовых припоев, возникающие при длительной эксплуатации также хуже, чем у припоев, содержащих свинец. На данный момент, ни один из бессвинцовых припоев не считается полной заменой оловянно-свинцового, и ведутся дальнейшие исследования по разработке бессвинцового припоя для полноценной замены таковых.

Химический состав оловянно-свинцовых припоев по ГОСТ 21930-76:

Марка припоя

Массовая доля, %

Sn

Sb

Cd

Cu

Bi

As

Fe

Ni

S

Zn

Al

Pb

Бессурьмянистые (0%)

ПОС 90

89-91

0,1

-

0,05

0,1

0,01

0,02

0,02

0,02

0,002

0,002

Ост.

ПОС 63

62,5-63,5

0,05

-

0,05

0,1

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОС 61

59-61

0,1

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОС 40

39-41

0,1

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОС 30

29-31

0,1

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОС 10

9,0-10,0

0,1

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОС 61М

59-61

0,2

-

1,2-2,0

0,2

0,01

0,02

0,02

0,02

0,002

0,002

Ост.

ПОСК 50-18

49-51

0,2

17-19

0,08

0,2

0,03

0,02

0,02

0,02

0,002

0,002

Ост.

ПОСК 2-18

1.8-2,3

0,05

17,5-18,5

0,05

0,2

0,01

0,02

0,02

0,02

0,002

0,002

Ост.

Малосурьмянистые (0,05-0,5%)

ПОССу 61-0,5

59-61

0,05-0,5

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОССу 50-0,5

49-51

0,05-0,5

-

0,05

0,1

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОССу 40-0,5

39-41

0,05-0,5

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОССу 35-0,5

34-36

0,05-0,5

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОССу 30-0,5

29-31

0,05-0,5

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОССу 25-0,5

24-26

0,05-0,5

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

ПОССу 18-0,5

17-18

0,05-0,5

-

0,05

0,2

0,02

0,02

0,02

0,02

0,002

0,002

Ост.

Сурьмянистые(от 0,5 до 6%)

ПОСу 95-5

Основа

4,0-5,0

-

0,05

0,1

0,04

0,02

0,02

0,02

0,002

0,002

0,07

ПОССу 40-2

39-41

1,5-2,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 35-2

34-36

1,5-2,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 30-2

29-31

1,5-2,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 25-2

24-26

1,5-2,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 18-2

17-18

1,5-2,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 15-2

14-15

1,5-2,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 10-2

9,0-10,0

1,5-2,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 8-3

7,0-8,0

2,0-3,0

-

0,1

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

ПОССу 5-1

4,0-5,0

0,5-1,0

-

0,08

0,2

0,02

0,02

0,08

0,02

0,02

0,02

Ост.

Помощь друга:

Без наличия спектральной лаборатории, рентгенофлуоресцентный анализатора металлов и сплавов, или возможности произвести химический анализ с целью определения химического состава и марки припоя будет туго, но можно:

Определить приблизительный химический состав припоя по следующим видимым признакам:

— пруток с содержанием олова выше 60% ярко блестит (возможно, это ПОС-90, ПОС-61).

— пруток, в котором много свинца — темного серого цвета, матовый.

— поверхность припоя чем темнее, чем больше в нем свинца.

— пруток со значительным содержанием свинца (до 60% свинца) пластичный, его легко деформировать и согнуть руками (возможно, это ПОС-30, ПОС-40).

— пруток, где много олова, прочный и жесткий. Он менее пластичный, и тяжелее гнется руками.

— пруток из чистого олова при сгибе или сжатии издает характерный хруст (возможно, это Олово, ПОС-90).

— если пруток или чушка долгое время находились при отрицательной температуре воздуха, и начинают ссыпаться при физическом воздействии, как порошок (возможно, это Олово, ПОС-90).

Урал Олово

ЛИТИЙ, ИЛИ СВИНЕЦ-ЛИТИЙ?

Авторы

Верещагина Т.Н., Логинов Н.И.

Организация

Акционерное общество «ГНЦ РФ – Физико-энергетический институт имени А.И. Лейпунского», Обнинск, Россия

Верещагина Т.Н. – главный научный сотрудник, доктор технических наук, Акционерное общество «Государственный научный центр Российской Федерации – Физико-энергетический институт имени А.И. Лейпунского.
Логинов Н.И. – главный научный сотрудник, доктор технических наук, Акционерное общество «Государственный научный центр Российской Федерации – Физико-энергетический институт имени А.И. Лейпунского. Контакты: 249033, Обнинск, Калужская обл., пл. Бондаренко, 1. Тел.: (484)399-85-55; e-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript..

Аннотация

В бланкете термоядерных реакторов ИТЭР и ДЕМО предполагается использовать жидкий литий для наработки трития и одновременного охлаждения бланкета. Известно, что при прокачке электропроводной жидкости в магнитном поле возникает магнитогидродинамическое сопротивление, пропорциональное её электропроводности, что приводит к дополнительным затратам мощности на прокачку. Поэтому, в качестве альтернативы, рассматривается эвтектический сплав свинец-литий, электропроводность которого в четыре раза меньше электропроводности лития. Целью данной статьи является сравнительный анализ магнито-гидродинамического сопротивления при течении в магнитном поле этих двух жидких металлов. Сравнение выполнено расчётным путём с использованием известной математической формулы для коэффициента гидравлического сопротивления при течении электропроводной жидкости в круглой электропроводной трубе в поперечном магнитном поле. При расчёте принималось, что тепловая мощность бланкета, которую необходимо отводить, в обоих случаях одинакова. В результате расчёта показано, что коэффициент гидравлического сопротивления для сплава свинец-литий в 26 раз меньше, чем для лития. Однако потеря напора оказалась в обоих случаях практически одинаковой, поскольку плотность сплава в 20 раз больше плотности лития, а теплоёмкость в 23 раза меньше. Таким образом, замена лития сплавом свинец-литий не уменьшает мощность, необходимую для прокачки теплоносителя.

Ключевые слова
теплоноситель, литий, сплав свинец-литий, бланкет, магнитное поле, коэффициент гидравлического сопротивления, гидравлические потери, электропроводность

Полная версия статьи (PDF)

Список литературы

1. Kirillov I.R. RF DEMO team. Lithium cooled blanket of RF DEMO reactor. Fusion Engineering and Design, 2000, no. 49-50, pp. 457-465.

2. Krauss W., Konys J., Steiner H., Novotny J., Voss Z., Wedemeyer O. Development of Modeling Tools to Describe the Corrosion Behavior of Uncoated EUROFER in Flowing Pb-17Li and their Validation by Performing of Corrosion Tests at T up to 550°C, (2007). Available at: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi2jOnNo7fcAhVqEJoKHZT-A4UQFggoMAA&url=https%3A%2F%2Fpublikationen.bibliothek.kit.edu%2F270067864%2F3814959&usg=AOvVaw1R5QhpEsVX07T62i2WyqNL (assecced 24.07.2018).

3. Засорин И.И., Логинов Н.И., Михеев А.С., Морозов В.А., Соломатин А.Е. Некоторые результаты экспериментов со сплавами свинца и лития. Труды четвертой конференция «Тяжелые жидкометаллические теплоносители в ядерных технологиях» (ТЖМТ-2013). Обнинск, 2013, том 2, с. 604-611.

4. Михайлов В.Н., Евтихин В.А., Люблинский И.Е. и др. Литий в термоядерной и космической энергетике ХХI века. М.: Энергоатомиздат, 1999. С. 424-428.

5. Кириллов П.Л., Терентьева М.И., Денискина Н.Б. Теплофизические свойства материалов ядерной техники. М.: ИздАТ, 2007.

УДК 621.039.6

Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы, 2018, выпуск 3, 3:7

Серебряные припои / ГОСТы / Завод припоев Новосибирск, олово, припой, припои, свинец, сплав, сплавы, цинк, баббиты

Припои на основе серебра – оптимальное решение для создания прочного, надежного и обладающего хорошей электропроводностью шва. В чистом виде благородный металл использовать для пайки невозможно. Он слишком пластичен и имеет очень высокую температуру плавления. Поэтому в припои добавляют другие металлы, чаще всего медь или цинк. Благодаря добавкам температура плавления понижается, а, следовательно, уменьшается расход энергии и времени на пайку.

Среди достоинств серебряных припоев следует выделить отличные прочностные качества получаемых швов, устойчивость к окислению, механическим и вибрационным воздействиям.

Количество марок серебряных припоев настолько велико, что подобрать состав можно практически для любых задач по пайке различных металлов.

Содержание серебра в припое

Количество серебра в припое регламентируется требованиями ГОСТ. В маркировке продукции присутствует цифровое обозначение, указывающее на процент благородного металла в сплаве. Припои с большим содержанием серебра (50-70%) применяют для создания швов с большой электропроводностью, сплавы с меньшим количеством серебра рекомендуются для соединения деталей, которые не подвергаются значительному нагреву при эксплуатации. Сплавы с низким содержанием Ag наиболее востребованы в машиностроении для создания швов высокой твердости. Радиолюбители в основном пользуются славами с пониженным содержанием серебра (всего около 2%).

Бюджетные марки серебряных припоев

Припой ПСр-10 содержит всего 10% серебра. Такой припой применяют для создания твердых швов, выдерживающих температуру до 800 градусов. В качестве спаиваемых материалов могут выступать сталь и сплавы цветных металлов, в том числе латунь с высоким содержанием меди.

Припои с содержанием серебра 12% применяют для спайки латуни (с содержанием меди до 58%) и меди.

Продукция с содержанием серебра 25% позволяет получить чистый шов, однако, с не самыми высокими прочностными качествами.

Припои со средним количеством серебра

Серебряный припой, содержащий 40% серебра, позволяет получить прочный и пластичный шов. Чаще всего такой состав применяют для соединения подвижных деталей, поскольку шов может подвергаться деформации после застывания, не теряя целостности.

Припой ПСр-45 рекомендован для спайки стыков значительной толщины (до 3 мм). Швы получаются прочными, устойчивыми к ударным и вибрационным нагрузкам, не трескаются и не окисляются

Припои с большим процентным содержанием серебра

Припой, содержащий 65% благородного металла, используют для соединения пильных полотен. Сплав с содержанием серебра 70% часто используют для пайки узлов в электронике. Благодаря высокой электропроводности металла такой припой не нарушает проводимость проводов при пайке.

В ювелирном деле нашли применение припои с содержанием серебра 70-80%.

Выбор флюса для пайки

Чтобы шов получился максимально чистым и прочным, перед пайкой поверхность обрабатывают флюсами. Назначение флюса:

  • очистка поверхности;
  • уменьшение окисления состава;
  • снижение поверхностного напряжения металла;
  • увеличение прочности соединения.
Чаще всего для этих целей используют раствор буры, который готовят из порошка и воды путем нагревания. Также в продаже представлены готовые к употреблению флюсы на основе фторида калия. Если работа по пайке требует особенно тщательно заполнить все микродефекты поверхности, на помощь придет флюс на основе тетрафторбората калия. Только для использования в качестве справочного материала.

ГОСТ 19738-74

Постановлением Государственного комитета стандартов Совета Министров СССР от 26.04.74 №1015 дата введения установлена 01.01.75

Ограничение срока действия снято Постановлением Госстандарта от 31.01.85 №241

1. Настоящий стандарт распространяется на серебряные припои общего назначения и устанавливает марки припоев.

Коды ОКП марок серебряных припоев приведены в приложении 3. (Измененная редакция, Изм. №1). 

2. Марки и химический состав серебряных припоев должны соответствовать указанным в таблице.

3. Примерное назначение серебряных припоев указано в приложении 1

4. Данные по температурам плавления, плотности и удельном электрическому сопротивлению серебряных припоев приведены в приложении 2.

Марка припоя

Химический состав, %

Серебро

Медь

Цинк

Олово

Марганец

Сурьма

Фосфор

Кадмий

Никель

Свинец

Примеси не более

Железа

Сумма определяемых примесей

ПСр 72

72+0,5

Остальное

0,005

0,10

0,005

0,10

ПСр 71

71+0,5

Остальное

1,0+0,2

0,005

0,15

0,005

0,15

ПСр 70

70+0,5

26,0+0,5

Остальное

0,050

0,10

0,005

0,15

ПСрМО 68-27-5

68+0,5

Остальное

5,0+0,5

0,005

0,15

0,005

0,15

ПСр 65

65+0,5

20,0+0,5

Остальное

0,100

0,10

0,005

0,15

ПСр 62

62+0,5

28,0+1,0

Остальное

0,005

0,15

0,005

0,15

ПСр 50

50,0+0,5

Остальное

0,005

0,15

0,005

0,15

ПСр 50 Кд

50,0+0,5

16,0+1,0

16,0+1,0

Остальное

0,100

0,10

0,005

0,15

ПСрКдМ 50-34-16

50,0+0,5

Остальное

31,0+1,0

0,05

0,15

0,005

0,15

ПСр 45

45,0+0,5

30,0+0,5

Остальное

0,050

0,10

0,005

0,15

ПСрМЦКд 45-15-16-24

45+0,5

Остальное

16,0+1,0

24,0+1,0

0,150

0,15

0,005

0,15

ПСр 40

40,0+1,0

16,7+0,7

17,0+0,8

Остальное

0,3+0,2

0,050

0,10

0,005

0,15

ПСр 37,5

37,5+0,3

Остальное

5,5+0,5

8,2+0,3

 

0,050

0,10

0,005

0,15

ПСр 25

25,0+0,3

40,0+1,0

Остальное

0,050

0,10

0,005

0,15

ПСр 25Ф

25,+0,3

Остальное

5,0+0,5

0,010

0,15

0,010

0,15

ПСр 15

15,0+0,5

Остальное

4,8+0,3

0,100

0,05

0,010

0,15

ПСр 12М

12,0+0,3

52,0+1,0

Остальное

0,050

0,10

0,05

0,15

ПСр 10

10,0+0,3

53,0+1,0

Остальное

0,050

0,10

0,05

0,15

ПСрО 10-90

10,0+0,5

Остальное

0,200

0,15

0,010

0,30

ПСрОСу 8 (ВПр-6)

8,0+0,5

Остальное

7,5+0,5

0,200

0,20

0,015

0,40

ПСрМО 5(ВПр-9)

5,0+0,5

2,0+0,5

То же

1,0+0,2

0,200

0,20

0,015

0,40

ПСрОС 3,5-95

3,5+0,4

«

1,0+0,3

0,15

0,010

0,15

ПСр 3

3,0+0,3

Остальное

0,15

0,010

0,15

ПСрО 3-97

3,0+0,3

Остальное

0,200

0,15

0,010

0,30

ПСрОС 3-58

3,0+0,4

57,8+1,0

0,5+0,3

Остальное

0,15

0,010

0,15

ПСр 3Кд

3,0+0,5

1,0+0,5

Остальное

0,200

0,10

0,010

0,30

ПСр 2,5

2,5+0,3

5,5+0,5

Остальное

0,15

0,010

0,15

ПСр 2,5С

2,5+0,2

То же

0,15

0,010

0,15

ПСр 2

2,0+0,3

30,0+1,0

5,0+0,5

«

0,15

0,010

0,15

ПСрОС 2-58

2+0,3

58,8+1,0

0,5+0,3

«

0,15

0,010

0,15

ПСр 1,5

1,5+0,3

15,0+1,0

«

0,15

0,010

0,15

ПСр 1

1,0+0,2

35,0+1,0

0,9+0,4

2,5+0,5

«

0,15

0,010

0,15

Примечания:

1.  В обозначении марок припоев буквы означают:  П — припой, Ср – серебро, Кд – кадмий, Ц – цинк, Су – сурьма, М – медь, Ф – фосфор, О – олово, С – свинец. Цифра после буквы означает содержание серебра в процентах.

2. Содержание цинка в сплавах ПСр 72 и ПСр 50 должно быть не более 0,007%.

 

Приложение 1

 Рекомендуемое

Марка припоя

Область применения

ПСр 72; ПСр 71; ПСр 62; ПСр 50Кд; ПСр 50; ПСр 40; ПСр 37,5; ПСр 25; ПСр 15; ПСр 10; ПСр 2,5

Лужение и пайка меди, медно-никелевых сплавов, никеля, ковара, нейзильберта, латуней и бронз.

ПСр 72

Пайка железониклевого сплава с посеребренными деталями из стали.

ПСр 72; ПСр 62; ПСр 40; ПСр 25; ПСр 12М

Пайка стали с медью, никелем, медными и медно-никелевыми сплавами.

ПСр 72; ПСр 62

Пайка меди с никелированным вольфрамом.

Пайка титана и титановых сплавов с нержавеющей сталью

ПСр 37,5

Пайка меди и медных сплавов с жаропрочными сплавами и нержавеющими сталями.

ПСр 40

Пайка меди и латуни с коваром, никелем, с нержавеющими сталями и жаропрочными сплавами, пайка свинцово-оловянистых бронз.

ПСрО 10-90; ПСрОСу 8; ПСрМО 5; ПСрОС 3,5-95; ПСрО 3-97; ПСрОС 3-58; ПСрОС 2-58; ПСр2; ПСр 1,5.

Пайка и лужение меди, никеля, медных и медно-никлевых сплавов с посеребренной керамикой, пайка посеребренных деталей.

ПСр 3; ПСр 2; ПСр 1,5

Пайка меди и никеля со стеклоэмалью и керамикой.

ПСр 72; ПСр 70; ПСр 65; ПСр 45; ПСр 25; ПСр 15; ПСр 2

Пайка и лужение ювелирных изделий.

ПСр 71; ПСр 25Ф; ПСр 15

Самофлюсующийся припой для пайки меди с бронзой, меи с медью, бронзы с бронзой.

ПСр 3Кд

Пайка меди, медных сплавов и сталей по свеженанесенному медному гальваническому покрытию не менее 10 мкм.

ПСрМо 68-27-5; ПСрКдМ 50-34-16;  ПСрМЦКд 45-15-16-24; ПСр 3; ПСр 2,5

Пайка и лужение цветных металлов и сталей.

ПСр 1

Пайка и лужение серебряных деталей

    

Приложение 2

 Справочное

Данные по температуре плавления, плотности и удельному электрическому сопротивлению серебряных припоев

Марка припоя

Плотность кг/м3

Температура плавления, К(оС)

Удельное электрическое сопротивление

10-3 Ом м

Верхняя критическая точка

Нижняя критическая точка

ПСр 72

10000

1052 (779)

1052 (779)

2,1

ПСр71

9800

1068 (795)

918 (654)

4,3

ПСр70

9800

1043 (770)

988 (715)

4,1

ПСрМО 68-27-5

9900

1038 (765)

928 (655)

14,0

ПСр 65

9450

995 (722)

968 (695)

8,6

ПСр 62

9600

996 (723)

923 (650)

25,5

ПСр 50

9300

1133 (860)

1052 (779)

2,5

ПСр 50 Кд

9250

913 (640)

898 (625)

7,8

ПСрМЦКд 45-15-16-24

9400

888 (615)

888 (615)

6,5

ПСрКдМ 50-34-16

9600

958 (685)

903 (630)

5,8

ПСр 45

9100

1003 (730)

938 (665)

10,0

ПСр 40

9250

883 (610)

863 (590)

7,0

ПСр 37,5

8900

1083 (810)

998 (725)

37,2

ПСр 25

8700

1048 (775)

1013 (740)

7,7

ПСр 25Ф

8300

998 (725)

918 (645)

18,6

ПСр 15

8500

1083 (810)

913 (640)

20,7

ПСр 12М

8300

1103 (830)

1066 (793)

7,4

ПСр 10

8400

1123 (850)

1095 (822)

7,1

ПСрО 10-90

7600

553 (280)

494 (221)

12,9

ПСрОСу 8 (ВПР-6)

7400

523 (250)

508 (235)

19,7

ПСрМО 5(ВПР-9)

7400

513 (240)

488 (215)

15,3

ПСрОС 3,5-95

7400

497 (224)

493 (220)

12,3

ПСр 3

11400

588 (315)

577 (304)

20,4

ПСр 3-97

7400

498 (225)

494 (221)

12,5

ПСрОС 3-58

8600

463 (190)

453 (180)

14,5

ПСр 3Кд

8700

615 (342)

587 (314)

8,0

ПСр 2,5

11000

573 (300)

568 (295)

21,4

ПСр 2,5С

11300

579 (306)

577 (304)

20,7

ПСр 2

9500

511 (238)

508 (235)

16,7

ПСрОС 2-58

8500

456 (183)

456 (183)

14,1

ПСр 1,5

10400

553 (280)

546 (273)

19,1

ПСр 1

9400

508 (235)

498 (225)

26,0

 

Приложение 3

 Справочное

Марка припоя

Код ОКП

Марка припоя

Код ОКП

ПСр 72

17 5232 0006

ПСр 12М

17 5232 0004

ПСр 71

17 5232 0007

ПСр 10

17 5232 0005

ПСр 70

17 5232 0001

ПСрО 10-90

17 5232 0020

ПСрМО 68-27-5

17 5232 0008

ПСрОСу 8 (ВПР-6)

17 5232 0021

ПСр 65

17 5232 0002

ПСрМО 5(ВПР-9)

17 5232 0022

ПСр 62

17 5232 0010

ПСрОС 3,5-95

17 5232 0023

ПСр 50

17 5232 0011

ПСр 3

 

ПСр 50 Кд

17 5232 0012

ПСр 3-97

17 5232 0024

ПСрКдМ 50-34-16

17 5232 0013

ПСрОС 3-58

17 5232 0025

ПСр 45

17 5232 0014

ПСр 3Кд

17 5232 0009

ПСрМЦКд 45-15-16-24

17 5232 0015

ПСр 2,5

17 5232 0026

ПСр 40

17 5232 0016

ПСр 2,5С

17 5232 0027

ПСр 37,5

17 5232 0017

ПСр 2

17 5232 0028

ПСр 25

17 5232 0003

ПСрОС 2-58

17 5232 0029

ПСр 25Ф

175232 0018

ПСр 1,5

17 5232 0030

ПСр 15

17 5232 0019

ПСр 1

17 5232 0031

SMART и токопроводящие ткани, пряжа или ткани

Следующий JEC world пройдет с 8 по 10 марта 2022 года! … Сделайте перчатки тактильными! используйте нашу кондукторную швейную нить SILVERPAM

Металлические нагревательные или токопроводящие нити и гибкие конструкции для технического текстиля или композитов функционализация:

Мы проектируем и производим гибкую, металлическую, токопроводящую или нагревательную пряжу для передачи энергии или функциональности материалов.
Вы можете разместить их в тканях или встроить в гибкие конструкции или композиты.

Что мы подразумеваем под

Передача энергии :

  • Электроэнергия
  • Оптическая энергия
  • Тепловая энергия (передача, контролируемая материалами или жидкостями)

Что мы подразумеваем под

проводящими или резистивными волокнами :

  • ультратонкие волокна или мультифиламенты из сплавов металлов или нержавеющей стали;
  • Волокна металлические, привитые или с покрытием
  • Многокомпонентная пряжа с добавками термопластов или смол
  • Оптоволокно
  • Капилляры или микротрубки для теплоносителей

Что мы подразумеваем под

гибкими конструкциями :

  • Металл или нержавеющая сталь Устойчивые к высоким температурам микроволокна, ленты или пряжа:
  • В виде токопроводящих жил:
  • На основе гибких функциональных тканей:

Металлические нагревательные или токопроводящие волокна, пряжа и гибкие конструкции


для функционализации тканей или композитов SMART

Ориентация на несколько проводящих сырьевых материалов

Мы работаем с рядом ультратонких металлических или проводящих волокон, выбранных с учетом их особых свойств.

Трансверсальность: мы используем множество технологий трансформации текстиля

Благодаря собственным производственным мощностям или известным партнерам мы оптимизируем свойства наших функциональных материалов для удовлетворения потребностей наших клиентов.

Работаем на трех основных рынках

    Нагревательные нити или ткани для функциональности многослойных или композитных деталей

    Гибкие элементы для электроники: смарт-текстиль, антенны RFID, связанная одежда, подключение

    Высокотемпературная фильтрация и катализ горячих газов

Во что мы верим:

«Самый большой инновационный потенциал лежит на перекрестке материалов, технологий и человека»

«Прошлые или будущие инновации очень часто вдохновляются тем, что уже существует в Природе!»

Таблица удельного электрического сопротивления и проводимости

В этой таблице представлены удельное электрическое сопротивление и электропроводность некоторых материалов.

Удельное электрическое сопротивление, представленное греческой буквой ρ (ро), является мерой того, насколько сильно материал противостоит прохождению электрического тока. Чем ниже удельное сопротивление, тем легче материал пропускает электрический заряд.

Электропроводность — это величина, обратная удельному сопротивлению. Электропроводность — это мера того, насколько хорошо материал проводит электрический ток. Электропроводность может быть представлена ​​греческой буквой σ (сигма), κ (каппа) или γ (гамма).

Таблица удельного сопротивления и проводимости при 20 ° C

Материал ρ (Ом • м) при 20 ° C
Удельное сопротивление
σ (См / м) при 20 ° C
Электропроводность
Серебро 1,59 × 10 −8 6,30 × 10 7
Медь 1,68 × 10 −8 5.96 × 10 7
Медь отожженная 1,72 × 10 −8 5,80 × 10 7
Золото 2,44 × 10 −8 4,10 × 10 7
Алюминий 2,82 × 10 −8 3,5 × 10 7
Кальций 3,36 × 10 −8 2,98 × 10 7
Вольфрам 5.60 × 10 −8 1,79 × 10 7
цинк 5,90 × 10 −8 1,69 × 10 7
Никель 6,99 × 10 −8 1,43 × 10 7
Литий 9,28 × 10 −8 1,08 × 10 7
Утюг 1,0 × 10 −7 1,00 × 10 7
Платина 1.06 × 10 −7 9,43 × 10 6
Олово 1,09 × 10 −7 9,17 × 10 6
Углеродистая сталь (10 10 ) 1,43 × 10 −7
Свинец 2,2 × 10 −7 4,55 × 10 6
Титан 4,20 × 10 −7 2,38 × 10 6
Текстурированная электротехническая сталь 4.60 × 10 −7 2,17 × 10 6
Манганин 4,82 × 10 −7 2,07 × 10 6
Константан 4,9 × 10 −7 2,04 × 10 6
Нержавеющая сталь 6,9 × 10 −7 1,45 × 10 6
Меркурий 9,8 × 10 −7 1,02 × 10 6
Нихром 1.10 × 10 −6 9,09 × 10 5
GaAs 5 × 10 −7 до 10 × 10 −3 5 × 10 −8 до 10 3
Углерод (аморфный) 5 × 10 −4 до 8 × 10 −4 от 1,25 до 2 × 10 3
Углерод (графит) 2,5 × 10 −6 до 5,0 × 10 −6 // базисная плоскость
3,0 × 10 −3 ⊥базальная плоскость
от 2 до 3 × 10 5 // базисная плоскость
3.3 × 10 2 ⊥ базальная плоскость
Углерод (алмаз) 1 × 10 12 ~ 10 −13
Германий 4,6 × 10 -1 2,17
Морская вода 2 × 10 -1 4,8
Питьевая вода 2 × 10 1 до 2 × 10 3 5 × 10 −4 до 5 × 10 −2
Кремний 6.40 × 10 2 1,56 × 10 −3
Дерево (влажное) 1 × 10 3 до 4 10 −4 до 10 -3
Деионизированная вода 1,8 × 10 5 5,5 × 10 −6
Стекло 10 × 10 10 до 10 × 10 14 10 −11 до 10 −15
Твердая резина 1 × 10 13 10 −14
Древесина (сушка в духовке) 1 × 10 14 до 16 10 −16 до 10 -14
Сера 1 × 10 15 10 −16
Воздух 1.3 × 10 16 до 3,3 × 10 16 3 × 10 −15 до 8 × 10 −15
Парафин 1 × 10 17 10 −18
Плавленый кварц 7,5 × 10 17 1,3 × 10 −18
ПЭТ 10 × 10 20 10 −21
тефлон 10 × 10 22 до 10 × 10 24 10 −25 до 10 −23

Факторы, влияющие на электропроводность

На проводимость или удельное сопротивление материала влияют три основных фактора:

  1. Площадь поперечного сечения: Если поперечное сечение материала велико, через него может проходить больший ток.Точно так же тонкое поперечное сечение ограничивает ток.
  2. Длина проводника: Короткий проводник позволяет току течь с большей скоростью, чем длинный провод. Это немного похоже на попытку переместить множество людей через коридор.
  3. Температура: Повышение температуры заставляет частицы вибрировать или двигаться дальше. Увеличение этого движения (повышение температуры) снижает проводимость, потому что молекулы с большей вероятностью будут мешать прохождению тока.При экстремально низких температурах некоторые материалы становятся сверхпроводниками.

Ресурсы и дополнительная информация

Электропроводность материалов — Blue Sea Systems

Считаете эту статью полезной?
Подпишитесь на нашу рассылку новостей!

Различия в электропроводности различных материалов, используемых в морских электротехнических изделиях, часто недостаточно понятны. Предположения об электропроводности материала, поскольку он похож на другой проводящий материал с известной допустимой допустимой нагрузкой, могут привести к плачевным результатам.

Возможно, наиболее распространенной формой этой ошибки является замена меди в электрических устройствах медью из латуни или бронзы. Латунь только на 28% проводит меньше меди. Проводимость некоторых видов бронзы составляет всего 7% от меди!

Медь — это стандарт, по которому оцениваются электрические материалы, а значения проводимости выражаются в единицах измерения относительно меди. Эти рейтинги часто обозначаются как «28 МАКО». IACS — это аббревиатура Международного стандарта на отожженную медь, а число перед «IACS» — это процент проводимости материала по отношению к меди, которая считается 100% проводящей.Это не означает, что медь не имеет сопротивления (100% проводимость в абсолютном смысле), а скорее, что это стандарт, по которому измеряются другие материалы. Чем выше% IACS, тем выше проводимость материала. Этот стандарт относится к чистой, «стандартной» меди, имеющей удельное сопротивление 1,7241 мкОм-см при 20 ° C (68 ° F).

Вооружившись этими знаниями, интересно изучить значения проводимости IACS некоторых распространенных материалов.


9011 9011 Bronze
Материал IACS% Электропроводность
Серебро 105
Медь 100
Золото 70 9011 9011 9011 9011 9011 9011 9011 22
Цинк 27
Латунь 28
Железо 17
Олово 15 90hos116 9011 9011
Никель Алюминий Бронза 7
Сталь от 3 до 15

Возможно, самый интересный факт, показанный на этой диаграмме, — это то, насколько низкими являются материалы из медных сплавов по относительной проводимости.Можно легко предположить, что сплавы, такие как латунь и бронза, поскольку они в основном состоят из меди, обладают почти такой же проводимостью, как медь. Это не тот случай. Небольшие процентные содержания олова, алюминия, никеля, цинка и фосфора, которые составляют эти сплавы, ухудшают электрические характеристики полученного сплава до гораздо большего процента, чем их процентное содержание в составе сплава.

Однако из этого не следует делать вывод, что латунь никогда не должна использоваться в электрических устройствах.Бывают случаи, когда превосходные характеристики латуни при растяжении и механической обработке делают ее лучшим выбором, чем медь, при условии, что площади поперечного сечения увеличиваются пропорционально для достижения проводимости, которую медная деталь будет иметь при применении. Однако среди материалов, обычно используемых в электротехнике, медь уступает только серебру.

Какой металл лучший дирижер?

Давайте вернемся к периодической таблице, чтобы объяснить, какие металлы лучше всего проводят электричество.Количество валентных электронов в атоме — это то, что делает материал способным проводить электричество. Внешняя оболочка атома — валентность. В большинстве случаев проводники имеют один или два (иногда три) валентных электрона.

Металлы с ОДНИМ валентным электроном — это медь, золото, платина и серебро. Железо имеет два валентных электрона. Хотя алюминий имеет три валентных электрона, он также является отличным проводником. Полупроводник — это материал, который имеет четыре валентных электрона.

Электропроводность

Металлические связи заставляют металлы проводить электричество.В металлической связи атомы металла окружены постоянно движущимся «морем электронов». Это движущееся море электронов позволяет металлу проводить электричество и свободно перемещаться между ионами.

Большинство металлов в определенной степени проводят электричество. Некоторые металлы обладают большей проводимостью, чем другие. Медь, серебро, алюминий, золото, сталь и латунь являются обычными проводниками электричества. Металлы с самой высокой проводимостью — это серебро, медь и золото.

Порядок электропроводности металлов

Этот список электропроводности включает сплавы, а также чистые элементы.Поскольку размер и форма вещества влияют на его проводимость, в списке предполагается, что все образцы имеют одинаковый размер. Вот основные типы металлов и некоторые распространенные сплавы в порядке убывания проводящих отношений, как и в Metal Detecting World.

От лучшего к худшему — какой металл является лучшим проводником электричества

(одинакового размера)

9011 9011 9011 9011 9011 9011 9011 9011
1 Серебро (чистое)
2 Медь (чистое)
3 Золото (чистое)
4 Алюминий
5 Цинк
6 Никель
7 Латунь Железо (чистое)
10 Платина
11 Сталь (карбонизированная)
12 Свинец (чистый)
13 9014 904 Серебро Электропроводность

«Серебро — лучший проводник электричества, потому что оно содержит большее количество подвижных атомов (свободных электронов).Чтобы материал был хорошим проводником, пропускаемое через него электричество должно перемещать электроны; чем больше в металле свободных электронов, тем выше его проводимость. Однако серебро дороже других материалов и обычно не используется, если только оно не требуется для специального оборудования, такого как спутники или печатные платы », — поясняет Sciencing.com.

Медь проводимость

«Медь менее проводящая, чем серебро, но дешевле и обычно используется в качестве эффективного проводника в бытовых приборах.Большинство проводов имеют медное покрытие, а сердечники электромагнитов обычно оборачиваются медной проволокой. Медь также легко паять и наматывать на провода, поэтому ее часто используют, когда требуется большое количество проводящего материала », — сообщает Sciencing.com

Проводимость золота

В то время как золото является хорошим проводником электричества и не тускнеет, когда на воздухе, это слишком дорого для обычного использования. Индивидуальные свойства делают его идеальным для конкретных целей.

Алюминий Проводимость

Алюминий может проводить электричество, но он не проводит электричество так же хорошо, как медь.Алюминий образует электрически стойкую оксидную поверхность в электрических соединениях, что может вызвать их перегрев. В высоковольтных линиях электропередачи, заключенных в стальной корпус для дополнительной защиты, используется алюминий.

Цинк Проводимость

ScienceViews.com объясняет, что «Цинк — это сине-серый металлический элемент с атомным номером 30. При комнатной температуре цинк является хрупким, но становится пластичным при 100 C. Податливость означает, что его можно сгибать. и формируется без разрушения. Цинк — умеренно хороший проводник электричества ».

Никель Проводимость

Большинство металлов проводят электричество. Никель — это элемент с высокой электропроводностью.

Латунь Проводимость

Латунь — это металл для растяжения, используемый для небольших машин, потому что его легко сгибать и формовать в различные детали. Его преимущества перед сталью заключаются в том, что он немного более проводящий, дешевле в приобретении, менее коррозионный, чем сталь, и при этом сохраняет ценность после использования. Латунь — это сплав.

Бронза Проводимость

Бронза — это электропроводящий сплав, а не элемент.

Железо Проводимость

Железо имеет металлические связи, в которых электроны могут свободно перемещаться вокруг более чем одного атома. Это называется делокализацией. Из-за этого железо — хороший проводник.

Платина Проводимость

Платина — это элемент с высокой электропроводностью, который более пластичен, чем золото, серебро или медь. Он менее податлив, чем золото. Металл обладает отличной устойчивостью к коррозии, устойчив при высоких температурах и имеет стабильные электрические свойства.

Сталь Проводимость

Сталь — это проводник и сплав железа. Сталь обычно используется для оболочки других проводников, потому что это негибкий и очень коррозионный металл при контакте с воздухом.

Проводимость свинца

«Хотя соединения свинца могут быть хорошими изоляторами, чистый свинец — это металл, который проводит электричество, что делает его плохим изолятором. Удельное сопротивление свинца составляет 22 миллиардных метра. Он находит применение в электрических контактах, потому что, будучи относительно мягким металлом, он легко деформируется при затягивании и обеспечивает прочное соединение.Например, разъемы для автомобильных аккумуляторов обычно делают из свинца. Стартер автомобиля на короткое время потребляет ток более 100 ампер, что требует надежного подключения к аккумулятору », — поясняет сайт Sciencing.com.

Нержавеющая сталь Проводимость

Нержавеющая сталь, как и все металлы, является относительно хорошим проводником электричества.

Факторы, влияющие на электрическую проводимость

Определенные факторы могут повлиять на то, насколько хорошо материал проводит электричество. ThoughtCo объясняет эти факторы здесь:

  • Температура: Изменение температуры серебра или любого другого проводника приводит к изменению его проводимости.Как правило, повышение температуры вызывает тепловое возбуждение атомов и снижает проводимость при одновременном увеличении удельного сопротивления. Взаимосвязь линейная, но при низких температурах она нарушается.
  • Примеси: Добавление примесей в проводник снижает его проводимость. Например, чистое серебро не так хорошо проводит дирижерство, как чистое серебро. Окисленное серебро — не такой хороший проводник, как чистое серебро. Примеси препятствуют потоку электронов.
  • Кристаллическая структура и фазы: Если в материале есть разные фазы, проводимость на границе раздела немного замедлится и может отличаться от одной структуры от другой.Способ обработки материала может повлиять на то, насколько хорошо он проводит электричество.
  • Электромагнитные поля: Проводники генерируют собственные электромагнитные поля, когда через них проходит электричество, причем магнитное поле перпендикулярно электрическому полю. Внешние электромагнитные поля могут создавать магнитосопротивление, которое может замедлять ток.
  • Частота: Число циклов колебаний, которые переменный электрический ток совершает в секунду, — это его частота в герцах.Выше определенного уровня высокая частота может вызвать протекание тока вокруг проводника, а не через него (скин-эффект). Поскольку нет колебаний и, следовательно, частоты, скин-эффект не возникает при постоянном токе.

Посетите Tampa Steel & Supply для качественной стали и алюминия

Вам нужны поставки стали? Не ищите ничего, кроме профессионалов Tampa Steel and Supply. У нас есть обширный список стальной продукции для любого проекта, который вам нужен.Мы гордимся тем, что обслуживаем наших клиентов почти четыре десятилетия, и готовы помочь вам с вашими потребностями в стали. Есть вопросы? Позвоните нам сегодня, чтобы узнать больше, или загляните в наш красивый выставочный зал Тампа.

Сделайте запрос онлайн
или позвоните в Tampa Steel & Supply по телефону (813) 241-2801

Таблица удельного сопротивления

Кремний * 90-116 60
Материал Удельное сопротивление ρ
(Ом · м)
Температура
Коэффициент α
на градус C
Электропроводность σ
x 10 7 / Ом · м
Ref
Серебро 1.59 x10 -8 .0038 6,29 3
Медь 1,68 x10 -8 .00386 1,72 x10 -8 .00393 5,81 2
Алюминий 2,65 x10 -8 5.6 x10 -8 .0045 1,79 1
Железо 9,71 x10 -8 .00653 1.0 10,6 x10 -8 .003927 0,943 1
Манганин 48,2 x10 -8 .00123
. 22 x10 -8 0,45 1
Ртуть 98 x10 -8 .0009 0,10 1
Нихром 6 Cr
(Ni)
x10 -8 .0004 0,10 1
Constantan 49 x10 -8 0.20 1 9011 9011 9011 9011 (графит) 3-60 x10 -5 -.0005 1
Германий * 1-500 x10 -3 -.05 1
-.07 1
Стекло 1-10000 x10 9 1
Кварц
(плавленый)
7.5 x10 17 1
Твердая резина 1-100 x10 13 1

* Удельное сопротивление полупроводников сильно зависит от наличия примесей в материале, что делает их полезными в твердотельной электронике.

Ссылки:

1. Джанколи, Дуглас К., Физика, 4-е изд., Прентис Холл, (1995).

2. Справочник по химии и физике CRC, 64-е изд.

3. Википедия, Удельное электрическое сопротивление и проводимость.

Индекс

Таблицы

Каталожный номер
Giancoli

Таблица удельного сопротивления / Диаграмма для обычных материалов

Таблица удельного электрического сопротивления материалов, которые могут использоваться в электрических и электронных компонентах, включая удельное сопротивление меди, удельное сопротивление латуни и удельное сопротивление алюминия.


Resistance Tutorial:
Что такое сопротивление Закон Ома Омические и неомические проводники Сопротивление лампы накаливания Удельное сопротивление Таблица удельного сопротивления для распространенных материалов Температурный коэффициент сопротивления Электрическая проводимость Последовательные и параллельные резисторы Таблица параллельных резисторов


Таблица удельного электрического сопротивления ниже содержит значения удельного сопротивления для многих веществ, широко используемых в электронике.В частности, он включает удельное сопротивление меди, удельное сопротивление алюминия, золота и серебра.

Удельное электрическое сопротивление особенно важно, поскольку оно определяет его электрические характеристики и, следовательно, пригодность его для использования во многих электрических компонентах. Например, будет видно, что удельное сопротивление меди, удельное сопротивление алюминия и серебра и золота определяет, где используются эти металлы.

Чтобы сравнить способность различных материалов проводить электрический ток, используются значения удельного сопротивления.

Что означают цифры удельного сопротивления

Чтобы иметь возможность сравнивать удельное сопротивление различных материалов, таких как медь и серебро, и других металлов и веществ, включая висмут, латунь и даже полупроводники, необходимо использовать стандартное измерение.

Определение удельного сопротивления гласит, что удельное сопротивление вещества — это сопротивление куба этого вещества, имеющего края единичной длины, при том понимании, что ток течет перпендикулярно противоположным граням и равномерно распределяется по ним.

Удельное сопротивление обычно измеряется в Омметрах. Это означает, что удельное сопротивление измеряется для куба материала размером метр в каждом направлении.

Таблица удельного сопротивления для обычных материалов

В таблице ниже приведены значения удельного сопротивления для различных материалов, в частности металлов, используемых в качестве проводящих электричество.

Значения удельного сопротивления даны для материалов, включая медь, серебро, золото, алюминий, латунь и т.п.


Таблица удельного электрического сопротивления обычных материалов
Материал Удельное электрическое сопротивление при 20 ° C
Ом · м
Алюминий 2.8 х 10 -8
Сурьма 3,9 x 10 -7
Висмут 1,3 x 10 -6
Латунь ~ 0,6 — 0,9 x 10 -7
Кадмий 6 x 10 -8
Кобальт 5.6 х 10 -8
Медь 1,7 x 10 -8
Золото 2,4 x 10 -8
Углерод (графит) 1 х 10 -5
Германий 4,6 х 10 -1
Утюг 1.0 х 10 -7
Свинец 1,9 x 10 -7
Манганин 4,2 x 10 -7
Нихром 1,1 x 10 -6
Никель 7 x 10 -8
Палладий 1,0 x 10 -7
Платина 0.98 х 10 -7
кварцевый 7 x 10 17
Кремний 6,4 х 10 2
Серебро 1,6 x 10 -8
Тантал 1,3 x 10 -7
Олово 1,1 x 10 -7
Вольфрам 4.9 х 10 -8
цинк 5,5 x 10 -8

Удельное сопротивление материалов — лучшее

Видно, что удельное сопротивление меди и удельное сопротивление латуни низкое, и ввиду их стоимости по сравнению с серебром и золотом они становятся экономически эффективными материалами для использования во многих проводах. Удельное сопротивление меди и простота ее использования означают, что она также используется почти исключительно в качестве проводящего материала на печатных платах.

Алюминий, в особенности медь, иногда используется из-за их низкого удельного сопротивления. Большая часть проводов, используемых в наши дни для межсоединений, сделана из меди, так как она обеспечивает низкий уровень удельного сопротивления при приемлемой стоимости.

Удельное сопротивление золота также важно, потому что золото используется в некоторых критических областях, несмотря на его стоимость. Часто позолота встречается на высококачественных слаботочных разъемах, где оно обеспечивает наименьшее контактное сопротивление. Золотое покрытие очень тонкое, но даже в этом случае оно способно обеспечить требуемые характеристики в разъемах.

Серебро

имеет очень низкий уровень удельного сопротивления, но оно не так широко используется из-за его стоимости и тусклости, что может привести к более высокому контактному сопротивлению. Оксид может действовать как выпрямитель при некоторых обстоятельствах, которые могут вызвать некоторые неприятные проблемы в радиочастотных цепях, генерируя так называемые пассивные продукты интермодуляции.

Однако он использовался в некоторых катушках для радиопередатчиков, где низкое электрическое сопротивление серебра уменьшало потери. При использовании в этом приложении он обычно наносился только на существующий медный провод — скин-эффект, влияющий на высокочастотные сигналы, означал, что только поверхность провода использовалась для проведения высокочастотных электрических токов.Покрытие проволоки серебром значительно снизило затраты по сравнению с сплошной серебряной проволокой без какого-либо значительного снижения производительности.

Другие материалы в таблице удельного электрического сопротивления могут не иметь такого очевидного применения. Тантал присутствует в таблице, потому что он используется в конденсаторах — никель и палладий используются в торцевых соединениях многих компонентов поверхностного монтажа, таких как конденсаторы.

Кварц находит основное применение в качестве пьезоэлектрического резонансного элемента. Кристаллы кварца используются в качестве элементов определения частоты во многих генераторах, где его высокое значение Q позволяет создавать схемы с очень стабильной частотой.Они аналогичным образом используются в высокопроизводительных фильтрах. Кварц имеет очень высокий уровень удельного сопротивления и не является хорошим проводником электричества, будучи классифицированным как изолятор.

Классификация удельного сопротивления проводников, изоляторов, полупроводников

Существует три широких классификации материалов с точки зрения их удельного сопротивления: проводники, полупроводники и изоляторы.


Сравнение удельного сопротивления проводников, полупроводников и изоляторов
Материал Типичный диапазон удельного сопротивления (Ом · м)
Проводники 10 -2 -10 -8
Полупроводники 10 -6 -10 6
Изоляторы 10 11 -10 19

Эти цифры являются ориентировочными.Показатели для полупроводников будут сильно зависеть от уровня легирования.

Удельное электрическое сопротивление материалов является ключевым электрическим параметром. Он определяет, можно ли эффективно использовать материалы во многих электрических и электронных приложениях. Это ключевой параметр, который используется для определения материалов, которые будут использоваться в электрических и электронных элементах.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ шум
Вернуться в меню «Основные понятия электроники».. .

Электропроводность

Электропроводность

Электропроводность является мерой легкость, с которой электрический заряд или тепло могут проходить через материал. А проводник — это материал, который дает очень небольшое сопротивление потоку электрический ток или тепловая энергия. Материалы классифицируются как металлы, полупроводники и изоляторы.Металлы — самые проводящие и изоляторы. (керамика, дерево, пластик) наименее проводящие.
Электропроводность говорит нам, насколько хорошо материал позволяет электричеству проходить через него. Многие люди думают о медных проводах как о чем-то, что имеет отличные электрические характеристики. проводимость.
Теплопроводность говорит нам, с какой легкостью тепловая энергия (тепло для большинства целей) может перемещаться по материалу.Некоторые материалы, такие как металлы, позволяют теплу перемещаться через них довольно быстро. Представьте, что одной рукой вы касаетесь кусок металла, а с другой — кусок дерева. Какой материал становится холоднее? Если бы вы сказали «металл», вы были бы правы. Но, Фактически, оба материала имеют одинаковую температуру. Это относительное теплопроводность. Металл обладает более высокой теплопередачей или термической способностью. проводимость, чем у дерева, позволяя теплу от вашей руки уходить быстрее.Если вы хотите, чтобы что-то оставалось холодным, лучше всего это завернуть во что-нибудь который не обладает высокой теплопередачей или высокой теплопроводностью, это был бы изолятор. Керамика и полимеры обычно являются хорошими изоляторами, но вы должны помнить, что полимеры обычно имеют очень низкую температуру плавления. Это означает, что если вы разрабатываете что-то, что сильно нагревается, полимер может расплавиться в зависимости от температуры плавления.

Серебро имеет самую высокую электропроводность из всех металлов. Фактически, серебро определяет проводимость — все другие металлы сравниваются с Это. По шкале от 0 до 100 серебро занимает 100 место, медь — 97, а золото. на 76. Из-за этого свойства, а также из-за того, что он не зажигает легко, серебро обычно используется в электрических цепях и контактах. Серебро также используется в аккумуляторах, где надежность является обязательной и применяются ограничения по весу, например, для портативных хирургических инструментов, слуховых аппаратов, кардиостимуляторов и космическое путешествие.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Guava WordPress Theme, Copyright 2017 2024 © Все права защищены.