Температура плавления свинца и алюминия: Температура плавления свинца и алюминия

Содержание

Температура плавления свинца и алюминия

Такой металл, как алюминий, очень распространен в мире. Немалое его количество содержится в организме человека, а уж в окружающем мире его еще больше. Среди материалов, из которых построены дома, а также в конструкции любого автомобиля есть некая доля алюминия.

Нередко из этого вещества изготавливаются детали мебели. И если вдруг что-то из этого сломается, то можно либо приобрести новый товар в соответствующем магазине, либо заняться самостоятельным ремонтом изделия. В последнем случае придется плавить металл в домашних условиях, а для этого уже нужно знать о некоторых свойствах этого металла.

Для изготовления какой-либо алюминиевой конструкции вовсе не обязательно подробно изучать все характеристики вещества, но на основные моменты следует обратить свое внимание, включая знание, при какой температуре плавится алюминий.

О температуре плавления

Необходимо помнить: алюминий очень легко поддается литью и начинает превращаться в жидкую субстанцию уже при температуре в 660 градусов. Для того чтобы понять, что этот показатель довольно низкий, достаточно сравнить его с температурами плавления других металлов, которые также нередко используются для изготовления тех или иных, нужных в обиходе предметов.

Например:

  • сталь начинает плавиться лишь при температуре в 1300 градусов;
  • чугун — при 1100 градусах.

Но все же, хоть температура плавления алюминия по Цельсию и не слишком высока по сравнению со многими другими металлами, достичь 600 градусов в домашних условиях с использованием обыкновенной газовой или электрической плиты довольно трудно.

Уменьшение температуры

Прежде чем подвергать металл плавлению, можно специальными методами уменьшить его температуру плавления, например, использовать в виде порошка. В этом случае он начнет плавиться чуть быстрее. Но при этом он становится опасным, так как взаимодействуя с атмосферным кислородом, может окислиться или воспламениться

. А в результате окисления, как мы помним из школьного курса химии, образуется оксид алюминия; и температура, при которой начинает плавиться это вещество, уже превышает две тысячи градусов.

Вообще избежать образования оксида не получится, если заниматься плавлением алюминия, но уменьшить количество лишнего вещества вполне возможно. При плавлении алюминия нужно не допускать попадания в вещество воды. Ведь если это случится, то произойдет взрыв.

Перед началом процесса нужно убедиться в том, что сырье является абсолютно сухим. Чаще всего в качестве исходного материала применяется алюминиевая проволока. Предварительно ее нужно с помощью ножниц разделить на множество мелких по длине кусочков. А для того, чтобы уменьшить площадь контакта с содержащимся в атмосфере кислородом, эти кусочки прессуются пассатижами.

Не всегда есть необходимость создать алюминиевое изделие высокого качества, поэтому вовсе не обязательно всегда использовать порошок или мелко нарезанную и плотно сдавленную проволоку. Можно взять любой предмет, который уже был использован, например, банку, в которой хранились консервы. Но перед плавкой нужно лишить ее нижнего шва или обрезать профиль. Полученное сырье может быть окрашено или испачкано. Не нужно об этом беспокоиться. Все, что имеется лишнее на поверхности, быстро отходит в виде шлаков.

Процесс плавления в домашних условиях

Плавление — это довольно опасный процесс. Предварительно необходимо обязательно побеспокоиться о средствах защиты от различных ядовитых веществ, которые будут образовываться, а также подготовить литейную форму.

Средства защиты

  1. Не обойтись без специальных перчаток даже в том случае, если расплавить алюминий необходимо лишь единожды. Это, пожалуй, основное средство защиты, так как расплавленная масса с большой долей вероятности может попасть на руки, и тогда неминуемо на коже появится ожог, поскольку температура жидкого металла превышает 600 градусов.
  2. Следующая часть тела, которую также необходимо защитить от попадания горячего алюминия — глаза. При частой плавке не обойтись без специальной защитной маски, ну или хотя бы очков. Но лучше всего работать в костюме, который устойчив к воздействию высокой температуры в несколько сотен градусов.
  3. Если необходимо получить чистый алюминий, потребуется рафинирующий флюс. И тогда работать нужно в химическом респираторе.

Выбор формы для литья

Для того, чтобы отлить алюминий, необязательно запасаться литейной формой. Достаточно лишь приобрести лист из более тугоплавкого металла — из стали, вылить на него расплавленный алюминий и подождать, пока последний затвердеет. Но для получения какой-либо детали из алюминия обязательно придется приобретать форму для литья.

Ее можно изготовить самостоятельно в домашних условиях. Для этой цели обычно используется скульптурный гипс. Он заливается в форму, затем какое-то время охлаждается. После этого в него вставляют модель и сверху кладут вторую емкость с гипсом. При этом важно не забыть проделать отверстие в гипсе с помощью какого-нибудь предмета цилиндрической формы. Через это отверстие и будет заливаться горячий алюминий.

При плавлении алюминия не обойтись без так называемого тигеля: то есть емкости из тугоплавкого металла. Она может быть выполнена из фарфора, кварца, стали, чугуна. Впрочем, изготавливать тигель самостоятельно вовсе не обязательно, ведь его можно просто купить в специальном магазине. Объем тигеля зависит от того, какое количество металла требуется получить.

Кратко о процессе

Плавка алюминия в домашних условиях — это не такой уж трудный процесс, которым он может показаться поначалу. Кусочки металла нагреваются до нужной температуры плавки алюминия в специальной емкости.

Некоторое время полученный расплав необходимо выдерживать в разогретом состоянии и периодически удалять с его поверхности образующийся шлак. После этого чистый жидкий металл наливается в специальную форму, в которой он некоторое время будет остывать.

Время, которое уйдет на плавку, зависит от самой печи, а точнее от той температуры, которую она может обеспечить. Если же вместо печи используется газовая горелка, то она должна нагревать металл сверху.

Температуру плавления металлов, которая изменяется от малейшего (-39 °С для ртути) до наибольшего (3400 °С для вольфрама), а также плотность металлов в твердом состоянии при 20 °С и плотности жидких металлов при температуре плавления приведены в таблице плавки цветных металлов

.

Таблица 1. Плавки цветных металлов

твердого при 20 °С

Сварка и плавка цветных металлов

Сварка меди. Температура плавки металла Cu, почти в шесть раз превышает температуру плавки стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064°С) ниже температуры плавления меди (1083°С). При затвердевании жидкой меди эвтектика располагается по границам зерен, делает медь хрупкой и склонной к образованию трещин. Поэтому основной задачей при сварке меди является защита его от окисления и активное раскисление сварочной ванны.

Наиболее распространенное газовое сварки меди ацетиленокисневим пламенем с помощью горелок, которые в 1,5…2 раза мощнее горелки для сварки сталей. Присадочным металлом есть медные прутки, содержащие фосфор и кремний. Если толщина изделий более 5…6 мм, их сначала подогревают до температуры 250…300°С. Флюсами при сварке является прожаренная бура или смесь, состоящую из 70% буры и 30% борной кислоты. Чтобы повысить механические свойства и улучшить структуру наплавленного металла, медь после сварки проковывают при температуре около 200…300°С. Потом ее снова нагревают до 500-550°С и охлаждают в воде. Медь сваривают также электродуговым способом электродами, в струе защитных газов, под слоем флюса, на конденсаторных машинах, способом трения.

Сварка латуни. Латунь – это сплав меди с цинком (до 50%). Основное загрязнение при этом – испарение цинка, в итоге чего шов теряет свои качества, в нем возникают поры. Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, при котором на поверхности ванны создается пленка тугоплавкого оксида цинка, уменьшающая дальнейшее выгорание и испарение цинка. Флюсы используют такие же, как и при сварке меди. Они создают на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь сваривают также в защитных газах и на контактных машинах.

Сварка бронзы. В большинстве случаев бронза – это литейный материал, поэтому

сварку применяют при исправлении дефектов или во время ремонта. Чаще всего применяют сварку металлическим электродом. Присадочным металлом является прутки того самого состава, что и основной металл, а флюсами или электродным покрытием – хлористые и фтористые соединения калия и натрия.

Сварка алюминия. Основными факторами, затрудняющими сварку алюминия, является низкая температура его плавления (658°С), большая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, которые имеют температуру плавления 2050°С, поэтому технология плавки цветных металлов,

таких как медь или бронза, не подходит для плавки алюминия. Кроме того, эти оксиды слабо реагируют как с кислыми, так и основными флюсами, поэтому плохо удаляются из шва.

Чаще всего используют газовую сварку алюминия ацетиленовым пламенем. В последние годы значительно распространилось также автоматическая дуговая сварка металлическими электродами под флюсом и в среде аргона. При всех способах сварки, кроме аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят фтористые и хлористые соединения лития, калия, натрия и других элементов. Как присадочный металл при всех способах сварки используют проволоку или стержни того же состава, что и основной металл.

Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.

Сварка сплавов алюминия. Сплавы алюминия с магнием и цинком сваривают без

особых осложнений, так же как и алюминий. Исключением является дюралюминий – сплавы алюминия с медью. Эти сплавы термически упрочняются после закалки и следующего старения. Когда температура плавки цветных металлов свыше 350°С в них происходит снижение прочности, которое не восстанавливается термической обработкой. Поэтому при сварке дюралюминия в зоне термического влияния прочность уменьшается на 40…50%. Если дюралюминий сваривать в защитных газах, то такое снижение может быть восстановлено термической обработкой до 80…90% по отношению к прочности основного металла.

Сварка магниевых сплавов. При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами через низкое качество сварных швов до настоящего времени не применяется. При сварке магниевых сплавов наблюдается значительный рост зерна в около шовных участках и сильное развитие столбчатых кристаллов в сварном шве. Поэтому предел прочности сварных соединений составляет 55…60% предела прочности основного металла.

Таблица 2. Физические свойства промышленных цветных металлов

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты. Воздействие при этом примерно одинаковое.

Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие — до 600 °C: свинец, цинк, олово;
  2. среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина — градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы — непременная основа для ковки, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота, ограды из чугуна, ножи из стали или браслеты из меди), для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий — 660 °C;
  2. температура плавления меди — 1083 °C;
  3. температура плавления золота — 1063 °C;
  4. серебро — 960 °C;
  5. олово — 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец — 327 °C;
  7. температура плавления железо — 1539 °C;
  8. температура плавления стали (сплав железа и углерода) — от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) — от 1100 °C до 1300 °C;
  10. ртуть — -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл — ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия — 2519 °C, у железа — 2900 °C, у меди — 2580 °C, у ртути — 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов — у рения — 5596 °C. Наибольшая температура кипения — у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов. Самым лёгким металлом является литий, самым тяжёлым — осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа — очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах — это теплопроводность металлов. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл — серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Температура плавления цветных металлов и сплавов таблица

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым – меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса. Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.

Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э. С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.

В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным — физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.

Процесс плавления металла

Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании — при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне:

  1. Солидус — линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус — окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на:

  • Легкоплавкие, до 600 °C. К ним относятся олово, цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения — точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

Таблица температур плавления

Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

НазваниеT пл, °C
Алюминий660,4
Медь1084,5
Олово231,9
Цинк419,5
Вольфрам3420
Никель1455
Серебро960
Золото1064,4
Платина1768
Титан1668
Дюралюминий650
Углеродистая сталь1100−1500
Чугун1110−1400
Железо1539
Ртуть-38,9
Мельхиор1170
Цирконий3530
Кремний1414
Нихром1400
Висмут271,4
Германий938,2
Жесть1300−1500
Бронза930−1140
Кобальт1494
Калий63
Натрий93,8
Латунь1000
Магний650
Марганец1246
Хром2130
Молибден2890
Свинец327,4
Бериллий1287
Победит3150
Фехраль1460
Сурьма630,6
карбид титана3150
карбид циркония3530
Галлий29,76

Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.

Прочность металлов

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность — возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа — Мега Паскалях.

Существуют следующие группы прочности металлов:

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.

Таблица прочности металлов

МеталлСопротивление, МПа
Медь200−250
Серебро150
Олово27
Золото120
Свинец18
Цинк120−140
Магний120−200
Железо200−300
Алюминий120
Титан580

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 — 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Температуру плавления металлов, которая изменяется от малейшего (-39 °С для ртути) до наибольшего (3400 °С для вольфрама), а также плотность металлов в твердом состоянии при 20 °С и плотности жидких металлов при температуре плавления приведены в таблице плавки цветных металлов.

Таблица 1. Плавки цветных металлов

твердого при 20 °С

Сварка и плавка цветных металлов

Сварка меди. Температура плавки металла Cu, почти в шесть раз превышает температуру плавки стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064°С) ниже температуры плавления меди (1083°С). При затвердевании жидкой меди эвтектика располагается по границам зерен, делает медь хрупкой и склонной к образованию трещин. Поэтому основной задачей при сварке меди является защита его от окисления и активное раскисление сварочной ванны.

Наиболее распространенное газовое сварки меди ацетиленокисневим пламенем с помощью горелок, которые в 1,5…2 раза мощнее горелки для сварки сталей. Присадочным металлом есть медные прутки, содержащие фосфор и кремний. Если толщина изделий более 5…6 мм, их сначала подогревают до температуры 250…300°С. Флюсами при сварке является прожаренная бура или смесь, состоящую из 70% буры и 30% борной кислоты. Чтобы повысить механические свойства и улучшить структуру наплавленного металла, медь после сварки проковывают при температуре около 200…300°С. Потом ее снова нагревают до 500-550°С и охлаждают в воде. Медь сваривают также электродуговым способом электродами, в струе защитных газов, под слоем флюса, на конденсаторных машинах, способом трения.

Сварка латуни. Латунь – это сплав меди с цинком (до 50%). Основное загрязнение при этом – испарение цинка, в итоге чего шов теряет свои качества, в нем возникают поры. Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, при котором на поверхности ванны создается пленка тугоплавкого оксида цинка, уменьшающая дальнейшее выгорание и испарение цинка. Флюсы используют такие же, как и при сварке меди. Они создают на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь сваривают также в защитных газах и на контактных машинах.

Сварка бронзы. В большинстве случаев бронза – это литейный материал, поэтому

сварку применяют при исправлении дефектов или во время ремонта. Чаще всего применяют сварку металлическим электродом. Присадочным металлом является прутки того самого состава, что и основной металл, а флюсами или электродным покрытием – хлористые и фтористые соединения калия и натрия.

Сварка алюминия. Основными факторами, затрудняющими сварку алюминия, является низкая температура его плавления (658°С), большая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, которые имеют температуру плавления 2050°С, поэтому технология плавки цветных металлов, таких как медь или бронза, не подходит для плавки алюминия. Кроме того, эти оксиды слабо реагируют как с кислыми, так и основными флюсами, поэтому плохо удаляются из шва.

Чаще всего используют газовую сварку алюминия ацетиленовым пламенем. В последние годы значительно распространилось также автоматическая дуговая сварка металлическими электродами под флюсом и в среде аргона. При всех способах сварки, кроме аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят фтористые и хлористые соединения лития, калия, натрия и других элементов. Как присадочный металл при всех способах сварки используют проволоку или стержни того же состава, что и основной металл.

Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.

Сварка сплавов алюминия. Сплавы алюминия с магнием и цинком сваривают без

особых осложнений, так же как и алюминий. Исключением является дюралюминий – сплавы алюминия с медью. Эти сплавы термически упрочняются после закалки и следующего старения. Когда температура плавки цветных металлов свыше 350°С в них происходит снижение прочности, которое не восстанавливается термической обработкой. Поэтому при сварке дюралюминия в зоне термического влияния прочность уменьшается на 40…50%. Если дюралюминий сваривать в защитных газах, то такое снижение может быть восстановлено термической обработкой до 80…90% по отношению к прочности основного металла.

Сварка магниевых сплавов. При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами через низкое качество сварных швов до настоящего времени не применяется. При сварке магниевых сплавов наблюдается значительный рост зерна в около шовных участках и сильное развитие столбчатых кристаллов в сварном шве. Поэтому предел прочности сварных соединений составляет 55…60% предела прочности основного металла.

Таблица 2. Физические свойства промышленных цветных металлов

Температура плавления алюминия

Температура плавления алюминия.

 

 

Температура плавления алюминия относится к разделу о плавкости металлов, так как данный химический элемент является металлом.

Температура плавления (обычно совпадает с температурой кристаллизации) — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот.

Температура — физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени нагретости тел.

Жидкое состояние вещества является промежуточным между твердым (кристаллическим) и газообразным состоянием.

Удельная теплота плавления — количество теплоты, которое необходимо сообщить одной единице массы кристаллического вещества в равновесном изобарно-изотермическом процессе, чтобы перевести его из твёрдого (кристаллического) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества).

 

Температура плавления алюминия при нормальных условиях:

Температуру плавления обозначают Тпл

Температура плавления алюминия (Тпл) составляет 660,32 °C (933,47 К).

Температура плавления алюминия приведена при нормальных условиях (согласно ИЮПАК), т.е. при  давлении 105 (100 000) Па.

Для сведения: 101 325 Па = 1 атм = 760 мм рт. ст.

Необходимо иметь в виду, что температура плавления металлов может изменяться в зависимости от условий окружающей среды (давления). Точное значение температуры плавления металлов в зависимости от условий окружающей среды (давления) необходимо смотреть в справочниках.

Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы даётся уравнением Клапейрона-Клаузиуса.

 

 

Источник: https://ru.wikipedia.org

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

Найти что-нибудь еще?

Похожие записи:

карта сайта

 

Коэффициент востребованности 1

Температура плавления свинца

Температура плавления свинца.

 

 

Температура плавления свинца относится к разделу о плавкости металлов, так как данный химический элемент является металлом.

Температура плавления (обычно совпадает с температурой кристаллизации) — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот.

Температура — физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени нагретости тел.

Жидкое состояние вещества является промежуточным между твердым (кристаллическим) и газообразным состоянием.

Удельная теплота плавления — количество теплоты, которое необходимо сообщить одной единице массы кристаллического вещества в равновесном изобарно-изотермическом процессе, чтобы перевести его из твёрдого (кристаллического) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества).

 

Температура плавления свинца при нормальных условиях:

Температуру плавления обозначают Тпл

Температура плавления свинца (Тпл) составляет 327,46 °C (600,61 K).

Температура плавления свинца приведена при нормальных условиях (согласно ИЮПАК), т.е. при  давлении 105 (100 000) Па.

Для сведения: 101 325 Па = 1 атм = 760 мм рт. ст.

Необходимо иметь в виду, что температура плавления металлов может изменяться в зависимости от условий окружающей среды (давления). Точное значение температуры плавления металлов в зависимости от условий окружающей среды (давления) необходимо смотреть в справочниках.

Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы даётся уравнением Клапейрона-Клаузиуса.

 

 

Источник: https://ru.wikipedia.org

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

Найти что-нибудь еще?

Похожие записи:

карта сайта

 

Коэффициент востребованности 6

Точки плавления и кипения элементов Периодической таблицы

Точки плавления и кипения элементов Периодической таблицы Менделеева ХИМИЧЕСКАЯ ШКОЛА

Температуры плавления и кипения очень важны физические свойства в химии, когда мы изучаем элементы и соединения. Различные элементы и соединения имеют разные точки плавления и кипения. Из изучения значений плавления и точки кипения элементов, мы можем получить представление о структуре элементов, межмолекулярных силах между молекулы или атомы и многое другое.



В этом руководстве мы рассмотрим следующие разделы.

  • Причины разной температуры плавления и кипения элементов и соединений
  • Сравнение значений точек плавления и кипения каждой группы в периодической таблице с тенденциями
  • Температуры плавления и кипения органические соединения
  • Сравнение точек плавления и кипения различных элементов и соединений в блоках s, p и d

Автор: Хешан Нипуна, дата обновления: 2020/01/05



Температуры плавления и кипения элементов

Вариации точек плавления и кипения неясны (не имеют единообразного рисунка) по всей таблице Менделеева (это означает, что мы не всегда можем видеть подобную тенденциюВы поймете это, когда закончите читать этот урок).

Но мы видим, что некоторые элементы имеют более высокие температуры плавления и кипения, а некоторые — меньше. В В первой части этого урока мы изучаем точки плавления и кипения s, p, d блокирует элементы и их соединения, а затем — органические соединения.

IVA -й элемент группы (углерод и кремний) показывает высокие температуры плавления и кипения в секунду и третьи периоды соответственно, потому что они имеют ковалентных гигантских решеток структур.



Температуры плавления и кипения за период

В первых трех периодах наблюдается четкая вариация точек плавления и кипения (имеет четкую тенденцию). Плавление и точки кипения увеличиваются до IVA группы с при движении слева направо. (Например, от натрия к аргону в третьем периоде). Группа IVA имеет элемент с наивысшей температурой плавления и кипения. Затем начинает снижаться температура плавления и кипения от группы VA к благородным газам (VIIIA).



Почему разные элементы и соединения имеют разные точки плавления и кипения?

Есть много причин для воздействия на точки плавления и кипения элементов и соединений. Одна или несколько вещей могут эффект до точек плавления и кипения.

  1. Молекулярная масса — при увеличении молекулярной массы возможно увеличение плавления и кипения точка тоже высока.
  2. Межмолекулярные силы , такие как водородные связи, силы диполь-дипольного притяжения, силы Ван-дер-Ваальса между атомами или молекулами.Когда межмолекулярные силы становятся сильнее, это также увеличивает температуры плавления и кипения. элементов и соединений.
  3. Металлическая решетка (важно для определения температуры плавления металлов , таких как натрий, магний и другие металлические элементы)
  4. Ионная решетка — В ионных соединениях, таких как NaCl, CaF 2 , MgO, существует ионная решетка. Согласно прочность ионной решетки, температуры плавления и кипения могут различаться.


Элементы с самыми низкими температурами плавления и кипения за период

Инертные газы имеют элемент с самыми низкими температурами плавления и кипения за период, поскольку их форма только ван-дер-ваальсова силы, они очень слабы, чтобы сформировать сильную межмолекулярную силу между атомами.



Тенденции групп точек плавления и кипения таблицы Менделеева

Теперь мы собираемся узнать, как точки плавления и кипения элементов различаются в группах, рассматривая каждый группа отдельно.



Значения точек плавления и кипения s-блока

Блок

S содержит группу IA и группу IIA, и большинство элементов из них являются металлами без водород. (водород имеет как свойства щелочного металла, так и свойства галогена.)



Щелочные металлы, температура плавления и кипения

Щелочные металлы (Li, Na, K, Rb, Cs): мягкие и имеют низкие температуры плавления и кипения.Щелочные металлы имеют только один валентный электрон на атом металла и, следовательно, энергия, связывающая атомы в кристаллической решетке металла, мала. Следовательно, металлические связи в этих металлах не очень сильно. Таким образом, температуры плавления и кипения снижаются при переходе от лития к цезию.





Водород

  • Температура плавления: -259,2 0 C
  • Точка кипения: -252,9 0 C


Температуры плавления и кипения щелочноземельных металлов

Щелочноземельные металлы (Be, Mg, Ca, Sr, Ba, Ra) имеют низкие температуры плавления и кипения по сравнению с металлами d-блока.Но их температуры плавления и кипения выше, чем у соответствующих щелочных металлов за тот же период из-за сравнительно меньший размер. Но точки плавления и кипения не показывают регулярных тенденций в щелочноземельных металлах. группа.



Почему щелочные металлы имеют более низкую температуру плавления, чем щелочноземельные металлы?

И щелочные, и щелочноземельные металлы находятся в блоке s. Мы знаем, что у щелочных металлов всего один валентный электрон на атом металла.

Но щелочноземельные металлы имеют двух валентных электронов по на атом металла.

Также щелочноземельные металлы имеют меньший размер, чем щелочные металлы.

Когда количество валентных электронов в решетке увеличивается до , металлическая связь становится прочной. Также, когда атомный радиус уменьшается, металлическая связь стать сильным. Также поэтому металлические связи щелочноземельных металлов намного сильнее щелочных металлов.

Следовательно, температуры плавления и кипения щелочных металлов ниже, чем температуры плавления и кипения щелочноземельных металлов



Почему бериллий имеет более высокую температуру плавления и кипения, чем другой член второй группы?

Бериллий — атом наименьшего размера из элементов группы 2. Таким образом, его ионная решетка сильнее, чем у других щелочных земные металлы.



Температура плавления и кипения элементов p-блока

Теперь поговорим об изменении температур плавления и кипения p-блочных элементов.

В p-блоке есть различные типы элементов, включая металлы, неметаллы, и их физические состояния также очень другой. При комнатной температуре некоторые из них находятся в твердом состоянии, а некоторые — в газообразном. Бром тоже находится в жидком состоянии.

Блок

P содержит элемент с самой высокой температурой плавления (углерод) и элемент с самой низкой точкой плавления таблица Менделеева (гелий).

Теперь посмотрим на температуры плавления и кипения p-блочных элементов от группы 13 до группы 18.



Галогены и инертные газы точки плавления и кипения

Галогены и благородные газы находятся в блоке p периодической таблицы. Галогены существуют в виде двухатомных молекул, таких как F 2 , Cl 2 , Br 2 , I 2 и благородные газы существуют в виде одноатомных молекул.

При понижении каждой группы молекулярная масса увеличивается, что может быть причиной более высоких точек плавления и кипения.Кроме того, все молекулы галогена и инертного газа образуют только силы Ван-дер-Ваальса, которые являются самыми слабыми межмолекулярными силами и не сильно влияет на плавление и кипение галогенов и благородных газов. Молекулярные массы молекул имеют Наибольшее влияние на повышение температуры плавления и кипения. Итак, точки плавления и кипения как галогена, так и инертных газов увеличиваются по группе.



Температуры кипения и плавления элементов 13 группы

Бор, алюминий, галлий, индий, таллий — элементы группы 13.Понижаются точки плавления и кипения при движении вниз по группе. Однако снижение температуры плавления не такое регулярное, как точек кипения. Галлий имеет очень низкую температуру плавления (303К).



Температуры плавления и кипения элементов 14 группы

Атомы этой группы образуют ковалентные связи друг с другом, поэтому между их атомами в обоих твердое и жидкое состояния.

Температуры плавления и кипения элементов 14-й группы намного выше, чем элементов 13-й группы.

При движении вниз по группе, температура плавления и кипения снижается.

Углерод (алмаз как аллотроп углерода) имеет самую высокую температуру плавления и температуру кипения между 14 группой. элементы.



Группа 15 элементов точки плавления и кипения

  1. Азот имеет самую низкую температуру плавления точка и температура кипения.
  2. Сурьма имеет самую высокую температуру плавления и кипения.


Группа 16 элементов температуры плавления и кипения

  1. Кислород имеет самую низкую температуру плавления и кипения.
  2. Теллур (Те) имеет самую высокую температуру плавления и кипения.


Точки кипения группы 17

Температура кипения увеличивается при переходе от фтора к йод.



Температуры плавления и кипения 3d-металлов

Температуры плавления и кипения 3-х металлов обычно выше, чем s блочных элементов.

Ванадий имеет самую высокую температуру плавления и цинк имеет самую низкую температуру плавления.

Но температуры плавления и кипения не имеют регулярных тенденций.




Почему цинк имеет самую низкую температуру плавления среди металлов серии 3d?

Цинк имеет конфигурацию стабильных электронов , 3d 10 4s 2 .Следовательно, цинк не имеет большого значения. электроны к металлической решетке, как и другие 3d-металлы. Следовательно, прочность металлической решетки ниже, чем у других 3d-металлов. решетки. Таким образом, цинк имеет самую низкую температуру плавления среди металлов серии 3d.



Падение температуры плавления марганца

Конфигурация электронов марганца 3d 5 4s 2 . Эта конфигурация электронов имеет некоторую стабильность потому что все пять d-орбит наполовину заполнены (каждая d-орбита имеет один электрон.) Итак, вклад электронов в металлическая решетка ограничена марганцем. Поэтому решетка не очень прочная. Вот почему марганец внезапное падение температуры плавления.



Точки плавления и кипения соединений


Температуры плавления и кипения галогенидов щелочных металлов

Плавка и кипения точек щелочного металла галогениды уменьшается с увеличением атомной массы галогенидов как:
F > Cl > Br > I
Пример: температура плавления NaCl выше, чем у NaBr

.

Для данного галогенид-иона точки плавления и кипения LiX всегда ниже, чем у NaX.




Температуры плавления и кипения органических соединений

На сегодняшний день учеными всего мира открыты тысячи органических соединений. Открывая множество соединений, родилась органическая химия. В этой главе мы собираемся обсудить температуры плавления и кипения органических соединений.

Температуры кипения этана (алкана) и этановая кислота (карбоновая кислота) перечислены ниже, и это два разных типа органических соединений.

  • Метан (CH 4 ): -161,5 0 C
  • Этановая кислота (CH 3 COOH): 118,1 0 C


Следующие факты важны при изучении значений температуры плавления и кипения органических соединений.

  • Относительная молекулярная масса
  • Диполь-дипольные взаимодействия
  • Способность образовывать водородные связи
  • Структура углеродной цепи

Температура плавления и кипения алканов, алкенов, алкинов

  • Алканы — неполярные молекулы.Между молекулами алканов существуют только силы Ван-дер-Ваальса. Когда относительная молекулярная масса увеличивается в алкане соединения, значения точек плавления и кипения также увеличиваются.
  • Повышение температуры плавления и кипения алкана, алкена, алкины соответственно.
Рассмотрим этан, этен, этин

этин (соединение алкина) имеет самую высокую температуру плавления и кипения.



Когда количество водородных связей и прочность водородных связей увеличивается, температуры плавления и кипения повышаются.


Спирты, альдегиды, кетоны и карбоновые кислоты

  • Все спирты и карбоновые кислоты могут образовывать водородные связи.
  • Карбоновые кислоты образуют самые прочные и самые высокие среди них водородные связи.
  • Итак, карбоновые кислоты имеют самые высокие температуры плавления и кипения.
  • Диполь-дипольные взаимодействия между Молекулы альдегидов и кетонов менее прочны, чем водородные связи в спиртах.
  • Следовательно, температуры плавления и кипения спиртов выше, чем у альдегидов и кетонов.


Точки плавления и кипения алкилгалогенидных соединений

Атом галогена более отрицателен, чем атом углерода. Итак, связь C-X поляризована. Между алкилгалогенидными соединениями существует диполь-дипольное взаимодействие.Эти взаимодействия намного сильнее, чем межмолекулярные силы между алканами,

Точки плавления и кипения алкилгалогенидных соединений намного выше, чем у алканов.

При увеличении относительной молекулярной массы органического соединения температуры плавления и кипения также увеличиваются.

Теперь мы обсудим некоторые проблемы, сравнивая различные элементы и соединения, которые имеют разные точки плавления и кипения. Эти проблемы очень важны на экзаменах.Внимательно изучите их.




Температура плавления металлов p-блока выше, чем s-блока?

Сначала мы посмотрим, что такое металлы p-блока и какие металлы s-блока. Вы знаете, когда мы обсуждаем Что касается температур плавления металлов, так важна их металлическая решетка. Итак, теперь вы знаете, что мы должны узнать сравнить температуры плавления металлов p-блока и металлов s-блока.

Когда металлическая решетка металла прочная, этот металл с большой вероятностью имеет более высокую температуру плавления.

В качестве примера для сравнения взяты два металла, натрий и алюминий. Натрий — это блочный металл, а алюминий — п блок металлический. Но оба находятся в 3-м периоде таблицы Менделеева.

Из-за выделения трех электронов и меньшего радиуса металлическая решетка алюминия намного прочнее натрия. Таким образом, температура плавления алюминия выше, чем у натрия.



Почему элементы d-блока имеют более высокие температуры плавления, чем элементы s-блока?

d блочных элементов могут внести больше электронов в металлическую решетку.Например, ванадий может внести 5 электронов.

Но элементы блока s могут вносить только один или два электрона. Щелочные металлы могут иметь один электрон, а щелочноземельные металлы — два. электроны.

Добавление большего количества электронов в металлическую решетку увеличит прочность металлических связей.

Из-за более прочных металлических связей элементы d-блока имеют более высокие значения плавления.

Почему H 2 S имеет меньшую точку кипения, чем H 2 O

H 2 S точка кипения: -60 0 C
H 2 O точка кипения: 100 0 C
  • При комнатной температуре сероводород (H 2 S) представляет собой газ.Но вода (H 2 O) — жидкость. Это говорит нам H 2 S имеет меньшую температуру кипения.
  • H 2 S и H 2 O представляют собой молекулы изогнутой формы.
  • O и S — элементы группы VIA.
  • Молекулярная масса H 2 S = 34 и молекулярная масса H 2 O = 18. Молекулярная масса H 2 S больше чем Н 2 О .
  • Но, между молекулами H 2 O существует сильных водородных связей . H 2 Молекулы S имеют только слабых диполь-дипольные взаимодействия .
Водородные связи в H 2 O
  • Из-за наличия сильных водородных связей в молекулах H 2 O, H 2 O имеет более высокую температуру кипения, чем H 2 S , хотя H 2 S имеет большую молекулярную массу.

у какого атома самая высокая температура плавления / кипения между Cs и W?

Вольфрам (W) имеет самую высокую температуру плавления из всех металлов. Цезий (Cs) — мягкий металл с очень низкой температурой плавления (28 0 ° C).

Какой металл имеет самую высокую температуру плавления?

Вольфрам (Вт). Из металлов вольфрам имеет самую высокую температуру плавления в периодической таблице. Он расположен в блоке D. 3422 0 C — температура плавления вольфрама.

Какой металл блока имеет самую высокую температуру плавления?

Бериллий имеет самую высокую температуру плавления из блочных металлов. Это около 1,287 0 C

точки кипения и плавления группы порядка 1а

Li> Na> K> Rb> Cs> Fr> H

Литий имеет самую высокую температуру плавления и кипения, а водород — самую низкую в группе IA.Водород существует в виде газа при комнатной температуре, а франций — в жидком состоянии при комнатной температуре. Все остальные материалы группы IA являются твердыми при комнатной температуре.

Самая низкая температура плавления металлических элементов

Ртуть (Hg) имеет самую низкую температуру плавления (-38,83 0 C), потому что ртуть имеет очень слабую металлическую решетку.

Какой элемент имеет самую низкую температуру плавления в периодической таблице Менделеева

Гелий (He) — это элемент с самой низкой температурой плавления (-272.2 0 С). Гелий существует в виде атомов. Он не образует соединений и не создает межмолекулярных сил между атомами He. Также относительная молекулярная масса (1) очень низкая.

Остались вопросы? Спросите сейчас у нас и найдите ответ.

Что можно понять под температурами плавления и кипения элементов в периодической таблице?

Мы знаем, что элементы в периодической таблице находятся в твердом, жидком и газообразном состоянии.Межмолекулярные силы, относительная молекулярная масса являются факторами, которые определяют температуру плавления и кипения элемента.

Рассмотрим два металла. Один металл имеет очень высокую температуру плавления, чем другой. В металлах металлическая решетка является основным фактором, определяющим температуру плавления и кипения. Более прочная металлическая решетка имеет более высокую температуру плавления.

Мы можем понять межмолекулярные силы элементов, относительные молекулярные массы, изучая температуры плавления и кипения.

Каковы температуры плавления и кипения некоторых горючих газов?

Мы можем перечислить несколько горючих газов с указанием их точек плавления и кипения.

Алканы легко воспламеняются. В качестве примера рассмотрим метан. Температуры плавления и кипения метана составляют -182,4 0 C и -161,5 0 C соответственно.

Почему разные элементы имеют разную температуру плавления?

Температура плавления зависит от их молекулярной массы и межмолекулярных сил между элементами или молекулами.Различные элементы имеют разную молекулярную массу и межмолекулярные силы. Таким образом, их значения температуры плавления отличаются от других элементов и соединений.

точки кипения и плавления, которые зависят от каких факторов?

Температура плавления и кипения зависит от типа элемента или соединения. Это объясняется ниже.

  • Если рассматривать металлы, их температура плавления и кипения зависит от их металлической решетки. Если их металлическая решетка прочная, температура плавления и кипения увеличивается.
  • Когда мы подходим к таким молекулам, как кислород, вода, благородные газы, их температура плавления и кипения зависит от их молекулярной массы и межмолекулярных сил.
  • Температура плавления и кипения ионных соединений, таких как хлорид натрия, зависит от их ионной решетки.

Почему элементы группы IIA плавятся при более высоких температурах, чем элементы группы IA?

Металлические решетки металлов группы II намного прочнее металлов группы I, потому что элементы группы II отдают решетке два электрона.Поэтому металлы группы i плавятся при более высоких температурах.

почему температура кипения кальция больше, чем у калия?

Прочность решетки кальция выше, чем у калия, по двум причинам.

  1. Радиус кальция меньше, чем у калия.
  2. кальций может отдавать два электрона металлической решетке, в то время как калий может отдавать только один электрон.

По этим двум причинам металлическая решетка кальция намного больше, чем у калия.

, что имеет точку плавления -219 0 ° C и точку кипения -183 0 ° C?

Кислород (O 2 )

Какие-либо их соединения не имеют температуры плавления?

Да. Есть. Некоторые соединения неустойчивы к нагреванию. При нагревании такое соединение они разлагаются на другое вещество.

Пример:

Карбонат никеля (NiCO 3 ) разлагается до NiO и CO 2 при нагревании.

Температура плавления Mg находится в блоке s?

Металлическая решетка магния намного прочнее натрия. Таким образом, температура плавления Mg выше, чем у Na.

что происходит с точкой плавления в блоке s

Если вы изучите блочные элементы в тот же период, вы увидите, что щелочноземельный металл (группа 2) имеет более высокую температуру плавления, чем щелочной металл (группа 1), потому что прочность решетки щелочноземельного металла выше, чем у щелочноземельного металла.

почему некоторые элементы имеют высокую температуру плавления?

Когда некоторые элементы превосходят по некоторым свойствам, они имеют высокую температуру плавления.

В качестве примера можно рассмотреть металлы. Когда мы говорим о металлах, необходимо понимать металлическую решетку. Когда металлическая решетка прочная, этот металл имеет более высокую температуру плавления. Металлическая решетка натрия слабее магния. Следовательно, магний имеет более высокую температуру плавления, чем натрий.

В качестве другого примера взяты вода и сероводород.Вода образует водородные связи, которые представляют собой самый сильный тип межмолекулярных сил. Но сероводород не может образовывать водородные связи. Таким образом, вода имеет более высокую температуру плавления, а также температуру кипения.

Статьи по теме

Число окисления Элементы в периодической таблице Характеристики металлов в периодической таблице Почему составы имеют разные точки кипения? — Причины изменения температуры кипения O 2 , HBr, этанола Органическая химия и соединения Реакции и возникновение щелочных металлов Реакции и возникновение щелочноземельных металлов Неорганические химические реакции и возникновение .

Точка плавления | Справочник по элементам в KnowledgeDoor

Ссылки (Щелкните рядом со значением выше, чтобы увидеть полную информацию о цитировании для этой записи)

Arblaster, J. W. «Уравнения давления пара для элементов платиновой группы». Platinum Metals Review, том 51, номер 3, 2007 г., стр. 130–135. doi: 10.1595 / 147106707X213830

Arblaster, J. W. «Какова истинная точка плавления осмия?» Platinum Metals Review, том 49, номер 4, 2005 г., стр.166–168. DOI: 10.1595 / 147106705X70264

Arblaster, J. W. «Термодинамические свойства рения на ITS-90». Калфад, том 20, номер 3, 1996 г., стр. 343–352. DOI: 10.1016 / S0364-5916 (96) 00036-3

Бедфорд, Р. Э., Дж. Боннье, Х. Маас и Ф. Павезе. «Рекомендуемые значения Температура по Международной температурной шкале 1990 г. для выбранного набора вторичных контрольных точек ». Metrologia, том 33, номер 2, 1996 г., стр. 133–154. Doi: 10.1088/ 0026-1394 / 33/ 2/ 3

Чейз, Малкольм В., редактор. Монография JPCRD № 9: Термохимические таблицы NIST-JANAF (Часть I и Часть II). Вудбери, штат Нью-Йорк: Американское химическое общество и Американский институт физики, 1998.

де Подеста, Майкл. Понимание свойств Дело, 2-е изд. Лондон: Тейлор и Фрэнсис, 2002.

Эмсли, Джон. Строительные блоки природы: руководство по элементам от А до Я. Оксфорд: Издательство Оксфордского университета, 2003.

Еремец, М. И., И. А. Trojan. «Свидетельство максимума на кривой плавления водорода при мегабарных давлениях». Письма в ЖЭТФ, том 89, номер 4, 2009 г., стр. 174–179. DOI: 10.1134 / S0021364009040031

Гринвуд, Н. Н. и А. Эрншоу. Химия элементов, 2-е издание. Берлингтон, Массачусетс: Баттерворт-Хайнеманн, 1997.

Гумински К. «Система F-Hg (фтор-ртуть)». Журнал Phase Equilibria, том 22, номер 5, 2001 г., С. 578–581.

Гумински, К.«Точки плавления и кипения ртути (Hg)». Журнал Phase Equilibria and Diffusion, том 13, номер 4, 1992, стр. 339. DOI: 10.1007 / BF02674977

Höhne, G. W. H., W. F. Hemminger, и H.-J. Фламмерсхайм. Дифференциальная сканирующая калориметрия, 2-е издание. Берлин: Springer – Verlag, 2003.

мл., О. Левин Келлер и Гленн Т. Сиборг. «Химия трансактинидных элементов». С. 139–166 в Ежегодном обзоре ядерной науки. Отредактировал Эмилио Сегре. Пало-Альто, Калифорния: Annual Reviews Inc., 1977.

Конингс, Р. Дж. М. «Термохимические и теплофизические свойства кюрия. и его оксиды. «Journal of Nuclear Materials, volume 298, number 3, 2001, pp. 255–268. doi: 10.1016 / S0022-3115 (01) 00652-3

Konings, Rudy JM, and Ondrej Beneš. «Термодинамические свойства f-элементы и их соединения. I. Лантаноиды и актиниды металлов ». Журнал физических и химических справочных данных, том 39, номер 4, 2010 г., стр. 043102–1–043102–47.DOI: 10.1063 / 1.3474238

Корпинаров Н., Маринов М., Димова-Малиновская Д., Ничев Х., Константинова М., Васильев Д. «Кремниевые нанопроволоки и усы, полученные дуговым разрядом». Journal of Physics: Conference Series, volume 113, 2008, 012007 (5 стр.). DOI: 10.1088 / 1742-6596 / 113/ 1/ 012007

Лангнер, Джереми и Дж. Р. Кахун. «Повышение температуры альфа-гамма-превращения чистого железа при очень быстром нагреве.»Metallurgical and Materials Transactions A, volume 41, number 5, 2010, pp. 1276–1283. Doi: 10.1007 / s11661-010-0175-9

Лиде, Дэвид Р., редактор. CRC Handbook of Chemistry and Физика, 88 издание. Бока-Ратон, Флорида: Taylor & Francis Group, 2008.

Маделунг, О., У. Рёсслер и М. Шульц, редакторы. Нететраэдрически связанные элементы и бинарные соединения I. Берлин: Springer-Verlag, 1998. doi: 10.1007 / b71138

Мукерджи, Гутам Дев и Рейнхард Бёлер.«Кривая плавления азота при высоком давлении и фазовый переход жидкость-жидкость». Physical Review Letters, том 99, номер 22, 2007 г., стр. С 225701–1 до 225701–4. DOI: 10.1103 / PhysRevLett.99.225701

Николас, Дж. В. и Д. Р. Уайт. «Температура». С. 8–41 в Измерение термодинамических свойств одиночных фаз. Под редакцией А. Р. Х. Гудвина, В. А. Уэйкхема и К. Н. Марша. Амстердам: Elsevier Science, 2003.

Пирсон, Хью О. Справочник по углероду, графиту, алмазу и фуллеренам.Park Ridge, NJ: Noyes Publications, 1993.

Preston-Thomas, H. «Международная температурная шкала 1990 года (ITS-90)». Метрология, том 27, номер 1, 1990 г., стр. 3–10. DOI: 10.1088 / 0026-1394 / 27/ 1/ 002

Савватимский А.И. «Температура плавления графита и жидкого углерода». Успехи физики, том 46, номер 12, 2003 г., стр. 1295–1303. DOI: 10.1070 / PU2003v046n12ABEH001699

Сиборг, Гленн Т. и Уолтер Д.Любить землю. Элементы, помимо урана. Нью-Йорк: John Wiley & Sons, Inc., 1990.

Steudel, Ralf, and Bodo Eckert. «Аллотропы твердой серы». стр. 1–79 в Элементарная сера и соединения с высоким содержанием серы I. Под редакцией Ральфа Штуделя. Берлин: Springer – Verlag, 2003. doi: 10.1007 / b12110

Стюарт, Ричард Б. и Ричард Т. Якобсен. «Термодинамические свойства Аргон от тройной точки до 1200 К при давлении до 1000 МПа ». Журнал физических и химических справочных данных, том 18, номер 2, 1989 г., стр.639–798.

Стюарт, Ричард Б., Ричард Т. Якобсен и В. Вагнер. «Термодинамические свойства Кислород от тройной точки до 300 К при давлениях до 80 МПа ». Справочный журнал физических и химических данных, том 20, номер 5, 1991, стр. 917–1021.

Свартцендрубер, LJ« Свойства железа ». Фазовые диаграммы сплавов, том 3, номер 2, 1982 г., стр. 224.

Сищенко О., Дэй Дж., Бимиш Дж. «Упругие свойства твердого гелия». Журнал физики: конденсированные вещества, том 21, номер 16, 2009 г., 164204 (6 стр.).DOI: 10.1088 / 0953-8984 / 21/ 16/ 164204

Tegeler, Ch., R. Span и W. Wagner. «Новое уравнение состояния аргона, покрывающего жидкую область, для температур от линии плавления до 700 К при давлениях до 1000 МПа». Журнал физических и химических справочных данных, том 28, номер 3, 1999 г., С. 779–850.

Тонков Е.Ю., Понятовский Е.Г. Фазовые превращения элементов под высоким давлением. Достижения в металлических сплавах 4.Под редакцией Я. Н. Фридляндера и Д. Г. Эскина. Бока-Ратон, Флорида: CRC Press LLC, 2005.

Вос, В. Л., Дж. А. Схоутен, Д. А. Янг и М. Росс. «Кривая плавления неона при высоком давлении». Журнал химической физики, том 94, номер 5, 1991 г., стр. 3835–3838. DOI: 10.1063 / 1.460683

Yaws, Карл Л. Справочник по физическим свойствам углеводородов и химикатов Yaws. Хьюстон, Техас: издательство Gulf Publishing Company, 2005.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *