Основные сведения и параметры плазменной резки металлов
Довольно часто аппарат плазменной резки используется в домашнем хозяйстве как любой бытовой прибор.
Мы рекомендуем вам сразу узнать основные сведения плазменной резки металлов – это поможет сделать правильный подбор плазмореза.
При покупке следует учитывать необходимые технические и другие характеристики. Такой подход позволит избежать дальнейших ошибок в эксплуатации.
Обратите внимание, что в документации аппарата указывается толщина детали из чёрного металла, с которой может работать плазморез. Поэтому если вы собираетесь работать с цветным металлом, сразу рассчитайте необходимую мощность прибора. Сделать это несложно, если знать, что резка 1-миллиметровой стали или чёрного металла требует силы тока в 4 ампера, а цветных – 6 ампер.
Для определения нужной мощности плазмореза просто умножьте эти данные на цифру толщины заготовки. Но чтобы не прогадать с силой тока, купите аппарат с запасом мощности, потому что в документах указывается максимальная характеристика, а вам нужна номинальная.
Если сравнивать с другими видами резаков по металлу, плазморез способен справиться с основной задачей при работе с любым теплопроводящим материалом. Благодаря этой особенности его можно применять на разных участках.
Плазморезы ручного типа широко применяются в быту, а также в частных производственных мастерских. Они компактны и лёгки. Правда, линия реза получается не идеально ровной. Избежать этого помогает спецприспособление, одеваемое на сопло. С таким упором вы можете вести резак ровнее, не думая о том, что надо соблюдать расстояние между деталью и соплом.
Имейте в виду, что ручные аппараты для резки металла различаются по маркировке:
- если это CUT, то такой плазморез пригоден только для резки;
- если TIG или ММА, то это приборы универсального типа, применяющие аргонодуговую и дуговую сварки. Но они ещё и варят.
В производстве применяются стационарные устройства с ЧПУ. На них изготавливают детали или обрабатывают заготовки по заданной программе.
Следует отметить, что работа плазмореза построена на высокотемпературном плазменном потоке – до 30 тысяч градусов! Образуется такая плазмообразующая среда благодаря подаче на электродугу воздуха либо инертного газа.
Первый вариант экономически выгоден при обработке:
- 120-миллиметрового алюминия и сплавов;
- 80-миллиметровых медных деталей;
- 50-миллиметровой легированной и углеродной стали;
- 90-миллиметрового чугуна.
В зависимости от толщины заготовок по каждому виду металла применяются сжатый воздух, азот, аргон, кислород, а также различные комбинации смесей. Так, например, детали из нержавейки 20-миллиметровой толщины обрабатываются с помощью азота, а 20- и 50 мм – смеси из азота и водорода. Кроме этого можете использовать сжатый воздух.
Понять сам процесс плазменной резки вам поможет определение плазмы как 4-го состояния вещества наряду с твёрдым, жидким и газообразным. При его образовании любой газ ионизируется и преобразуется в электропроводящее вещество.
Плазменная дуга образуется за счёт пропускания газа сквозь суженное сопло плазмотрона под значительным давлением. Подключение к данному потоку тока образует электродугу. При этом плазма мгновенно приходит в рабочее состояние за счёт достижения высокой температуры, достаточной для мгновенного старта.
Среди всего прочего к основным параметрам плазменной резки относится факельный зазор. Как раз расстояния между соплом и поверхностью детали зависит, будет ли:
- дуга плотной и устойчивой;
- кромки перпендикулярными.
В эксплуатационной документации оптимальным диапазоном указывается 1,5-10 мм. Если вы будете постоянно соблюдать такой зазор, то сможете получить кромку без дефектов. Его уменьшение приведёт к преждевременному выгоранию электрода и дорогого сопла. Поэтому лучше выбирайте такую модель, которая имеет специальный контролирующий датчик он поможет нам поддерживать заданные параметры зазора.
Качество работы зависит от скорости, с которой вы будете перемещать резак. Идеально, когда при этом угол отставания между прорезанием верхней и нижней кромок составляет не более 5 градусов.
И напоследок, мы рекомендуем вам запомнить, что:
- невысокая скорость приводит к дополнительному расходу плазмообразующего газа и появлению удаляемого шлака;
- завышение скорости к волнообразной линии реза и появлению плохо отделяемого шлакового образования.
Плазма — Википедия
Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизированный газ, одно из четырёх классических агрегатных состояний вещества.
Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.
Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.
Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Древние философы полагали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Можно сказать, что это положение с учетом некоторых допущений укладывается в современное представление о четырёх агрегатных состояниях вещества, причём плазме соответствует огонь. Свойства плазмы изучает физика плазмы.
По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвёздное пространство). К примеру, планета Юпитер сосредоточила в себе практически всё вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твёрдом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определённый электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжёлых заряженных ионов (см. пылевая плазма).
Определение плазмы[править | править код]
Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.[4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:[5][6][7]
- Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
- rD3N≫1,{\displaystyle r_{D}^{3}N\gg 1,}
- где N{\displaystyle N} — концентрация заряженных частиц.
- Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
- rDL≪1.{\displaystyle {r_{D} \over L}\ll 1.}
- Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
- τωpl≫1.{\displaystyle \tau \omega _{pl}\gg 1.}
Классификация[править | править код]
Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.
Температура[править | править код]
Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние[9].
В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.
В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).
Степень и кратность ионизации[править | править код]
Для того, чтобы газ перешёл в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni /(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z>ni, где <Z> — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100 %), такую плазму называют полностью ионизованной.
Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные плёнки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).
Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвёртым агрегатным состоянием вещества». Примером может служить Солнце.
Концентрация частиц в плазме[править | править код]
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является концентрация заряженных частиц. Словосочетание концентрация плазмы обычно обозначает концентрация электронов, то есть число свободных электронов в единице объёма. В квазинейтральной плазме концентрация ионов связана с ней посредством среднего зарядового числа ионов ⟨Z⟩{\displaystyle \langle Z\rangle }: ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}. Следующей важной величиной является концентрация нейтральных атомов n0{\displaystyle n_{0}}. В горячей плазме n0{\displaystyle n_{0}} мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром концентрации становится rs{\displaystyle r_{s}}, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.
Квазинейтральность[править | править код]
Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.
Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Плазму часто называют четвёртым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:
Свойство | Газ | Плазма |
---|---|---|
Электрическая проводимость | Крайне мала К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр.[10] | Очень высока
|
Число сортов частиц | Один Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации, а друг с другом взаимодействуют только на сравнительно небольших расстояниях. | Два, или три, или более Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей. |
Распределение по скоростям | Максвелловское Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей, согласно которому очень малая часть молекул газа имеют относительно большие скорости движения. | Может быть немаксвелловское Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны. |
Тип взаимодействий | Бинарные Как правило двухчастичные столкновения, трёхчастичные крайне редки. | Коллективные Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные. |
Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.
Флюидная (жидкостная) модель[править | править код]
Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.
Кинетическое описание[править | править код]
Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.
Particle-In-Cell (частица в ячейке)[править | править код]
Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.
Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ=mi/mp{\displaystyle \mu =m_{i}/m_{p}}; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.
Частоты[править | править код]
- Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
- ωce=eB/mec=1.76×107Brad/s.{\displaystyle \omega _{ce}=eB/m_{e}c=1.76\times 10^{7}B{\mbox{rad/s}}.}
- Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
- ωci=eB/mic=9.58×103Zμ−1Brad/s.{\displaystyle \omega _{ci}=eB/m_{i}c=9.58\times 10^{3}Z\mu ^{-1}B{\mbox{rad/s}}.}
- Плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещёнными относительно ионов:
- ωpe=(4πnee2/me)1/2=5.64×104ne1/2rad/s.{\displaystyle \omega _{pe}=(4\pi n_{e}e^{2}/m_{e})^{1/2}=5.64\times 10^{4}n_{e}^{1/2}{\mbox{rad/s}}.}
- Ионная плазменная частота:
- ωpi=(4πniZ2e2/mi)1/2=1.32×103Zμ−1/2ni1/2rad/s.{\displaystyle \omega _{pi}=(4\pi n_{i}Z^{2}e^{2}/m_{i})^{1/2}=1.32\times 10^{3}Z\mu ^{-1/2}n_{i}^{1/2}{\mbox{rad/s}}.}
- Частота столкновений электронов
- νe=2.91×10−6nelnΛTe−3/2s−1.{\displaystyle \nu _{e}=2.91\times 10^{-6}n_{e}\,\ln \Lambda \,T_{e}^{-3/2}{\mbox{s}}^{-1}.}
- Частота столкновений ионов
- νi=4.80×10−8Z4μ−1/2nilnΛTi−3/2s−1.{\displaystyle \nu _{i}=4.80\times 10^{-8}Z^{4}\mu ^{-1/2}n_{i}\,\ln \Lambda \,T_{i}^{-3/2}{\mbox{s}}^{-1}.}
Длины[править | править код]
- Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
- λ−=ℏ/(mekTe)1/2=2.76×10−8Te−1/2cm.{\displaystyle \lambda \!\!\!\!-=\hbar /(m_{e}kT_{e})^{1/2}=2.76\times 10^{-8}\,T_{e}^{-1/2}\,{\mbox{cm}}.}
- Минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
- e2/kT=1.44×10−7T−1cm.{\displaystyle e^{2}/kT=1.44\times 10^{-7}\,T^{-1}\,{\mbox{cm}}.}
- Гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
- re=vTe/ωce=2.38Te1/2B−1cm.{\displaystyle r_{e}=v_{Te}/\omega _{ce}=2.38\,T_{e}^{1/2}B^{-1}\,{\mbox{cm}}.}
- Гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
- ri=vTi/ωci=1.02×102μ1/2Z−1Ti1/2B−1cm.{\displaystyle r_{i}=v_{Ti}/\omega _{ci}=1.02\times 10^{2}\,\mu ^{1/2}Z^{-1}T_{i}^{1/2}B^{-1}\,{\mbox{cm}}.}
- Размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
- c/ωpe=5.31×105ne−1/2cm.{\displaystyle c/\omega _{pe}=5.31\times 10^{5}\,n_{e}^{-1/2}\,{\mbox{cm}}.}
- Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
- λD=(kT/4πne2)1/2=7.43×102T1/2n−1/2cm.{\displaystyle \lambda _{D}=(kT/4\pi ne^{2})^{1/2}=7.43\times 10^{2}\,T^{1/2}n^{-1/2}\,{\mbox{cm}}.}
Скорости[править | править код]
- Тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
- vTe=(kTe/me)1/2=4.19×107Te1/2cm/s.{\displaystyle v_{Te}=(kT_{e}/m_{e})^{1/2}=4.19\times 10^{7}\,T_{e}^{1/2}\,{\mbox{cm/s}}.}
- vTi=(kTi/mi)1/2=9.79×105μ−1/2Ti1/2cm/s.{\displaystyle v_{Ti}=(kT_{i}/m_{i})^{1/2}=9.79\times 10^{5}\,\mu ^{-1/2}T_{i}^{1/2}\,{\mbox{cm/s}}.}
- Скорость ионного звука, скорость продольных ионно-звуковых волн:
- cs=(γZkTe/mi)1/2=9.79×105(γZTe/μ)1/2cm/s.{\displaystyle c_{s}=(\gamma ZkT_{e}/m_{i})^{1/2}=9.79\times 10^{5}\,(\gamma ZT_{e}/\mu )^{1/2}\,{\mbox{cm/s}}.}
- vA=B/(4πnimi)1/2=2.18×1011μ−1/2ni−1/2Bcm/s.{\displaystyle v_{A}=B/(4\pi n_{i}m_{i})^{1/2}=2.18\times 10^{11}\,\mu ^{-1/2}n_{i}^{-1/2}B\,{\mbox{cm/s}}.}
Безразмерные величины[править | править код]
- Квадратный корень из отношения масс электрона и протона:
- (me/mp)1/2=2.33×10−2=1/42.9.{\displaystyle (m_{e}/m_{p})^{1/2}=2.33\times 10^{-2}=1/42.9.}
- Число частиц в сфере Дебая:
- (4π/3)nλD3=1.72×109T3/2n−1/2.{\displaystyle (4\pi /3)n\lambda _{D}^{3}=1.72\times 10^{9}\,T^{3/2}n^{-1/2}.}
- Отношение Альфвеновской скорости к скорости света
- vA/c=7.28μ−1/2ni−1/2B.{\displaystyle v_{A}/c=7.28\,\mu ^{-1/2}n_{i}^{-1/2}B.}
- Отношение плазменной и ларморовской частот для электрона
- ωpe/ωce=3.21×10−3ne1/2B−1.{\displaystyle \omega _{pe}/\omega _{ce}=3.21\times 10^{-3}\,n_{e}^{1/2}B^{-1}.}
- Отношение плазменной и ларморовской частот для иона
- ωpi/ωci=0.137μ1/2ni1/2B−1.{\displaystyle \omega _{pi}/\omega _{ci}=0.137\,\mu ^{1/2}n_{i}^{1/2}B^{-1}.}
- Отношение тепловой и магнитной энергий
- β=8πnkT/B2=4.03×10−11nTB−2.{\displaystyle \beta =8\pi nkT/B^{2}=4.03\times 10^{-11}\,nTB^{-2}.}
- Отношение магнитной энергии к энергии покоя ионов
- B2/8πnimic2=26.5μ−1ni−1B2.{\displaystyle B^{2}/8\pi n_{i}m_{i}c^{2}=26.5\,\mu ^{-1}n_{i}^{-1}B^{2}.}
Прочее[править | править код]
- Бомовский коэффициент диффузии
- DB=(ckT/16eB)=5.4×102TB−1cm2/s.{\displaystyle D_{B}=(ckT/16eB)=5.4\times 10^{2}\,TB^{-1}\,{\mbox{cm}}^{2}/{\mbox{s}}.}
- Поперечное сопротивление Спитцера
- η⊥=1.15×10−14ZlnΛT−3/2s=1.03×10−2ZlnΛT−3/2Ωcm.{\displaystyle \eta _{\perp }=1.15\times 10^{-14}\,Z\,\ln \Lambda \,T^{-3/2}\,{\mbox{s}}=1.03\times 10^{-2}\,Z\,\ln \Lambda \,T^{-3/2}\,\Omega \,{\mbox{cm}}.}
- ↑ Langmuir I. Oscillations in ionized gases / I. Langmuir // Proceedings of the National Academy of Sc
Режимы плазменной резки
Главная страница » Технология плазменной резки » Режимы плазменной резки
На возможности плазменной резки, напрямую воздействует правильно выбранный режим. Он определяет не только производительность выполняемых процессов, но и качество реза. Влияет на угол скоса кромок и образование грата.
Выбор правильного режима
Правильная организация подачи тока играет важную роль. Она предопределяется техническими характеристиками плазмотрона и используемым режимом резки. Неправильно выбранный режим резки может привезти к двойному дугообразованию (когда дуга горит с электрода на сопло, а с сопла на металл). Это разрушает сопло и электрод, также деформирует края вырезаемой заготовки. Чтобы правильно выбрать режим, следует знать некоторые показатели. В первую очередь, его выбор зависит от:
- типа разрезаемого материала;
- диаметра сопла;
- толщины разрезаемого листа;
- средней ширины реза;
- силы тока;
- напряжения;
- скорости резки.
Для ориентирования в выборе режима можно воспользоваться данными из нижеприведенной таблицы. В ней представлены средние параметры, на примере воздушно-плазменной резки.
Тип разрезаемого металла | Толщина(мм) | Диаметр сопла(мм) | Сила тока А | Скорость резки(м/мин) | Средняя ширина реза(мм) |
Сталь | 1-10 | 0,9-1,1 | 40-60 | 2-0,2 | 1-1,3 |
10-15 | 1,4 | 60-90 | 1,8-0,3 | 1,5-1,8 | |
15-20 | 2,7 | 90- 140 | 1,5-0,5 | 1,8-2,2 | |
20-25 | 1,9 | 100-150 | 1,2-0,15 | 2-2,5 | |
Алюминий | 1-15 | 1,4 | 60-90 | 1,5-0,5 | 1,5-2 |
10-30 | 1,7 | 90-140 | 1,2-0,5 | 2-2,5 | |
20-40 | 1,9 | 100-150 | 0,5-0,1 | 2,5 | |
Медь | 10 | 3 | 300 | 3 | 3 |
20 | 1,5 | 3,5 | |||
30 | 0,7 | 4 | |||
40 | 0,5 | 4,5 | |||
50 | 0,3 | 5,5 | |||
60 | 3,5 | 400 | 0,4 | 6,5 |
С учетом поставленных задач для плазменной резки, показатели могут быть изменены. После того, как необходимые параметры выставлены, следует проверить работу аппарата. Для этого надо сделать пробный надрез с завышенной силой тока. Так можно отрегулировать скорость раскроя и силу тока.
Эффективная резка различных металлов
При плазменной резке также следует обращать внимание на выбор газов, при помощи которых осуществляется обработка разных видов металла. Для резки алюминия и сплавов используется азот. А если ширина листа более 20 мм, то азотно-водородные смеси, свыше 100 мм аргоно-водородные. Для алюминия воздушно-плазменная резка применяется в качестве разделительной, для производства заготовок. Которые в дальнейшем подвергнутся механической обработке.
Резка меди может проводиться в: азоте, аргоно-водородной смеси и сжатом воздухе. Для обработки меди требуется мощная дуга, так как она обладает теплопроводностью. Что касаемо плазменной резки высоколегированных сталей, то для толщины 60 мм эффективно применять ручную в азоте и воздушно-плазменную. Свыше 60 мм – азотно-кислородные смеси. Нержавеющие стали обрабатываются: до 20 мм – в азоте, свыше – в азотно-водородной смеси. Возможно применение сжатого воздуха. Его используют и для резки углеродистых сталей.
Расход электродов для плазменной резки. Характеристики, нормы — Мои статьи — Каталог статей
Помимо затрат на закупку металла, важнейшей частью эксплуатационных расходов на плазменную резку является покупка расходных материалов. Именно необходимость частой замены расходников и составляет львиную долю себестоимости данного вида технологических операций. Соответственно, добившись оптимального использования расходных материалов, можно заметно снизить издержки на плазменную резку.
Нормы расхода материалов
Не существует единого показателя «нормального» расхода электродов и других материалов для плазморежущих станков. Каждый такой станок имеет собственные характеристики (рабочий ток, диаметр сопла, интенсивность расхода газа, скорость резки и т.д.), поэтому для каждой модели норма расхода будет своя собственная.
Однако и это лишь начало. На скорость сгорания расходников также влияет множество других факторов, связанных с характеристиками обрабатываемого материала — вид и марка разрезаемого металла, его толщина, ширина разреза и т.д.
На норму расхода влияет также и мощность режущей дуги. По умолчанию она всегда принимается равной 40 кВт, однако при использовании аргоно-водородной смеси и дополнительной стабилизации режущей дуги при помощи сжатого воздуха, ее мощность принимается равной 80 кВт.
Когда менять электрод?
Следует отметить, что на практике мало кто вообще обращает внимание на формулы с нормами расхода электродов. На большинстве предприятий для их замены существуют собственные достаточно грубые нормативы. В частности электроды меняют по умолчанию либо после определенного количества пробивок, либо после каждой смены, если интенсивность работы станка позволяет данному расходнику прожить целую смену.
Соль в том, что в большинстве случаев замена электродов происходит слишком рано, когда данный расходник еще мог бы поработать. Иными словами предприятие банально теряет деньги, выбрасывая в мусор то, что способно приносить прибыль еще некоторое время.
На самом же деле поводом заменить электрод должен служить вполне конкретный признак, о котором будет сказано чуть ниже. Но чтобы понимать, что это за признак, следует в двух словах сказать о конструкции электрода и его рабочих задачах.
Электрод плазморежущего станка имеет две составные части — корпус и вставку. Именно вставка обеспечивает формирование электрической дуги, поджигающей газ, из которого в итоге получается плазма. Корпус в свою очередь отвечает за отвод избыточной тепловой энергии, неизбежно генерируемой при создании плазмы.
Материалом для изготовления корпуса служит медь, так как она обладает высокой теплопроводностью. Однако этот металл характеризуется низким электрическим сопротивлением, что создает опасность «соскакивания» электрической дуги на сам корпус. Разумеется, допускать такое нельзя, поскольку тогда сгорят другие элементы плазмотрона, а может и сам плазмотрон.
Так вот, чтобы максимально эффективно использовать электрод, не допустив при этом «соскакивания» дуги на корпус, менять этот расходник следует ровно в тот момент, когда на вставке появится ямка по размерам равная диаметру самой вставки.
Причины ускоренного расхода электродов
Своевременная (а не ранняя) замена электрода — это лишь первый шаг на пути к разумной экономии при осуществлении плазменной резки. Второе, на что следует обратить внимание — фактический расход электрода на погонный метр реза или час работы станка. Необходимо сравнить данный показатель с установленной нормой для данной модели источника. Если показатели не совпадают, придется искать и устранять причину повышенного расхода.
Самих причин существует не так уж много:
1. Посторонние примеси в воздухе. Для нормальной работы станка ему нужен атмосферный воздух, чтобы формировать правильную газовую смесь. Если же в воздух, который нагнетается компрессором, загрязнен фракциями масла и воды, качественную газовую смесь не получить. Проверяя воздушный фильтр с отделителем воды в начале каждой смены, можно избежать данной проблемы.
2. Низкое качество рабочего газа. Крайне важно строго соблюдать рекомендации производителя станка во всем, что касается выбора расходников, особенно в вопросах плазмообразующего газа. Абсолютно недопустимо использовать неподходящий газ, или смесь, загрязненную кислородом либо атмосферным воздухом.
3. Низкое давление газа. Если отклониться от рекомендуемых показателей давления, низкий поток газа вызовет не только ускоренное выгорание электрода, но также будут обильно появляться искры, а рез получится низкого качества.
4. Нехватка охлаждающей жидкости. Для охлаждения в станках используется деионизированная вода либо ее смесь с чистым этиленгликолем. Обычно станки оснащены предохранителем, который выключает аппарат при сбое в работе системы охлаждения. Но если предохранителя нет, либо он сломался, то при перегреве плазмотрона срок службы электрода заметно сокращается.
5. Грязь в газопроводе. Пыль и влага, которых в избытке в заводском цеху, легко оседают внутри газопроводов, нарушая тем самым формирование нормальной плазменной массы. По этой причине даже после недолгого простоя газопроводы нужно чистить. А прямое попадание влаги на электрод и вовсе способно вывести его из строя.
6. Неисправность завихрителя. С данной деталью могут приключиться самые различные неприятности. Обычно он либо лопается, либо частично оплавляется. Нередки также случаи банального засорения грязью. Так или иначе, но любые изменения в количестве воздуха, расходуемого в процессе работы станка, равно как и нарушения в направлении воздушного потока, неизбежно приводят к очень скорому сгоранию электрода.
В заключение нам остается лишь порекомендовать вам, как можно чаще заглядывать в руководство по эксплуатации вашего плазморежущего станка. Там вы найдете решение многих проблем, которые могут возникнуть в процессе использования данного аппарата.
Сезонность работ по плазменной резке
Услуги плазменной резки — достаточно перспективный вид малого бизнеса, который найдет своего клиента и в крупном мегаполисе, и в небольшом райцентре. Однако многих предпринимателей, начинающих деятельность в данной сфере, интересует, насколько велик фактор сезонности в данном бизнесе и следует ли ожидать просадок спроса в определенное время года.
…Читать подробнее
Сравнение лазерной и плазменной резки. Преимущества и недостатки
Часто, при покупке оборудования для резки металла, мы встаем перед выбором, какой вид резки лучше, плазменный или лазерный? У каждого есть свои преимущества и недостатки и для того, чтобы вы сделали правильный выбор, в этой статье мы подробно разберем каждый.
…Читать подробнее
Важные навыки оператора по плазменной резке
Все более востребованной сегодня становится плазменная резка металла, которая стала современной альтернативой обычной газовой. Производительность работы существенно возрастает, а рабочий процесс упрощается. Однако для правильного и эффективного использования плазмотрона специалист должен обладать всеми необходимыми навыками.
…Читать подробнее
Преимущества и недостатки плазменной резки
Преимущества и недостатки плазменной резки по сравнению с другими методами резки металлов?
Резка металлов — проблема, с которой приходится сталкиваться и в цеху, и на стройплощадке, и в мастерской. Простые решения вроде автогена устроят многих, но не всех. Если объем работ по резке металла большой, а требования к качеству реза высоки, то стоит подумать об использовании аппарата плазменной резки (плазмореза).
Первые установки и аппараты плазменной резки появились более полувека назад, но широкому кругу мастеров они стали доступны только в последние два десятилетия.
ПРЕИМУЩЕСТВА:
Какие преимущества в работе дает аппарат или станок плазменной резки металла в работе?
1. При правильном подборе мощности он позволит в 4-10 раз (по сравнению кислородной горелкой) повысить производительность. По этому параметру плазморез уступит лишь промышленной лазерной установке, зато намного выиграет в себестоимости. Экономически целесообразно использовать плазменную резку на толщинах металла до 50-60мм. Кислородная же резка более предпочтительна при раскрое стальных листов толщиной свыше 50 мм.
2. УНИВЕРСАЛЬНОСТЬ. Плазменная резка позволяет обрабатывать и сталь, и чугун, и алюминий, и медь, и титан, и любой другой металл, причем работы выполняются с использованием одного и того же оборудования: достаточно выбрать оптимальный режим по мощности и выставить необходимое давление воздуха. Важно отметить и то, что качество подготовки поверхности материала особого значения не имеет: ржавчина, краска или грязь помехой не станут.
3. ТОЧНОСТЬ и ВЫСОКОЕ КАЧЕСТВО РЕЗА. Современные плазморезы обеспечивают минимальную ширину реза и «чистые» без наплывов, перекаливания и грата кромки, почти не требующие дополнительной обработки. Немаловажно и то, что зона нагрева обрабатываемого материала намного меньше, чем при использовании автогена, а поскольку термическое воздействие на участке реза минимально, то и тепловые деформации вырезанных деталей незначительны, даже если они небольшой толщины.
4. БЕЗОПАСНОСТЬ, обусловленная отсутствием взрывоопасных газовых баллонов.
5. НИЗКИЙ уровень загрязнения окружающей среды. Касательно экономической стороны вопроса, то совершенно очевидно, что при больших объемах работ плазменная резка выгоднее той же кислородной или, например, механической. В остальных же случаях нужно учитывать не материалы, а трудоемкость использования. Например, сделать фигурный рез в толстом листе недолго и автогеном, но может потребоваться продолжительная шлифовка краев.
НЕДОСТАТКИ:
Ну а теперь поговорим о недостатках. Первый из них — относительно скромная максимально допустимая толщина реза, которая даже у мощных аппаратов редко превышает 80-100 мм. В случае же с кислородной резкой максимально допустимая толщина реза для стали и чугуна может достигать 500 мм.
Следующий недостаток метода — довольно жесткие требования к отклонению от перпендикулярности реза. В зависимости от толщины детали угол отклонения не должен превышать 10-50°. При выходе за эти пределы наблюдается значительное расширение реза и, как одно из следствий, быстрый износ расходных материалов.
Наконец, сложность рабочего оборудования делает практически невозможным одновременное использование двух резаков, подключенных к одному аппарату, что с успехом применяется при резке штучным электродом.
Процесс плазменной резки (принцип работы плазмореза)
Для начала определим, что же есть плазма. В данном случае это нагретый электрической дугой до высокой температуры (порядка 25000 °C) воздух в ионизированном состоянии. Последнее означает, что он утрачивает свойства диэлектрика и приобретает способность проводить электрический ток. В процессе резки плазменный поток становится проводником для тока, расплавляющего металл, и сам же его выдувает.
Для начала определим, что же есть плазма. В данном случае это нагретый электрической дугой до высокой температуры (порядка 25000 °C) воздух в ионизированном состоянии. Последнее означает, что он утрачивает свойства диэлектрика и приобретает способность проводить электрический ток. В процессе резки плазменный поток становится проводником для тока, расплавляющего металл, и сам же его выдувает.
Рабочий орган аппарата называется плазмотрон. Под этим словом подразумевается плазменный резак с кабель-шланговым пакетом, подключаемый к аппарату. Иногда плазмотроном ошибочно называют аппарат плазменной резки целиком. Разновидностей плазмотронов достаточно много. Но наиболее распространены и более всего пригодны для резки металлов плазмотроны постоянного тока прямой полярности. По виду дуги различают плазмотроны прямого и косвенного действия. В первом случае разрезаемое изделие включено в электрическую цепь, и дуговой разряд возникает между металлической деталью и электродом плазматрона. Именно такие плазмотроны применяются в устройствах, предназначенных для обработки металлов, включая и аппараты воздушно-плазменной резки. Плазматроны косвенного действия применяются, в основном, для обработки неэлектропроводных материалов (у них электрическая дуга возникает в самом резаке).
Сопло — важнейший элемент, определяющий возможности плазмотрона. При плазменной резке применяются сопла небольшого (до 3 мм) диаметра и большой (9-12 мм) длины. От размера диаметра сопла плазмотрона зависит количество воздуха, которое способен пропустить плазмотрон, этот параметр необходимо учитывать при подборе компрессора. Это также влияет на ширину реза и охлаждение плазмотрона. Что касается длины, то чем она больше, тем выше качество реза. Однако чрезмерное увеличение этого параметра ведет к снижению надежности работы и быстрому разрушению сопла. Считается, что длина канала должна быть больше диаметра в 1,5-1,8 раза.
Электродом (катодом) внутри плазматрона служит металлический стержень — другие конструкции в недорогих аппаратах не применяются. То же можно сказать и о материале: разновидностей изобилие, но массово используется лишь электрод из гафния.
Теперь пару слов о рабочих газах, используемых при плазменной резке. Их можно разделить на плазмообразующие и защитные (транспортирующие). Для резки в обычных плазменных системах бытового назначения (сила тока дуги — ниже 200 А, максимальная толщина реза — до 50 мм) сжатый воздух применяют и как плазмообразующий, и как защитный газ. При этом достигается удовлетворительное качество реза, хотя и наблюдается некоторое азотирование и окисление обрабатываемой поверхности. В более сложных системах применяются иные газовые смеси, содержащие кислород, азот, водород, гелий, аргон.
Выбор аппарата плазменной резки
Даже самые доступные аппараты плазменной резки сложны и довольно дороги в сравнении, например, со сварочными, поэтому к выбору недешевой техники нужно подходить осознанно. Прежде всего необходимо определиться, как обычно, с целями и задачами.
Первый параметр, без учета которого бесполезно учитывать остальные, — это максимально допустимая толщина реза. Данная величина обычно приводится для углеродистой стали, реже — для нержавеющей, еще реже — для алюминия и очень редко — для меди. Поскольку на максимально допустимую глубину реза сильно влияет теплопроводность материала, то для сплавов на основе меди этот показатель примерно на 30% ниже, чем для сплавов на основе железа. И если в технических характеристиках аппарата заявлена максимально допустимая толщина реза стали в 10 мм, это будет означать, что максимальная глубина реза медных сплавов составит 7 мм. Таким образом, вторым по важности показателем станет тип сплава, с которым предстоит работать.
Следующий фактор — планируемый режим эксплуатации плазмореза. Как и в случае со сварочными аппаратами, он определяется параметром «ПВ» (продолжительность включения), который определяет отношение времени работы аппарата ко времени, необходимому для его охлаждения. В некоторых промышленных аппаратах плазменной резки ПВ может приближаться к 100%, для ручной же резки металла вполне достаточно 40-50%.
На практике это выглядит следующим образом. Если ПВ плазмореза составляет 50%, то в течение часа эксплуатации он должен 30 минут работать и 30 минут остывать. При ручной резке приходится время от времени перемещаться или перемещать изделие и периодически выключать кнопку поджига на плазмотроне. Это время как раз и идет в зачет охлаждения, и поэтому работа кажется непрерывной. Такая формула дает сбой при работе с толстыми листами металла или при автоматической плазменной резке с ЧПУ, когда время реза может быть значительным. Дело в том, что параметр ПВ определяется для 10-минутного цикла, поэтому в начале смены, пока аппарат холодный, он будет отработать без перерыва и 15 минут даже при низком ПВ, а вот при цикличной работе может отключиться и после 5 минут непрерывной резки.
Когда ключевые параметры, определяющие принципиальную возможность использования аппарата, определены, следует уделить внимание такому аспекту, как удобство использования. Тут первостепенное значение приобретает мобильность, точнее, радиус действия, на который можно свободно удаляться от малоподвижного аппарата, «прикованного» к своему месту компрессором. Так, длина кабель-шлангового пакета плазмотрона может варьироваться до десятков метров. Кстати, важна не только длина: некоторые производители заявляют ее на уровне 30 м и более, но «забывают» сообщить о том, имеются ли евроразъемы на плазмотроне и источнике. Если таких разъемов нет, то укоротить или удлинить плазмотрон вряд ли получится, и всякий раз разматывать его для того, чтобы резать небольшие по размерам листы, будет утомительно. Главный же минус длинного плазматрона не в этом, а в том (и производители об этом, как правило, тоже умалчивают!), что при его длине свыше 20 метров наблюдается потеря мощности, причем довольно ощутимая. Поэтому разумнее всего выбирать плазмотрон небольшой (6-12 м) длины, оснащенный евроразъемом, чтобы при необходимости была возможность удлинить конструкцию, используя быстронаращиванмый удлинитель плазмотрона. Это будет, кстати, удобно и при работе на открытом воздухе в неблагоприятных условиях, когда выносить из помещения аппарат нежелательно. Однако, как уже отмечалось, использовать удлинитель нужно лишь в случае действительной необходимости.
Очень важный вопрос — проблема расходных материалов: электродов (катодов) и сопел. Важно, чтобы они были доступны и недороги. Как правило, износ этих деталей происходит или одновременно или с небольшим «разбросом» (один катод на два сопла). Одного сопла в среднем хватает на целую рабочую смену (при работе с деталями, толщиной до 10 мм).
Момент, не относящийся напрямую к плазматрону, но требующий обязательного учета, — это система подачи воздуха. Если отбросить самые маломощные модели, оборудованные встроенным компрессором и воспринимаемые многими профессионалами как малополезные игрушки, то следует помнить, что для работы плазматрону нужен мощный компрессор. И не он один: при достаточно большом расходе воздуха (100-250 л/мин при 0,4-0,6 МПа) жесткие требования предъявляются и к его качеству, а значит не обойтись без вспомогательных устройств — таких как влаго- и маслоотделители, фильтры. Поступать в аппарат воздух должен равномерно, без пульсаций, поскольку они серьезно влияют на стойкость сопел и электродов, на стабильность поджига дуги и, как следствие, на качество реза, а значит, нужен объемный ресивер.
ПРЕДЛОЖЕНИЕ ДЛЯ ЛЮБИТЕЛЯ
Среди современных устройств плазменной резки можно выделить отдельную и наиболее интересную для рядового потребителя категорию — переносные инверторные источники плазмы, применяемые при ручной резке. Их основные достоинства: низкое энергопотребление, компактность, небольшой вес, эргономичный дизайн. Недостатки: ограничение по максимальной мощности (не более 70 А), и, как следствие, по максимальной толщине реза (до 15-20 мм). Также придется мириться с невысокой продолжительностью включения и чувствительностью к перепадам напряжения. Оборудование, выходящие за рамки этого типа, как правило, рассчитано на промышленное применение.
Большинство аппаратов с плазмотронами воздушного охлаждения пригодны для резки металлических деталей толщиной до 50 мм. Для резки деталей толщиной свыше 50 мм или для увеличения производительности применяют более сложные и дорогие аппараты с плазмотронами водяного охлаждения
Максимальная глубина реза определяет толщину материала, которая может быть разрезана данным аппаратом в принципе. Скорость работы при этом в расчет не берется. Чтобы комфортно и быстро работать с деталями толщиной 3-4 мм, следует выбирать аппарат, максимально допустимая глубина реза которого — 8-10 мм.
Унифицированные разъемы для плазмотронов производятся в соответствии с европейскими стандартами и состоят из розеток (со стороны источника плазмы) и вилок (со стороны резака). Преимущество подобной системы заключается в возможности при необходимости удлинить или укоротить конструкцию без ощутимой потери мощности, прочности и электрического контакта.
Износ сопла заключается в нарушении его геометрической формы, что негативно влияет на качество реза. Износ же катода приводит к выработке стержня (допустимая глубина выработки — не более 1,5 мм), в результате чего может произойти пригорание катода к головке плазмотрона и его (плазмотрона) перегрев.
При минусовых температурах необходимо соблюдать определенные меры предосторожности. Поскольку в ресивере и шлангах образуется конденсат, который в случае замерзания может вывести из строя оборудование, то после окончания работ шланги обязательно продувают, а сам компрессор хранят в помещении с плюсовой температурой.
Плазменная резка
Главная страница » Плазменная резка
Узнайте здесь о резке металла плазмой, оборудовании, процессе, принципах работы, услугах, ценах
Наряду с обычными сварочными аппаратами для резки металлов применяются аппараты и установки для плазменной резки металла, которые обеспечивают высокое качество шва.
При работе с металлами применяется не только сварка, но и плазменная резка металла. Толщина металла при пламенной резке может достигать 200 мм. Что собой представляет этот процесс?
Между соплом аппарата, при помощи которого проводится воздушно плазменная резка, и электродом разжигается дуга. Газ под высоким давлением подаётся в сопло, здесь он под воздействием электрической дуги превращается в плазменную струю, температура которой может достигать 30 000 0C.
Розжиг плазменной дуги производится импульсами высокой частоты, проходящими между изделием и форсункой. В процессе работы форсунки необходимо охлаждать, что производится при помощи воздушного охлаждения (поток газа), или жидкости, подаваемой в область форсунок.
Для резки чёрных и цветных металлов используются активные (кислород) и неактивные газы (аргон, азот, водяной пар).
Преимущества плазменной резки по сравнению с обычной состоят в следующем:
- 1. Возможность обработки любых металлов — чёрных, цветных, сплавов и т. д.
- 2. Скорость резки металлов выше скорости газопламенной резки.
- 3. Локальное прогревание изделия, что исключает её деформацию.
- 4. Высокое качество разрезаемой поверхности.
- 5. Безопасность работ.
- 6. Возможность проведения фигурной резки и отсутствие ограничений по геометрии шва.
Для плазменной резки может применяться оборудование: станки металлообрабатывающие плазменной резки с программно-числовым управлением. Такой станок плазменной резки с чпу может работать с высоколегированными сталями, с незакалёнными и закалёнными инструментальными сталями, жестью, оцинковкой; цветными металлами. Станки с ЧПУ обеспечивают 100% повторяемость заготовок.
Производители такого оборудования следят за тем, чтобы цена таких станков соотносилась с качеством проводимых работ.
Особенности металлорежущих станков, в которых применяется плазменный резак:
- 1. Применение серводвигателей позволяет резать заготовки с большой точностью и высокой повторяемостью.
- 2. Удобный стол для раскроя заготовки, система числового программного управления и электронная система автоматического поддержания заданного расстояния между изделием и плазменным резаком.
- 3. При применении воздушно-плазменной установки в металлообрабатывающих станках стоимость расходного материала значительно снижается.
- 4. Любой аппарат плазменной резки металла проводит резку металлических листов и заготовок без повреждения поверхности, на которой находится изделие, а также сохранение чистой кромки отрезанной поверхности.
Стандартная установка плазменной резки должна быть оборудована системами защиты от перегрузок, защиты от поражения оператора током, регулировкой давления струи без прерывания электрической дуги, защитой от перепадов напряжения.
Где заказать услуги плазменной резки
Плазменный раскрой металла, как следует из названия, заключается в разрезании материала потоком плазмы. Если вы не знаете, что это такое и откуда она берётся, то рекомендуем прочитать статью «Плазменная резка. Принцип работы». На нашем сайте освещаются многие вопросы, касающиеся плазменной резки металла. Если вас интересует эта тема, то вы обратились по адресу. Тематика сайта, на котором вы находитесь Мы отвечаем на вопросы… Далее »
Раскрой металла выполняется на специализированном оборудовании, которое делится на несколько групп: газовая; дисковая; пилой и т. д. Современная промышленность очень активно использует даже «луч смерти» — лазер. И, совершенно особняком от них, родилась и успешно применяется новейшая технология – плазменная. Очень эффективная и, при соблюдении технологии, безопасная. Плазменная резка листового металла в настоящее время стала… Далее »
Отвечая на ваши, уважаемые посетители сайта, вопросы мы обсудили широкий круг производственных проблем плазменной обработки металла. Подробности вы можете узнать во вводной части статьи «Портальная плазменная резка» . Но, кроме производственного раскроя металлов, существует художественная резка металла плазмой. Вот об этом мы сегодня и поговорим Что такое плазменная резка металла В двух словах, это — вид обработки… Далее »
Вы находитесь на сайте, где отвечают на вопросы посетителей, касающиеся плазменной резке металла. Если вы не знаете, что это за вид обработки, то начните знакомство со статьи «Плазменная резка. Принцип работы». Сайт построен таким образом, что каждая статья на нём является ответом на какой-либо вопрос посетителя. В разделе «Комментарии», который имеется после каждой статьи, можно узнать и сообщить новости, задать вопросы, пообщаться… Далее »
На нашем сайте знакомство с оборудованием, предназначенным для плазменной резки труб, началось со статьи «Станки плазменной резки труб». Про станки, оснащённые ЧПУ, мы рассказывали в статье «Установки плазменной резки с ЧПУ». Сегодня поговорим о плазменной резке труб на станках с ЧПУ. ЧПУ на плазменных труборезах Кому приходилось резать трубы углошлифовальной машиной (УШМ) в ходе подготовки её для дальнейшей сварки, знают,… Далее »
Технологии, разработанные и применённые в выпускаемой компанией Hypertherm продукции, обеспечивают более стабильное качество резки. Это качество поддерживается в течение длительного времени при низких эксплуатационных затратах. Технологии плазменной резки Hypertherm технология Hy Definition вентилируемого сопла выравнивает и фокусирует плазменную дугу. Она также обеспечивает мощную и точную резку, которая позволяет улучшить качество и… Далее »
Преимущества воздушно-дуговой плазменной резки по сравнению с кислородно-газовой: скорость резки; скорость прожига; качество резки; универсальность метода; безопасность; низкие затраты на резку; простота операций; повышенная надёжность. Скорость резки В настоящее время толщина около 90% разрезаемого металла составляет 25 мм и менее. В этом диапазоне технология плазменной резки имеет неоспоримое преимущество, обеспечивая… Далее »
Возможности плазменной резки широки. Она способна работать с разными металлами. Не является исключением и нержавейка. Среди существующих металлов нержавеющая сталь пользуется особой популярностью. В связи с этим, и услуги ее термической резки востребованы. Самым экономичным способом раскроя нержавеющей стали считается плазменная резка. Резка нержавеющей стали Технология плазменной резки подразумевает использование двух… Далее »
Плазменная резка – это самый современный способ раскроя не только металла, но и некоторых других, не проводящих электрический ток материалов. Осуществляется она при помощи плазмореза высокотемпературной ионизированной струёй воздуха – плазмой. Качество работы плазмореза (скорость реза и техническое состояние кромок) зависит от многих факторов. Большое значение играют комплектующие для плазменной резки: детали и расходные… Далее »
Для эффективности проведения плазменной резки, требуется сопутствующее качественное оборудование. Одним из таких, является стол для проведения термической обработки металлов. Конструктивное устройство стола Стол для плазменной резки предназначается для раскроя металла путем термической обработки. Конструктивно выполняется так, что подходит для ручной и автоматической плазменной резки. Рабочая поверхность стола состоит… Далее »
Страница 1 из 212»Газы для плазменной резки металла
В процессе резки металла с помощью оборудования для плазменной резки используются различные газы:
1. Плазмообразующий газ (PG): Плазмообразующий газ — это все газы или смеси газов, которые можно использовать для создания потока плазмы и осуществления процесса резки. Принято различать две основные фазы плазменной дуги: фазу зажигания и фазу резки. Соответственно, плазмообразующий газ можно подразделять на зажигающий и режущий. Эти фазы различаются как по типу газа, так и по его объемному расходу. |
|
Пусковой газ (ZG):
Этот газ служит для зажигания плазменной дуги. Он должен облегчать процесс зажигания и может положительно влиять на срок службы катода. |
|
Режущий газ (SG): В результате ионизации режущий газ становится электропроводным и может образовывать основную электрическую дугу между катодом и обрабатываемой деталью. Сначала материал расплавляется энергией электрической дуги, а затем выдувается режущим газом, истекающим с большой скоростью. Для достижения оптимальных результатов резки режущие газы выбираются с учетом типа и толщины материала. (пример: пусковой газ — воздух, режущий газ — O2 или пусковой газ — Ar, режущий газ — Ar/h3, Ar/h3/N2, Ar/N2) |
|
Маркировочный газ (MG):
Термин «маркировочный газ» используется для обозначения газа при плазменной маркировке. |
|
2. Вихревой газ (WG):
Этот газ обволакивает струю плазмы. Он способствует повышению качества резки, так как дополнительно сужает и охлаждает электрическую дугу, а также защищает быстроизнашивающиеся детали при прожигании первоначального отверстия и при резке в воде. В качестве этого газа также можно использовать различные газы. |
|
Барьерный газ (SpG):
Барьерный газ — это вихревой газ, подаваемый с уменьшенным расходом во время перерывов плазменной резки в воде. Он предотвращает проникновение воды в головку горелки при погруженной горелке. |
|
3. Контрольный газ (KG): Этот газ направляется на головку горелки и контролирует наличие защитного колпачка на головке. Благодаря этому установку можно включить только при правильно смонтированной горелке. |
|
Идентифицирующий газ (IG): Этот газ представляет собой контрольный газ, возвращающийся от горелки. Он служит для распознания (идентификации) различных сменных головок горелки. |
Газы имеют решающее значение для качества резки материалов. В зависимости от типа разрезаемого металла применяются различные газы или сочетания газов. Каждый газ имеет специфические свойства , используемые для резки материалов различной вязкости. Ниже дан обзор типовых газов, применяемых при плазменной резке для различных типов металла.
Газы для резки различных типов металла
Материал | Плазмообразующий газ | Вихревой газ | |
---|---|---|---|
Конструкционная сталь | O2 | O2, воздух, N2 |
|
Высококачественная сталь | N2/h3 | N2 |
|
Ar/h3 | N2 |
|
|
Алюминий | воздух | N2 |
|
N2/h3 | N2 |
|
|
Ar/h3 | N2 |
|
Свойства газов для плазменной резки
Газы оказывают большое влияние на качество резания. Чтобы процесс плазменной резки был экономичен и при этом достигались оптимальные результаты, должны использоваться плазмообразующие технологические газы, соответствующие обрабатываемому материалу. При этом решающее значение имеют их физические свойства. Необходимо учитывать их энергию ионизации и диссоциации, теплопроводность, атомную массу и химическую реакционную способность.
Аргон
Аргон является инертным газом. Это означает, при процессе резки он не реагирует с материалом. Благодаря его большой атомной массе (самой большой среди всех газов для плазменной резки), он эффективно выталкивает расплав из прорези. Это происходит благодаря тому, что может достигаться большая кинетическая энергия струи плазмы. С учетом малого потенциала ионизации он превосходно пригоден для зажигания струи плазмы. Однако аргон не может использоваться в качестве единственного газа для резки, так как он имеет низкую теплопроводность и малую теплоемкость.
Водород
В отличие от аргона, водород имеет очень хорошую теплопроводность. Кроме того, водород диссоциирует при высоких температурах. Это означает, что от электрической дуги отбирается большое количество энергии (а также при ионизации) и, тем самым, происходит более хорошее охлаждение граничных слоев. Благодаря этому эффекту электрическая дуга сжимается, т. е. достигается более высокая плотность энергии. В результате процессов рекомбинации отобранная энергия снова высвобождается в виде тепла в расплаве. Однако водород тоже не пригоден в качестве единственного газа, так как, в отличие от аргона, он имеет очень малую атомную массу и поэтому не может достигаться достаточная кинетическая энергия для выталкивания расплава.
Азот
Азот — это химически пассивный газ, реагирующий с деталью лишь при высоких температурах. При низких температурах он инертен. В отношении свойств (теплопроводности, энтальпии и атомной массы) азот можно поместить между аргоном и водородом. Поэтому его можно использовать в качестве единственного газа в диапазоне тонких высоколегированных сталей — как в качестве режущего, так и в качестве вихревого газа.
Кислород
По теплопроводности и атомной массе кислород ближе к азоту. Кислород имеет хорошее сродство к железу, т. е., в результате процесса окисления освобождается тепло, которые можно использовать для увеличения скорости резки. Несмотря на эту реакцию, процесс считается резкой расплавлением, а не выжиганием, так как реакция с материалом происходит слишком медленно и перед этим материал уже успевает расплавиться. Кислород применяется, в основном, в качестве режущего и вторичного газа для нелегированных и низколегированных сталей.
Воздух
Воздух состоит, в основном, из азота (ок. 70%) и кислорода (ок. 21%). Поэтому могут одновременно использоваться полезные свойства обоих газов. Воздух является одним из самых дешевых газов и применяется для резки нелегированных, низколегированных и высоколегированных сталей.
Смеси газов
Вышеперечисленные газы часто применяются и в виде смесей. Так, например, хорошие тепловые свойства водорода можно сочетать с большой атомной массой аргона. Высоколегированные стали и алюминий можно резать начиная с толщины 5 мм. При этом доля водорода выбирается в зависимости от толщины материала. Чем толще материал, тем выше должна быть доля водорода. Можно использовать максимум 35 объемных %. Разумеется, возможны и другие сочетания, например, смеси азота с водородом или смеси аргона, азота и водорода.
Чистота газа
Для наилучших и воспроизводимых результатов резки рекомендуется следующая чистота газов:
Плазмообразующий газ | ||
Сжатый воздух: | Максимальный размер частиц 0,1 мкм, класс 1, в соответствии с ISO 8573, максимальное остаточное содержание масла 0,1 мг/м³, класс 2, в соответствии с ISO 8573, максимальная температура точки росы в условиях давления +3°C по классу 4 в соответствии с ISO 8573 | |
Кислород: | 99,5 % | |
Азот: | 99,999 % | |
Водород: | 99,95 % | |
Аргон: | 99,996 % | |
Вихревые газы | ||
Кислород: | 99,5 % | |
Азот: | 99,996% (лучше 99,999%) | |
Защитный газ из смеси водорода и азота | (смесь N2 95%, h3 5%) |
Вы можете получить любые консультации по выбору оборудования для плазменной резки у наших специалистов.