Шов сварной тавровый: ГОСТ, технология сварки, катет шва

Содержание

Обозначение сварных швов на чертежах — Справочная информация

Условные изображения и обозначения швов сварных соединений ГОСТ 2,312-72

СВАРКА МЕТАЛЛА.Термины и определения основных понятий ГОСТ 2601-84

http://docs.cntd.ru/…ment/1200004380

 Выдержка из ГОСТа —

 

   

57. Сварное соединение

Неразъемное соединение, выполненное сваркой

D. Schweissverbindung

Е . Welded joint

F. Joint soudé; Assemblage soudé; Soudure

58. Стыковое соединение

Сварное соединение двух элементов, примыкающих друг к другу торцовыми поверхностями

D. Stumpfstoss; Stumptschweissverbindung

Е . Butt joint

F. Assemblage en bout; Joint en bout

59. Угловое соединение

Сварное соединение двух элементов, расположенных под углом и сваренных в месте примыкания их краев

D. Eckstoss; Eckverbindung

Е . Corner joint; Fillet weld

F. Joint d’angle; Soudure en corniche

60.

Нахлесточное соединение

Сварное соединение, в котором сваренные элементы расположены параллельно и частично перекрывают друг друга

D. Überlappstoss; Überlappverbindung

Е . Lap joint; Overlap joint

F. Assemblge à recouvrement; Joint a recouvrement

61. Тавровое соединение

Сварное соединение, в котором торец одного элемента примыкает под углом и приварен к боковой поверхности другого элемента

Ндп. Соединение впритык

D. T-Stoss; T-Verbindung

E. Tee joint; T-joint

F. Assemblage en T; Joint en T

62. Торцовое соединение

Сварное соединение, в котором боковые поверхности сваренных элементов примыкают друг к другу

Ндп. Боковое соединение

D. Stirnstoss

E. Edge joint; Flange joint

F. Joint des plaques juxtaposées; Joint à bords relevées

63. Сварная конструкция

Металлическая конструкция, изготовленная сваркой отдельных деталей

D. Schweisskonstruktion

Е . Welded structure

F. Construction soudée

64. Сварной узел

Часть конструкции, в которой сварены примыкающие друг к другу элементы

D. Schweissteil; Schweisseinheit

Е . Welded assembly

F. Ensemble soudé; Assemblage soude.

65. Сварной шов

Участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла или в результате пластической деформации при сварке давлением или сочетания кристаллизации и деформации

Шов

D. Schweissnaht

E. Weld

F. Soudure

66. Стыковой шов

Сварной шов стыкового соединения

D. Stumpfnaht; Slossnalit

Е . Butt weld

F. Soudure en bout; Soudure bout à bout

67. Угловой шов

Сварной шов углового, нахлесточного или таврового соединений

D. Kehlnaht

Е . Fillet weld

F. Soudure d’angle

68. Точечный шов

Сварной шов, в котором связь между сваренными частями осуществляется сварными точками

D. Punktschweissung

Е . Spot weld

F. Soudure par points

69. Сварная точка

Элемент точечного шва, представляющий собой в плане круг или эллипс

D. Schwelsspunkt

Е . Weld spot; Weld point

F. Point de soudure; Point soudé

70. Ядро точки

Зона сварной точки, металл которой подвергался расплавлению

D. Schweisslinse

Е . Weld nugget; Spot weld nugget

F. Noyau de soudure; Lentille de soudure

71. Непрерывный шов

Сварной шов без промежутков по длине

Ндп. Сплошной шов

D. Durchlauiende Naht

Е . Continuous weld; Uninterrupted weld

F. Soudure continue

72. Прерывистый шов

Сварной шов с промежутками по длине

D. Unterbrochene Naht

Е . Interrupted weld; Intermittent weld

F. Soudure discontinue; Soudure intermittente

73. Цепной прерывистый шов

Двухсторонний прерывистый шов, у которого промежутки расположены по обеим сторонам стенки один против другого

Цепной шов

D. Symmetrisch unterbrochene Naht

Е . Chain intermittent weld; Chain intermittent fillet weld

F. Soudure discontinue symmétrique

74. Шахматный прерывистый шов

Двухсторонний прерывистый шов, у которого промежутки на одной стороне стенки расположены против сваренных участков шва с другой ее стороны

Шахматный шов

D. Unterbrochene versetzte Naht

Е . Staggered intermittent weld

F. Soudure discontinue alternée

75. Многослойный шов

D. Mehrlagennaht

Е . Multi-run weld; Multi-pass weld

F. Soudure en plusieurs passes;

Soudure à couches multiples;

Soudure à plusieurs couches

76. Подварочный шов

Меньшая часть двухстороннего шва, выполняемая предварительно для предотвращения прожогов при последующей сварке или накладываемая в последнюю очередь в корень шва

D. Gegennaht

Е . Sealing bead

F. Cordon support; Cordon à l’envers

77. Прихватка

Короткий сварной шов для фиксации взаимного расположения подлежащих сварке деталей

D. Heftnaht

Е . Tack weld

F. Soudure de pointage

78. Монтажный шов

Сварной шов, выполняемый при монтаже конструкции

D. Baustellenschweissnaht; Montageschweissungs

Е . Site weld

F. Soudure de montage

79. Валик

Металл сварного шва, наплавленный или переплавленный за один проход

D. Schweissraupe

Е . Weld bead; Bead

F . Cordon

80. Слой сварного шва

Часть металла сварного шва, которая состоит из одного или нескольких валиков, располагающихся на одном уровне поперечного сечения шва

Слой

D. Lage

Е . Layer

F . Couche

81. Корень шва

Часть сварного шва, наиболее удаленная от его лицевой поверхности

D. Nahtwurzcl; Wurzel

Е . Weld root

F. Racine de la soudure

82. Выпуклость сварного шва

Выпуклость шва, определяемая расстоянием между плоскостью, проходящей через видимые линии границы сварного шва с основным металлом и поверхностью сварного шва, измеренным в месте наибольшей выпуклости

Выпуклость шва

Ндп.  Усиление шва

D. Nahtüberhöhung

Е . Weld reiniorcemcnt; Weld convexity

F.Surépaisseur de la soudure

83. Вогнутость углового шва

Вогнутость, определяемая расстоянием между плоскостью, проходящей через видимые линии границы углового шва с основным металлом и поверхностью шва, измеренным в месте наибольшей вогнутости

Вогнутость шва

Ндп. Ослабление шва

D. Konkavität der Kehlnaht

Е . Fillet weld concavity

F. Concavité de la soudure

84. Толщина углового шва

Наибольшее расстояние от поверхности углового шва до точки максимального проплавления основного металла

D. Nahthöhe; Kehlnahtdicke

Е . Fillet weld throat thickness

F. Epaisseur à clin; Epaisseur d’une soudure en angle

85. Расчетная высота углового шва

Длина перпендикуляра, опущенного из точки максимального проплавления в месте сопряжения свариваемых частей на гипотенузу наибольшего вписанного во внешнюю часть углового шва прямоугольного треугольника

Расчетная высота шва

D.

Rechnerische Nahtdicke

Е . Desipn throat thickness

F. Epaisseur nominale de la soudure

86. Катет углового шва

Кратчайшее расстояние от поверхности одной из свариваемых частей до границы углового шва на поверхности второй свариваемой части

Катет шва

D . Schenkell ä ng у; Nahtschenkel

Е . Fillet weld leg

F. Côte de la soudure d’angle

87. Ширина сварного шва

Расстояние между видимыми линиями сплавления на лицевой стороне сварного шва при сварке плавлением

Ширина шва

D . Nahtbreite

Е . Weld width

F. Largeur de la soudure

88. Коэффициент формы сварного шва

Коэффициент, выражаемый отношением ширины стыкового или углового шва к его толщине

Коэффициент формы шва

D. Nahtiormfaktor

Е . Weld shape factor; Weld geometry factor

F. Facteur géométrique de la soudure

89. Механическая неоднородность сварного соединения

Различие механических свойств отдельных участков сварного соединения

Механическая неоднородность

D . Mechanische Inhoniogenit ä t

Е . Mechanical heterogeneity

F. Hétérogénéité mécanique

90. Мягкая прослойка сварного соединения

Участок сварного соединения, в котором металл имеет пониженные показатели твердости и (или) прочности по сравнению с металлом соседних участков

Мягкая прослойка

D. Weiche Zwischenlage

Е . Soft interlayer

F. Couche intermédière douce

91. Твердая прослойка сварного соединения

Участок сварного соединения, в котором металл имеет повышенные показатели твердости и (или) прочности по сравнению с металлом соседних участков

Твердая прослойка

D. Harte Zwischenlage

Е . Hard interlayer

F. Couche intermédière dure

92. Разупрочненный участок сварного соединения

Участок зоны термического влияния, в котором произошло снижение прочности основного металла

Разупрочненный участок

D. Infestigte Zone

E. Weakened zone

F. Zone affaibliu

93. Контактное упрочнение мягкой прослойки

Повышение сопротивления деформированию мягкой прослойки сварного соединения за счет сдерживания ее деформаций соседними более прочными его частями

Контактное упрочнение

D. Lokale Verfestigung

Е . Local strengthening

F. Raffermissement locale

ТЕХНОЛОГИЯ СВАРКИ

94. Направление сварки

Направление движения источника тепла вдоль продольной оси сварного соединения

D. Schweissrichtung

Е . Direction of welding

F. Sens de la soudure; Direction de la soudure

95. Обратноступенчатая сварка

Сварка, при которой сварной шов выполняется следующими один за другим участками в направлении, обратном общему приращению длины шва

D. Pilgerschrittschweissen

Е . Back-step sequence; Back-step welding; Step-back welding

F. Soudage à pas de pélerin

96. Сварка блоками

Обратноступенчатая сварка, при которой многослойный шов выполняют отдельными участками с полным заполнением каждого из них

D. Absatzweises Mehrlagenschweissen

Е . Block sequence

F. Soudage par blocs successifs

97. Сварка каскадом

Сварка, при которой каждый последующий участок многослойного шва перекрывает весь предыдущий участок или его часть

D. Kaskadenschweissung

Е . Cascade welding

F. Soudage en cascade

98. Проход при сварке

Однократное перемещение в одном направлении источника тепла при сварке и (или) наплавке

Проход

D. Schweissgang

Е . Pass; Run

F . Passe

99. Сварка напроход

Сварка, при которой направление сварки неизменно

D. Einrichtungschweissen

Е . One direction welding

F. Soudage dans un sens

100. Сварка вразброс

Сварка, при которой сварной шов выполняется участками, расположенными в разных местах по его длине

D. Absatzweises Schweissen

E. Skip welding

F. Soudage fractionné

101. Сварка сверху вниз

Сварка плавлением в вертикальном положении, при которой сварочная ванна перемещается сверху вниз

D. Fallnahlschweissen; Abwärtsschweissen

E. Downhill welding

F. Soudage descendant

102. Сварка снизу вверх

Сварка плавлением в вертикальном положении, при которой сварочная ванна перемещается снизу вверх

D. Aufwärtsschweissen

E. Uphill welding

F. Soudage montant; Soudage ascendant

103. Сварка на спуск

Сварка плавлением в наклонном положении, при которой сварочная ванна перемещается сверху вниз

D. Bergabschweissen

E. Downward welding (in the inclined position)

F. Soudage descendant (en position inclinée)

104. Сварка на подъем

Сварка плавлением в наклонном положении, при которой сварочная ванна перемещается снизу вверх

D. Schrägaufwärtsschweissen Bergautschweissen

E. Upward welding (in the inclined position)

F. Soudade montant (en position inclinée )

105. Сварка углом вперед

Дуговая сварка, при которой электрод наклонен под острым углом к направлению сварки

D. Schweissen mit stechendcr Brennerstellung

E. Welding with electrode inclined under acute angle

F. Soudage avec électrode inclinése en avant

106. Сварка углом назад

Дуговая сварка, при которой электрод наклонен под тупым углом к направлению сварки

D. Schweissen mit schleppen der Brennersteilung

E. Welding with electrode in dined under obtuse angle

F. Soudage avec électrode inclinése en arriére

107. Сварка па весу

Односторонняя спарка со сквозным проплавлением кромок без использования подкла

 

https://internet-law…gosts/gost/851/

Если вы скажете, что ГОСТ – ваше любимое слово, вам вряд ли кто-нибудь поверит. Но если вы занимаетесь сваркой и претендуете на статус профессионала высокого класса, вам придется это слово если не полюбить, то относиться со всем уважением.

Его нужно не просто уважать, а хорошо разбираться в положенных государственных стандартах, касающихся типологии сварочных способов. Почему? Потому что, если вы работаете с чем-то серьезнее, чем старый тазик на даче, вы обязательно столкнетесь с рабочими чертежами, где будут в огромных количествах значки, буквы и аббревиатуры.

Все верно, без технических спецификаций и стандартных обозначений – никуда. Современные сварочные технологии – это широкий набор самых разных методов со своими требованиями и техническими нюансами. Все они укладываются в несколько стандартов, по которым мы сейчас пройдемся и рассмотрим самым внимательным образом.

Обозначения сварки на чертежах по ГОСТу на первый взгляд выглядят устрашающе. Но если разобраться и запастись оригинальными версиями трех главных ГОСТов по видам и обозначениям сварочных технологий, обозначения станут понятными и информативными, а ваша работа точной и профессиональной.

Виды сварочных швов

Виды сварных соединений.

Сначала ЕСКД – это Единая Система Конструкторской Документации, если проще – комплекс всевозможных стандартов, согласно которым должны выполняться все современные технические чертежи, в том числе документация по сварочным работам.

В составе этой системы есть несколько стандартов, которые нас интересуют:

  1. ГОСТ 2.312-72 под названием «Условные изображения и обозначения швов сварных соединений».
  2. ГОСТ 5264-80 «Ручная дуговая сварка. Соединения сварные», в котором исчерпывающе описаны все возможные виды и обозначения сварных швов.
  3. ГОСТ 14771-76 “Швы сварных соединений, сварка в защитных газах”.

Чтобы разобраться с условными обозначениями сварочных способов в инженерных чертежах, нужно разобраться и с их видами. Предлагаем взглянуть на пример обозначения сварного шва на чертеже:

Выглядит громоздко и устрашающе. Но мы не будем нервничать и не спеша во всем разберемся. В это длинной аббревиатуре есть четкая логика, начнем двигаться по этапам. Разобьем этого монстра на девять составных частей:

Теперь эти же составные элементы по квадратам:

  • Квадрат 1 – вспомогательные знаки для обозначения: замкнутая линия или монтажное соединение.
  • Квадрат 2 – стандарт, по которому приведены условные обозначения.
  • Квадрат 3 – обозначение буквой и цифрой типа соединения с его конструктивными элементами.
  • Квадрат 4 – способ сварки согласно стандарту.
  • Квадрат 5 – тип и размеры конструктивных элементов по стандарту.
  • Квадрат 6 – характеристика в виде длины непрерывного участка.
  • Квадрат 7 – характеристика соединения, вспомогательный знак.
  • Квадрат 8 – вспомогательный знак для описания соединения или его элементов.

А теперь разберём в деталях каждый элемент нашей длинной аббревиатуры.

В квадрате №1 находится кружок – одна из дополнительных характеристик, символ кругового соединения. Альтернативным символом является флажок, обозначающий монтажный вариант вместо кругового.

Или под полкой, если это шов невидимый и расположен с обратной стороны, т.е. с изнанки. Что считать лицевой стороной, а что изнанкой? Лицевая сторона одностороннего соединения – всегда та, с которой производится работа, это просто. А вот в двустороннем варианте с несимметричными кромками лицевой стороной будет та, где идет сварка основного соединения. А если кромки симметричные лицевой и изнанкой могут любые стороны.

Специальная односторонняя стрелка показывает шовную линию. С этой стрелкой связана еще одна специфическая особенность сварочных чертежей. У этой стрелки с односторонним оперением есть симпатичная особенность под названием «полка». Полка играет роль настоящей полки – все условные обозначения могут располагаться на полке, если указано видимое соединение.

А вот самые популярные вспомогательные знаки, используемые в чертежах со сваркой:

Разбираем квадраты №2 и 3, виды швов по ГОСТам

Вариантами соединений вплотную занимаются два стандарта: уже знакомый нам ГОСТ 14771-76 и знаменитый ГОСТ 5264-80 о ручной дуговой сварке.

Чем знаменит второй стандарт: он был написан много лет назад – в 1981 году, и это было сделано так грамотно, что этот документ отлично работает до сих пор.

Пример чертежа сварных швов по ГОСТ.

Виды сварочных соединений следующие:

С – стыковой шов. Свариваемые металлические поверхности соединяются смежными торцами, находятся на одной поверхности или в одной плоскости. Это один из самых распространенных вариантов, так как механические параметры стыковых конструкций очень высокие. Вместе с тем этот способ достаточно сложный с технической точки зрения, он по силам опытным мастерам.

Т – тавровый шов. Поверхность одной металлической заготовки соединяется с торцом другой заготовки. Это самая жесткая конструкция из всех возможных, но за счет этого тавровый способ не любит и не предназначен для нагрузок с изгибаниями.

Н – нахлесточный шов. Свариваемые поверхности параллельно смещены и немного перекрывают друг друга. Способ довольно прочный. Но нагрузки переносит меньше, чем стыковые варианты.

У – угловой шов. Плавление идет по торцам заготовок, поверхности деталей держат под углом друг к другу.

О – особые типы. Если способа нет в ГОСТе, в чертеже обозначается особый тип сварки.

Оба стандарта в рамках ЕКСД хорошо перекликаются друг с другом и справедливо делят ответственность по видам:

Варианты изображения сварных швов на чертежах.

Соединения ручного дугового способа по ГОСТу 5264-80:

  • С1 – С40 стыковые
  • Т1 – Т9 тавровые
  • Н1 – Н2 нахлесточные
  • У1 – У10 угловые

Соединения сварки в защитных газах по ГОСТу 14771-76:

  • С1 – С27 стыковые
  • Т1 – Т10 тавровые
  • Н1 – Н4 нахлесточные
  • У1 – У10 угловые

В нашей аббревиатуре во втором квадрате указан ГОСТ 14771-76, а в третьем Т3 – тавровый способ без скоса кромок двусторонний, который как раз указан в этом стандарте.

 

Квадрат №4, способы сварки

Как обозначаются различные виды швов.

Также в стандартах присутствуют обозначения способов сварки, вот примеры самых распространенных из них:

  • A – автоматическая под флюсом без подушек и подкладок;
  • Aф – автоматическая под флюсом на подушке;
  • ИH – в инертном газе вольфрамовым электродом без присадки;
  • ИHп – способ в инертном газе с вольфрамовым электродом, но уже с присадкой;
  • ИП – способ в инертном газе с плавящимся электродом;
  • УП – то же самое, но в углекислом газе.

У нас в квадрате №4 указано обозначение сварки УП – это способ в углекислом газе с плавящимся электродом.

 

 

Квадрат №5, размеры шва

Это обязательные размеры шва. Удобнее всего обозначить длину катета, так как речь идет о тавровом варианте с перпендикулярным объединением под прямым углом. Катет определяют в зависимости от предела текучести.

Классификация сварных швов.

Надо заметить, что, если на чертеже указано соединение стандартных размеров, длина катета не указывается. В нашем чертежном обозначении катет равен 6-ти мм.

Дополнительно соединения бывают:

  • SS односторонними, для которых дуга или электрод передвигаются с одной стороны.
  • BS двусторонними, источник плавления передвигается с обеих сторон.

В дело вступает третий участник нашей чертежно-сварочной тусовки – ГОСТ 2.312-72, как раз посвященный изображениям и обозначениям.

Согласно этому стандарту швы подразделяются на:

  • Видимые, которые изображаются сплошной линией.
  • Невидимые, обозначаемые на чертежах пунктирной линией.

Теперь вернемся к нашему первоначальному шву. Нам по силам перевести это условное обозначение сварки в простой и понятный для человеческого уха текст:

Двусторонний тавровый шов методом ручной дуговой сварки в защитном углекислом газе с кромками без скосов, прерывистый с шахматным расположением, катет шва 6 мм, длина провариваемого участка 50 мм, шаг 100 мм, выпуклости шва снять после сварки.

 

 

 

Виды сварочных швов и техника их выполнения

Сварочный шов – неразъемное соединение, получаемое в результате сварки. Задача каждого сварщика – получение качественного сварного шва, которое гарантирует надежное соединение элементов. Для выполнения поставленной задачи нужно знать виды сварочных швов и техники их выполнения.

Основные виды сварочных швов

В первую очередь все швы делят по способу соединения деталей. По данному признаку выделяют следующие виды швов:

  • стыковые – получаемые между заготовками, примыкающими торцевыми поверхностями друг к другу,
  • нахлесточные – получаемые за счет наложения деталей друг на друга с частичным перекрытием,
  • тавровые – получаемые за счет приваривания торцевой поверхности одной заготовки к плоскости другой заготовки,
  • угловые – получаемые между заготовками, расположенными под углом друг к другу, шов получается в месте примыкания деталей,
  • торцевые – получаемые за счет сваривания торцов заготовок.

Стыковые швы

Стыковые швы являются самыми распространенным видом швов. Они используются при сварке металлических листов или труб различной толщины. Для сварки заготовки должны быть надежно зафиксированы. Между деталями остается небольшой зазор – около 1-2мм. В процессе сварки он заполняется расплавленным металлом заготовок или присадочным материалом.

Различают односторонние и двухсторонние швы. При односторонней сварке шов формируется только на одной стороне деталей. В случае двухстороннего шва сварка проводится на обеих сторонах заготовок.

В зависимости от толщины свариваемых деталей для стыковых швов по-разному готовят сварочные кромки. Соответственно этому различают формы:

  • с отбортовкой – для деталей толщиной до 4мм,
  • без скоса – для деталей толщиной до 8мм,
  • с V-образным скосом – для деталей толщиной от 3 до 60мм,
  • с X-образным скосом – для деталей толщиной от 8 до 120мм,
  • с K-образным скосом – для деталей толщиной от 8 до 100мм,
  • с криволинейным скосом – для деталей толщиной от 15 до 100мм.

Для тонких деталей возможна стыковая сварка без обработки кромок или с обработкой только на одной стороне.

Нахлесточные швы

При выполнении швов внахлест поверхности свариваемых деталей параллельны друг другу и частично друг друга перекрывают. Такие швы считаются самыми простыми и удобными для практики неопытных сварщиков.

Сварка швами внахлест всегда выполняется с двух сторон. Кромка каждой заготовки должна быть приварена к поверхности другой. Кромки подготавливаются без скоса. Угол наклона электрода при выполнении сварки должен быть в пределах 15o-45o. Если угол наклона будет выходить за эти пределы, то шов «заползет» на одну и сторон стыка.

Тавровые швы

Тавровые швы выполняются привариванием торца одной заготовки к боковой поверхности другой заготовки и в разрезе напоминают букву Т. Чаще всего сварка проводится под прямым углом, но возможно и другие варианты. В процессе сварки заполняется угол, образованный между деталями. Поэтому важно обеспечить глубокое проплавление деталей. Обычно это достигается за счет использования методов автоматической сварки.

Тавровые швы всегда двухсторонние. Форма подготовленных кромок возможна без скоса и с одним или двумя скосами одной кромки. Обрабатывается только привариваемый торец. Как правило, без скоса свариваются детали небольшой толщины – от 2 до 40мм. Для деталей толщиной от 8 до 100мм производится обработка кромки.

При сваривании тавровых швов важно знать их особенность: получаемые швы в итоге прочнее основного металла. Поэтому перед сварочными работами нужно проводить расчеты по получаемому сопротивлению материалов. Это необходимо, чтобы избежать неравномерной прочности деталей, разной стойкости к нагреву и охлаждению и другим скрытым дефектам.

Угловые швы

Угловые швы часто относят к подвиду тавровых швов. Но при этом угловые швы больше распространены, чем тавровые. По форме угловые швы напоминают букву Г. Угол между деталями может быть любой, но чаще всего – прямой. В работе необходимо выполнять правила геометрии шва: ширину, изогнутость, выпуклость шва и корень стыка.

При работе с угловыми швами главной проблемой является стекание металла по углу или с вертикальной поверхности на горизонтальную. Поэтому важно контролировать ровное ведение электрода, соблюдая углы наклона. Так для сварки листов разной толщины нужно держать электрод под углом 60o по отношению к более толстой заготовке. В результате основное тепло придется на более толстую деталь, а более тонкая не перегреется и не прогорит.

Угловые швы бывают односторонние и двухсторонние. Для двухстороннего шва сварка выполняется и на внутреннем, и на внешнем угле. Возможна сварка без обработки кромок или скосами. Скос может выполняться с одной или с двух сторон одной кромки. Вторая кромка при этом не обрабатывается.

Прочность угловых швов ниже прочности основного металла. Этот момент нужно учитывать при проектировании и проведении работ.

Торцевые швы

Торцевые швы используются для сваривания деталей разной формы, прилегающими друг к другу боковыми поверхностями. Угол прилегания может находиться в пределах от 0o до 30o. Такая сварка подходит для работы как с тонкими, так и с толстыми металлами, а также для сварки деталей разной толщины. Перед сваркой выполняется разделка кромок под односторонние скосы.

Торцевые швы отличаются высокой выносливостью к нагрузкам. Но при этом возможно попадание влаги или загрязнений между поверхностями деталей, что в будущем приведет к коррозии. Особенно это вероятно при наличии непроваров.

Другие критерии классификации сварных соединений

Кроме способа соединения деталей швы различаются по другим параметрам:

  • по форме шва различают выпуклые и плоские швы,
  • по протяженности бывают сплошные и прерывистые швы,
  • по положению свариваемых поверхностей в пространстве бывают горизонтальные, вертикальные, потолочные и нижние швы и другие классификации.

Перед началом работ важно определить вид сварочного шва по всем параметрам. Это поможет подобрать оптимальную технику выполнения сварки в каждом конкретном случае. Например, сварка углового соединения в вертикальном положении потребует более тщательной подготовки, чем сварка стыкового шва в нижнем положении.

Классификация сварных швов | Сварка металлов

Сварные швы подразделяют по типу сварного соединения и геометрическому очертанию сечения шва на стыковые и угловые (рис. 12). Стыковой шов характеризуется шириной е и усилением q, глубиной провара А, зазором b; угловой — катетом К.

Стыковые швы применяют для выполнения стыковых соединений. Угловые швы применяют в нахлесточных, тавровых и угловых соединениях. Размеры сечения швов установлены ГОСТ 5264-80.

Форма наружной поверхности

По форме наружной поверхности стыковые швы могут быть плоские или выпуклые. Угловые швы могут выполняться и вогнутыми. Сварные соединения с выпуклыми швами лучше работают на статическую нагрузку, чем соединения с плоскими или вогнутыми швами. Однако швы со слишком большой выпуклостью

Рис. 12. Геометрические параметры сварных швов

Рис. 14. Классификация сварных швов по протяженности (а), отношению к направлению действующих усилий (б), форме наружной поверхности (в)

Рис. 13. Основные положения сварки и их обозначения

вследствие большого количества наплавленного металла неэкономичны. Стыковые соединения с плоскими швами и угловые, тавровые и нахлесточные соединения с вогнутыми швами лучше работают на динамическую или знакопеременную нагрузку, чем соединения с выпуклыми швами. Это объясняется тем, что при плоских и вогнутых швах нет резких переходов от основного к наплавленному металлу, в которых имеется концентрация напряжении и от которых может начаться разрушение соединения. В соответствии со стандартом допускается выпуклость шва при нижней сварке до 2 мм и не более 3 мм для швов, выполненных в остальных положениях. Вогнутость допускается во всех случаях не более 3 мм.

По положению

Согласно ГОСТ 11969 — 79, швы подразделяют по положению: в лодочку — Л, нижние — Н, полугоризонтальные — Пг, горизонтальные — Г, полувер- тикальные — Пв, вертикальные — В, полупотолочные — Пп, потолочные — П (рис. 13).

Сварка нижних швов наиболее удобна, легко поддается механизации. Наиболее сложен и труден потолочный шов, выполнение которого требует специальной тренировки. Выполнение горизонтальных и вертикальных швов несколько труднее, чем нижних, но легче потолочных. Вертикальные, горизонтальные и потолочные швы в большинстве случаев применяют в строительстве и монтаже крупных сооружений и значительно реже — в заводских условиях, где с помощью приспособлений удается почти полностью сваривать конструкцию только в нижнем положении. Многие сварщики высокой квалификации выполняют вертикальные швы с лучшим качеством, чем нижние, гак как в этом случае из сварочной ванны легче удаляются загрязнения и металл шва становится чище, плотнее и прочнее.

По направлению действуюищих усилий

По отношению к направлению действующих усилий швы подразделяют на фланговые (продольные, боковые), оси которых параллельны направлению усилия; лобовые (поперечные), оси которых перпендикулярны направлению усилия; комбинированные и косые (рис. 14).

По протяженности

По протяженности различают швы сплошные и прерывистые. Прерывистый шов может быть ценным или шахматным. Цепной шов представляет собой двусторонний прерывистый шов таврового соединения, в котором участки сварки и промежутки расположены по обеим сторонам стенки один против другого (рис. 14, а). Шахматный шов — двусторонний прерывистый шов таврового соединения. В котором промежутки на одной стороне стенки расположены против сваренных участков шва на другой стороне. Расстояние от начала проваренного участка шва до начала следующего участка называется шагом шва.

По условию работы

По условиям работы швы подразделяются на рабочие, воспринимающие внешние нагрузки, и связующие (соединительные швы), предназначенные только для скрепления частей изделия. Связующие швы часто называют нерабочими швами.

Сварные тавровые соединения — Энциклопедия по машиностроению XXL

Использование рассмотренных уравнений для оценки долговечности конструкций с существенно неоднородными полями напряжений связано со значительными трудностями, так как эти поля изменяют характер деформирования материала у вершины трещины. Например, в сварных тавровых соединениях остаточные напряжения приводят к ситуации, когда при действии циклической эксплуатационной нагрузки с коэффициентом асимметрии, равным нулю, коэффициент асимметрии нагружения материала в вершине трещины по мере ее развития изменяется от 0,8 до О, при этом КИН может принимать значения от пороговых до близких к критическим [198]. Следовательно, оценка долговечности такого рода конструкций может выполняться только с помощью уравнений, учитывающих переменную вдоль траектории развития трещины асимметрию нагружения в широком диапазоне СРТ. Как видно из выполненного обзора, такие уравнения являются в основном эмпирическими, содержащими большое количество взаимосвязанных параметров, определяемых только экспериментально на основании статистической обработки данных, что приводит к значительной сложности в получении и использовании этих зависимостей. Поэтому  [c.192]
Пример 3. Сконструировать сварное тавровое соединение (впритык) из листового материала (сталь Ст 1) толщиной 6=10 мм для статической нагрузки f=100 кН с использованием различных способов сварки.  [c.35]

На рис. 28 даны кривые усталости неупрочненного и упрочненного сварного таврового соединения, выполненного электродом УОНИ 13/55. После сварки без термообработки усиление сварного шва не снято.  [c.45]

Порядок расчета сварного таврового соединения с угловыми швами (рис. 4.8, а) при нагружении постоянной силой F остается прежним поверхность разрушения швов (рис. 4.8, б) поворачивают на плоскость стыка, составляют расчетную схему и переносят силу F в центр тяжести швов (рис. 4.8, в, г, й) при этом возникают моменты Т -FR и М = FL. Таким образом, действует центральная сдвигающая сила F и моменты Т и М. Для улучшения центрирования свариваемых деталей и разгрузки шва от сдвигающей силы обычно делают центрирующий поясок (рис. 4.8, е). Повернутое опасное сечение может представлять собой круглое кольцо (рис. 4.8, в), прямоугольное кольцо (рис. 4.8, г) или два узких прямоугольника (рис. 4.8, [c.89]

Рис. 4.8. Сварное тавровое соединение с угловыми швами
В приближенном расчете угловых швов сварного таврового соединения определяют суммарное касательное напряжение х , возникающее в наиболее напряженной зоне С, и сравнивают его с допускаемым напряжением для шва [х ]. Очевидно, что состав-  [c.89]

СВАРНЫЕ ТАВРОВЫЕ СОЕДИНЕНИЯ  [c.101]

Соединения втавр. Предел выносливости сварных тавровых соединений существенно зависит от глубины провара, что подтверждается данными табл. 8.  [c.371]

Сопротивление усталости сварных тавровых соединений при растяжении-сжатии  [c.372]

РС-ПЭП широко применяется при контроле сварных тавровых соединений и стыковых соединений со снятым усилением шва. Кроме того, их используют для обнаружения расслоений в листах и дефектов пайки. Оптимальные параметры РС-ПЭП рассчитывают исходя из тех же условий, что и при расчете призматических ПЭП [6].  [c.121]

Сварное тавровое соединение характеризуется более значительными изменениями формы, по сравнению с тем, что отмечалось для сварного стыкового соединения. Поэтому в этом случае следует ожидать значительно большего искажения силового потока, а следовательно, и более высокой концентрации напряжений.  [c.43]


Кроме того, в сварных тавровых соединениях наблюдается также значительно большее разнообразие конструктивных форм, которое соответственно может характеризоваться и более широким диапазоном значений коэффициента концентрации напряжений. В качестве наиболее характерных примеров различных условий работы сварных тавровых соединений можно привести данные о распределении напряжений для двух наиболее типичных случаев конструктивного оформления этих соединений. На фиг. 17 представлены сварные тавровые соединения и приведены эпюры распределения нормальных напряжений в отдельных сечениях этих соединений, полученные экспериментально [11] при испытании плоских образцов подобной формы.  [c.43]

В последнем случае условия работы сварного таврового соединения приближаются к условиям работы сварного стыкового соединения и поэтому такое его конструктивное оформление рекомендуется применять в наиболее ответственных случаях, когда снижение концентрации напряжений имеет большое значение для обеспечения более надежной работы соединения.  [c.45]

Результаты вибрационных испытаний сварных тавровых соединений  [c.87]

Сварное тавровое соединение без разделки кромок. …….. 45,0 12,6 0,1 2,2 11,8 53  [c.87]

Сварное тавровое соединение с разделкой кромок. ……… 42,3 15,6 0,1 1,58 14,6 70  [c.87]

Рис. 2.7. Разделка кромок и сварное тавровое соединение двухслойной стали (Т5)-
Фиг. 12. Сварное тавровое соединение о — без провара б — с полным проваром.
Если шов не перерезает несущий элемент, то, очевидно, сварочная усадка шва не приводит к значительным возмущениям в ней. Например, в узлах, образованных тавровыми соединениями, собственные ОСН затухают на расстоянии от шва порядка толщины листа (см. рис. 5.9). Очевидно, что такая ситуация справедлива, когда напряжения в стенке тавра Оуу малы. Если сварной шов перерезает несущий элемент, но не образует замкнутого контура в плоскости свариваемого листа (например, стыковой кольцевой или пазовый шов в сосуде давления), то на расстоянии от шва порядка толщины листа поперечные и продольные напряжения выравниваются (см. рис. 5.8). При этом  [c.297]

Швы тавровых соединений можно выполнять без скоса (рис. 245, а) и со скосом (рис. 245, б, в) кромок. В последних двух случаях получаются соединения, аналогичные стыковому шву. Швы пробочные (рис. 246, а) и прорезные (рис. 246, б) обычно применяют для усиления сварных соединений.  [c.387]

В зависимости от расположения соединяемых элементов различают следующие основные виды сварных соединений стыковые (рис. 30.2, а), нахлесточные (рис. 30.2, б), угловые (рис. 30.2, в], тавровые (рис. 30.2, г). По расположению шва относительно направления приложения нагрузки Р различают лобовые (рис. 30.2, д), косые (рис. 30.2, е) и фланговые швы (рис. 30.2, ж). Стыковые, угловые и тавровые соединения выполняют как без скоса, так и со скосом (односторонним или двусторонним) кромок элементов.  [c.366]

Сварное соединение, в котором соединяемые элементы расположены в двух взаимно перпендикулярных плоскостях, называется тавровым (рис. 27.2, в). Тавровые соединения находят применение при изготовлении различных пространственных конструкций — балок, стоек, колонн, рам, резервуаров, каркасов  [c.455]

Рассмотренные выше установки предназначены для контроля протяженных или замкнутых швов. Ряд механизированных установок типа Прометей (разработки ЦНИИ Прометей ) предназначены для контроля коротких участков (300. .. 1000 мм) плоских стыковых сварных соединений толщиной 10. .. 130 мм и тавровых соединений толщиной 10. .. 40 мм. Их отличительная особенность состоит в конструкции механизма сканирования.  [c.390]


Полный контроль просвечиванием наиболее труден при сварных швах под углом и тавровых соединениях. Разнообразные схемы просвечивания этих соединений показаны на фиг. 48, д, е, ж, з, и, к. Просвечивание сложных и больших объектов (шов котла и толщина его стенок) производится так же, как просвечивание отливок и сварных соединений. При просвечивании на месте крупных объектов пользуются переносными рентгеновскими аппаратами (см. фиг. 38). Особое внимание должно быть уделено полной электри-  [c.164]

Большое место в судостроении, реакторостроении, транспортном машиностроении и других отраслях отводится сварным соединениям втавр. Помимо этой главы, усталостная прочность сварных тавровых соединений освещается также в гл. VIII при рассмотрении балочных и рамных элементов сварных металлоконструкций.  [c.101]

В сварных тавровых соединениях угловая деформация приводит к искривлению полок (рис. 151, б), к так называемой грибовидности. Угол смещения из плоскости продольных кромок полок при образовании грибовидности зависит от толщины полок и сечений присоединяющих их швов. В частности, приварка полки толщиной 10 мм угловыми швами с катетами 5 мм создает грибовидность р л 3°.  [c.223]

Несколько изменена и структура осиовйого обозначения. Высоту катета наплавленного металла в швах угловых и тавровых соединений, а также величину диаметра точки точечного шва и ширину роликовых швов, выполняемых контактгсои сваркой, указывают перед условным графическим знаком шва. После графического знака во всех случаях указывают толщину и другие параметры шва сварного соединения (длина шва, длина npoBapnBaeNroro участка, шаг и количество рядов). Для более наглядного выделения швов, выполняемых по периметру,  [c.100]

Траектории развития трещин в анализируемых сварных узлах представлены на рис. 5.8—5.11. Как следует из полученных данных, траектория трещины зависит от максимальных напряжений в цикле. Из рис. 5.8—5.11 видно, что во всех соединениях при небольших максмальных напряжениях в цикле (варианты № 1—3, 5—8, 11 —12) траектории трещин криволинейные, что обусловлено неоднородностью ОСН. С увеличением максимальных напряжений отклонение траекторий от направления, перпендикулярного поверхности листа, уменьшается. Наибольшее отклонение траектории трещины происходит в случае ненулевых напряжений в стенке таврового соединения, что моделирует, например, действие ребер жесткости на обшивку корпуса судна (варианты № 5, 7).  [c.318]

Сварные соединения— стыковые, тавровые и угловые большинство из них выполняют электротлаковой сваркой. Последнее обстоятельство определяет некоторые особенности конструкции и последовательность выполнения сборочно-сварочных операций. Угловые и тавровые соединения собирают с помощью косынок и диафрагм, стыковые — с номоп1,ью скоб. В местах, недоступных для  [c.348]

Контроль качества угловых швов тавровых соединений ведется на первом этапе со стороны стенки с целью выявления дефектов в корне шва. Контро п> производится пря-мьгм лучом. ПЭП перемещается вдоль шва на расстоянии L = 0,.5bjtga. Угол ввода луча обычно составляет а = 65°. Остальную часть сварного соединения прозвучивают однократно отраженным лучом (а — 50°]. ПЭП перемещают на расстоянии = 1,5bitga с отклонением (сканированием), равным катету Kj углового шва (рис. 6.33),  [c.187]

Снижение шероховатости поверхности, уменьшение макро- и микроконцентраторов имеет существенное значение и в области малоцикловой усталости. На рис. 130 приведены результаты циклических испытаний сварных тавровых образцов после обработки поверхности фрезой или после чеканки. Как видно, механическая обработка поверхности сварного соединения приближается по зффективности к чеканке.  [c.201]

Условное обозначение стандартного сварного шва, показанное на полке линии-выноски на рис. 16.37, а, расшифровывается так шов таврового соединения (буква Т), без скоса кромок (цифра 5), прерывистый с шахматным расположением элементов, выполненный ручной дуговой сваркой в защитных газах неплавящимся металлическим электродом по замкнутой линии (P 5 — обозначение способа сварки) кате сечения шва — 6 мм длина каждого проваренного участка — 50 мм, шаг — 100 мм 50Z100).  [c.420]


Техника выполнения сварных швов покрытым электродом

Техника выполнения сварных швов

Под техникой выполнения сварных швов понимают выбор режимов сварки и приемы манипулирования электродом.

Возбуждение электрической дуги

  Зажигание дуги является одной из основных операций сварочного процесса. Зажигание производится каждый раз до начала процесса сварки, повторное возбуждение дуги — в процессе сварки при ее обрыве.

Возбуждение сварочной дуги производится путем касания торцом электрода поверхности свариваемого изделия с быстрым последующим отводом торца электрода от поверхности изделия. При этом если зазор не слишком велик, происходит мгновенное появление тока и установление столба дуги. Прикосновение электрода к изделию должно быть кратковременным, так как иначе он приварится к изделию («прилипнет»).

Отрывать «прилипший» электрод следует резким поворачиванием его вправо и влево. Возбуждение дуги может производиться либо серией возвратно-поступательных движений с легким прикосновением к поверхности свариваемого металла и последующим отводом от поверхности изделия на 2-4 мм, либо путем царапающих движений торцом электрода по поверхности изделия, которые напоминают чирканье спички. Используйте наиболее удобный для вас способ.

После возбуждения дуги электрод должен выдерживаться некоторое время Точке начала наплавки, пока не сформируется сварной шов и не произойдет расплавление основного металла. Одновременно с расплавлением электрода необходимо равномерно подавать его в сварочную ванну, поддерживая тем самым оптимальную длину дуги. Показателями оптимальной длины дуги является резкий потрескивающий звук, ровный перенос капель металла через дуговой промежуток, малое разбрызгивание.

Длина дуги значительно влияет на качество сварки. Короткая дуга горит устойчиво и спокойно. Она. обеспечивает получение высококачественного шва, так как расплавленный металл электрода быстро проходит дуговой промежуток и меньше подвергается окислению и азотированию. Но слишком короткая дуга может вызывать «прилипание» электрода, дуга прерывается, нарушается процесс сварки. Длинная дуга горит неустойчиво с характерным шипением. Глубина проплавления недостаточная, расплавленный металл электрода разбрызгивается и больше окисляется и азотируется. Шов получается бесформенным, а металл шва содержит большое количество оксидов.

Если во время сварки по какой-либо причине сварочная дуга погаснет, то применяется специальная техника повторного зажигания дуги, обеспечивающая начало сварки с хорошим сплавлением и внешним видом. При повторном зажигании дуга должна возбуждаться на передней кромке кратера, затем через весь кратер переводиться на противоположную кромку, на только что наплавленный металл, и после этого снова вперед, в направлении проводившейся сварки. Если электрод при повторном зажигании дуги не буде достаточно далеко отведен назад, между участками начала и конца сварки останется углубление. Если же при повторном зажигании электрод отвести слишком далеко назад, то на поверхности сварного валика образуется высокий наплыв.

Положение и перемещение электрода при сварке. В процессе сварки электроду сообщаются следующие движения:

  • поступательное по оси электрода в сторону сварочной ванны, при этом для сохранения постоянства длины дуги скорость движения должна соответствовать скорости плавления электрода;
  • перемещение вдоль линии свариваемого шва, которое называют скоростью сварки; скорость этого движения устанавливается в зависимости от тока, диаметра электрода, скорости его плавления, вида шва и других факторов;
  • перемещение электрода поперек шва для получения шва шире, чем ниточный валик, так называемого уширенного валика.

При слишком большой скорости сварки наплавленные валики получаются узкими, с малой выпуклостью, с крупными чешуйками. При слишком медленной скорости перемещения электрода сварной валик имеет слишком большую выпуклость, шов неровный по форме, с наплывами по краям.

Положение электрода при сварке должно соответствовать рис. 2. Сварка осуществляется в направлении как слева направо, так и справа налево, от себя и на себя.


Рис. 2. Угол наклона электрода: а — в горизонтальной плоскости; б- в вертикальной плоскости.

В конце шва нельзя резко обрывать сварочную дугу и оставлять на поверхности металла кратер, являющийся концентратором напряжений и зоной с повышенным содержанием вредных примесей. Во избежание образования кратера необходимо прекратить перемещение электрода, т. е. произвести задержку на 1-2c, затем сместиться назад на 5 мм и быстрым движением вверх и назад оборвать дугу.

При неправильном завершении сварки в месте окончания шва, где погасла дуга, всегда образуется глубокий кратер. Кратер может служить показателем глубины проплавления, однако в конце сварки и наплавки данные кратеры должны заполняться и завариваться. Это производится путем возбуждения дуги в кратере, установления короткой дуги и выдержки в таком положении электрода, вплоть до заполнения расплавленным металлом кратера. Не рекомендуется заваривать кратер, несколько раз обрывая и возбуждая дугу, ввиду образования оксидных и шлаковых загрязнений металла.

Сварной шов, образованный в результате двух движений торца электрода (поступательного и вдоль линии шва), называют «ниточным». Его ширина при оптимальной скорости сварки составляет (0,8-1,5)dэ. Ниточным швом заполняют корень шва, сваривают тонкие заготовки, выполняют наплавочные работы и производят подварку подрезов.

Для наплавки валика без поперечных колебаний электрода необходимо возбудить дугу, растянуть ее и некоторое время удержать на одном месте для прогрева основного металла. Затем постепенно уменьшать длину дугового промежутка, пока не образуется сварочная ванна соответствующего размера. Она должна хорошо сплавиться с основным металлом до того момента, когда начнется поступательное движение электрода в направлении сварки. При этом рекомендуется выполнять небольшие перемещения электродом вдоль оси шва. Однако большинство сварщиков предпочитают перемещать электрод вдоль оси шва без каких-либо продольных колебаний, определяя скорость сварки по формированию валика.

При наплавке валиков на обратной полярности некоторые электроды имеют склонность к образованию подрезов. Для предотвращения проявления этой тенденции не следует перемещать сварочную дугу, располагающуюся за кратером, пока не будет наплавлено достаточное количество металла, чтобы сварной шов получил требуемый размер и подрез был заполнен наплавленным металлом.

Поперечные колебания электрода по определенной траектории, совершаемые с постоянной частотой и амплитудой и совмещенные с перемещением вдоль шва, позволяют получить сварной шов требуемой ширины. Поперечные колебательные движения конца электрода определяются формой разделки, размерами и положением шва, свойствами свариваемого материала, навыком сварщика. Широкие швы (1,5-5)d3 получают с помощью поперечных колебаний, изображенных на рис. 3.


Рис. 3. Основные способы поперечных движений торца электрода

Для выполнения уширенного валика необходимо установить электрод в положение, показанное на рис. 4. При этом следует иметь в виду, что поперечные колебания совершаются электрододержателем, положение электрода в любой точке шва строго параллельно его первоначальному положению. Угол наклона электрода в вертикальной и горизонтальной плоскости не должен изменяться при колебательных движениях по поверхности шва.


Рис. 4. Положение электрода при наплавке валиков с поперечными колебаниями

Колебания электрода должны производиться с амплитудой, не превышающей три диаметра используемого электрода. Во время процесса формирования валика расплавленный слой должен поддерживаться в расплавленном состоянии. Если перемещать электрод слишком далеко и задерживать его возвращение, то возможны охлаждение и кристаллизация металла сварочной ванны. Это приводит к появлению в металле сварного шва шлаковых включений и ухудшает его внешний вид.

При сварке необходимо внимательно наблюдать за сварочной ванной, следить за ее шириной и глубиной проплавления, при этом не перемещать электрод слишком быстро. В конце каждого перемещения на мгновение останавливать электрод. Амплитуда поперечных колебаний должна быть немного меньше требуемой ширины наплавляемого валика.

При сварке на прямой полярности, как правило, не возникает проблем с подрезами. При сварке на обратной полярности могут возникнуть проблемы с появлением подрезов. Проблему подрезов можно преодолеть путем более длительной выдержки сварочной дуги в крайних точках поперечных перемещений, а также путем выполнения данных перемещений с амплитудой, не превышающей требуемую для получения нужной ширины наплавленного валика.

Выпуклость сварного шва будет меньше, чем при сварке на прямой полярности, проплавление будет более глубоким. Шлака будет несколько меньше, он будет менее текучим и будет закристаллизовываться немного быстрее, чем при сварке на прямой полярности.

На вертикальной поверхности узкие горизонтальные валики наплавляются, как правило, на обратной полярности, при этом сварочный ток не должен быть слишком большим.

Сварка должна производиться на короткой дуге. При сварке следует уделять внимание тому, чтобы металл сварочной ванны не вытекал вниз или не образовывал наплыв на нижней кромке. Для этого необходимо совершать возвратно-поступательные движения электродом в направлении оси сварного шва. Каждый новый валик должен перекрывать ранее наплавленный соседний с ним валик не менее чем на 45-55%. Для предотвращения образования подрезов необходимо производить колебания электрода в пределах выпуклости сварного валика.В большинстве случаев выполнение сварки в вертикальном положении производится снизу вверх, особенно для ответственных стыков. Данная техника сварки широко используется при строительстве трубопроводов высокого давления, в кораблестроении, при сооружении сосудов высокого давления и при строительных работах.

Наплавка узких валиков на поверхность, находящуюся в вертикальном положении, при сварке снизу вверх производится на обратной полярности сварочного тока, при этом сварочный ток не должен иметь слишком высокое значение. Положение электрода должно соответствовать изображенному на рис. 5. Необходимо использовать возвратно-поступательные перемещения электрода. Наплавка валиков должна производиться при короткой дуге, в верхней части траектории колебаний электрода, дугу следует растягивать, но нельзя допускать ее обрыва в данной области.


Рис. 5. Положение электрода при наплавке узких валиков без поперечных колебаний электрода в вертикальном положении снизу вверх

Подобный тип перемещений электрода позволяет наплавленному металлу кристаллизоваться, образуя ступеньку, на которую наплавляется следующая порция электродного металла. Некоторые сварщики предпочитают поддерживать постоянную сварочную ванну, которую они медленно выводят снизу вверх, применяя при этом небольшие колебательные движения электродом. Данный способ ведения процесса сварки приводит к наплавке валика с большой выпуклостью, а также к появлению вероятности трещин металла сварного шва.

Методика выполнения сварки с продольными колебаниями электрода позволяет получить более плоский с невысокой выпуклостью сварной шов, а также уменьшает опасность возникновения шлаковых включений.

Сварка в вертикальном положении сверху вниз достаточно редко встречается в промышленности, особенно при обычных работах. Область применения данного способа ведения сварочного процесса обычно ограничивается сварочными работами при строительстве магистральных трубопроводов и при сварке тонколистового проката. При наплавке на плоскую поверхность данный способ ведения сварки приводит к получению не очень глубокого проплавления, существует также опасность появления шлаковых включений.

Наплавка узких валиков в вертикальном положении сверху вниз производится на обратной полярности, при этом следует обратить особое внимание на установку сварочного тока. Положение электрода должно соответствовать изображенному на рис. 6.


Рис. 6. Положение электрода при наплавке узких валиков без поперечных колебаний электрода в вертикальном положении сверху вниз.

В процессе сварки необходимо поддерживать очень короткую дугу, с тем, чтобы шлак не затекал в головную часть сварочной ванны. Поперечные колебания электрода, как правило, не применяются, поэтому скорость перемещения достаточно велика. Этим и объясняется малая ширина наплавленных таким образом валиков, а также их малая выпуклость. Подрезы почти не встречаются.

Сварка с поперечными колебаниями электрода в вертикальном положении очень часто применяется при сооружении трубопроводов высокого давления, сосудов высокого давления, при сварке судовых конструкций, а также при изготовлении металлоконструкций. Данная техника сварки очень часто применяется для сварки многопроходных швов в разделку, а также угловых швов, находящихся вертикальном положении.

Наплавку валиков с поперечными колебаниями электрода в вертикальном положении, как правило, выполняют снизу вверх на обратной полярности сварочного тока. Сварка на прямой полярности в данном положении используется крайне редко. Еще реже производится сварка в положении сверху вниз.

При наплавке валиков с поперечными колебаниями электрода в вертикальном положении сварочный ток не должен быть слишком велик, однако он должен быть достаточным для хорошего проплавления. Положение электрода должно хотя бы приблизительно соответствовать изображенному на рис. 7.

В нижней части соединения наплавляется полка шириной не более 12 мм, при этом смешение электрода от оси сварного шва не должно превышать 3 мм. Перемещение электрода должно производиться по траектории (рис. 7б). Для предотвращения появления подрезов необходимо делать кратковременные остановки электрода во время выхода его на боковые кромки сварного шва.


Рис. 7. Положение электрода при наплавке валиков в вертикальном положении снизу вверх с поперечными колебаниями электрода (а) и траектория движения электрода (б).

Сварку можно также производит путем поддержания постоянного перемещения сварочной ванны, при этом нужно быть очень осторожным, чтобы не допустить вытекания расплавленного металла сварочной ванны. При соблюдении этого условия перемещение электрода вверх может производиться по любой из сторон сварного соединения, при этом необходимо производить <растяжение> сварочной дуги, но не допускать ее обрыва. Нельзя держать сварочную дугу слишком долго вне кратера — это может привести к охлаждению кратера и вызовет избыточное разбрызгивание металла перед швом.

При наплавке валиков на прямой полярности, сварочный ток должен быть несколько выше, чем при сварке на обратной полярности. Поскольку при сварке на прямой полярности выше производительность наплавки, а также больше количество шлака, скорость перемещения электрода должна быть выше. Подрезы не составляют сколь-нибудь значительной проблемы, поэтому отпадает необходимость задержки электрода на боковых поверхностях свариваемых кромок.

Наплавка валиков в вертикальном положении с поперечными колебаниями электрода в вертикальном положении сверху вниз производится на обратной полярности, при этом следует обратить особое внимание на установку сварочного тока. Положение электрода должно соответствовать изображенному на рис. 8. В процессе сварки необходимо поддерживать очень короткую дугу, с тем, чтобы шлак не затекал в головную часть сварочной ванны. Для предотвращения появления подрезов необходимо делать кратковременные остановки электрода во время выхода его на боковые кромки сварного шва.


Рис. 8. Положение электрода при наплавке валиков в вертикальном положении сверху вниз с поперечными колебаниями электрода (а) и траектория движения электрода (б)

Несмотря на то, что в настоящее время в промышленности взят курс на полное исключение сварки в потолочном положении за счет соответствующего позиционирования, на сегодняшний день каждый сварщик должен уметь вести сварочные работы в этом пространственном положении. Сварка в потолочном положении распространена при строительстве трубопроводов, в судостроении и при строительно-монтажных работах.


Рис. 9. Положение электрода при наплавке узких валиков в потолочном положении

Наплавка узких валиков в потолочном положении может производиться как на обратной, так и на прямой полярности. Величина сварочного тока при обратной полярности такая же, как при сварке в вертикальном положении. При сварке на прямой полярности эта величина несколько выше. Положение электрода должно соответствовать изображенному на рис. 9. Сварщик должен находиться в таком положении, чтобы иметь возможность наблюдать за наплавкой металла и за сварочной дугой. Особенно это важно при сварке труб, однако часто бывает так, что направление сварки должно быть направлено на сварщика.

Во время процесса сварки на обратной полярности необходимо поддерживать короткую дугу, сварочная ванна не должна быть слишком сильно перегрета. При сварке на прямой полярности длина дуги должна быть несколько длиннее. Небольшие колебания электрода вперед-назад относительно направления сварки служат для предварительного подогрева сварного шва, кроме того, они способствуют предотвращению подтекания расплавленного шлака в головную часть сварочной ванны. Некоторые сварщики при сварке на прямой полярности предпочитают перемещать электрод во время сварки очень маленькими участками, при этом необходимо обращать внимание на опасность получения сварного шва с большой выпуклостью, а также на образование толстой корки шлака. При сварке на прямой полярности опасность появления подрезов практически исключена.

Во многих случаях при выполнении сварных соединений в потолочном положении, возникает необходимость в наплавке валиков с поперечными колебаниями электрода. Это значительно сложнее, чем наплавка узких валиков.

Наплавка валиков с поперечными колебаниями электрода в потолочном положении, производится на обратной полярности. Величина сварочного тока не должна быть слишком большой. Положение электрода должно соответствовать изображенному на рис. 10а. Большое значение имеет поддержание короткой дуги, а также стабильности дугового промежутка по всей ширине наплавляемого валика.

Наплавку можно производит путем перемещения всей сварочной ванны, однако при этом необходимо быть очень осторожным, чтобы не допустить приобретения расплавленным металлом сварочной ванны слишком высокой текучести, что, в конечном счете, приведет к вытеканию сварочной ванны. Если данное препятствие будет устранено, то электрод можно перемещать вперед вдоль любой из свариваемых кромок (рис. 106). При этом допускается удлинение дуги, без ее обрыва.

Нельзя допускать, чтобы сварочная дуга находилась в кратере больше времени, чем необходимо для его полной заварки. Электрод должен быстро перемещаться поперек лицевой стороны сварного шва, с тем, чтобы не допустить избыточного перегрева металла, наплавленного в средней части сварного шва.

При сварке в потолочном положении могут возникнуть проблемы, связанные с подрезами. Они решаются с помощью задержек электрода на боковых кромках соединения. Рекомендуется не превышать ширины сварного шва свыше 20 мм.


Рис. 10. Положение электрода при наплавке валиков с поперечными колебаниями электрода в потолочном положении (а) и траектория перемещения электрода (б) 

Сварка торцевого соединения в нижнем положении

Торцевые соединения широко применяются в конструкциях сосудов, не подвергаемых воздействию высокого давления. Торцевые соединения — это очень экономичные соединения, но они не выдерживают значительных растягивающих или изгибающих нагрузок. Для выполнения данного соединения требуется мало электродов, поскольку доля наплавленного металла в металле сварного шва мала. Выполнение сварки торцевого соединения не представляет каких-либо затруднений и может производиться в широком диапазоне сварочных режимов, как на прямой полярности, так и на обратной.

Во время сварки для полного охвата всей поверхности соединения рекомендуется производить небольшие поперечные колебания электрода. Однако следует помнить об опасности увлечения такими колебаниями. При излишне широких колебаниях электрода металл начнет свешиваться с краев соединения. Следует быть внимательным при расплавлении обеих кромок и при обеспечении хорошего проплавления.

Сварка стыкового соединения без скоса кромок в нижнем положении

Данный тип сварного соединения широко используется в промышленности для конструкций обычного назначения. При двухсторонней сварке металла, толщина которого не превышает 6 мм, данное соединение будет весьма прочным. Однако, как правило, такие соединения свариваются только с одной стороны. В этом случае прочность будет определяться глубиной проплавления, которая, в свою очередь, зависит от диаметра применяемых электродов, величины сварочного тока, величины зазора между деталями, а также от толщины свариваемых деталей. При односторонней сварке получение полного проплавления без зазора между свариваемыми кромками для металла толщиной свыше 5 мм весьма проблематично.

Сварка стыкового соединения без скоса кромок для обеспечения повышенного тепловложения, производится на обратной полярности. При сварке необходимо обеспечивать возвратно-поступательные перемещения электрода вдоль оси шва. Это будет приводить к предварительному подогреву металла перед сварным швом, сведет к минимуму риск получения прожога и обеспечит вытеснение расплавленного шлака на поверхность сварочной ванны, что исключит вероятность образования неметаллических шлаковых включений в металле сварного шва.

В процессе сварки особенно важно поддержание постоянства скорости и равномерности перемещения электрода вдоль оси шва, а также величины зазора между электродом и изделием (длины дуги). При слишком высокой скорости перемещения электрода шов получается узкий, образуются подрезы. При слишком малой скорости сварки сварочная ванна разогревается до температуры, при которой возможен прожог.

Слишком длинная дуга приводит к ухудшению внешнего вида шва, к ухудшению проплавления, к избыточному разбрызгиванию и низким показателям механических свойств металла сварного шва.

Сварка в нижнем положении таврового соединения (сварка в «лодочку») однопроходным угловым швом

При образовании углового шва во избежание непровара свариваемые поверхности наклоняют к горизонтальной плоскости под углом 45° — сварка «в лодочку» (рис. 11а), а при наклоне под углом 30 или 60° — в несимметричную «одочку» (рис. 116). Сварка производится на повышенных значениях сварочного тока, как на прямой, так и на обратной полярности тока. Сварка на обратной полярности производится короткой дугой, при этом возможно появление подрезов. Положение электрода при сварке должно соответствовать изображенному на рис. 11в


Рис. 11. Положение электрода при сварке «в лодочку»: a — сварка в симметричную «лодочку»; б — сварка в несимметричную ; в — пространственное положение электрода

При начале процесса сварки электрод должен быть выведен на кромку свариваемой пластины. После подогрева кромки пластины растянутой дугой начинается наложение сварного шва требуемой ширины и глубины проплавления. При этом производятся небольшие возвратно-поступательные перемещения электродом в направлении оси сварного шва. Это обеспечивает предварительный подогрев корневой части сварного шва и предотвращает подтекание расплавленного шлака перед головной частью сварочной ванны.

Электрод должен направляться непосредственно в корень сварного шва, нельзя допускать, чтобы сварочная дуга вышла на поверхность пластины за пределами области формирования сварного шва. Не допускается наплавка слишком большого количества металла за один проход.

Сварка в нижнем положении таврового соединения (сварка в «лодочку») многопроходным угловым швом.

Очень часто при сварке таврового соединения в нижней) положении необходимо производить многопроходную сварку. Однопроходные угловые швы должны иметь катеты, которые превышают диаметр используемого электрода не более чем на 1,5-3,0 мм. При многопроходной сварке угловых швов число слоев определяют, исходя из диаметра электрода, при этом толщина каждого слоя не должна превышать (0,8-1,2)dэ.

Поскольку тавровое соединение в нижнем положении образует кромки, подобно стыковому соединению со скосом кромок, сварка может выполняться с использованием техники сварки с поперечными колебаниями электрода, при этом ширина шва не должна превышать (1,5-5)dэ. Если слой сварного шва превышает допустимую ширину шва, то наплавка каждого слоя производится необходимым количеством валиков.

При сварке данного соединения первый проход выполняется электродом толщиной 4-6 мм без поперечных колебаний. Последующие проходы выполняются электродами меньшего диаметра. При сварке этих проходов необходимо применять поперечные колебания электрода, при этом амплитуда колебаний электрода не должна превышать допустимой ширины шва.

При сварке на обратной полярности поддерживается несколько меньшая длина дуги, чем на прямой полярности. При этом необходимо тщательно контролировать процесс сварки, с тем, чтобы избежать появления возможных подрезов. Для этого можно применять задержки электрода в крайних точках амплитуды поперечных колебаний электрода при одновременном тщательном контроле ширины сварного шва и амплитуды поперечных колебаний электрода.

Перед наплавкой каждого слоя или валика необходимо тщательно очищать от шлака поверхность сварного шва, в противном случае неизбежно появление шлаковых включений. В начале и при возобновлении сварки необходимо тщательно заваривать кратеры сварных валиков.

Сварка углового соединения с наружным углом в нижнем положении

Угловые соединения с наружными угловыми швами встречаются намного реже, чем стыковые, нахлесточные и тавровые соединения. Это соединение является в высшей степени технологичным, поскольку его очень просто подготовить к сварке, а параметры режима сварки напоминают применяемые при сварке стыковых соединений со скосом кромок.

Для обеспечения максимальной прочности в сварном соединении необходимо получить проплавление с обратной стороны. Добавление внутреннего углового шва к наружному значительно повышает прочность всего углового соединения. Как уже отмечалось, стоимость подготовки подобного соединения весьма невелика, однако при сварке подобных соединений из металла большой толщины значительную величину затрат составит стоимость электродов.

Сварку углового соединения с наружным углом в нижнем положении выполняют на обратной полярности. При сварке данного соединения положение электрода должно соответствовать изображенному на рис. 12. При первом проходе используется техника сварки, применяемая при наложении узкого шва, без поперечных колебаний. Значение сварочного тока не должно быть слишком большим. Сварной шов при первом проходе должен обеспечить полное проплавление обратной стороны соединения и хорошее сплавление с обеими пластинами. Большое значение для достижения этой цели имеет поддержание короткой дуги.


Рис. 12. Положение электрода при сварке углового соединения с наружным углом в нижнем положении

При выполнении второго, третьего и последующих проходов сварочный ток следует установить на повышенный режим. При выполнении данных проходов используется техника поперечных колебаний электрода. Третий проход должен производиться с более широкой амплитудой колебаний, чем второй. Техника выполнения второго и последующих проходов аналогична выполнению данных проходов при сварке в «лодочку» многопроходным угловым швом.

Во время сварки необходимо следить за ограничением ширины поперечных колебаний электрода. Для устранения подрезов рекомендуется производить кратковременную остановку электрода в крайних точках траектории поперечных колебаний. Удостоверьтесь в том, что достигается хорошее сплавление с ранее наложенными слоями и с обеими поверхностями пластины. Последний проход не должен иметь слишком большую высоту. После каждого прохода необходимо тщательно очистить наплавленный металл от шлаковой корки.

Сварка стыкового соединения со скосом кромок на подкладке в нижнем положении

Данный тип сварного соединения достаточно часто применяется при сварке трубопроводов, сосудов высокого давления и корабельных конструкций.

Сварка данного соединения производится на обратной полярности. Для первого прохода устанавливается невысокое значение сварочного тока. Положение электрода должно соответствовать изображенному на рис. 13. Сварка производится узким валиком без поперечных колебаний электрода. Во время сварки необходимо следить за тем, чтобы обеспечить хорошее сплавление с подкладкой и поверхностями разделки в корневой части соединения. Поверхность шва должна быть максимально плоской.


Рис. 13. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке в нижнем положении

Второй, третий и последующие проходы могут производиться при повышенных значениях сварочного тока. Перемещение вдоль оси шва не должно быть слишком быстрым, иначе поверхность шва будет неровной, с крупными чешуйками, могут появиться поры. Поперечные перемещения электрода должны ограничиваться требуемой шириной шва. Это обеспечит исключение появления подрезов. Во время сварки важно следить за длиной дуги, тщательно удалять шлак с наложенных слоев, следить за тем, чтобы наложенный сварной шов имел сплавление с предыдущими слоями и со свариваемыми кромками. При наложении последнего слоя используйте кромки разделки в качестве показателя при определении требуемой ширины шва.

Сварка стыкового соединения со скосом кромок в нижнем положении

Данный вид соединения часто встречается при сварке трубопроводов, а также при сварке ответственных соединений.

Сварка данного соединения производится на обратной полярности. Положение электрода должно соответствовать изображенному на рис. 14.


Рис. 14. Положение электрода при сварке стыкового соединения со скосом кромок в нижнем положении

На рис. 15а показан порядок наложения слоев/валиков при сварке стыкового соединения со скосом кромок в нижнем положении. Первый проход предназначен для сварки корня шва и выполняется обычно электродами диаметром 3 мм, при этом сварочный ток не должен быть слишком велик. Сварка производится на короткой дуге с возвратно-поступательными движениями относительно линии сварного шва, при этом необходимо следить, чтобы сам электрод все время оставался в зазоре корневой области сварного соединения. Во время сварки нельзя допускать прерывания дуги при перемещении электрода вперед и нужно следить за тем, чтобы капли металла не падали перед швом, это может помешать проведению процесса сварки, его продвижению вперед. На обратной стороне стыка должен образовываться небольшой валик. Лицевая поверхность первого прохода должна иметь минимальную выпуклость.


Рис. 15. Сварка стыкового соединения со скосом кромок в нижнем положении: a — порядок наложения слоев; б — траектория движения электрода при выполнении последнего прохода; в — сварное соединение

Второй и последующие проходы производятся при повышенных значениях сварочного тока и электродами большего диаметра. Наплавка производится с поперечными колебаниями электрода, при этом важно обеспечить постоянство и равномерность колебаний и перемещения электрода вдоль оси шва, в противном случае полученный сварной шов будет не однороден по качеству и внешнему виду. Во время сварки необходимо следить за тем, чтобы избежать появления подрезов (рис. 156). Необходимо получить сплавление с ранее наплавленными слоями, а также с боковыми кромками разделки свариваемого изделия. Лицевая сторона второго и последующих слоев должна иметь плоскую поверхность. Необходимо тщательно очищать каждый слой от шлака по всей его длине.

Заключительный проход выполняется тем же типом электрода, что и предыдущие. Техника выполнения такая же, и при выполнении второго и последующих проходов, за исключением того, что при заключительном проходе амплитуда поперечных колебаний электрода будет больше. Для контроля за шириной облицовочного шва необходимо использовать скошенные кромки стыкового соединения. Поверхность облицовочного шва должна быть слегка выпуклой.

Сварка нахлесточного соединения в нижнем положении

Данный тип соединения широко используется в промышленности, в частности в резервуарах, строительных и судовых конструкциях. Нахлесточное соединение очень экономично, оно не требует каких-либо значительных затрат на подготовку и сборку. Максимальная прочность нахлесточного соединения достигается при его двухсторонней сварке угловым швом.

Сварка данного соединения производится как на прямой, так и на обратной полярности, при этом сварочный ток не должен быть слишком большим. Положение электрода должно соответствовать изображенному на рис. 16.


Рис. 16. Сварка нахлесточного соединения в нижнем положении: a — подготовка соединения к сварке; б — положение электрода при сварке однопроходным швом равных толщин; в — положение электрода при втором и третьем проходе при выполнении многопроходного шва; г — положение электрода при сварке разных толщин

Для сварки нахлесточного соединения в нижнем положении на прямой полярности требуется поддержание очень короткой дуги, а на обратной полярности — еще более короткой. Дуга должна быть сориентирована в направлении корня соединения и горизонтальной поверхности пластины. Во время сварки необходимо совершать, относительно оси сварного, шва небольшие возвратно-поступательные колебания электрода. Это способствует предварительному подогреву соединения перед движущейся сварочной дугой, обеспечивает создание полноразмерной выпуклости и покрывает шлаковой коркой хвостовую часть сварочной ванны.

Абсолютно необходимым для получения качественного соединения является полное проплавление в корне шва и хорошее сплавление с обеими поверхностями двух пластин. При сварке на прямой полярности верхняя кромка верхней пластины имеет тенденцию к прожогу, поэтому при сварке следует постоянно опасаться как недозаполнения наплавленного валика, так и того, что сварочная дуга недостаточно коротка. Подрезы появляются очень редко.

При сварке на обратной полярности следует обратить внимание на поддержание более короткой дуги, а также на устранение возможного подреза, как на плоской поверхности пластины, так и вдоль верхней кромки верхней пластины. Для уменьшения вероятности появления подрезов, перемещение дуги должно быть ограничено размерами сварного шва.

Сварка нахлесточного соединения в горизонтальном положении

Сварка нахлесточного соединения в горизонтальном положении однопроходным угловым швом на прямой полярности часто применяется в конструкциях резервуаров и строительных конструкциях.

При сварке данного соединения сварочный ток не должен быть слишком большим. Электрод необходимо направлять в корень шва. Положение электрода во время сварки должно соответствовать изображенному на рис. 17. Сварку лучше всего производить с небольшими возвратно-поступательными перемещениями электрода в направлении оси сварного шва, можно также применять незначительные поперечные колебания электрода. Сварочная ванна не должна быть слишком перегрета, ибо это приводит к появлению трещин в металле сварного шва.


Рис. 17. Положение электрода при сварке нахлесточного соединения в горизонтальном положении

При сварке следует обращать особое внимание на перемещения электрода, с тем, чтобы не допустить появления прожогов кромки пластины, а также на то, чтобы сварочная дуга не контактировала с поверхностью вертикальной пластины вне пределов сварного шва, в противном случае неизбежно появление подрезов.

Сварка таврового соединения в нижнем положении

Большую долю швов, выполняемых на практике сварщиком, составляют угловые швы, выполняемые в нижнем положении. Технология сварки может включать как однопроходную, так и многопроходную сварку всеми типами электродов. Несмотря на то, что электроды, предназначенные для сварки на обратной полярности, не являются лучшим типом электродов для выполнения однопроходных угловых швов, использование этих электродов в подобных целях является достаточно распространенной практикой.

При сварке таврового соединения в нижнем положении на прямой полярности сварочный ток должен быть достаточным для получения обширной сварочной ванны. При сварке на обратной полярности сварочный ток должен быть несколько меньше. Положение электрода при сварке на прямой полярности должно соответствовать изображенному на рис. 18а, на обратной полярности — рис. 18б.


Рис. 18. Положение электрода при сварке таврового соединения в нижнем положении: a — на прямой полярности; б — на обратной полярности

Электрод должен быть направлен в корень сварного соединения. При сварке на обратной полярности длина дуги должна быть меньше. Перемещение электрода должно производиться равномерно на всем протяжении стыка, не теряя сварочной ванны.

Однако некоторые сварщики предпочитают использовать при этом небольшие возвратно-поступательные перемещения электрода в направлении оси шва. Это может оказать положительное влияние в виде предварительного подогрева свариваемых кромок и корневой части соединения, находящихся перед движущимся электродом, улучшит формирование наплавленного металла на вертикальной плоскости пластины, а также будет способствовать предотвращению подтекания расплавленного шлака в головную часть сварочной ванны. При сварке на прямой полярности подрезы никогда не являются проблемой. Сварка на обратной полярности требует обеспечения повышенных мер по исключению подрезов.

Сварка таврового соединения в нижнем положении многопроходным швом

Крупные угловые швы очень часто выполняются путем многократного наложения узких валиков без поперечных колебаний электрода. В большинстве случаев облицовочный слой или последний валик выполняются без поперечных колебаний электрода, в некоторых случаях требуется, чтобы последний проход выполнялся с поперечными колебаниями. В частности, таковы требования при сварке трубопроводов и сосудов высокого давления. Сварка может выполняться как на прямой, так и на обратной полярности сварочного тока.

При выполнении данного соединения сварочный ток устанавливается таким же, как и при сварке узким однопроходным швом. Положение электрода будет изменяться в зависимости от последовательности наложения слоев (рис. 19а). Перемещение электрода аналогично перемещению при сварке однопроходным швом. Расположение или раскладка валиков по сторонам должны производиться таким образом, чтобы облицовочный слой точно соответствовал заданному размеру катета углового шва. Порядок наложения слоев показан на рис. 19б.


Рис. 19. Положение электрода при сварке таврового соединения многопроходным швом в нижнем положении (а) и порядок наложения слоев (б)

Техника выполнения облицовочного слоя достаточно сложна. Сварочный ток не должен быть слишком мал. Положение электрода должно соответствовать изображенному на рис. 20а. Чешуйки укладываются в диагональной плоскости. Наложение капель металла производится только при движении электрода вниз. Перемещение электрода вверх должно производиться быстро, на максимально растянутой дуге, но без обрыва дуги.


Рис. 20. Положение электрода при выполнении облицовочного слоя (а) и траектория колебательных движений электрода (б)

Указателями ширины перемещения электрода при сварке облицовочного слоя могут служить две параллельные кромки ранее выполненных сварных валиков. Для предотвращения появления подрезов необходимо проводить задержки электрода на верхней и нижней кромках сварного шва. Необходимо помнить, что при многопроходной сварке требуется тщательная очистка от шлаковой корки каждого наложенного слоя.

При сварке на обратной полярности могут возникнуть значительные затруднения, связанные с появлением подрезов. Избавиться от этих проблем можно всеми ранее описанными способами.

Сварка таврового соединения в нижнем положении многопроходным швом с применением поперечных колебаний электрода

На практике довольно часто встречаются случаи, когда необходимо производить сварку угловых швов большого сечения в нижнем положении. Обычно для этого используют многопроходную сварку с применением техники поперечных колебаний электрода. Наиболее часто такие швы встречаются при судостроительных и монтажных работах.

Сварка данного типа соединения производится на обратной полярности. Сварочный ток устанавливается большим. Положение электрода должно соответствовать изображенному на рис. 21. Первый проход выполняется так же, как и в случае обычной однопроходной сварки угловых швов. Поверхность первого валика должна быть максимально плоской.


Рис. 21. Положение электрода при сварке таврового соединения многопроходным швом в нижнем положении с применением поперечных колебаний электрода

Второй шов накладывается с поперечными колебаниями электрода поверх первого. Электрод должен направляться на вертикальную пластину, с тем, чтобы обеспечить перенос металла с электрода на эту поверхность. Поперечные колебания электрода не должны выходить за пределы требуемой ширины выполняемого шва. В противном случае возможно появление подрезов. Необходимо обеспечить хорошее сплавление накладываемых швов с поверхностью ранее наплавленных слоев и с поверхностью свариваемой пластины.

Сварка стыкового соединения со скосом кромок на подкладке в горизонтальном положении

Данное соединение, а также пространственное положение, в котором оно находится, очень часто встречается при сварке труб, резервуаров, а также при судостроительных работах.

Сварка производится на обратной полярности как узкими валиками без поперечных колебаний, так и с поперечными колебаниями электрода. Первый проход выполняется на повышенных значениях сварочного тока без поперечных колебаний электрода. Положение электрода должно соответствовать изображенному на рис. 22. При сварке необходимо обеспечить гарантированное сплавление с подкладкой, а также с кромками корневой части соединения.


Рис. 22. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке в горизонтальном положении

Второй и все последующие проходы могут выполняться с еще большими значениями сварочного тока. Положение электрода при сварке узкими валиками без поперечных колебаний электрода должно соответствовать изображенному на рис. 22. Очень важно, чтобы все швы имели хорошее сплавление с поверхностью ранее наложенных слоев, а также с поверхностью кромок разделки. Необходимо следить за предотвращением появления подрезов.

Сварка стыкового соединения со скосом кромок в горизонтальном положении

Данное соединение, а также пространственное положение, в котором оно находится, очень часто встречается при сварке труб, а также ответственных стыковых соединений. При выполнении некоторых работ иногда предъявляются требования к тому, чтобы данные швы выполнялись с поперечными колебаниями электрода, однако в большинстве случаев применяется сварка узкими валиками без поперечных колебаний электрода.

 

Сварка производится на обратной полярности. Сварочный ток при первом проходе не должен быть слишком велик. Положение электрода при сварке узкими валиками без поперечных колебаний должно соответствовать рис. 23, а при сварке с поперечными колебаниями — рис. 24а.


Рис. 23. Положение электрода при сварке стыкового соединения со скосом кромок в горизонтальном положении: узкими валиками без поперечных колебаний электрода.

При сварке необходимо поддерживать короткий дуговой промежуток, заставляя электродный металл наплавляться непосредственно в зазоре корневой части соединения. При сварке можно использовать возвратно-поступательные перемещения электрода. При перемещениях вперед нельзя допускать, чтобы сварочная дуга обрывалась.

Необходимо во время таких перемещений обеспечить предварительный подогрев металла перед наплавляемым швом. Одновременно следует следить за тем, чтобы расплавленный металл сварочной ванны достаточно быстро застывал и не стекал на нижнюю пластину. На обратной стороне соединения должно быть полное проплавление.

Для второго и последующих проходов сварочный ток может быть значительно увеличен. Можно использовать сварку узкими валиками, без поперечных колебаний. можно также использовать сварку с поперечными колебаниями электрода (рис. 24б). Важно обеспечить гарантированное сплавление всех проходов с поверхностью всех предшествующих проходов, а также с поверхностями свариваемых пластин. Во время сварки необходимо следить за появлением подрезов.


Рис. 24. Положение электрода при сварке стыкового соединения со скосом кромок в горизонтальном положении:  a — сварка с поперечными колебаниями электрода; б — пример поперечных движений торца электрода 

Сварка стыкового соединения со скосом одной кромки в горизонтальном положении

Наиболее часто, при выполнении стыковых соединений в горизонтальном положении скашивают кромку только у верхнего листа. Дугу возбуждают на горизонтальной кромке нижнего листа, перемещают затем на скошенную кромку верхнего листа. Техника сварки ничем не отличается от описанной выше, за исключением порядка наложения слоев.

Сварка нахлесточного соединения в вертикальном положении снизу вверх. При выполнении ответственных сварочных работ с использованием нахлесточных соединений, находящихся в вертикальном положении, как правило, сварку производят снизу вверх. Такая сварка имеет место при выполнении сварочных работ в судостроении, при изготовлении сосудов высокого давления, а также при изготовлении металлоконструкций.

При сварке небольших толщин, а также для выполнения первых проходов в многопроходных сварных швах, выполняемых при сварке нахлесточных соединений, применяются однопроходные угловые швы. При выполнении данных швов необходимо установить не очень большое значение сварочного тока. Положение электрода должно соответствовать изображенному на рис. 25.


Рис. 25. Положение электрода при сварке нахлесточного соединения в вертикальном положении снизу вверх

На нижней части соединения образуется полка из наплавленного металла, имеющая размеры, соответствующие размерам сварного шва. Следует применять возвратно-поступательные перемещения электрода. При переносе электродного металла следует поддерживать короткую дугу, при переходе вверх дугу следует растянуть, не допуская при этом ее обрыва. Когда электрод находится над сварочной ванной, можно производить небольшие поперечные перемещения электрода. Это способствует лучшему формированию сварного шва. Во время сварки необходимо следить за тем, чтобы перемещения электрода всегда сохранялись в пределах ширины шва таким образом, чтобы кромка верхней пластины не прожигалась, а на плоской поверхности пластины не появлялись подрезы.

Для выполнения сварных швов нахлесточных соединений большой толщины применяется многопроходная или однопроходная сварка с поперечными перемещениями электрода. При многопроходной сварке первый проход выполняется узким валиком без поперечных перемещений электрода. При выполнении второго прохода сварочный ток должен быть достаточным для обеспечения гарантированного проплавления в корневой части соединения и сплавления с кромками. Положение электрода и траектория движения электрода должны соответствовать изображенному на рис. 26а. При этом, сохраняя электрод над поверхностью сварочной ванны, нужно перемещать ее вверх, одновременно сдвигая сварочную ванну в стороны, поочередно то влево, то вправо.


Рис. 26. Положение электрода при сварке нахлесточного соединения в вертикальном положении снизу вверх многопроходным угловым швом (а) и однопроходным угловым швом с поперечным перемещением электрода (б)

Равномерные перемещения сварочной ванны, выполняемые в процессе сварки, позволяют получить ровную, с малой выпуклостью поверхность сварного шва. Кратковременные остановки в крайних точках поперечных колебаний предотвратят появление подрезов, но нужно быть крайне осторожным, чтобы при этом кромка верхней пластины не прожигалась.

Сварку нахлесточного соединения можно производить также однопроходным угловым швом с поперечными колебаниями электрода. Положение электрода и траектория движения электрода должны соответствовать изображенному на рис. 26б. Техника сварки аналогична выполнению второго прохода при многопроходной сварке. Отличие заключается в том, что электрод необходимо располагать под большим углом к нижней пластине и задержки перемещения выполнять только на нижней пластине.

Сварка таврового соединения в вертикальном положении однопроходным угловым швом

Сварка данного соединения часто встречается в производственной практике. Сварка вертикальных стыков чаще всего производится снизу вверх, хотя встречаются и случаи, когда необходимо выполнять сварку сверху вниз. Выбор количества проходов определяется назначением данного соединения, а также толщиной свариваемых пластин.

При выполнении сварки таврового соединения в вертикальном положении однопроходным угловым швом без поперечных перемещений электрода сварочный ток должен быть достаточно большим, с тем, чтобы обеспечить хорошее проплавление в корневой части соединения, а также с поверхностями пластин. Положение электрода должно приблизительно соответствовать изображенному на рис. 27.


Рис. 27. Положение электрода при сварке таврового соединения в вертикальном положении однопроходным угловым швом

Сварка производится на обратной полярности с колебаниями электрода вверх-вниз. В момент переноса электродного металла необходимо поддерживать короткую дугу, при перемещении электрода вверх дугу следует растянуть, однако при этом не допускать обрыва дуги. Необходимо периодически производить отвод электрода от сварочной ванны, с тем, чтобы избежать перегрева свариваемого металла и последующего его растрескивания или вытекания сварочной ванны. Вместе с тем необходимо удерживать сварочную ванну на одном месте, вплоть до момента, пока не будет получено требуемое проплавление, сплавление со свариваемыми кромками и образование сварного шва требуемого контура без подрезов.

Сварку таврового соединения в вертикальном положении можно производить также однопроходным угловым швом с поперечными колебаниями электрода. Положение электрода и траектория движения электрода должны соответствовать изображенному на рис.выполняется без поперечных перемещений электрода или в некоторых случаях с небольшими поперечными колебаниями (рис. 29б).Положение электрода при втором проходе должно соответствовать изображенному на рис. 30. Сварочный ток должен быть достаточным для обеспечения гарантированного проплавления в корневой части соединения и сплавления с кромками.


Рис. 30. Положение электрода при сварке таврового соединения в вертикальном положении многопроходным

Во время сварки необходимо сохранять электрод над поверхностью сварочной ванны, перемещать сварочную ванну вверх, одновременно сдвигая ее в стороны, поочередно то влево, то вправо. Равномерные перемещения сварочной ванны, выполняемые в процессе сварки, позволяют получить ровную, с малой выпуклостью поверхность сварного шва, а кратковременные остановки электрода в крайних точках поперечных перемещений предотвратят появление подрезов. Во время сварки необходимо поддерживать короткую дугу, но избегать касания электрода с расплавленным металлом сварочной ванны.

При использовании электрода большого диаметра необходимо увеличить сварочный ток. Положение электрода при сварке третьего прохода аналогично второму проходу. При применении электрода большого диаметра и при увеличении сварочного тока желательно ускорять перемещение электрода вверх при достижении сварочной ванной крайней точки траектории поперечных колебаний. При этом необходимо обращать внимание на продолжение горения дуги во время всех этих перемещений. При перемещении дуги вверх ее необходимо растягивать. После достаточного охлаждения сварочной ванны электрод возвращается к кратеру, и производится наплавка дополнительного металла.

Во время сварки необходимо поддерживать постоянство ширины траектории поперечных колебаний, следить за тем, чтобы она не превышала ширину законченного шва.

Сварка стыкового соединения со скосом кромок на подкладке в вертикальном положении

Данный тип соединения довольно часто встречается при строительстве трубопроводов, сосудов высокого давления, а также в судовых конструкциях. Сварка производится на обратной полярности снизу вверх.

Первый проход. Сварочный ток должен быть большим. Положение электрода должно соответствовать изображенному на рис. 31. При сварке используется техника наплавки узких валиков, без поперечных колебаний, в вертикальном положении. Шов должен иметь хорошее сплавление с подкладкой и с поверхностями обеих кромок в своей корневой части.

При сварке необходимо следить за тем, чтобы лицевая поверхность шва была максимально плоской. Если в сварном соединении зазор в корне очень широк, то необходимо сделать два или три прохода, чтобы выполнить подварочный шов. В процессе сварки необходимо обращать внимание на то, чтобы все наложенные слои имели хорошее сплавление друг с другом.


Рис. 31. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке в вертикальном положении

Второй проход. Сварочный ток не должен быть слишком велик. При выполнении шва используется техника сварки с поперечными колебаниями электрода. В качестве направляющих, по которым можно определять ширину этих поперечных колебаний, используются кромки ранее наплавленных валиков. При выполнении сварки необходимо следить за тем, чтобы поверхность сварного шва была плоской, избегать появления подрезов. Сварной шов не должен образовывать острые кромки, поскольку в таких кромках могут образовываться зашлаковки.

Третий проход. Величина сварочного тока должна быть такой, чтобы обеспечивалось как хорошее проплавление и сплавление, так и малая выпуклость сварного шва. Поперечные колебания электрода не должны выходить за пределы скошенных кромок разделки. Во избежание появления подрезов необходима задержка электрода в крайних точках траектории поперечных колебаний. Для предотвращения появления излишней выпуклости сварного шва скорость сварки должна быть достаточно большой.

Сварка стыкового соединения без скоса кромок в вертикальном положении

Сварка данного соединения производится снизу вверх на обратной полярности многопроходным швом. Техника сварки корневого прохода с большим зазором в стыковом соединении без скоса кромок достаточно сложна.

Первый проход. Сварочный ток должен быть не слишком большим, но вместе с тем он должен быть достаточным для гарантированного проплавления корневой части соединения и образования на обратной стороне стыка достаточной выпуклости. Положение электрода должно соответствовать изображенному на рис. 32. При сварке первого прохода используется техника сварки узкими валиками без поперечных колебаний электрода; Необходимо добиваться получения на обратной стороне корня шва небольшой выпуклости.


Рис. 32. Положение электрода при сварке стыкового соединения без скоса кромок в вертикальном положении

Второй проход. Значение сварочного тока и положение электрода практически не отличаются от аналогичных показателей при сварке первого прохода. Нельзя производить поперечные колебания со слишком большой амплитудой. Скорость перемещения электрода должна быть такой, чтобы не возникала избыточная выпуклость шва и не образовывались подрезы.

Сварка соединения с наружным угловым швом

Данные сварные соединения часто встречаются на практике. Сварка производится на обратной полярности снизу вверх с использованием техники поперечных колебаний электрода, кроме того, благодаря тому, что свариваемые кромки не скошены, в данном случае достаточнонеглубокое проплавление.

Первый проход. Сварочный ток не должен быть слишком велик. Положение электрода должно соответствовать изображенному на рис. 33. Используется техника выполнения корневого прохода с возвратно-поступательными перемещениями электрода.


Рис. 33. Положение электрода при сварке соединения с наружным угловым швом в вертикальном положении

Второй и третий проходы. Сварочный ток необходимо увеличить по сравнению с первым проходом. Во время сварки необходимо следить за обеспечением хорошего сплавления с ранее наплавленными слоями, а также со свариваемыми кромками основного металла, обращать внимание на возможность появления подрезов. Лицевая поверхность швов должна быть плоской.

Четвертый проход. Значение сварочного тока и положение электрода аналогичны использовавшимся при сварке предыдущих проходов. При сварке использовать технику поперечных колебаний электрода. Лицевая поверхность шва должна иметь небольшую выпуклость. В качестве границы шва использовать кромки пластин.


Рис. 34. Сварка стыкового соединения со скосом кромок в вертикальном положении (а) и траектория движения электрода (б) 

Сварка стыкового соединения со скосом кромок

Данные сварные соединения очень часто встречаются при сварке труб и ответственных стыковых соединений. Сварка производится на обратной полярности снизу вверх многопроходным швом с поперечными колебаниями электрода.

Первый проход. Сварочный ток должен быть достаточно большим. Положение электрода должно соответствовать изображенному на рис. 34а. Используется техника сварки корневого шва, при которой применяются колебания электрода вверх-вниз. Допускается выполнять сварку с небольшими поперечными перемещениями электрода (рис. 34б).

Перемещения электрода вверх должны производиться на расстояние, не превышающее 50 мм. Необходимо следить, чтобы при этих перемещениях не происходил обрыв дуги. Необходимо обеспечить полное проплавление по всей обратной стороне соединения. Лицевая поверхность шва должна быть максимально плоской.

Второй и третий проходы. Сварочный ток может быть увеличен. Положение электрода аналогично использовавшемуся при сварке первого прохода. Используется техника сварки с поперечными колебаниями электрода. На рис. 34б показана траектория движения электрода. Для получения однородного по качеству и внешнему виду сварного шва следует поддерживать постоянство продольных и поперечных перемещений электрода.

Поперечные перемещения электрода должны производиться быстро, с тем, чтобы предотвратить появление избыточной выпуклости в центральной части сварного шва. На протяжении всего времени сварки необходимо поддерживать короткую дугу, следить за тем, чтобы перемещения электрода оставались в пределах ширины сварного шва. Для предотвращения появления подрезов применять остановки электрода в крайних точках траектории их перемещения.

В некоторых случаях сварку стыкового соединения со скосом кромок можно производить сверху вниз (рис. 35а) или однопроходным швом с поперечными колебаниями (рис. 356). Техника выполнения однопроходным швом аналогична выполнению второго и третьего прохода при многопроходной сварке.


Рис. 35. Сварка стыкового соединения со скосом кромок сверху вниз (а) и траектория перемещения электрода при однопроходной сварке с поперечными колебаниями (б) 

Сварка таврового соединения в потолочном положении однопроходным угловым швом

Данное сварное соединение и положение при сварке очень часто встречается в судостроении и при изготовлении металлоконструкций.

Сварка таврового соединения в потолочном положении однопроходным угловым швом производится на обратной полярности, при этом сварочный ток не должен быть слишком большим. Положение электрода должно соответствовать изображенному на рис. 36а. Во время сварки используются возвратно-поступательные перемещения электрода. При наплавке металла необходимо поддерживать короткую дугу. При перемещении вперед дуга не должна обрываться.


Рис. 36. Положение электрода при сварке таврового соединения в потолочном положении однопроходным угловым швом

Во время сварки нужно уделять особое внимание обеспечению хорошего сплавления и проплавления в корневой части соединения, а также с боковыми кромками. Нельзя допускать подтекания шлака в головную часть сварочной ванны, для предотвращения появления избыточной высоты и выпуклости сварного шва не допускать перегрева сварочной ванны.

Сварка таврового соединения в потолочном положении многопроходным угловым швом.

При необходимости выполнения сварки угловым швом в потолочном положении больше чем за один проход применяется техника сварки без поперечных колебаний электрода. Сварку выполняют на обратной полярности, при этом сварочный ток не должен быть слишком велик. Положение электрода должно соответствовать изображенному на рис. 37а.


Рис. 37. Положение электрода при сварке таврового соединения в потолочном положении многопроходным угловым швом (а) и порядок наложения слоев (б)

Последовательность наложения слоев приведена на рис. 37б. У сварщиков, имеющих малый опыт, могут возникнуть некоторые сложности с соблюдением правильных пропорций швов. Однако с опытом эти трудности будут преодолены. Каждый проход должен иметь хорошее сплавление со смежными валиками и с поверхностью свариваемых кромок. Лицевая поверхность каждого прохода должна быть максимально плоской.

Сварка нахлесточного соединения однопроходным угловым швом в потолочном положении

Данное сварное соединение и положение при сварке очень часто встречается при сооружении резервуара и в судостроении. Из-за габаритов и характерных особенностей этих объектов их кантовка для проведения сварки не целесообразна. Большинство подобных работ выполняется на обратной полярности, однако имеются также случаи, когда необходимо сваривать нахлесточное соединение в потолочном положении и на прямой полярности.

Величина сварочного тока при сварке на обратной полярности не должна быть слишком большой. При сварке на прямой полярности величина сварочного тока должна быть несколько выше, чем при сварке аналогичного соединения на обратной полярности. Положение электрода должно соответствовать изображенному на рис. 38.


Рис. 38. Положение электрода при сварке нахлесточного соединения однопроходным угловым

При сварке можно применять колебательные перемещения электрода в направлении сварки. При перемещении электрода вперед необходимо следить, чтобы не произошло обрыва сварочной дуги. Такие перемещения электрода служат для предварительного подогрева кромок перед наплавкой на них электродного металла и способствуют предотвращению перегрева сварочной ванны, тем самым препятствуют образованию наплывов и избыточной выпуклости. Кроме того, такие перемещения электрода и сварочной дуги вызывают оттеснение шлака в хвостовую часть сварочной ванны. При сварке нельзя допускать выхода сварочной дуги на поверхность верхней пластины, и следует следить, чтобы сварочная дуга при своих перемещениях не выходила за границы наружной поверхности сварного шва.

При сварке на прямой полярности несколько затруднен контроль за шлаком. Сварной шов имеет тенденцию к образованию избыточной выпуклости, а также к вытеканию сварочной ванны на вертикальную поверхность кромки пластины. Подрезы не встречаются.

Сварка таврового соединения многопроходным угловым швом с поперечными колебаниями в потолочном положении

Сварщику в своей практике не раз приходится встречаться с необходимостью выполнения в потолочном положении угловых швов большого сечения электродами большого диаметра.

Первый проход. Сварочный ток должен быть достаточно большим. Положение электрода должно соответствовать изображенному на рис. 39а. Длина сварочной дуги должна быть небольшой, при сварке необходимо использовать поперечные колебания электрода (рис. 39б). Перемещения электрода должны производиться быстрыми скользящими движениями, в то же время необходимо следить за тем, чтобы при этом не происходило значительное увеличение длины дуги.

Во время проведения сварки нужно обращать внимание на поддержание стабильного горения сварочной дуги, не допускать ее обрыва. После кристаллизации кратера возвратиться к нему и переварить кратер. Это способствует предотвращению перегрева сварочной ванны и появлению трещин в металле сварного шва. Происходит предварительный подогрев корневой части сварного шва до того, как на него будет наплавлен электродный металл. Кроме того, такая техника сварки приводит к оттеснению шлака в верхнюю часть наплавленного металла. Улучшается возможность для контроля за наплавленным металлом и сварочной дугой, предотвращается появление подрезов, наплывов и избыточной выпуклости сварного шва, улучшается внешний вид поверхности сварного шва, она становится более однородной.


Рис. 39. Положение электрода при сварке таврового соединения многопроходным угловым швом с поперечными колебаниями в потолочном положении (а) и траектория движения электрода (б)

Второй проход. Второй проход выполняется так же, как и первый, с тем только отличием, что за второй проход наплавляется большее количество электродного металла. Выполнение второго прохода, как правило, вызывает у сварщиков большие сложности, чем первого.

Сварка стыкового соединения со скосом кромок на подкладке многопроходным швом в потолочном положении.

Данный тип сварного соединения и условия проведения сварки часто встречаются при сварке труб и резервуаров, когда сварка выполняется на кольцевых подкладках.

Первый проход. Сварка производится на обратной полярности. Сварочный ток должен быть достаточно большим. Положение электрода должно соответствовать изображенному на рис. 40. Для обеспечения хорошего переноса металла необходимо поддержание короткой дуги. Перемещения электрода должны носить скользящий характер. Необходимо обращать внимание на обеспечение гарантированного сплавления в области подкладки и между кромками в корневой части соединения. Лицевая поверхность сварного шва по возможности должна иметь минимальную выпуклость.

Второй и последующие проходы. Сварочный ток остается по-прежнему большим. Сварка производится с использованием техники скользящих перемещений электрода, без поперечных его перемещений. Если металл начинает перегреваться, необходимо удлинить дугу и переместить электрод вперед, пока кратер с перегретой сварочной ванной не остынет.


Рис. 40. Положение электрода при сварке стыкового соединения со скосом кромок на подкладке многопроходным швом в потолочном положении и порядок наложения слоев

Необходимо обеспечить гарантированное сплавление как с поверхностями ранее наплавленных валиков, так и со стенками разделки. Следует обращать внимание на безусловную необходимость очистки от шлака поверхности шва после каждого прохода.

Сварка стыкового соединения без разделки кромок многопроходным швом в потолочном положении

Подобное соединение в таком пространственном положении встречается крайне редко. Выполнить качественно такой сварной шов весьма трудно, для этого необходима определенная тренировка. Сварка производится на обратной полярности.

Первый проход. Сварочный ток не должен быть слишком большим. Положение электрода должно соответствовать изображенному на рис. 41. Сварочная дуга должна быть короткой. Для обеспечения полного проплавления с обратной стороны электрод должен все время находиться в зазоре между свариваемыми кромками. Кроме того, такое положение электрода обеспечивает сплавление с корневыми кромками свариваемых пластин. При сварке используются возвратно-поступательные перемещения электрода.


Рис. 41. Положение электрода при сварке стыкового соединения без разделки кромок многопроходным швом в потолочном положении

Второй проход. Сварочный ток не должен быть слишком большим. При сварке необходимо поддерживать короткую дугу и производить небольшие колебательные перемещения электрода, выполняемые легкими скольжениями, следить за тем, чтобы поперечные колебания электрода не имели слишком большой ширины.

Сварка стыкового соединения со скосом кромок многопроходным швом в потолочном положении

Данный тип сварного соединения и условия, в которых она выполняется, часто встречается при сварке труб и металлоконструкций из листового проката.

Сварка стыкового соединения со скосом кромок многопроходным швом производится на обратной полярности с поперечными колебаниями электрода. Сварочный ток при первом проходе не должен быть слишком большим, но при этом должен обеспечивать гарантированное проплавление с обратной стороны. Положение электрода должно соответствовать изображенному на рис. 42. Выполнение первого, корневого, прохода аналогично сварке первого прохода в ранее рассмотренных соединениях. Лицевая поверхность сварного шва должна быть плоской. С обратной стороны должен образовываться небольшой валик.


Рис. 42. Положение электрода при сварке стыкового соединения со скосом кромок многопроходным швом в потолочном положении

Второй и последующие проходы. Сварочный ток должен быть несколько больше, чем при первом проходе. Применяется техника сварки с поперечными колебаниями электрода. Перемещения электрода в поперечном направлении должны производиться быстрыми движениями, с тем чтобы в центральной части сварного шва не получалась слишком большая выпуклость. Кроме того, траектория поперечных перемещений электрода не должна выходить за пределы ширины сварного шва.

Для предотвращения появления подрезов используется задержка электрода в крайних точках траектории поперечных колебаний. Необходимо помнить, что подрезы появляются в результате «вылизывания» дугой металла на поверхности пластины с последующим ненаплавлением электродного металла на это место.

Качество сварного шва

Сварным соединением называется неразъемное соединение двух и более деталей, которые выполнены при помощи сварки. В состав сварного соединения входят: сварной шов, зона термического влияния и примыкающие к ней участки основного металла.

Очень важно характеристикой сварного шва является их классификация, на основании которой определяется наиболее оптимальный метод сварки и выбираются ее режимы.

Сварной шов – это место сплава различных металлических элементов одной конструкции. Во время сварки металл в этом месте расплавляется, после чего при остывании кристаллизуется, обеспечивая надежную прочность и герметичность шва.

Сварной узел представляет собой часть сварной конструкции, в которой сварены примыкающие друг к другу элементы.

Сварной конструкцией называется металлическая конструкция, изготовленная из отдельных деталей или узлов с помощью сварки. Металл деталей, подлежащих соединению сваркой, называют основным металлом. Металл, подаваемый в зону дуги дополнительно к расплавленному основному металлу, называют присадочным металлом. Переплавленный присадочный металл, введенный в сварочную ванну, называется наплавленный металл.

Дееспособность сварного изделия определяется по типу сварного соединения, формой и размерами сварных соединений и швов, их расположением относительно действующих сил и плавностью перехода от сварного шва к основному металлу.

При выборе типа сварного соединения следует учитывать условия эксплуатации, которые могут быть статические или динамические нагрузки. Также необходимо брать во внимание способ и условия изготовления сварной конструкции.

Основные виды сварочных швов

В первую очередь все швы делят по способу соединения деталей. По данному признаку выделяют следующие виды швов:

  • стыковые – получаемые между заготовками, которые промыкаются друг к другу торцевыми поверхностями;
  • нахлесточные – получаемые за счет наложения деталей друг на друга с частичным перекрытием;
  • тавровые – получаемые за счет приваривания торцевой поверхности одной заготовки к плоскости другой заготовки;
  • угловые – получаемые между заготовками, расположенными под углом друг к другу, шов получается в месте примыкания деталей;
  • торцевые – получаемые за счет сваривания торцов заготовок.

Основные типы и конструктивные элементы швов сварных соединений для ручной дуговой сварки регламентирует ГОСТ 5264-80. Ниже рассмотрим более детально каждый вид сварочного соединения

Виды сварного соединения

                      Стыковые швы

Такие швы являются самыми распространенными видами соединения. Они используются при стыковке металлических листов или труб, которые перед процедурой сваривания должны быть надежно зафиксированы. Между деталями оставляют небольшой зазор, равный 1-2мм, который в процессе сварки заполняется расплавленным металлом.

Также различают односторонние и двухсторонние швы. При односторонней сварке шов формируется только на одной стороне деталей. В случае двухстороннего шва сварка проводится на обеих сторонах заготовок.

В зависимости от толщины свариваемых деталей для стыковых швов по-разному готовят сварочные кромки::

  • с отбортовкой – для деталей толщиной — до 4 мм;
  • без скоса – для деталей толщиной — 4…8 мм;
  • с V-образным скосом – для деталей толщиной — 3…60 мм;
  • с X-образным скосом – для деталей толщиной — 8…120 мм;
  • с K-образным скосом – для деталей толщиной — 8… 100 мм;
  • с криволинейным скосом – для деталей толщиной — 15…100 мм.

* Для тонких деталей возможна стыковая сварка без обработки кромок или с обработкой только на одной стороне.

 

                      Нахлесточные швы

При выполнении нахлесточных швов поверхности металлических деталей расположены параллельно и при этом частично друг друга перекрывают. Такие швы считаются самыми простыми и удобными для выполнения, поскольку детали лежат неподвижно и уже соприкасаются друг с другом местами, которые необходимо лишь заварить. При этом надо учитывать, что сварка швами внахлест всегда выполняется с двух сторон. Кромка каждой заготовки должна быть приварена к поверхности другой. Угол наклона электрода при выполнении сварки лежит в пределах 15o-45o. Если угол наклона начнет выходить за эти пределы, то шов наползет на одну из сторон стыка.

 

                      Тавровые швы

Тавровые швы выполняются привариванием торца одной заготовки к боковой поверхности другой заготовки и в разрезе напоминают букву «Т». В процессе сварки заполняется угол, который образуется между деталями, из-за чего появляется необходимость в обеспечении глубокого проплавления деталей. Обычно, это легко достигается путем применения автоматической сварки.

Тавровые швы всегда двухсторонние. Форма подготовленных кромок возможна без скоса и с одним или двумя скосами одной кромки, где обрабатывается только привариваемый торец. Без скоса можно сваривать детали небольшой толщины – от 2 до 40 мм. Для деталей толщиной от 8 до 100 мм следует производить обработка кромки.

При сваривании тавровых швов важно знать их особенность: получаемые швы в итоге прочнее основного металла. Поэтому перед сварочными работами нужно проводить расчеты по получаемому сопротивлению материалов. Это необходимо, чтобы в дальнейшем избежать неравномерной прочности деталей, разной стойкости к нагреву и охлаждению и другим скрытым дефектам.

 

                      Угловые швы

Данные шов относится к подвиду тавровых швов, но при этом угловые швы больше распространены, чем тавровые. По форме угловые швы напоминают букву «Г», где угол между деталями может быть любой, но чаще всего – прямой. При работе с угловыми швами главной проблемой является стекание металла по углу или с вертикальной поверхности на горизонтальную. Поэтому важно контролировать ровное ведение электрода, соблюдая углы наклона. Для сварки листов разной толщины рекомендуется держать электрод под углом 60o по отношению к более толстой заготовке. В результате чего, основное тепло приведется на более толстую деталь, а тонкая при этом не перегреется и не деформируется.

Угловые швы бывают односторонние и двухсторонние. Для двухстороннего шва сварка выполняется и на внутреннем, и на внешнем угле. Возможна сварка без обработки кромок или скосами. Скос может выполняться и с двух сторон одной кромки, где при этом вторая кромка не будет предварительно обрабатываться.

Необходимо помнить, что прочность угловых швов ниже прочности основного металла. Этот момент нужно учитывать при проектировании и проведении работ.

 

                      Торцевые швы

Торцевые швы применяются для сваривания деталей разной формы, прилегающими друг к другу боковыми поверхностями. Угол прилегания может находиться в пределах до 30градусов. Данная сварка хорошо подходит для работы, как с тонкими, так и с толстыми металлами. Перед сваркой осуществляется разделка кромок под односторонние скосы.

Торцевые швы отличаются высокой выносливостью к нагрузкам. Но при этом возможно попадание влаги или загрязнений между поверхностями деталей, что в будущем приведет к коррозии. Особенно это возможно при наличии непроваров.

 

Другие критерии классификации сварных соединений

Кроме сварочного соединения, швы классифицируются по другим параметрам:

  • по форме шва: выпуклые и плоские швы,
  • по протяженности: сплошные и прерывистые швы,
  • по положению свариваемых поверхностей в пространстве: горизонтальные, вертикальные, потолочные и нижние швы и другие классификации.

 

Положение сварного соединения 


Нижнее положение                    Горизонтальное                   Вертикальное                          Потолочное положение

 

Перед началом работ всегда важно определить вид сварного шва по всем параметрам, что поможет подобрать оптимальную технику выполнения сварки в каждом конкретном случае. Например, сварка углового соединения в вертикальном положении потребует более тщательной подготовки, чем сварка стыкового шва в нижнем положении.

 

Методы контроля качества сварных соединений

Контроль сварных швов является важным ключевым компонентом для  обеспечения надёжного и качественного соединения деталей и работоспособности конструкции. После окончания сварочных работ проводится обязательная проверка качества сварных швов. Контрольная процедура дает возможность выявить дефекты, влияющие на прочность соединения и эксплуатационные характеристики готового изделия. Своевременное обнаружение дефектов позволяет избежать аварийных ситуаций и повысить безопасность эксплуатации конструкции.

На крупных производственных предприятиях контроль сварочных швов проводит отдельный специалист-контролер. Но на небольших производствах в штате часто такая единица отсутствует и проверку проводит сам сварщик.

1. Предварительный контроль – здесь происходит проверка поверхности металла, качества электродов, флюсов, присадочной проволоки и газовых смесей. Затем, непосредственно перед тем как приступить к сварке, происходит контроль качества сборки, подготовки рабочего места и осмотр состояния сварочной аппаратуры.

2. Контроль сварки – это проверка правильности выбранного режима и соблюдения технологии в процессе сваривания деталей.

3. Контроль качества – он происходит по окончании процесса сваривания, который осуществляется различные способами, приведенные ниже.

4. Внешний осмотр – здесь происходит визуальный осмотр деталей на наличие видимых дефекты.

Процедура проверки качества сварных соединений проводится в соответствии с ГОСТ и другими нормативными документами. В них указаны допустимые погрешности. По завершению измерений составляется акт и протокол испытаний, в котором указываются результаты. Зачастую, визуального осмотра сварного шва недостаточно, так как дефекты могут быть скрытыми. Поэтому на практике применяют различные способы контроля качества сварных швов, которые подробно описаны ниже.

Визуальный контроль сварных швов

Самый простой, быстрый и недорогой способ осмотра шва это визуальный осмотр. Контроль качества сварных швов проводят на наличие видимых трещин, сколов или других дефектов. Также внимательно изучают шов. Он по всей длине должен иметь одинаковую ширину и высоту. Недопустимо наличие непроваренных участков, наплывов или складок. Перед осмотром с поверхности шва удаляют окалины, шлак и другие загрязнения.

При обнаружении дефекта проводится работа по его изучению, делаются замеры, которые позволяют определить качество сварного соединения. Если это возможно, дефекты устраняются, а изделие отправляется на дополнительную проверку с использованием других методов контроля. Для более глубокой проверки применяются другие виды контроля сварного шва.

Капиллярный контроль сварных швов

Качество сварки может проверяться при помощи капиллярного метода, который основан на свойстве жидкости проникать в мельчайшие раковины и трещины. Особенностью данного метода является то, что он позволяет выявить скрытые дефекты, которые трудно определить с помощью визуального осмотра. Капиллярный метод относительно простой и недорогой, для проведения таких испытаний не нужно применять сложное, дорогостоящее оборудование.

При использовании данного метода используются специальные вещества, которые имеют небольшое поверхностное натяжение  — пенетранты. Они способны легко проникать даже в небольшие щели, при этом визуально они видны. Проникая в небольшие трещинки, они окрашивают их, делая видимыми для человеческого глаза. Самые чувствительные пенетранты позволяют обнаружить дефекты диаметром от 0.1 микрон.

Существует множество рецептов пенетрант. В основном они изготавливаются на основе воды, керосина или другой жидкости с небольшим поверхностным натяжением. Этот метод проверки сварных соединений по праву считается одним из самых практичных и эффективных.

Метод пневматической проверки

Пневматический контроль герметичности выполняется с помощью сжатого воздуха. Он применяется для контроля сварных швов трубопроводов, которые работают под высоким давлением. Для этого изделие погружают в ванную с водой, после чего внутрь его подают сжатый воздух до тех пор, пока давление внутри изделия не будет превышать рабочее на 30-50%.

Если речь идет о крупногабаритном изделии, которое невозможно поместить в ванную с водой, то его покрывают специальным пенным раствором, после чего внутрь подается сжатый газ, который будет свидетельствовать о дефекте наличием на поверхности пузырьков. 

Химический метод контроля

Химический метод используется для контроля качества герметичности сварных швов трубопроводов и элементов гидравлических систем. Он базируется на свойствах индикаторного вещества изменять свой цвет за счет химического воздействия с контрольным веществом.

Поверхность шва зачищается, на нее наносится фенолфталеиновый раствор. Обработанное место накрывается тканью, пропитанной азотнокислым серебром. Таким образом, можно определить наличие локальных течей, так как в этих местах фенолфталеин приобретает красный цвет, а серебро – серебристо-черный.

Такой метод проверки качества сварных швов достаточно прост. Для контроля не задействуется дорогостоящее оборудование, не требуются специальные знания и навыки персонала. Но у него имеется чувствительность из-за неустойчивости индикаторных пятен.

Радиационный контроль сварных соединений

В радиационный методе выявления внутренних дефектов используют гамма-лучи, которые возникают при самопроизвольном распаде элементов радия или урана. Проверяемая поверхность подвергается воздействию гамма лучей, которые проходят сквозь металл. Если имеют место пустоты, неоднородности или другие дефекты, они отражаются на пленке. Этот метод считается одним из наиболее эффективных. Он позволяет выявить даже небольшой, скрытый для глаза дефект и составить максимально точную картину качества сварного соединения.

Для контроля сварных швов применяют искусственные радиоактивные вещества, называемые изотопы, которыми являются, тулий, кобальт или цезий. Изотопы действуют в течение более или менее длительного времени, например: кобальт – 5 лет, цезий — 33 года, тулий — 129 дней.

Радиографический метод используется не достаточно широко, так как имеет существенные недостатки – одним из которых является необходимость в сложном и дорогостоящем оборудовании. Сканирование должен проводить специально обученный специалист, при этом предъявляются высокие требования к соблюдению техники безопасности. Также с оборудованием нельзя работать длительное время, так как гамма-лучи негативно влияют на организм человека.

Ультразвуковой метод контроля

Ультразвуковой метод контроля основан на способности ультразвуковых волн отражаться от границы раздела двух сред, обладающих разными акустическими свойствами. Раковины, сколы и другие дефекты имеют свои акустические особенности, которые фиксируются с помощью специального оборудования. Так, ультразвук, отразившийся от нижней поверхности изделия возвращается обратно к датчику, затем преобразовывается в электрическое колебание и подается на экран электронно-лучевой трубки. При наличии дефектов ультразвуковые колебания начнут искажаться, которые на экране будут видны в виде всплеска. По характеру и размерам искажений определяют виды и размеры дефектов.

Ультразвуковой метод востребован, так как он достаточно простой, эффективный и бюджетный. Для его применения не нужно сложное, дорогостоящее оборудование, не нужно учитывать физико-химические свойства материалов. К недостаткам ультразвукового метода относят то, что проверку может проводить специалист, имеющий специальные знания и навыки.

Магнитная дефектоскопия

Сущность способа основана на использовании магнитного рассеяния, возникающего над дефектом при намагничивании проверяемого изделия. Каждый металл имеет определенную степень магнитной проницаемости. Если он неоднородный, при прохождении сквозь металл магнитного поля оно искажается. При наличии в сварном шве дефекта магнитный поток будет огибать его, создавая при этом поток рассеивания.

Предварительно, поверхность шва посыпают специальным ферримагнитным порошком, который позволяет визуализировать магнитные линии. Если они ровные, значит, сварное соединение признается качественным. При наличии дефектов линии будут иметь видимые искажения.

Данный метод эффективен, но он может применяться только для работы с ферримагнитными материалами, что является его главным недостатком. Следовательно, с его помощью невозможно проверить качество сварки алюминия, меди и некоторых других металлов. Еще один недостаток – данный метод достаточно дорогой.

Люминесцентный способ контроля

Метод основан на свойстве веществ под названием люминофоры. Они светятся при действии ультрафиолетовых лучей, благодаря чему их применяют для обнаружения поверхностных дефектов, таких как мельчайшие трещины. Перед контролем участок шва необходимо очистить от загрязнений, затем нанести на него жидкий раствор люминофора. После выдержки в течение 10-15 мин раствор смывают, изделие сушат и облучают ультрафиолетовыми лучами в затемненном помещении. По свечению оставшегося в шве раствора обнаруживают дефектные места.

 

Заключение

Технологии проверки качества сварных швов приблизительно одинаковы для всех видов свариваемых материалов:

  • Стали,
  • Нержавеющей стали,
  • Алюминия,
  • Чугуна,

и некоторых других цветных металлов. Наибольшие сложности вызывает проверка результатов ручной дуговой сварки электродами, немного проще проверить результаты газосварки.

Более высокое качество сварного шва обеспечивает сварка полуавтоматом, выполняемая в среде углекислого газа. Настолько же качественными получаются швы, выполненные во многих современных технологиях автоматической сварки. Швы, выполненные в атмосфере аргона, отличаются мизерным количеством шлака и окалины, полноценным составом  наплавляемого металла. Проверка таких сварочных соединений показывает лучшие, чем при ручной сварке электродами, результаты.

В полевой обстановке, на стройплощадке, условия выполнения сварочных работ хуже, чем в производственном цеху, уровень качества швов также не так высок. Проверка в полевых условиях сложнее. Эти и многие другие факторы учитывают при разработке проектов тех объектов, где применяется сварка, а  качественно запроектированный объект всегда будет доведён до завершения.

 

 

 

Не удается найти страницу | Autodesk Knowledge Network

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}}/500 {{l10n_strings.TAGS}} {{$item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}  

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}  

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Равнопал. Тройник под сварку встык / разъемный тройник |

ФИТИНГИ И ОТВОДЫ ДЛЯ СВАРКИ
НАИМЕНОВАНИЕ ПРОЕКТА / ЗАКАЗЧИК ДИНАМИЧЕСКАЯ КУЗОВА И ФИТИНГИ ПОСТАВЛЯЕМЫЕ СОРТА МЕСТО ГОД
INDORAMA ФИТИНГИ И ОТВОДЫ ДЛЯ ПРИВАРНЫХ СОЕДИНЕНИЙ BW — Тройник под сварку встык A105 — A350 LF2 — A106B- A333 GR6 — A234 WPB — A420 WPL6 — A182 F304L НИДЕРЛАНДЫ 2015
СИСТЕМА ЭКСПОРТА ГАЗА И КОНДЕНСАТА ФИТИНГИ И ОТВОДЫ ДЛЯ СТЫКОВОЙ СВАРКИ BW — Тройник для стыковой сварки 9017 A182 F316L — A182F44
A182 F44, A312S31254, A182 F316L,
A105.N, A105 HDG, A350 LF2, A106
Gr.B, A106 Gr.B HDG, A333 Gr.6, A234 WPB
КУВЕЙТ 2015
ПРОЕКТ РАЗВИТИЯ ГАЗА ФИТИНГИ ДЛЯ СВАРКИ, ОТВОДЫ ИНКОЛОЙ 825 ИНДОНЕЗИЯ 2015
КАЧЕСТВЕННАЯ ТОРГОВЛЯ МАРКА -SAUDI ARAMCO ФИТИНГИ ДЛЯ ПРИВАРНЫХ СОЕДИНЕНИЙ, SW ОТВОДОВ, Тройник для стыковой сварки равномерный A105, A105 GALV, A350 LF2, A182F304L,
A182F316L, A403 WP316L, A182F321,
A182F44, A182F5, CU90 / 10 UNS C70610
САУДОВСКАЯ АРАВИЯ 2014-2015
ПРОЕКТ НЕФТЕПЕРЕРАБОТЧИКА ГАЗА ФИТИНГИ ДЛЯ СВАРКИ, ОТВОДЫ BW-THRD, ОТВОДЫ ДЛЯ ЗАЖИМА A105, A105 HDG A350 LF2, A182 F304 /
304L, A182F316 / 316L, A182F11,
A105N, A106B, A234WPB, A333
БЕЛЬГИЯ 2014-2015
МААДЕН ВААД АЛЬ-ШАМАЛЬ ФОСФАТ ФИТИНГИ И ОТВОДЫ ДЛЯ ПРИВАРНЫХ СОЕДИНЕНИЙ SW-BW A350LF2, F304L, F316L, F904L,
A182F60, ALLOY20
A105N, A106B, A234WPB,
САУДОВСКАЯ АРАВИЯ 2014-2015
СЕВЕРО-ЗАПАДНЫЙ РЕДУВОДЕР ПРИВАРНЫЕ ФИТИНГИ SW & NPT A350LF2, A420WPL6,
A182F304L-F316L, WP304L, HAST, C276
КАНАДА 2014-2015
ПРОЕКТ КАНАДЫ СЗР ФИТИНГИ ДЛЯ СВАРКИ СТЫК, ОТВЕТЫ SW & NPT, Тройник для стыковой сварки F304L / 316L / 317L / 347H / 321H
F11 / F22 / UNS08825
КАНАДА 2014-2015
ДЕНИЗ 2 ПРОЕКТ ПРИВАРНЫЕ ФИТИНГИ SW & NPT A 105, A105 GALVA, A350LF2, A333 Gr6,
A234WPB-A420WPL6, F304L, WP304L
АЗЕРБАЙДЖАН 2014
ADMA OPCO ABU DHABI ФИТИНГИ ДЛЯ СВАРКИ, ОТВОДЫ BW-THRD, БОКОВЫЕ, ВЫХОДЫ A694 F52, A182F321, A182F316, A105.N,
A312TP316L, A312 TP321, A182 F53
СУПЕР ДУПЛЕКС
ОАЭ 2014
SAUDI ARAMCO HOLLAND ФИТИНГИ ДЛЯ ПРИВАРИВАНИЯ ПОЛОСА CuNi 9010 САУДОВСКАЯ АРАВИЯ 2014
MISSAN OIL Comp.PETROCHINA IRAQ МУФТА API L80 ИРАК 2014
SAUDI ARAMCO ФИТИНГИ ДЛЯ ПРИВАРНЫХ ФИТИНГОВ, ОТВОДЫ BW-SW-THRD MONEL 400, A182 F5, A182F316L,
A182F304L, A105
САУДОВСКАЯ АРАВИЯ 2014
НЕФТЬ И ГАЗ ФИТИНГИ И ОТВОДЫ ДЛЯ СВАРКИ СТЫКОВ BW, Тройник для стыковой сварки, равный UNS NO 6625 БРАЗИЛИЯ 2014
ПРОЕКТ ШИДДИРГАНГ ФИТИНГИ ДЛЯ ПРИВАРНЫХ ФИТИНГОВ, ОТВОДЫ BW-SW-THRD БАНГЛАДЕШ 2014
САУДОВСКАЯ АРАБСКАЯ ГОРНАЯ КОМПАНИЯ SW — BW A105, A105 GALV, A350LF2A182F304L,
A182F316L
САУДОВСКАЯ АРАВИЯ 2014
ПРОЕКТ ГАЗОТУРБИННОЙ ЭЛЕКТРОСТАНЦИИ СВАРНЫЕ ФИТИНГИ И ОТВЕТКИ SW, Тройник для стыковой сварки, равный A105, A182F316L ИРАК 2014
ГРУПО КУНАДО ФИТИНГИ ИЗ КОВАНЫЙ СТАЛИ A105, A182F304L, A182F316L, F321, ТУРЦИЯ 2013-2014
ALSTOM ФИТИНГИ И ОТВОДЫ ИЗ КОВАННОЙ СТАЛИ A105, A182F304L, A182F316L

МАРОККО, ЮЖНАЯ АФРИКА

2010

Трубки из нержавеющей стали: сварные Vs.Бесшовные

При сравнении различных типов труб из нержавеющей стали необходимо учитывать несколько факторов. Сегодня мы рассмотрим один из этих факторов, чтобы помочь вам понять разницу между сварными и бесшовными трубами. Как и во многих других металлических изделиях, метод формовки по-разному меняет свойства готовой продукции. От прочности и коррозионной стойкости до скорости и стоимости изготовления — сварные и бесшовные изделия идеально подходят для решения конкретных задач.

Сварные нержавеющие трубки

Сварные трубы изготавливаются путем скатывания полос из нержавеющей стали в трубу с последующей сваркой по всей ее длине. После сварки сварной шов или валик можно обработать методами холодной прокатки и ковки или оставить как есть.

Холодная штамповка приводит к более гладкой поверхности и более жестким допускам. Сварные трубы можно даже вытягивать как бесшовные трубы, чтобы обеспечить лучший сварной шов и качество поверхности.Сварные трубы также могут изготавливаться с более тонкими стенками на трубках большего диаметра по сравнению с бесшовными трубами. Поскольку сварные трубы требуют меньшей обработки, их обычно быстрее производить, а также они дешевле, чем бесшовные трубы.

Нижняя сторона сварных трубок бывает при высоком давлении и толстостенных стенках. Длинный сварной шов вызывает точку концентрации напряжений, снижая номинальное давление до 80% от сопоставимых бесшовных труб. Кроме того, нержавеющий материал, используемый для изготовления сварных трубок, должен быть достаточно тонким для эффективного катания.Следовательно, толстостенные трубы менее целесообразны, чем сварные трубы.

  • Верхняя часть
    • Лучшее время выполнения заказа
    • Более жесткие допуски
    • Более низкая стоимость
    • Более тонкая стенка, применение большого диаметра
    • Доступна более длинная длина
    • Более стабильная концентричность
  • Нижняя стена80
  • Незначительные примеси
  • Менее устойчивы к коррозии
  • Концентрация напряжений

Бесшовные трубки из нержавеющей стали

Для изготовления бесшовных труб первым шагом является формирование бесшовной трубы, известной как полая / материнская труба.Начиная с цельной круглой заготовки, заготовка сначала просверливается, затем нагревается и проталкивается через узкую матрицу. Центр полой трубы во время этого процесса поддерживается длинным стержнем, известным как оправка. Далее материнская трубка пропускается через пильгерную мельницу. Эта машина использует пару прокатных штампов и вторую оправку для удлинения и уменьшения трубы до нужного размера.

Этот процесс может быстро уменьшить поперечное сечение трубы на 90% за один проход.Однако пилинг не подходит для труб меньшего диаметра.

Для трубок малого диаметра лучшим вариантом будет вытяжка. В этом процессе материнская трубка обжимается для захвата за один конец, а затем протягивается через сужающую матрицу. Тем самым трубка сужается и удлиняется.

Этот процесс может потребоваться повторить несколько раз для достижения необходимого уменьшения размера.

Бесшовные трубы могут выдерживать более высокое давление, потому что у них нет большой точки концентрации напряжений, как у сварных труб.Кроме того, бесшовные трубы часто имеют более чистую поверхность, что означает, что они менее подвержены точечной коррозии и коррозии. Однако для изготовления бесшовных труб необходимо еще много этапов. Из-за этого изготовление бесшовных материалов требует гораздо больше времени и может быть дороже, чем сварные аналоги.

  • Верхняя сторона
    • Превосходная коррозионная стойкость
    • Более высокое номинальное давление
    • Долговечность
    • Высокая степень чистоты
    • Без дополнительных испытаний
    • Идеально для критических применений
  • Нижняя сторона
    • Более высокая стоимость не идеальна для тонкостенных труб
    • Более высокая сложность производства
    • Более длительное время выполнения заказа

Мы будем рады услышать от вас

Спасибо за чтение! Мы надеемся, что эта статья помогла вам понять разницу между бесшовными и сварными трубами.Если у вас есть конкретные вопросы, связанные с трубками (или с любым из наших продуктов в этом отношении), не стесняйтесь обращаться к нам ниже. Замечательная команда по работе с клиентами Mako будет рада помочь!

Тройники с равным сварным швом из нержавеющей стали Производители и завод Китай — Индивидуальные цены на продукцию

Фитинги A403 WP 304L, размер Фитинги Радиус изгиба EN
Технические характеристики ASTM A403 / ASME SA403 WP 304L
ASTM A403 WP 304L Фитинги Тип DN15-DN12003 Бесшовные фитинги для стыковой сварки: 1/2 «- 10»
Сварные фитинги для стыковой сварки: 1/2 «- 48»
Размеры ASME / ANSI B16.9, ASME B16.28, MSS-SP-43, BS4504, BS4504, BS1560, BS10
Толщина фитинга СЧ20, СЧ30, СЧ40, СТД СЧ50, СЧ60, XS, СЧ80, СЧ200, СЧ220, СЧ240, СЧ240 , XXS доступны с NACE MR 01-75
Фитинги под сварку встык Типы Бесшовные / сварные / сварные / сборные
Торцевые Резьбовые, под сварку, JIC
Соединение Сварка
R = 1D, 2D, 3D, 5D, 6D, 8D, 10D или фитинги по индивидуальному заказу
Диапазон размеров ½ «NB до 24» NB в Sch 10s, 40s, 80s, 160s, XXS.(DN6 ~ DN100)
Происхождение Западная Европа / Япония / Индия / США / Корея
Ключевые рынки и отрасли производства фитингов
Специализированный производитель ASTM A403 WP 304L Equal Tee, Ниппель, колено с длинным радиусом, переходная тройка, колена, обжимной ниппель, колено с коротким радиусом, редуктор, ниппель с цилиндрической головкой, колено 90 градусов, концентрический редуктор, редукционный ниппель, колена 45 градусов, эксцентричный редуктор, изгиб, колено 180 градусов, торцевая крышка, 1D Локоть, 3D-локоть, Stubend, 5D-локоть, Cap, Piggable Bend, Long Stubend, Tee, Short Stubend, Long Radius Bend.
Производители фитингов
  • Raccortubi SpA, Италия

  • Erne Fittings, Австрия

  • Melesi, Италия

  • MegaF, Италия

    Tempos , Италия

  • BENKAN Corporation, Япония

  • BKL- Thai Benkan, Таиланд

  • Lame Srl, Италия

  • Metal far, Италия

Испытание стыков 10204/3.1B
Сертификат сырья
Отчет о 100% радиографических испытаниях
Отчет о проверке третьей стороной и т. Д.
Приложение
  • Для соединения труб в нефтяной, энергетической, химической, строительной, газовой, металлургической, судостроительной и т. Д.

  • Фитинги Schedule 10 представляют собой экономичную альтернативу для систем с низким давлением.

  • Фитинги Schedule 40 имеют более толстую стенку для применений с более высоким давлением.

Сертификаты испытаний материалов (MTC) согласно EN 10204 3.1 и EN 10204 3.2, Сертификаты испытаний, подтверждающие NACE MR0103, NACE MR0175

Размеры и допуски на размеры прямых тройников, от NPS 1/2 до NPS 48 , ASME B16.9

NPS O.D.
D
от центра до конца
C
От центра до конца
M
1/2 21,3 25 25
3/4 26.7 29 29
1 33,4 38 38
42,2 48 48
48,3 57 57
2 60,3 64 64
73 76 76
3 88,9 86 86
101.6 95 95
NPS O.D.
D
от центра до конца
C
От центра до конца
M
4 114,3 105 105
5 141,3 124 124
6 168,3 143 143
8 219,1 178 178
10 273 216 216
12 323.8 254 254
14 355,6 279 279
16 406,4 305 305
18 457 343 343
20 508 381 381
22 559 419 419
24 610 432 432
NPS О.Д.
D
от центра до конца
C
От центра до конца
M
26 660 495 495
28 711 521 521
30 762 559 559
32 813 597 597
34 864 635 635
36 914 673 673
38 965 711 711
40 1016 749 749
42 1067 762 711
44 1118 813 762
46 1168 851 800
48 1219 889 838

Размеры указаны в миллиметрах, если не указано иное.Толщина стенки (t) должна быть указана заказчиком.
Размер выходного отверстия (M) для NPS 26 и больше рекомендуется, но не требуется.

Тройники АСМЭ Б16.9 допусков размеров прямые

Номинальный размер трубы

1/2 до 2½

от 3 до 3½

4

от 5 до 8

от 10 до 18

от 20 до 24

от 26 до 30

32-48

Внешний диаметр
на скосе (D)

+1.6
-0,8

1,6

1,6

+2,4
-1,6

+4
-3,2

+6,4
-4,8

+6,4
-4,8

+6,4
-4,8

Внутренний диаметр на конце

0,8

1,6

1,6

1,6

3.2

4,8

+6,4
-4,8

+6,4
-4,8

От центра до конца (C / M)

2

2

2

2

2

2

3

5

Толщина стенки (т)

Не менее 87.5% от номинальной толщины стенки

Допуски на размеры указаны в миллиметрах, если не указано иное, и равны ±, если не указано иное.

Примечание:
MSS SP-43 распространяется только на фитинги из нержавеющей стали, сваренные встык, предназначенные для использования с трубами Schedule 5S и 10S, и заглушки, подходящие для использования с трубами Schedule 40S, как определено в ASME B36.19. Размеры и допуски на размеры, определенные в MSS SP-43, по существу такие же, как и в спецификациях ASME B16.9 от NPS 1/2 — NPS 24.За исключением внешнего диаметра на фаске.

Сверхпрочный и универсальный отвод для сварки швов

О продуктах и ​​поставщиках:
 

Профессионально и профессионально завершите свои сантехнические проекты с помощью. Отвод для сварки швов , предлагаемый на сайте Alibaba.com, подходит для трубопроводов различных размеров и форм. Независимо от того, используется ли он в линиях подачи питьевой воды или в системах отопления, расширение. Отвод для сварки швов прочен и стабилен, он отлично справится с вашими задачами.Обязательно просматривайте невероятное. Отвод для сварки швов , производимый мировыми гигантами сантехнической промышленности, обеспечивает надежные решения для сантехники.

. Отвод для сварки швов , изготовленный из сверхпрочных материалов, таких как нержавеющая сталь, медь, ПВХ, латунь и черный цвет, разработан, чтобы сделать ваши водопроводные системы более надежными и эффективными. Выберите из огромного выбора. отвод для сварки швов , включая нажимные фитинги, резьбовые, ковкие, щетки, штуцеры, тройники, обжимные, муфты, отводы, переходники и многое другое.Файл. Отвод для сварки швов. Доступны , они просты в установке, обслуживании, прочны и гибки.

Alibaba.com предлагает товары высокого качества. отвод для сварки швов различной длины и размера, от коротких 5-футовых деталей до 500-футовых рулонов. Находить. отвод для шовной сварки с высокой химической стойкостью и способностью выдерживать высокие температуры. Идеально подходит для обработки холодной и горячей воды, промышленных жидкостей и сточных вод. Файл. Отвод для сварки швов может быть присоединен химическим способом, с резьбой, сваркой или механическим соединением для создания герметичных соединений.

Вы - домашний мастер или профессионал, стремящийся к эффективному выполнению своих сантехнических проектов? В магазине Alibaba.com вы найдете широкий ассортимент товаров для тяжелых условий эксплуатации. отвод для сварки швов и предложения для оптовых продаж. Откройте для себя оцинкованные изделия различных размеров, специально созданные для различных целей, в том числе для монтажа коллекторов насосов с внутренним диаметром и бытовых трубопроводов.

Разница между SW и BW в трубопроводах

Сварка втулкой (SW) — это метод сварки вставки трубопровода, при котором образуются угловые швы.Обычно он используется для сварки малых диаметров, обычно используется DN50 или меньше, конечно, размер может быть до DN100 4 ″ в стандартах.

Чертеж для сварки внахлест

1. приварной фланец 2. сварной шов 3. трубопроводная арматура

Производство раструбной сварки обычно включает фланцы, сварные раструбом, отводы для раструбной сварки, тройники для раструбной сварки, муфты для раструбной сварки и так далее.

Фланец под сварку внахлест тройник угловой

Стыковая сварка (BW) — это сварка трубопроводной арматуры, трубопроводной арматуры, фланцев или труб.

Рисунок под сварку встык

1. приварной фланец 2. сварной шов 3. трубопроводная арматура

Этот вид сварки является наиболее распространенным методом соединения труб. Обычно этот вид продукции включает стальные трубы, фланцы под приварку, отводы под приварку встык, тройники для стыковой сварки и переходники для стыковой сварки…

Труба стальная фланец тройник под приварку колено

Различия между сваркой муфтой и стыковой сваркой заключаются в следующем:

1.Диаметр:

Приварка внахлест подходит для небольших диаметров, этот вид сварки обычно подходит для размеров ниже DN50.

Стыковая сварка подходит для широкого диапазона размеров.

2. конец:

Нормальная толщина стенки при стыковой сварке должна быть выполнена со скосом 30 ~ 37,5 °, что удобно для сварки и заполнения сварочного шва. Конечно, при сверхтолщине стенки стык должен быть скошен.

Приварка внахлест не требует процесса, подходит для прямой сварки.

3. Сварной шов:

SW — это угловые швы.

Швы BW — это стыковые швы, поэтому сварка предъявляет высокие требования.

4. неразрушающий контроль:

Неразрушающий контроль при сварке муфтой — это испытание магнитными частицами или испытание на проплавление, нержавеющая сталь — испытание на проплавление, а углеродистая сталь — испытание магнитными частицами.

При стыковой сварке используется 100% рентгеновский контроль.

Китай Тройник с равным сварным швом из нержавеющей стали Производители и поставщики — оптовая торговля фабрикой

1. Введение в продукт

ASTM A234 WPB SCh50 EQUAL Тройник с стыковой сваркой в ​​основном используется для изменения направления жидкости в трубопроводе.

2. Наш тройник, приваренный встык, имеет следующие преимущества:

Тройник — это тип фитинга, предназначенный для соединения водопроводных труб. С помощью тройника сантехник может объединить или разделить поток двух отдельных труб. Обычно для соединения труб одного диаметра используется стандартный тройник. Однако тройник также может использоваться для соединения труб разного диаметра, если в его состав входит переходник. Наши тройники для труб могут изготавливаться из самых разных материалов, таких как углеродистая и легированная сталь, в зависимости от требований различных областей применения.Кроме того, он может быть изготовлен в соответствии с широким спектром стандартов, таких как ASME, DIN, JIS, EN, ГОСТ и т. Д., Чтобы удовлетворить требования международных клиентов.

3. Спецификация продукта

продукты 9025 механическая обработка, нефтяная промышленность и т. д.

OD

1/2 » — 48 «

WT

SCh20-SCh260 STD XS XXS

Место происхождения

Китай

Тип

Тройник бесшовные, сварной тройник

Применение

жидкость и газ

Применение

Техника

толкание, литье, ковка, подавление и т. д.

Проверка качества

Полная функция проверки, состоит из радиографического контроля, магнитных частиц, ультразвукового дефектоскопа, металлографического анализа, химического эксперимента, механической емкости, ударного гидростатического испытания, спектрального прямого считывания, обнаружения спектрального анализа, инфракрасного излучения. -красный Мониторинг и т. д.

Цена

конкурентоспособная

Порт

порт xingang tianjin

4.Применение продукта

Тройник, приваренный встык, в основном используется при установке труб для соединения двух труб одинакового или разного номинального диаметра.

5.Квалификация продукта



6.Доставка, отгрузка и обслуживание

Что такое гарантия: что вы сделаете их такими же хорошими, как мы?

A: Мы можем отправить вам 1 ~ 3 образца образцов для утверждения, если качество в порядке, мы продолжим наши дела.Мы всегда проверяем все детали, показанные на чертежах, и можем предложить вам отчет о проверке.

Q: Когда я получу расценки и информацию?

A: Наш продавец процитирует вам его в течение 24 часов.

В: Что делать, если у меня нет рисунка?

A: пришлите нам фотографии для проверки и образец, мы сделаем чертеж в формате CAD, Proe, UG или Solidworks для вашего утверждения.

Q: Как долго я получу ваши образцы?

A: в зависимости от материала и конструкции, от 5 до 10 дней.

Q: Каков ваш минимальный объем заказа (MOQ)?

A: 1 шт., Небольшие объемы заказа приветствуются.

Q: Как вы заботитесь о логистике?

A: Мы очень тесно сотрудничаем с логистическими брокерами, чтобы всегда получить самое безопасное и экономичное решение

в отношении экспресс-доставки, авиаперевозок или морских перевозок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *