Машины шовной сварки
Продажа электросварочного оборудования со склада (СПб, Москва, Челябинск, Ростов-на-Дону, Казань) от производителя, производство на заводах-изготовителях и поставки.
Прайс-листы с ценами на машины шовной сварки запрашивайте в отделе сварочного оборудования.
Машина шовной сварки используется для соединения изделий из низкоуглеродистых и нержавеющих сталей, а также титановых и алюминиевых сплавов путем создания прочноплотного продольного и поперечного прерывистого или непрерывного сварного шва. Шовная сварка иногда называется роликовой из-за того, что электроды, используемые в процессе сварки, имеют форму роликов. Этот тип сварки является разновидностью контактной точечной сварки, когда отдельные точки, называемые литой зоной, перекрывают одна другую или расположены в непосредственной близости.
Аппарат шовной сварки используется для создания нахлесточных сварных швов при ремонте топливных баков, бойлеров, бочек и других металлических емкостей.
Специалисты различают три способа шовной сварки:
- непрерывный;
- прерывистый;
- шаговый.
- Непрерывный способ шовной сварки выполняется при безостановочном движении свариваемых деталей и не выключаемом сварочном токе. Толщина металлических листов, из которых изготовлены детали при использовании этого способа сварки, не превышает 1 мм. Обычно применяется для сварки деталей, изготовленных из малоуглеродистой стали. Используется данный способ достаточно редко из-за сильного перегрева свариваемых деталей при контакте с роликовыми электродами.
- Прерывистый способ шовной сварки выполняется при безостановочном движении свариваемых деталей и прерывистом включении сварочного тока. Этот способ позволяет осуществлять сварку металлических листов толщиной до 3 мм и является наиболее востребованным, так как позволяет сваривать детали без их перегрева. Достигается такой эффект периодическим отключением сварочного тока во время непрерывного движения свариваемых деталей. В результате, при импульсном включении тока образуется точечная литая зона. Регулируя частоту вращения роликовых электродов и продолжительность импульсов тока, сварщик добивается перекрытия литых зон, то есть шов получается герметичным.
- Шаговый способ шовной сварки осуществляется, если движение свариваемых деталей прерывисто, а включение тока производится только во время остановки. В этом случае величина сварочного тока очень велика и превышает значения, используемые при других способах шовной сварки. Шаговый способ применяется для сварки деталей из плакированных металлов, то есть когда основной металл или сплав защищен слоем другого металла, и алюминиевых сплавов. Толщина металла свариваемых деталей достигает 3 мм.
Конструктивно машина шаговой сварки состоит из сварочного трансформатора и механизма вращения роликовых электродов, оборудованного электроприводом. Система токоподвода вместе с электродами образует две роликовые головки – нижнюю и верхнюю. Верхний электрод перемещается с ползуном механизма сжатия, действующего от пневмопривода. Если в процессе сварки используется наружное охлаждение, то машина точечной сварки комплектуется корытом для слива воды. Существуют конструкции машин, способные выполнять только продольные или поперечные сварочные швы. Однако в некоторых современных моделях предусмотрена возможность переналадки роликовых головок для выполнения обоих видов сварных швов. Электроды для роликовой сварки изготавливаются из бериллиевой, хромистой или кадмиевой бронзы, а также из других сплавов. Их диаметр, в зависимости от назначения аппарата шовной сварки, может быть от 350 до 450 мм, а ширина рабочей поверхности – от 4 до 10 мм.
Что собой представляет роликовая сварка?
Роликовая сварка – это вид сваривания, при котором конструкции объединяются швом, полученным в результате подведения тока к крутящимся дисковым электродам и применения силы сжатия. Шов состоит из ряда точек сваривания. Контактная шовная сварка похожа на технологию точечного сваривания, но вместо конических электродов в ней используются ролики.

Схема роликовой сварки.
Ролики во время работы постоянно катаются по линии шва, что заставляет его более плотно прижимать соединяемые части, а также делает его надежно защищенным от влаги и газов. Отличительной особенностью данного вида сваривания, является хотя бы один электрод в виде ролика, катающийся по шву во время работы.
Роликовая сварка чаще всего используется для соединения труб из металлических листов, герметичных камер и др. Шовная сварка очень удобна при сваривании тонких металлических листов. Такой вид сваривания является наиболее востребованным в машиностроении, при создании металлоконструкций и т. д. Максимальная производительность свариваемого шва иногда может достигать 1 км/ч.
Механизмы для шовной роликовой сварки

Схема машины для шовной сварки.
Специальная техника для роликового сваривания практически полностью автоматизирована. Машины для двустороннего сваривания бывают однороликовые, двуроликовые и многороликовые. Каждый станок шовной сварки имеет предназначенные для него электроды специальной формы. Такая сварка позволяет создавать прямые швы немалой длины на расстоянии от начала шва, которое может позволить вылет устройства.
Двусторонняя двуроликовая установка шовной сварки способна выполнять вертикальные и горизонтальные швы.
Вертикальное расположение роликов можно использовать для сваривания изделий в форме цилиндра.
Чтобы соединить изделия при помощи шовного сваривания, необходимо протянуть их между роликами. По ходу работы необходимо отслеживать время воздействия электрического тока, которое периодически повторяется. Такой цикл позволяет создавать ряд точек сваривания, которые вместе образуют шов.
Режимы выполнения шовного сваривания, в зависимости от частоты перемещения соединяющихся деталей:
- прерывистая;
- непрерывная;
- шаговая.
Наиболее распространенным видом является прерывистая шовная сварка. Его выполняют путем импульсов тока (прерыванием подачи). Соединяющиеся детали при этом непрерывно движутся и находятся под давлением роликов. Один импульс создает одну точку шва. Чтобы шов не пропускал влагу и воздух, необходимо, чтобы точки перекрывали друг друга. Это создается путем подбирания необходимой скорости вращения электродов и частоты подачи тока.

Схема непрерывистой роликовой сварки.
Непрерывная технология подразумевает постоянную подачу тока. Во время работы детали находятся в движении, а давление роликов на них постоянно. Таким способом создается сплошной шов. Этот метод не имеет широкой популярности, т. к. во время работы детали сильно перегреваются, а ролики довольно быстро изнашиваются. Непрерывное сваривание можно проводить, если детали состоят из одного материала, имеют равную толщину и ровную зачищенную поверхность. Если хотя бы одно из условий не будет соблюдено, то детали могут быть испорчены, а шов не будет отвечать всем требованиям.
При сваривании пошаговой технологии детали двигаются с перерывами, находясь все время под давлением роликов. Станок шовной сварки, работающий шаговым методом, отличается своей сложной конструкцией и высокой ценой. Подача тока происходит, только когда ролики останавливаются. Это позволяет не перегревать поверхности деталей и самих роликов.
Машина шовной сварки состоит из следующих элементов, таких как:
- станина;
- устройство сжатия;
- электроды;
- устройство для вращения роликов;
- сварочный трансформатор.
Конструкция станины предусматривает ровное положение машины, а также предотвращает вибрацию.
Устройство сжатия может быть педальным, пневматическим или электрическим. Главная задача такого механизма – надежность сжатия деталей.
Электроды имеют форму роликов со специальными креплениями.
Устройство для вращения роликов в основном представляет собой вал, на котором они крепятся.
Сварочный трансформатор содержит механизм включения.
Шовная сварка может потребовать использование дополнительных инструментов: агрегаты для зачистки, сварочные клещи и другое оборудование.
Вернуться к оглавлению
Техника роликовой сварки

Схема устройства трансформатора
Шовное сваривание рекомендуется применять для малоуглеродистой и нержавеющей стали.
Низкоуглеродную сталь толщиной около 4 мм сваривают роликами с контактной поверхностью около 1 см.
Сила сжатия должна быть около 8,4 кН, время импульса до 0,12 с, а перерывы составляют до 0,1 сек. Скорость примерно равна 1,6 м/мин.
При соединении деталей из нержавеющей стали все параметры уменьшают на 40%. При стыковочном соединении алюминия скорость производительности шва не больше 1 м/мин. Форма электродов зависит от вида машин контактной шовной сварки, на которых планируется их применение, а также от самих конструкций, требующих сварки.
Сохранение формы рабочей поверхности электродов является гарантией качественного шва.
Чтобы соединить детали из цветного металла, применяют электроды сферической формы. Другое их название – сплошные электроды. Корпус электрода обладает хорошей электрической проводимостью, а рабочая часть состоит из износостойкого, прочного, твердого материала. Сплошные электроды применяют для точечной технологии в многоэлектродных механизмах.
Для шовного варианта применяют особые диски из сплава электродов. Форма роликов зависит от материала металла и его толщины. Сферические ролики применяют для легких сплавов.
При рельефной сварке подбирают электроды в форме сферы или плоские. Для сваривания встык форма контактных губок зависит от конструкции свариваемых частей. Губки с рабочей поверхностью в форме призмы используют для круглых деталей.

Применение шовной сварки.
Электроды для такой сварки бывают из хромистой, бериллиевой и кадмиевой бронзы, из меди и других сплавов.
Роликовая сварка труб с тонкими стенками производится с применением контактных губок с проточками в форме цилиндров.
Шовная сварка нержавеющей стали может проводиться только с небольшой толщиной.
Идеальный шов роликовым методом создается при прерывистой технике проведения: машина не перегревается, а сам шов представляет собой отдельные точки сваривания, края которых тесно соприкасаются друг с другом.
Методы проведения прерывистой сварки:
- Ролики периодически перемещаются, делая остановки на некоторое время. Ток подается в момент остановки.
- Ролики перемещаются без перерыва, прокручиваясь с неизменной скоростью. Ток подается периодически, имея импульсивный характер.
Технологию с периодическим перемещением роликов используют реже, т.к. она более сложная.
Вернуться к оглавлению
Сварочный роликовый стенд
Некоторые работы удобно проводить на специальных стеллажах и магнитных стендах. Роликовый стенд для сварки является приспособлением, которое при помощи вращения свариваемых деталей позволяет добиваться создания ровного герметичного свариваемого шва. Он представляет собой совокупность роликовых опор и приводов. Опоры могут быть объединены в секции. В зависимости от грузоподъемности стенда, может быть различное количество опор. Необходимые части конструкции устанавливают на стенде, подготавливая к работе. В основном на таком приспособлении сваривают детали цилиндрической формы.
Роликовый стенд предназначается в основном для сваривания и сборки отдельных частей трубопровода и других металлических конструкций. Стенд имеет возможность вращения свариваемой конструкции в процессе работы.
Благодаря стенду, при проведении продольного шва, можно без труда выполнить сваривание контрольного шва в самом низу.
Шовная (роликовая) контактная электросварка. Сварка
Шовная (роликовая) контактная электросварка
Шовная (роликовая) сварка – разновидность контактной сварки, при которой заготовки соединяют прочно-плотным сварным швом, состоящим из ряда точек, перекрывающих друг друга. Электроды имеют вид роликов (дисков) диаметром – 400 мм. Форму рабочей поверхности выбирают в зависимости от толщины, формы и материала свариваемых заготовок. Ролики для сварки делают из токопроводящих материалов, с высокой теплопроводностью, например из меди или специальных сплавов.
Схема шовной сварки изображена на рисунке 32.
В процессе шовной сварки (рис. 32) листовые заготовки 1 соединяют внахлестку, зажимают между роликами-электродами 2 и пропускают ток сварки от трансформатора 3. При движении роликов по заготовкам образуются перекрывающие друг друга точки, в результате чего образуется сплошной герметичный шов. Шовную сварку, так же как и точечную, можно получить при одностороннем и двухстороннем расположении электродов.
Циклограмма процесса шовной сварки бывает с прерывистым или с непрерывным включением тока.

Рис. 32.
Схема шовной сварки и разрез сварного шва:
1 – заготовки; 2 – ролики;
3 – сварочный трансформатор;
Р – усилие сжатия
Толщины свариваемых листов металла составляют – 0,3 мм. Шовной сваркой выполняют те же типы сварных соединений, что и точечной сваркой, но используют для получения герметичных швов.
Шовную сварку применяют в массовом производстве для изготовления различных сосудов, баков и т. п.
Данный текст является ознакомительным фрагментом.Читать книгу целиком
Поделитесь на страничкеСледующая глава >
Роликовая сварка.Шовная сварка.Технологии.Оборудование. | ЭКОТЕХ
Роликовая шовная сварка — это разновидность контактной сварки, когда сформированные ядра соеденены между собой и образуют цепочку заданной длины.
Шовные машины оснащены вращающимися роликами, которые одновременно и сваривают, и продвигают заготовки. При шовной сварке на машинах переменного тока при равномерном вращении роликов и непрерывной подаче сварочных импульсов ( полуволн ), а они подаются с частотой 100 имп/сек, ибо такова частота переменного тока, центры формируемых ядер отстоят друг от друга на расстоянии, пропорциональному скорости вращения роликов. Т.е. шов тем плотнее, чем медленнее скорость, и менее плотный, чем скорость выше. Это пониманее важно при шовной точечной сварке тонких и более толстых листов стали. При сварке тонких листов необходимо и скорость подачи листа увеличивать, и уменьшать нагрев, чтобы не было прожигов. Т.о. оптимальным можно считать такой режим при настройке точечной шовной сварки, когда достигается баланс между требуемой скоростью (производительностью) и качеством шва, который, как и в случае с одноточечной сваркой, зависит от давления в точке и её нагрева. Наши регуляторы позволяют управлять каждым импульсом, уменьшив нагрев до минимума, чтобы минимизировать вероятность брака при проведении работ.Так, например, при шовной сварке нержавеющей стали, с целью уменьшения синевы вокруг шва, можно и увеличить давление, и увеличить скорость, и уменьшить количество импульсов. Но не стоит сильно уменьшать величину сварочного тока, т.к. может пострадать надежность сварного соединения. Так как мы являемся и разразработчиками и производителями машин шовной роликовой сварки, то конструкция машин постоянно модернизируется.
Шовно роликовая сварка применяется тогда, когда требуется производство герметичных швов в больших объемах. Шовно роликовые машины предназначены для сварки продольных и поперечных прерывистых и непрерывных швов.Но также шовно роликовая сварка может использовать как точечная, т.к. в регуляторе есть соответствующие настройки.Поэтому можно сказать, что шовная роликовая сварка универсальная технология.
Шовные машины на нашем предприятии изготавливаются как серийно, так и по индивидуальному техническому заданию Заказчика. Чтобы шовно роликовую сварку купить в нашей компании, достаточно позвонить или прислать запрос по электронной почте. Для получения коммерческого предложения в заявке просим указать:
-наименование продукции и её размеры
-свариваемый материал, его толщина и требования к шву
-предполагаемая интенсивность работы
Точечная сварка. Роликовая сварка. Рельефная сварка. История развития
Рекомендуем приобрести:
Установки для автоматической сварки продольных швов обечаек — в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.
Сварочные экраны и защитные шторки — в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!
Нагрев места стыка двух деталей проходящим через них электрическим током характерен для всех способов контактной сварки. Вторым существенным признаком этого вида сварки является обязательное приложение усилия сжатия контактируемых деталей. По характеру приложения такого усилия и типа соединения различают стыковую, точечную, шовную (роликовую) сварку и другие способы. Э. Томсон и его коллеги в США разрабатывали технологию стыковой контактной сварки и не пытались изменить характер приложения силы и форму соединения, несмотря на то, что прототипом нового способа контактной сварки мог послужить самый распространенный в XIX в. вид неразъемного соединения — клепка.
Неизвестно, когда и при каких обстоятельствах пришел Н. Н. Бенардос к принципу точечной контактной сварки. Первый в мире патент на этот способ (и «прибор» для его реализации) был выдан на его имя в Германии: № 46776—49 от 21.01.1888 г. В качестве электродов служили графитовые бруски, вставляемые в клещи, которые сжимали вручную (рис. 33).
В заявке на изобретение, поданной в России, Бенардос подробно описывает технологию и предлагает несколько устройств для точечной сварки. Так, один из «приборов» выполняли в виде стойки, на которой укрепляли изолированно друг от друга кронштейны: нижний жестко, а верхний — на шарнире (рис. 34).
На концах кронштейнов, к которым подавали напряжение, крепили электроды из угля или другого электропроводного «огнеупорного тела, соответственно для этого подготовленного» [20]. Свариваемые заготовки собирали встык или со скосом кромок и заводили между электродами. При этом верхний кронштейн поднимался. Перед началом сварки этот кронштейн с электродом прижимали грузом. По мере разогревания кромок до пластического состояния или до подплавления изделие передвигали, и вслед за нагревом производилось обжатие роликами.
Точечная сварка продолжала развиваться. Спустя 10 лет О. Кляйншмидт заменил угольные электроды в «приборах» Бенардоса медными электродами и усовершенствовал устройство для сварки, встроив трансформатор в клещи (рис. 35).
На разработку был выдан патент США № 616463 от 20.12.1898 г. С этого времени точечная сварка вышла из стадии лабораторных экспериментов, и началась работа над повышением производительности процесса. Бушайе разработал конструкции «дуплекс-электродов» для выполнения сразу двух сварных точек (пат. Франции № 330200 от 13.03.1903 г.). Верхний и нижний электродные узлы имели собственные трансформаторы. При параллельном подключении обмоток трансформаторов получается только одна точка, при последовательном включении — сразу две.
Оптимальную конструкцию электродов разработал Харматта (патент США № 1046066 от 3.12.1912 г.). Тейлор предложил перекрестный процесс нагрева места сварки таким образом (рис. 36), чтобы ток проходил по диагонали между двумя разделенными на части электродами (пат. США № 1243004 от 16.10.1917 г.).
Одновременно отрабатывали оптимальную конструкцию узлов, механические и электрические схемы машин для точечной сварки (рис. 37). Были разработаны машины с качающимся плечом-хоботом, мощные стационарные и легкие переносные машины, клещи разных конструкций.
В конце XIX в. точечную сварку использовали для приварки ручек к кастрюлям и сковородкам, для изготовления других неответственных изделий, заменяя клепку, а иногда — пайку. Однако это малозаметное применение убедительно доказало, что точечная сварка намного производительнее клепки и что пригодна она для соединения многих металлов. Точечную сварку начали широко использовать в США в 1914 г., когда в автомобильной промышленности клепка была заменена приваркой листовых элементов автомобилей (крыльев, обшивки кузова, деталей шасси). Мощность установок колебалась в пределах 5—35 кВ А. Установки имели ручное или ножное управление. К 1923 г. стационарные точечные машины позволяли сваривать до 200 точек в минуту. Использование новой технологии в массовом производстве создало возможность дальнейшего развития процесса сварки, совершенствования сварочного оборудования и даже создания новых способов сварки, таких как рельефная и роликовая. Идея рельефной сварки возникла благодаря многократному появлению «ошибочных» соединений, которые выполняли в спешке неквалифицированные рабочие. В 1918 г. Гамильтон и Оберег обратили внимание на преимущества приварки деталей сразу в нескольких местах на заранее отштампованных выступах и разработали промышленную технологию рельефной сварки.
В процессе изготовления изделий цилиндрической формы часто нижний опорный электрод выполняли в виде ролика, вращающегося вместе с изделием при установке в требуемое положение, а верхний — в виде короткого цилиндрического стержня. На таких машинах осуществляли точечные соединения, они же послужили прототипом машин для шовной сварки, когда свариваемые детали проходят между двумя роликами, нагреваются мощными импульсами тока, в результате чего образуется шов из отдельных перекрывающихся точек.
В 1905 г. Снурек и Гислер предложили схему многоэлектродной точечной сварки [110]. Однако только в 1924 г. была разработана конструкция соответствующих машин, которые были применены при сборке корпусов автомобилей на заводе Форда.
В 1910 г. Джевонсом был изобретен способ контактной сварки, заключающийся в том, что между свариваемыми кромками помещали небольшие пластинки (закладки), в которых и концентрировалась теплота. Эта технология была достаточно сложной. С целью ее упрощения как при точечной, так и при шовной сварке вместо закладок были предложены тонкие полоски (ленты), которые сматывали с катушек и подавали сверху и снизу изделия (рис. 38).
В 1930 г. на верфях Германии были внедрены машины с двумя электродами и двумя трансформаторами фирмы «Оттенземер Айзенверке». Затем в короткое время различными фирмами в США и Европе были разработаны схемы многоточечной сварки — с несколькими постепенно включаемыми электродами; с одновременным включением в симметричном и несимметричном исполнении; с трансформаторами, имеющими двойную вторичную обмотку; с трансформаторами, расположенными с противоположных сторон и др. Многоэлектродными машинами можно было одновременно или почти одновременно выполнять несколько сварных точек, полностью сваривать изделие (например, узел автомобиля), не перемещая элементы и электроды до окончания процесса [111, 112].
Для многоточечной сварки были разработаны два типа машин — многоцелевые машины и сварочные прессы [113, 114]. Первые были снабжены перемещающимся столом, их использовали для сварки различных изделий; вторые применяли для сварки строго определенных изделий, когда положение электродов и опорных поверхностей было фиксированным. В 30-е годы были решены многие технические проблемы; обоснованы расстояние между электродами и расположение трансформаторов, разработаны системы подвода тока, выбрано оптимальное количество одновременно свариваемых точек, установлена последовательность постановки точек и т. д. Особое внимание было уделено конструкции электродов и системам регулирования процесса сварки.
Кляйншмидт, заменив угольные электроды Бенардоса медными, обеспечил точечной сварке практическое применение. Электролитическая медь обладает большой тепло- и электропроводностью, а при механической обработке (протяжке) — удовлетворительной твердостью. Однако в результате нагрева в процессе эксплуатации прочность меди падает. Начиная с 1915 г., поиск материала для электродов велся в двух направлениях: электролитическую медь легировали с целью придания ей твердости, добиваясь при этом незначительного снижения электропроводности; повышали электро- и теплопроводность сплавов на другой основе, добавляя медь. В 1925 г. были разработаны «псевдосплавы», названные «элколит», «элмет», «моллори» и т. п., получаемые путем спекания при высоких давлениях и температурах порошков вольфрама, покрытых медью [115]. Поскольку проводимость этого материала была ниже, чем чистой меди, из него выполняли только наконечники, которые припаивали к охлаждаемому полому стержню. В машинах для шовной сварки вольфрам медную ленту припаивали в виде обода к торцу роликов, Однако паяная конструкция стоила дорого, и, кроме того, всегда существовала опасность плохого контакта в месте соединения из-за неточной сборки и дефектов пайки.
В результате поиска достаточно прочных материалов с хорошей электро- и теплопроводностью были подобраны элементы, способные образовывать твердый раствор с медью (кобальт, хром, кадмий, бериллий и молибден) при их содержании не более 1%. Из этих сплавов начали изготавливать цельнометаллические электроды и ролики.
Серьезным недостатком первых машин для контактной сварки, особенно шовных, являлся большой расход энергии — «лишний» нагрев зоны сварки происходил из-за длительного воздействия сравнительно небольшой силы тока. В 1920 г. было предложено осуществлять подачу токов большой силы, и в машинах установили реле времени. Роликам придавалось прерывистое вращательное движение через фрикционную муфту и стопорный механизм. Для уменьшения силы тока в период перемещения изделия во вторичный контур сварочного трансформатора включался элемент индуктивности. Сердечник индуктивной катушки был связан с роликами и перемещался при их движении, возвращаясь в исходное положение с помощью пружины. Однако вскоре обнаружили, что чем больше сила сварочного тока, тем меньше точность регулирования длительности импульса. Поэтому пришлось заниматься совершенствованием системы управления.
Регулирование параметров тока и длительности сварки являются важными составляющими технологии, а аппаратура управления — существенной частью сварочных машин. В аппаратах Томсона в первичной обмотке трансформаторов находились отводы, переключением которых регулировалось напряжение во вторичной обмотке, как правило, состоявшей из одного витка. Продолжительность прохождения сварочного тока контролировалась электромагнитной системой, содержащей конденсатор, питаемый от резистора и включенный параллельно обмотке соленоида. В 1924 г. в схему была включена неоновая лампа, благодаря чему ток мог проходить через систему только при напряжении строго определенного уровня.
В 1932 г. в США в контактных машинах появилась система управления, основанная на тиратронах. Эта система нашла применение на машинах средней мощности (до нескольких кВ А), однако при их эксплуатации обнаружились серьезные недостатки, в частности, плохо работали прерыватели.
В 1934 г., практически с момента появления в США игнитронно-ртутных вентилей со вспомогательным (поджигающим) электродом, управляющим зажиганием основного дугового разряда, их стали использовать в сварочных машинах. В последующие годы система управления контактными машинами, основанная на игнитронах, совершенствовалась. Были разработаны схемы управления игнитронами, в которых использовали достижения электронной техники и применяли вспомогательные элементы (стабилизаторы, усилители и т. д.), а также элементы защиты.
В 1930-х гг. продолжали работать над проблемой перегрузки сетей однофазными машинами, что вызывало колебания напряжения. Одно из решений этой проблемы было найдено в 1941 г. братьями Марио и Давидом Сиаки: оно основывалось на применении трехфазных источников с выпрямителями [116].
К концу 1930-х гг. конструкция (узлы, компоновка, архитектоника) контактных машин претерпела серьезные изменения по сравнению с исходными образцами. Первые машины часто выполняли, кроме прочих действий, проковку или обкатку, и в некоторых из них были предусмотрены механические командоаппараты в виде валов с кулачками. Производительность машин во многом зависела от быстродействия систем захвата и сжатия свариваемых деталей. В поисках оптимальных конструкций были опробованы гидравлические, пневматические и электромагнитные системы.
В конце XIX в. машины для стыковой сварки представляли собой сравнительно простое устройство с электрическим и механическим узлами, управление работой которых осуществляли педалью (рис. 39, а, б).
Первые устройства для точечной сварки имели вид клещей. Через два-три десятилетия были созданы несколько десятков различных по назначению универсальных и специализированных машин, а по размерам — от огромных формовочных станов для производства труб и изготовления автомобилей до подвесных и переносных клещей.
Серьезной проблемой в развитии контактной точечной сварки явилось создание клещей, отличающихся высокой маневренностью, легкостью и быстродействием. В первое десятилетие XX в. в таких подвижных сварочных постах генераторы тока конструктивно отделялись от механических, пневматических или гидравлических устройств для позиционирования и сжатия. Длина кабеляи шланга водяного охлаждения составляла 2—3 м, и, учитывая потери, приходилось повышать напряжение вторичной обмотки сварочного трансформатора, а следовательно, его мощность и габаритные размеры.
Следующим этапом было создание клещей с трансформатором, вмонтированным в подвижную конструкцию. Возникли новые проблемы — необходимость уменьшения габаритных размеров трансформатора, увеличения удельной мощности, минимизации потерь, С этой целью были применены трансформаторы с броневой магнитной системой, в которых первичная и вторичная обмотки были навиты и защищены магнитной цепью, выполненной из листов кремнистой стали с ориентированными кристаллами. Первичную обмотку выполняли из медной проволоки, а вторичную — из литой меди с припаянными трубками-каналами для охлаждающей воды. В подвесных трансформаторах первичные обмотки чередовались с витками вторичной обмотки, что увеличило удельную мощность до 0,7—1 кВА/кг [117].
Первая технология стыковой сварки труб, разработанная в 1902 г. Э. Томсоном и получившая название «прямошовный» метод, по способу приложения давления была сходна с кузнечно-прессовой сваркой. В цельносварных трубах были заинтересованы многие отрасли промышленности и строительства. Технология их изготовления и соответствующее оборудование продолжали совершенствоваться. За два десятка лет были предприняты попытки использовать для производства труб все известные способы контактной сварки. В 30-х гг. фирма «А. О. Смит» разработала технологию сварки оплавлением и внедрила ее в производство труб с толщиной стенки 5 мм и диаметром 500 мм, которые сваривались по всей длине (12 м) на машинах мощностью 5000 кВА.
В контактной сварке использовали ток промышленной частоты до тех пор, пока в 1939 г. фирма «Бабкок энд Вилько Ко» не применила ток частотой 200—350 Гц, Трубы из полосового проката сваривали машинами с вращающимся трансформатором. Однако это еще не был процесс, основанный на индукционном нагреве токами, открытыми Фуко, и теоретически исследованный в 1884 г, Хевисотдом. Впервые на практике это явление использовал в 1891 г. Э. Томсон, осуществивший индукционный нагрев листового железа. В 1900 г. была пущена в эксплуатацию индукционная плавильная печь Челлина. Началом развития процессов высокочастотной сварки считается разработка фирмой «Лоррен-Эско» в 1928 г. процесса (пат. Франции № 922431), в котором индуцированный ток концентрировался в зоне сварки ферритным сердечником. Однако основное развитие сварка токами высокой частоты получила после 1940-х гг.
Много общих существенных признаков с контактной сваркой имеет и конденсаторная сварка, идея которой возникла благодаря случаю. В 1905 г. сотрудник фирмы «Вестингауз Электрик» Л. В, Чабб, экспериментируя с электрическими конденсаторами, обнаружил, что проволока приваривается к алюминиевой пластине при прохождении через них разряда накопленного электричества [118]. Это наблюдение позволило сделать определенные выводы: разряд разрушил прочную оксидную пленку, затрудняющую пайку, и поэтому появилась возможность получить прочное соединение алюминиевых проводов. Конденсаторную сварку сразу же стали применять в электротехнике (приварка серебряных, вольфрамовых и других контактов, соединение алюминиевых и медных проводов), в ювелирном деле (приварка золотых и платиновых булавок и проволочек).
Как уже отмечалось, стыковая сварка нашла применение почти сразу после создания Томсоном первых образцов машин, Сначала это было изготовление проводов для электротехнических целей, затем — производство труб и различных стержней и, наконец, наиболее эффективное применение — производство вооружения в США, в частности, снарядов в годы Первой мировой войны. В Европе в это время наиболее активно развивала и внедряла контактную сварку немецкая фирма «Альгемайне Электрише Гаэельшафт» (АЭГ). Кроме «чисто» контактных машин, эта фирма в 1930-х гг. разрабатывала и выпускала машины для приварки шпилек.
Контактная сварка нашла применение в самолетостроении уже в 1908 г., вскоре после того, как в ряде стран было решено использовать для основных узлов самолетов металл. При изготовлении стальных ланжеронов, стоек, раскосов, элеронов и т. д, применяли точечную и роликовую сварку. В 1928 г. фирма «Форд Мотор» внедрила контактную сварку для ответственных узлов самолетов из дюралюминия. В начале 1930 г. были проведены статические и усталостные испытания на натурных образцах и моделях, подтвердившие возможность применения контактной сварки алюминиевых конструкций. В США с 1935 г. ее начали использовать фирмы «Боинг», «Дуглас» и «Сикорски», почти одновременно в Европе — фирмы «Фиат» вместе с «КантьериАэронавтика д’Италия», выпустившие первый металлический итальянский самолет [119, 120].
Особенно широкое применение все способы контактной сварки находят в автомобилестроении.
Г. Форду принадлежит особая роль в развитии контактной сварки. Его заказы были стимулом для усовершенствования технологии и оборудования. В свою очередь сварка обеспечила высокие темпы производства автомобилей. В первые годы на заводах Форда выпускали до 3000 автомобилей в год, а в 1909 г. их количество достигло 10 тыс. в основном благодаря применению стыковой и точечной сварки вместо клепки.
К началу 1928 г. на заводах компании «Форд Мотор» было 320 машин для сварки оплавлением, 540 машин для точечной сварки и 25 машин для роликовой сварки. В 1928 г. на автомобиле модели «Форд-А» насчитывалось около 1300 сварных точек, на модели 1932 г. их количество составило 2000 шт. Соединение всех штампованных деталей корпуса, крепящихся к шасси, осуществлялось точечной и роликовой сваркой. В следующем году технология была усовершенствована — днище и две боковые стенки сваривали за одну операцию на машинах с двумя трансформаторами (мощностью по 250 кВ А) менее чем за 60 с, причем чистое сварочное время составляло менее 10 с. В конечном итоге развитие оборудования для точечной сварки пошло по двум направлениям — создание клещей (подвижных сварочных постов) и создание многоточечных машин (контактных машин-прессов). Также были усовершенствованы и машины для роликовой сварки.
Развитие контактной сварки в СССР также стимулировалось интенсивным ростом автомобилестроения. Нижегородский (Горьковский) автомобильный завод был спроектирован и оснащен в основном оборудованием фирмы «Форд» и, в меньшей степени, установками нескольких германских фирм. Разнообразные машины для контактной сварки, поставленные Советскому Союзу из США, а также обученный американскими специалистами инженерно-технический персонал определили направления развития Контактной сварки в СССР [121].
Развитию и внедрению высоких технологий придавалось большое значение. С середины 1930-х гг. оборудование контактной сварки, разработанное и выпускаемое заводом «Электрик» им. А. К. Скороходова, применялось на уже работающих и строящихся заводах страны. Так, на стыковых машинах АСН —25 на строительстве Уралвагонзавода в месяц сваривалось до 500 т арматурной стали.
В 1934 г. на заводе «Электрик» были также разработаны машины АС—75 и АС—100 для стыковой сварки непрерывным оплавлением, специальные роликовые машины АШ—25 для сварки продольных швов, АШ—16 для сварки поперечных швов и фланцев, аппараты для точечной сварки AT-50—1, прессы для рельефной сварки.
Кроме производства автомобилей, с применением точечной контактной сварки для прикрепления обшивки к каркасу начали выпускать цельнометаллические пассажирские вагоны. Опыт, полученный при пуске первых автомобильных и тракторных заводов, послужил толчком к организации выпуска мощных отечественных контактных машин улучшенной конструкции и одновременно способствовал освоению ряда относительно новых технологических процессов — рельефной сварки при изготовлении тормозных колодок и колес, шовностыковой сварки труб из непрерывно сворачиваемой стальной ленты, точечной и шовной сварки стальных деталей с гальваническим покрытием и т. д.
С применением контактной сварки из коррозионно-стойкой стали были изготовлены самолеты, дирижабли, скульптурная группа В. И. Мухиной «Рабочий и колхозница». Основные работы были выполнены в лаборатории акционерного общества «Оргаметалл» (впоследствии ЦНИИТМАШ) Я. М. Глуховым, П. Н. Львовым, В. И. Коровиным, в Институте гражданского воздушного флота С. М. Поповым и др. В конце 30-х гг. в СССР было начато освоение стыковой сварки железнодорожных рельсов (ЦНИИТМАШ совместно с научно-исследовательскими организациями Наркомата путей сообщения и др.).
Роликовая или шовная сварка
При роликовой сварке отдельные точки частично перекрывают друг друга, образуя непрерывный шов свариваемых деталей (рис. 3).
Подготовленные полосы с толщиной до 4 мм пропускают между вращающимися роликами-электродами машины, через которые проходит электрический ток. В результате образуется плотный герметичный шов.
1 – свариваемые детали, 2 – ролик, 3 – трансформатор
Роликовую сварку выполняют непрерывной, прерывистой и шаговой. При непрерывной сварке детали перемещаются непрерывно, причем все время к электродам поступает ток. Поверхность свариваемых деталей сильно перегревается, электроды быстро изнашиваются, что ухудшает качество сварки.
При прерывистой сварке детали перемещаются непрерывно, а ток к электродам поступает периодически.
При шаговой сварке в момент включения тока детали неподвижны, после кристаллизации сваренного участка металла происходит перемещение деталей на определенный шаг.
Короткие швы сваривают от одного конца к другому, а длинные – от середины к концам. Роликовую сварку осуществляют на переменном токе силой 2000 – 5000 А. Диаметр роликов равен 40 – 350 мм; усилие сжатия свариваемых деталей роликами достигает 6 кН; скорость сварки 0,5 – 3,5 м/мин.
Шовную сварку применяют в массовом производстве при изготовлении различных сосудов. Толщина свариваемых листов составляет 0,3 – 3 мм. Этим методом сваривают низкоуглеродистые, легированные, конструкционные стали, легкие сплавы, а также листы с покрытием (оцинкованные, луженые, освинцованные и др.).
Оборудование для контактной сварки
Сварное соединение контактной сваркой выполняют с помощью специальных контактных машин. Контактные машины в зависимости от типа выполняемого на них соединения подразделяют на стыковые, точечные и шовные (роликовые). Контактная машина состоит из трех основных частей: источника тока, прерывателя тока и механизма давления.
Источники тока. Контактные машины работают па переменном токе (от тысяч до сотен тысяч ампер). Электрическая схема контактных машин состоит из трех элементов: трансформатора, прерывателя тока и переключателя ступеней мощности (рис. 1). Первичную обмотку трансформатора подключают к сети с напряжением 220 – 330В; ее изготовляют секционной для изменения числа рабочих витков при переключении ступеней мощности.
Вторичная обмотка трансформатора состоит из одного или двух витков (вторичное напряжение 1 – 12В). Сила вторичного тока составляет 1000-100000 А.
При изменении числа витков первичной обмотки изменяется коэффициент трансформации К:
К = ω1 / ω2 = U 1 /U2
где ω1 ,ω2 – число витков первичной и вторичной обмоток;
U 1 ,U2 – соответственно первичное и вторичное напряжения обмотки.
Вторичное напряжение:
U2= U1 ω2 /ω1
где ω2=1, U1 – величина постоянная.
Следовательно, для изменения U 2 необходимо изменить число включенных витков первичной обмотки ω1 соответственно будет изменяться и ток. Для увеличения вторичного тока необходимо уменьшить число витков первичной обмотки трансформатора.
Прерыватели тока. В процессе сварки необходимо периодически, а часто с весьма большой частотой включать и выключать. Для этой цели применяют прерыватели нескольких типов: простые механические контакторы, электромагнитные (синхронные и асинхронные), электронные приборы (тиратронные и игнитронные).
Рисунок 4 – Электрическая схема контактной машины:
1 – контактная колодка; 2 – свариваемое изделие; 3 – сварочный трансформатор; 4 – регулятор тока; 5 – электромагнитный прерыватель тока; 6 – включающая кнопка
Механические контакторы применяют главным образом на стыковых и точечных машинах неавтоматического действия небольшой мощности. Включение и выключение тока этими контакторами осуществляют асинхронно. Электромагнитные контакторы применяют для стыковой, точечной и шовной сварки на машинах малой и средней мощности.
Электронные прерыватели обеспечивают синхронное включение и выключение тока со строго определенной продолжительностью импульсов тока и пауз. Их применяют для всех типов контактных машин автоматического действия.
Механизмы давления. Эти механизмы служат для сжатия заготовок между электродами машины и могут иметь рычажно-педальный, моторно-кулачковый или пневматический привод давления.
Машины для стыковой сварки. Машины выпускают мощностью 5 – 500 кВА. Стыковые машины мощностью до 25 кВА применяют для сварки сопротивлением черных и цветных металлов; мощностью 25 – 250 кВА – для сварки сопротивлением и оплавлением черных металлов; мощностью 150 –500 кВА – для автоматической сварки оплавлением с подогревом.
Машины для точечной сварки. Такие машины выпускают мощностью 0,1 – 250 кВА. Точечные машины мощностью 0,1 – 25 кВА применяют для сварки заготовок толщиной 0,1 – 2 мм из черных и цветных металлов; мощностью 50 – 100 кВА с пневматическим или моторно-кулачковым механизмом давления для автоматической сварки в массовом производстве; мощностью 75 – 250 кВА с пневматическим механизмом давления и с электронными прерывателями тока – для сварки заготовок толщиной от 2 мм и выше. Эти машины могут быть использованы также для рельефной сварки.
Машины для шовной сварки. По конструктивному оформлению эти машины близки к машинам для точечной сварки и отличаются от них формой электродов, выполненных в виде роликов. Шовные машины выпускают мощностью 25 – 200 кВА. В зависимости от способа шовной сварки (непрерывное или прерывистое включение тока) их снабжают механическими или электронными прерывателями тока.
Машины для конденсаторной сварки. Эти машины должны обладать высокой точностью и стабильностью дозировки тока, стабильностью механических сил сжатия.
Конденсаторные машины состоят из батареи конденсаторов, выпрямительных устройств, сварочного трансформатора, включателя сварочного тока, вспомогательных устройств и сварочного стола.
В зависимости от типа свариваемого соединения выпускают точечные, шовные и стыковые конденсаторные машины. По назначению и характеру действия эти машины могут быть универсальные (неавтоматические и полуавтоматические) и специализированные (неавтоматические, полуавтоматические и автоматические).
Порядок выполнения работы
Ознакомиться с правилами техники безопасности.
Изучить сварочное оборудование.
Освоить технологию сварки изделий из малоуглеродистой стали точечной сваркой.
Составить отчёт о проделанной работе.
Вопросы для самоконтроля.
Чем отличается электрическая контактная сварка от электродуговой сварки?
Какие электрические параметры определяют тепловыделение при контакте свариваемых заготовок?
Перечислите основные разновидности электроконтактной сварки.
Как производится стыковая контактная сварка?
Какие профили заготовок можно сваривать электроконтактным методом?
Как производится точечная сварка?
Назовите основные параметры процесса точечной сварки.
Какие разновидности металлических заготовок можно сваривать точечным способом?
9.Как осуществляется шовная сварка.
10.Назовите основные параметры технологии шовной сварки.
Список рекомендуемой литературы
1.Дальский А.М. Технология конструкционных материалов.-М.:Машиностроение .1977,-664 с.
2.Полухин П.И. Технология металлов и сварка. – М.: Высш.шк , 1977.464 .
3.Дриц М.Е.., Москалев М.А. Технология конструкционных материалов и материаловедение. – М.: Высш.шк.. 1990,-447 с
Шовная(роликовая) сварка
Шовная сварка отличается от предыдущих двух такими моментами: свариваемые детали закрепляют внахлёст, и электродами служат ролики, сделанные из медного сплава.
Подача большого тока происходит точно так же, посредством подачи напряжения на плечи автомата через гибкие шины от вторичной обмотки трансформатора.
Однако у шовной сварки есть и отличие от предыдущих двух: у аппарата шовной сварки имеется механизм принудительного вращения роликов. После плотного прижимания свариваемых деталей друг к другу, механизм привода проворачивает ролики, и те, перемещая свариваемые детали на рабочем столе, проваривают сплошную сварную линию, соединяя детали друг с другом.
Таким образом, электрическая контактная сварка основана на принципе выделения тепла из-за большого сопротивления в зонах контакта электрода и металла, а затем последующего обжимания расплавленных участков. «Осадка» этих участков происходит ещё некоторое время после отключения тока, до определённого застывания металла.
Давление прижимания контактных зон торцами зажимов или электродов зависит от свойств самого металла.
Разогрев металлических деталей в электрической контактной сварке производится токами высокого уровня, достигающего до 50 тысяч ампер. Напряжение же, нужное для контактной сварки, обычно составляет от 2 до 6 вольт.
Поэтому для электрической контактной сварки, во-первых, требуются мощные источники питания. А, во-вторых, для получения токов с такими необычными параметрами, требуются источники питания весьма специфического качества.
Поэтому в аппаратах электрической контактной сварки используют понижающие трансформаторы с большим коэффициентом трансформации: вторичная обмотка такого трансформатора состоит из одного витка. Таким путём происходит резкое уменьшение напряжения, и во столько же раз увеличивается сила тока.
Иногда в аппаратах электрической контактной сварки применяют метод прерывистого оплавления. При такой методике стержни электродов сближаются и легко прижимают металл многократно, от 3 до 20 раз. Подобное «поклёвывание» сварочной зоны успешно разогревает и оплавляет участки контакта, но этому способу достаточно тока меньшей плотности, отсюда ток той же мощности становится способным сваривать более толстый металл или арматуру большего диаметра.
Выводы
Электрическая контактная сварка на сегодняшний день занимает значительную производственную нишу. Будучи изобретённой почти сто лет тому назад, электрическая контактная сварка не только не потеряла своих приоритетов в сварочном деле, но в эпоху развития компьютерных технологий приумножила и развила новые, более совершенные технологии, активно внедряясь в массовое и серийное производство разнообразных изделий однотипного формата. Она применяется как в строительстве для производства крупногабаритных изделий и конструкций, так и при изготовлении самых малых полупроводниковых микросхем и устройств. Например, контактная рельефная сварка востребована при креплении кронштейнов к деталям листообразной формы — скобы к капоту автомобиля, сварка проволоки и тонких деталей в радиоэлектронике. Шовная сварка используется при производстве разнообразных герметичных емкостей, например, летательных аппаратов и топливных баков автомобилей, емкостей и камер бытовой техники. Потенциальные возможности электрической контактной сварки весьма значительны. На сегодняшний день множество конструкций самолетов, вертолетов, ракет, морских судов, железнодорожных вагонов, автобусов и автомобилей, как в нашей стране, так и за рубежом изготовляются контактной точечной и шовной сваркой.
В настоящее время очень широко используется применение промышленных роботов. Их применение для автоматизации контактной сварки открывает возможности не только повысить экономическую эффективность производства, но и значительно улучшить качество готовой продукции. На сегодняшний день, автоматизация контактной сварки является одним из основных направлений в робототехнике. Важнейшая задача, которую решает промышленный робот, выполняющий точечную сварку, это полное освобождение человека от монотонного и очень тяжелого труда. Поэтому следует как можно активнее внедрять применение роботов для автоматизации контактной сварки. Это позволит нам избавиться от производственного брака, полностью исключив человеческий фактор. Роботы для контактной сварки обеспечивают высокую производительность, при этом, нет необходимости в использовании специализированных технологических материалов.
Однако, несмотря на достигнутые успехи в области внедрения электрической контактной и в первую очередь точечной сварки, дальнейшее расширение области ее применения сдерживается рядом факторов, например низкими циклическими характеристиками соединений, выполненных контактной сваркой, а также сложностью антикоррозионной защиты.
К недостаткам электрической контактной сварки относится большой вес сварочных аппаратов и потребность их в больших токах, что привязывает данный вид оборудования только к стационарным условиям эксплуатации.