При какой температуре металл краснеет
Что такое цвета побежалости
Цвета побежалости — это окисные пленки на поверхности железных сплавов различной толщины и плотности. Они образуются без участия молекул воды при нагревании до определенных температур. Самое простое представление о тонких пленках можно получить на примере мыльных пузырей или пленках нефтепродуктов на поверхности воды. Для железа цвета побежалости образуются при нагревании, и толщина пленки соизмерима с размерами молекул.
Это явление с физической точки зрения объясняется теорией «тонких пленок» и обусловлено оптической интерференцией окисных пленок в зависимости от своей толщины.
Шкала цветов побежалости углеродистых сталей
Толщина окисных пленок определяется температурой и временем нагрева, а существующие шкалы цветов побежалости носят довольно условный характер.
- Во-первых, визуальная оценка — очень субъективный процесс, результаты которого определяются освещенностью и практическим опытом.
- Во-вторых, плотность окисной пленки определяется и химсоставом сплава.
Поэтому таблицы соответствия разнятся (для углеродистых, жаростойких, нержавеющих сталей ), и можно говорить только об ориентировочном соответствии. Но усредненная таблица цветов побежалости выглядит следующим образом
Цвета
Температура нагрева, °С
коричнево-желтый до бурого
лиловый
цвет морской воды
Например, при продолжительном нагреве при 220 °С можно вызвать посинение стали. Или желаемый цвет получается при кратковременном нагреве до температуры, более высокой, чем указанная в таблице. Но для каждого цвета побежалости существует температурный минимум, ниже которого нужный цвет не получится.
Цвета побежалости для отделки поверхности
При подготовке регламентов стоит предпочесть более низкие температуры и более продолжительную выдержку, так как пленки в этом случае получаются более прочными и исключается создание дополнительных термических напряжений, которые могут приводить к короблению изделий.
Цвета побежалости используют для отделки поверхности изделий из стали, чугуна и цветных металлов: пряжек, поковок, солнечных коллекторов, холодного оружия и обрабатывающего инструмента. Это и всем известный процесс воронения.
И для закаленной стали и не закаленной образование окисных пленок будет происходить по-разному. На скорость образования окисных пленок значительное влияние оказывают:
- структура. Закаленные стали окисляются медленнее,
- загрязненность поверхности. Масляные пленки обугливаются до сажи, поэтому пленки получатся рыхлыми и неплотными,
- шероховатость поверхности. На полированной поверхности пленка получится тоньше, чем на шершавой при одинаковых условиях.
Для получения плотной, равномерной окисной пленки необходимы нагревательные печи, способные удерживать стабильную температуру в течение длительного времени.
В домашних условиях это или горн, или паяльная лампа, или качественная плита с духовкой. И в таком случае режим чернения подбирается для каждого изделия индивидуально. Необходимо помнить, что переход из одного цвета в другой происходит быстро, поэтому процесс требует самого пристального внимания.
Цвет металла в зависимости от температуры
Таблица «Цвета накала»
Сталь при нагреве выше 530°С излучает световые лучи различного цвета в зависимости от температуры нагрева (таблица «Цвета накала»).
Наиболее простым, но несовершенным способом является определение температуры нагрева стали по цветам каления и цветам отпуска (побежалости).
В таблице приведены цвета каления стали, соответствующие условиям обычного дневного освещения, и температуры нагрева, соответствующие этим цветам.
При определении температуры нагрева на глаз следует иметь в виду, что окружающие световые условия (дневной яркий свет, слабое искусственное или естественное освещение) в значительной степени искажают действительную температуру нагрева металла. Кроме этого, подобный метод не может быть точным в связи с индивидуальными особенностями глаз наблюдателя. При достаточном опыте ошибка не выходит за пределы 25-30 градусов.
Таблица «Цвета отпуска (побежалости)»
При нагреве металла от 200 до 300 градусов на зачищенной наждаком поверхности появляются цвета побежалости (таблица «Цвета отпуска») за счёт образования плёнок окислов различной плотности; каждая из плёнок отражает лучи только определённого цвета.
Сталь бывает углеродистой (группы А, Б, В) и легированной (низколегированная, среднелегированная, высоколегированная).
цвета каления — цвета свечения металла, зависящие от температуры нагрева. Для железа и стали характерны следующие цвета каления (см. табл.). До появления пирометров по цветам каления определяли температуру термической (закалка, отпуск), химико термической… … Энциклопедия техники
ЦВЕТА КАЛЕНИЯ — цвета свечения металла, зависящие от температуры нагрева. Цвета каления, характерные для стали, смотри в таблице Температуpa, ° С Цвет каления 550 Темно коричневый 630 Коричнево красный 680 Темно красный 740 Темно вишневый 770 Вишневый 800… … Металлургический словарь
цвета каления — цвета свечения металла, нагретого до высоких температур (например, для стали от тёмно коричневого при 550°C до белого при 1300°C). * * * ЦВЕТА КАЛЕНИЯ ЦВЕТА КАЛЕНИЯ, цвета свечения металла, нагретого до высоких температур (напр., для стали от… … Энциклопедический словарь
ЦВЕТА КАЛЕНИЯ — цвета свечения металла, нагретого до высоких температур (напр., для стали от темно коричневого при 550 .С до белого при 1300 .С) … Большой Энциклопедический словарь
цвета каления — [heat colors] цвета свечения металла (сплава), зависящий от температуры его нагрева. Некоторые цвета каления, характерные для углеродной стали: темно коричневый (550 °С), темно красный (680 °С), вишневый (770 °С), яркокрасный (900 °С), желтый… … Энциклопедический словарь по металлургии
Цвета каления — цвета свечения металла (сплава), зависящие от температуры его нагрева. Некоторые Ц. к., характерные для углеродистой стали: тёмно коричневый (550 °С), тёмно красный (680 °С), вишнёвый (770 °С), ярко красный (900 °С), жёлтый (1000 °С),… … Большая советская энциклопедия
ЦВЕТА КАЛЕНИЯ — цвета свечения металла, зависящие от темп ры нагрева. Для стали характерны след. Ц. к.: Темп ра, °С Цвет Темп ра. °С Цвет 550 Темно коричневый 850 … Большой энциклопедический политехнический словарь
Цвета побежалости — на кристалле висмута … Википедия
цвета побежалости стали — [annealing (temper) colors] 1. Радужная окраска, появляющаяся на чистой поверхности нагретой стали в результате образования на ней тончайшей оксидной пленки. Толщина пленки зависит от температуры нагрева; пленки разной толщины по разному отражают … Энциклопедический словарь по металлургии
Цвета — [colors]: Смотри также: цвета побежалости стали цвета каления … Энциклопедический словарь по металлургии
При закалке многих инструментов, например молотков, чеканов, резцов и других, требуется, чтобы закаленной была только рабочая часть, а сам инструмент оставался бы сырым, незакаленным. В этом случае инструмент нагревают немного выше рабочего конца до требуемой температуры, после чего опускают в воду только рабочую часть. Вынув инструмент из воды, быстро зачищают шкуркой или трением о землю его рабочую часть. Оставшееся в неохлажденной части тепло поднимет температуру охлаждаемого конца и появится на нем нужный цвет побежалости, после этого инструмент окончательно охлаждают.
Таблица7 Таблица определения температуры нагрева по цветам побежалости
Цвет побежалости | Температура, град. С | Инструмент, который следует отпускать |
Бледно-желтый | 210 | — |
Светло-желтый | 220 | Токарные и строгальные резцы для обработки чугуна и стали |
Желтый | 230 | Тоже |
Темно-желтый | 240 | Чеканы для чеканки по литью |
Коричневый | 255 | — |
Коричнево-красный | 265 | Плашки, метчики, сверла, резцы для обработки меди, латуни, бронзы |
Фиолетовый | 285 | Зубила для обработки стали |
Темно-синий | 300 | Чеканы для чеканки из листовой меди, латуни и серебра |
Светло-синий | 325 | — |
Серый | 330 | — |
Образование окалины на поверхности изделия приводит к угару металла, деформации. Это уменьшает теплопроводность и, стало быть, понижает скорость нагрева изделия в печи, затрудняет механическую обработку. Удаляют окалину либо механическим способом, либо химическим (травлением).
Выгоревший с поверхности металла углерод делает изделия обезуглероженным с пониженными прочностными характеристиками, с затрудненной механической обработкой. Интенсивность, с которой происходит окисление и обезуглерожевание, зависит от температуры нагрева, т.е. чем больше нагрев, тем быстрее идут процессы.
Образование окалины при нагреве можно избежать, если под закалку применить пасту, состоящую из жидкого стекла — 100 г, огнеупорной глины — 75 г, графита — 25 г, буры — 14 г, карборунда — 30 г, воды — 100 г. Пасту наносят на изделие и дают ей высохнуть, затем нагревают изделие обычным способом. После закалки его промывают в горячем содовом растворе. Для предупреждения образования окалины на инструментах быстрорежущей стали применяют покрытие бурой. Для этого нагретый до 850°С инструмент погружают в насыщенный водный раствор или порошок буры.
Углеродистые стали при закалке лучше охлаждать сначала в воде до температуры 400-35°С, а затем в масле. Это предотвращает возникновение внутреннего напряжения. Во время охлаждения изделие рекомендуется быстро перемещать сверху вниз.
Тонкостенные длинные детали (например, ножи) для охлаждения опускают в воду или масло строго вертикально, в противном случае они могут сильно деформироваться.
Зубила целесообразно закалить в мокром песке, который увлажняют раствором соли.
Тонкие сверла закаливают в сургуче. Для этого разогретый до светло-красного цвета конец сверла погружают в сургуч и оставляют там до полного охлаждения.
Химико-термическая обработка стали.
Благодаря такой обработке меняется не только структура металла, но и химический состав его верхнего слоя и деталь может иметь вязкую сердцевину, выдерживающую ударные нагрузки, высокую твердость и износность. Из существующих способов химико-термической обработки стали в условиях небольшой мастерской можно выполнять только цементацию. Цементация — это науглероживание поверхности стали. Этому процессу подвергают чаще всего изделия из малоуглеродистых сталей, содержащих не более 0,2% углерода и некоторых легированных сталей. Детали, предназначенные для цементации, сначала очищают. Поверхности не подлежащие науглероживанию, покрывают специальными предохранительными противоцементными обмазками.
1-ый состав простейшей обмазки: огнеупорная глина с добавлением 10% асбестового порошка, вода. Смесь разводят до консистенции густой сметаны и наносят на нужные участки поверхности изделия. После высыхания обмазки можно производить дальнейшую цементацию изделия.
2-ой состав применяемой обмазки: каолин — 25%, тальк — 50%: вода — 25%. Разводят эту смесь жидким стеклом или силикатным клеем.
Рабочая температура нержавеющей стали, температура применения жаропрочных сталей и сплавов
Представлены таблицы значений максимальной рабочей температуры стали (нержавеющей, жаропрочной и жаростойкой) распространенных марок при различных сроках эксплуатации. Указана также температура, при которой сталь начинает интенсивно окисляться на воздухе.
Таблицы позволяют подобрать необходимую марку нержавеющей стали или сплава на железоникелевой основе под определенные условия эксплуатации и заданный срок службы.
В первой таблице приведена рабочая температура (максимальная температура применения) нержавеющих сталей и сплавов на железоникелевой и никелевой основах, предназначенных для работы в окислительной среде от 50 до 100 тысяч часов.
По данным таблицы видно, что при сверхдлительной эксплуатации максимальная рабочая температура рассмотренных марок стали не превышает 850°С (нержавеющая сталь 05ХН32Т), а «запас» до температуры интенсивного окалинообразования составляет от 200 до 500 градусов.
Марка стали или сплава | Максимальная температура применения, °С | Температура начала интенсивного окалинообразования на воздухе, °С |
---|---|---|
05ХН32Т (ЭП670) | 850 | 1000 |
08Х15Н24В4ТР (ЭП164) | 700 | 900 |
08Х16Н13М2Б (ЭИ680) | 600 | 850 |
09X16Н4Б (ЭП56) | 650 | 850 |
09Х14Н19В2БР (ЭИ695Р) | 700 | 850 |
09Х14Н19В2БР1 (ЭИ726) | 700 | 850 |
09Х16Н15М3Б (ЭИ847) | 350 | 850 |
12X13 | 550 | 750 |
12Х18Н10Т | 600 | 850 |
12Х18Н12Т | 600 | 850 |
12Х18Н9Т | 600 | 850 |
12ХН35ВТ (ЭИ612) | 650 | 850…900 |
13Х14Н3В2ФР (ЭИ736) | 550 | 750 |
15Х11МФ | 580 | 750 |
16X11Н2В2МФ (ЭИ962А) | 500 | 750 |
18Х11МНФБ (ЭП291) | 600 | 750 |
18Х12ВМБФР (ЭИ993) | 500 | 750 |
20Х12ВНМФ (ЭП428) | 600 | 750 |
20Х13 | 500 | 750 |
31Х19Н9МВБТ (ЭИ572) | 600 | 800 |
55Х20Г9АН4 (ЭП303) | 600 | 750 |
ХН65ВМТЮ (ЭИ893) | 800 | 1000 |
ХН70ВМЮТ (ЭИ765) | 750 | 1000 |
ХН80ТБЮ (ЭИ607) | 700 | 1050 |
Во второй таблице представлена максимальная рабочая температура стали при длительной эксплуатации длительностью до 10 тысяч часов. По значениям температуры в таблице видно, что при менее длительном применении стали возможно увеличение ее рабочей температуры. При этом «запас» до температуры интенсивного окалинообразования уменьшается.
Например, максимальная рабочая температура нержавеющей стали 12Х18Н9Т при длительной эксплуатации на 200 градусов выше, чем при сверхдлительной. Эта сталь может применяться при температуре до 800°С в течении 10 тысяч часов.
Максимальная рабочая температура из приведенных в таблице марок соответствует стали 10ХН45Ю — она может использоваться при 1250…1300°С.
Марка стали или сплава | Максимальная температура применения, °С | Температура начала интенсивного окалинообразования на воздухе, °С |
---|---|---|
03X21Н32М3Б (ЧС33) | 550…750 | — |
03X21Н32М3БУ (ЧС33У) | 550…750 | — |
05Х12Н2М | 550 | — |
07Х15Н30В5М2 (ЧС81) | 850 | — |
08Х16Н11М3 | 600 | — |
08X18Н10 | 800 | 850 |
08Х18Н10Т (ЭИ914) | 800 | 850 |
09X18Н9 | 550 | — |
10Х18Н9 | 550 | — |
10Х23Н18 | 1000 | 1050 |
10ХН45Ю (ЭП747) | 1250…1300 | — |
11Х11Н2В2МФ (ЭИ962) | 600 | 750 |
12Х18Н9 | 800 | 850 |
12Х18Н9Т | 800 | 850 |
12Х18Н10Т | 800 | 850 |
12Х18Н12Т | 800 | 850 |
12Х25Н16Г7АР (ЭИ835) | 1050 | 1100 |
12ХН38ВТ (ЭИ703) | 1000 | 1050 |
13Х11Н2В2МФ (ЭИ961) | 600 | 750 |
14Х17Н2 (ЭИ268) | 400 | 800 |
15Х12ВНМФ (ЭИ802) | 780 | 950 |
16X11Н2В2МФ (ЭИ962А) | 600 | 750 |
20Х23Н13 (ЭИ319) | 1000 | 1050 |
20Х23Н18 (ЭИ417) | 1000 | 1050 |
20Х25Н20С2 (ЭИ283) | 1050 | 1100 |
36Х18Н25С2 | 1000 | 1100 |
37Х12Н8Г8МФБ (ЭИ481) | 630 | 750 |
40Х9С2 | 650 | 850 |
40X10С2М (ЭИ107) | 650 | 850 |
45Х14Н14В2М (ЭИ69) | 650 | 850 |
45Х22Н4М3 (ЭП48) | 850 | 950 |
ХН33КВЮ (ВЖ145, ЭК102) | 1100 | — |
ХН45МВТЮБР (ВЖ105, ЭП718) | 700 | — |
ХН54К15МБЮВТ (ВЖ175) | 750 | — |
ХН55К15МБЮВТ (ЭК151) | 750 | — |
ХН55МВЦ (ЧС57) | 950 | — |
ХН55МВЦУ (ЧС57У) | 950 | — |
ХН56К16МБВЮТ (ВЖ172) | 900 | — |
ХН56КМЮБВТ (ЭК79) | 750 | — |
ХН58МБЮ (ВЖ159, ЭК171) | 1000 | — |
ХН59КВЮМБТ (ЭП975) | 850 | — |
ХН60ВТ (ЭИ868, ВЖ98) | 1000 | 1100 |
ХН60Ю (ЭИ559А) | 1200 | 1250 |
ХН62БМКТЮ (ЭП742) | 750 | — |
ХН62ВМЮТ (ЭП708) | 900 | — |
ХН62МВКЮ (ЭИ867) | 800 | 1080 |
ХН67МВТЮ (ЭП202) | 800 | 1000 |
ХН68ВМТЮК (ЭП693) | 950 | — |
ХН69МБЮТВР (ВЖ136, ЭК100) | 650 | — |
ХН70ВМТЮ (ЭИ617) | 850 | 1000 |
ХН70ВМТЮФ (ЭИ826) | 850 | 1050 |
ХН70Ю (ЭИ652) | 1100 | 1250 |
ХН73МБТЮ (ЭИ698) | 700 | 1000 |
ХН75ВМЮ (ЭИ827) | 800 | 1080 |
ХН75МБТЮ (ЭИ602) | 1050 | 1100 |
ХН78Т (ЭИ435) | 1100 | 1150 |
В третьей таблице указана максимальная рабочая температура нержавеющей стали при кратковременной эксплуатации (до 1000 часов). При таких сроках эксплуатации сталь и жаропрочные сплавы могут иметь рабочую температуру на 50…100 градусов выше, чем при длительной работе (до 10 тыс. часов).
Например, жаропрочный сплав ХН62МВКЮ при кратковременной эксплуатации может применяться при температурах до 900°С, а при длительной эксплуатации — только до 800°С.
Что такое цвета побежалости
Цвета побежалости — это окисные пленки на поверхности железных сплавов различной толщины и плотности. Они образуются без участия молекул воды при нагревании до определенных температур. Самое простое представление о тонких пленках можно получить на примере мыльных пузырей или пленках нефтепродуктов на поверхности воды. Для железа цвета побежалости образуются при нагревании, и толщина пленки соизмерима с размерами молекул.
Это явление с физической точки зрения объясняется теорией «тонких пленок» и обусловлено оптической интерференцией окисных пленок в зависимости от своей толщины.
Шкала цветов побежалости углеродистых сталей
Толщина окисных пленок определяется температурой и временем нагрева, а существующие шкалы цветов побежалости носят довольно условный характер.
- Во-первых, визуальная оценка — очень субъективный процесс, результаты которого определяются освещенностью и практическим опытом.
- Во-вторых, плотность окисной пленки определяется и химсоставом сплава.
Поэтому таблицы соответствия разнятся (для углеродистых, жаростойких, нержавеющих сталей ), и можно говорить только об ориентировочном соответствии. Но усредненная таблица цветов побежалости выглядит следующим образом
Цвета
Температура нагрева, °С
коричнево-желтый до бурого
лиловый
цвет морской воды
Например, при продолжительном нагреве при 220 °С можно вызвать посинение стали. Или желаемый цвет получается при кратковременном нагреве до температуры, более высокой, чем указанная в таблице. Но для каждого цвета побежалости существует температурный минимум, ниже которого нужный цвет не получится.
Цвета побежалости для отделки поверхности
При подготовке регламентов стоит предпочесть более низкие температуры и более продолжительную выдержку, так как пленки в этом случае получаются более прочными и исключается создание дополнительных термических напряжений, которые могут приводить к короблению изделий.
Цвета побежалости используют для отделки поверхности изделий из стали, чугуна и цветных металлов: пряжек, поковок, солнечных коллекторов, холодного оружия и обрабатывающего инструмента. Это и всем известный процесс воронения.
И для закаленной стали и не закаленной образование окисных пленок будет происходить по-разному. На скорость образования окисных пленок значительное влияние оказывают:
- структура. Закаленные стали окисляются медленнее,
- загрязненность поверхности. Масляные пленки обугливаются до сажи, поэтому пленки получатся рыхлыми и неплотными,
- шероховатость поверхности. На полированной поверхности пленка получится тоньше, чем на шершавой при одинаковых условиях.
Для получения плотной, равномерной окисной пленки необходимы нагревательные печи, способные удерживать стабильную температуру в течение длительного времени.
В домашних условиях это или горн, или паяльная лампа, или качественная плита с духовкой. И в таком случае режим чернения подбирается для каждого изделия индивидуально. Необходимо помнить, что переход из одного цвета в другой происходит быстро, поэтому процесс требует самого пристального внимания.
Цвета каления — это… Что такое Цвета каления?
- О фильме см. Белое каление (фильм)
![Hot metalwork.jpg](/800/600/https/dic.academic.ru/pictures/wiki/files/51/300px-Hot_metalwork.jpg)
Цвета каления — это цвета свечения металла, раскалённого до высокой температуры. Спектр теплового излучения зависит от температуры, поэтому наблюдая цвета каления можно достаточно быстро, хоть и без высокой точности, определить температуру металла, что часто применяется при термообработке и ковке. Более того, до изобретения бесконтактных термометров это было единственным способом судить о температуре металла. Сокращённые названия цветов каления («красное каление», «белое каление») часто используются металлургами вместо указания температуры.
Зависимость цвета каления от температуры
В таблице перечислены цвета каления, характерные для стали.[1]
Температуpa, °C | Цвет каления |
550 | тёмно-коричневый |
630 | коричнево-красный |
680 | тёмно-красный |
740 | тёмно-вишневый |
770 | вишнёвый |
800 | ярко- или светло-вишнёвый |
850 | ярко- или светло-красный |
900 | ярко-красный |
950 | жёлто-красный |
1000 | жёлтый |
1100 | ярко- или светло-жёлтый |
1200 | жёлто-белый |
1300 | белый |
Фразеологизм
Выражение «довести до белого каления» имеет и всем известный переносный смысл: «рассердить», «вывести из себя», «привести в бешенство».[2][3]
См. также
Примечания
Ссылки
Закалка и отпуск в кустарных условиях — Кузнечное дело
Тема создана для тех кто делает первые шаги в термообработке,сразу хочу предупредить сам не далеко не гуру в термичке,но немножко разбираюсь,просьба сложных вопросов не задавать и в тупик меня не ставить 🙂 .Итак сначала довольно общие замечания-контроль температуры нагрева ведётся по цветам каления,контролируется «на глаз» при приглушённом дневном освещении,при определённом навыке можно различать разность температур примерно в 50 градусов ,цвета каления начинаются примерно с 550град(но это заметно только в полумраке)Хорошим ориентиром в определении температуры нагрева детали является так же магнитные свойства стали,а именно при температуре в 768гр(и выше) сталь не магнитится,остывая ниже этой точки магнитные свойства возвращаются, так что нагревая деталь и периодически пробуя её магнитом на «прилипаемость» можно понять что температура достигла 768гр,запомнить цвет каления который при этом был и уже увереннее ориентироваться в цветах каления,а можно и дальше пользоваться магнитом ,особенно если освещение или слишком яркое или наоборот слишком темно и цвета воспринимаются не совсем должным образом.Вот примерно так выглядят цвета и так называются.Почему примерно так выглядят? потому что не совсем так как на картинке(точных цветов в сети так и не нашёл) вот пока пара настоящих фото с цветами каления и температурой.но опять же на моём мониторе они выглядят на указанную температуру,у вас возможно будут выглядеть немного иначе.Будет время(и интерес к теме) продолжу.
Изменено пользователем sanek66При какой температуре краснеет железо?
ЦВЕТА КАЛЕНИЯ — цвета свечения металла, зависящие от температуры нагрева. Цвета каления, характерные для стали, смотри в таблице Температуpa, ° С Цвет каления 550 Темно-коричневый 630 Коричнево-красный 680 Темно-красный 740 Темно-вишневый 770 Вишневый 800 Ярко- или светло-вишневый 850 Ярко- или светло-красный 900 Ярко-красный 950 Желто-красный ЦВЕТА ПОБЕЖАЛОСТИ — радужная окраска, возникающая на чистой поверхности нагретого металла в результате появления на нем тонкого слоя оксидов. цвета побежалости, характерные для углеродистой стали, смотри в таблице Температуpa, °С Цвет побежалости 220 Соломенный 230 Золотистый 240 Коричневый 250 Красно-коричневый 260 Пурпурный 280 Фиолетовый 300 Синий (васильковый) 320 Светло-голубой 330-350 Светло-серый На легированных сталях эти цвета побежалости появляются при более высоких температурах.
ну судя по тенам в печке градусов в 150
Не понятно, почему ответ дан про металл, когда вопрос про железо. И на эту тему есть замечательный анекдот.: — Товарищи солдаты, на разгрузку люмини, на прааа-во! — Извините, товарищ прапорщик, не люминь, а алюминий. — А шипко грамотные, на разгрузку чугуния, на леее-во! Да ещё кто-то ответ выбрал лучшим. А это, как говорят, -«Я Тебя про Фому, а Ты мне про Ерёму.» Так какова же температура раскалённого до красна железа?
Температура и цвета каления металлов
Испускаемый раскаленными металлами свет имеет при каждой температуре особый оттенок (цвета каления). Температуры, соответствующие различной интенсивности свечения накаленного железа, приблизительно таковы [c.312]Высокую температуру также можно приблизительно определять по цветам каления металлов (табл. 6). [c.27]
Температура нагрева металла при ручной ковке обычно определяется по цветам каления. Более точно определяют температуру нагрева при помощи оптических илн термоэлектрических пирометров. [c.592]
Физические свойства металлов платиновой группы сходны между собой (табл. 4). Это—очень тугоплавкие труднолетучие металлы светло-серого цвета разных оттенков. По удельным весам платиновые металлы разделяются на легкие (рутений, родий, палладий) и тяжелые (оомий, иридий, платина). Температура плавления и кипения убывает слева направо в обеих триадах (от рутения до палладия и от осмия до платины) и воз-)астает снизу вверх по вертикали в периодической системе. -1аиболее тугоплавки осмий и рутений, самый легкоплавкий — палладий. При высоких температурах наблюдается улетучивание платины, иридия, осмия и рутения. Рутений постепенно улетучивается при сильном прокаливании на воздухе вследствие образования летучей четырехокиси. Иридий теряет в весе при температуре около 2000° С. Осмий легко сгорает на воздухе, образуя летучий окисел 0б04. Осмий, рутений и родий очень тверды и хрупки. Платина и палладий (ковкие металлы) поддаются прокатке п волочению. Иридий поддается механической обработке лишь при температуре красного каления. [c.8]
Платина — наиболее важный из палладиевых и платиновых металлов. Она обладает серовато-белым цветом и очень хорошо поддается ковке. При температуре красного каления ее можно сваривать, а в водородно-кислородном пламени — плавить. Вследствие очень малой химической активности ее применяют при производстве электрической аппаратуры и используют в качестве материала для изготовления тиглей и другого лабораторного оборудования. На платину действует хлор она растворяется в царской водке. Платина взаимодействует с расплавленными щелочами, такими, как гидроокись калия, но не взаимодействует с карбонатами щелочных металлов. [c.556]
Фтористый водород и плавиковая кислота быстро действуют на молибден, переводя его во фториды. Серная разбавленная кислота (б =1,3) слабо действует на молибден даже при 110°. Концентрированная серная кислота ( =1,82) на холоду действует слабо за 18 ч потеря в весе 0,24%. При 200—250 растворение идет быстрее. Фосфорная и органические кислоты воздействуют на металл слабо, но в присутствии окислителей, включая воздух, растворимость заметно увеличивается. Растворы щелочей и аммиака действуют на молибден медленно, но их действие усиливается окислителями при повышении температуры. Газообразный аммиак при высоких температурах переводит молибден в порошок смеси нитридов черного цвета с общим содержанием азота до 3%. Азот растворяется в молибдене незначительно. Окислы азота окисляют молибден. Фтор образует летучие фториды молибдена. Хлор и бром реагируют с молибденом при температуре красного каления, а иод не реагирует или реагирует очень медленно [3]. В присутствии влаги галогены действуют на молибден без нагревания. Сера не [c.274]
Свойства простого вещества и соединений. Германий обладает серебристо-белым цветом и по внешнему виду похож на металл. Свою неметаллическую суть выдает изменением электрической проводимости при нагревании (рис. 76). В отличие от металлов его проводимость растет с повышением температуры. На воздухе компактный германий не изменяется. Плотность его (при 20° С) 5,35 г/смз, пд=,937°С, г к1ш=2700° С. С кислородом Се реагирует лишь при температуре красного каления, а с водородом непосредственно не соединяется и не обладает по отношению к нему особой растворяющей способностью. Умеренно растворим в концентрированной НЫОз [c.329]
Металлическая сурьма имеет белый цвет и сильный блеск, сохраняющийся на воздухе без изменения, потому что она при обыкновенной температуре не окисляется. Она кристаллизуется ромбоэдрами и имеет весьма явственно кристаллическое сложение, которое придает ей совсем иной вид, чем у большинства до сих пор знакомых нам металлов. Сурьма хрупка, так что легко превращается в порошок уд. вес ее = 6,7 она плавится при 629″,5. но улетучивается только при температуре яркокрасного каления. Накаленная на воздухе, напр., пред паяльною трубкою, она загорается, и дает белые пары, не имеющие запаха и состоящие из Sb 0 . Этот окисел носит обыкновенно название окиси сурьмы, хотя его с таким же правом можно назвать и сурьмянистым ангидридом. Первое название придают ему потому, что в большинстве случаев употребляются соединения его с кислотами но также легко получаются и щелочные соединения. Окись сурьмы, как н [c.184]
Металлический бериллий отличается серо-стальным цветом и значительной твердостью, так что царапает стекло. При обычной температуре он ломок и не выдерживает ковки. Однако при температуре красного каления Ве становится ковким. Электропроводность бериллия равна около 1/12 электропроводности меди . В сухой атмосфере он сохраняет блестящую поверхность. При соприкосновении с водой Ве покрывается тонкой пленкой окисла, которая и предохраняет его от дальнейшей коррозии разбавленные кислоты энергично его растворяют. Концентрированная азотная кислота на холоду не оказывает на него заметного действия, а реакция его с разбавленной (2 н.) азотной кислотой на холоду вскоре прекращается. При нагревании эти кислоты быстро его растворяют. От остальных металлов главной подгруппы II группы бериллий резко отличается своей растворимостью в водных растворах щелочей. Впрочем, разбавленное едкое кали растворяет его только при нагревании, но 50%-ный раствор КОН действует на бериллий уже при комнатной температуре. [c.248]
Тетрафторид титана легко получается при комнатной температуре в результате взаимодействия фтористого водорода с тетрахлоридом титана [177, 181]. При этой реакции получается промежуточный продукт желтого цвета, содержащий как фтор, так и хлор. Подобный же продукт образуется при сплавлении тетрахлорида титана с фторидом серебра. Безводный тетрафторид образуется также при реакции между титаном и фтором или фтористым водородом. Первая из этих реакций может быть инициирована легким пагреванием металла, в то время как вторая происходит только при температуре красного каления. [c.43]
При индукционном нагреве можно паять все токопроводящие металлы, проводники (например, графит), металлизированную керамику. Для контроля температуры применяют пирометр (ФП-3 для сталей). Фотоэлектрические пирометры реагируют на цвет каления нагретого металла и поэтому пригодны для контроля температуры выше 750 °С. [c.235]
Окисление щелочных металлов серой идет также очень энергично при растирании металла с серным цветом происходит взрыв. Азотом и углеродом окисляется только литий при высокой температуре, примерно в пределах 580—640° С (красное каление). Реакция протекает очень энергично, и при этом выделяется тепло 207,5 кдж/моль
Термочувствительные краски — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 июня 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 июня 2019; проверки требует 1 правка.![](/800/600/https/upload.wikimedia.org/wikipedia/commons/thumb/6/65/Generra_Hypercolor_2.jpg/220px-Generra_Hypercolor_2.jpg)
Термочувствительные краски (термоиндикаторные краски) — краски, меняющие цвет в зависимости от температуры.[1]
Некоторые твёрдые вещества способны при нагревании изменять свою кристаллическую структуру, и, как следствие — цвет (из-за изменения спектра поглощения вследствие фазового перехода).
Термокраски были разработаны для определения температуры на поверхности изделий произвольной формы, в том числе — на поверхности движущихся предметов (например, заготовка при резании на токарном станке, или фреза). Термокраски нашли широкое[2] применение в температурных исследованиях различных объектов.
Преимущества[править | править код]
Преимущества термокрасок перед термометрами различных типов:
- возможность измерения температуры сколь угодно искривлённых поверхностей
- получение поля температур (или изотерм), а не отдельных точечных измерений
- отсутствие теплоотвода по проводам (например, терморезисторов)
- лёгкость дистанционного считывания температуры объектов (например, находящихся под высоким напряжением)
Точность[править | править код]
Точность измерения температуры термохимической краской ± 5…10° C, хотя в паспорте на каждую конкретную партию краски может быть указана более точная температура перехода и бо́льшая точность.
Термохимические краски по ТУ 133-67 (СССР)[править | править код]
Список красок, выпускавшихся промышленностью[3].
Формы выпуска[править | править код]
Одной из форм выпуска термоиндикаторных красок были «восковые карандаши».
Порошки подходящих неорганических пигментов можно размешать в олифе, декстриновом или цапонлаке (нитроклее).
Оксид цинка (цинковые белила), 500—600 °C[править | править код]
Белый порошок, обратимо желтеющий при нагревании.
Тетраиодомеркурат(II) меди(I), Cu2[HgI4] 60°-65 °C (красный/бурый)[править | править код]
- раствор 1: в 20 см³ воды растворить 2,5 г KI, когда растворится, добавить 8 г HgI2.
- раствор 2: 20 см³ воды + 3 г CuSO4.
- влить раствор 2 в раствор 1 малыми порциями, перемешивая. Дать 30 минут отстояться, осадок собрать на бумажном фильтре и не менее 10 раз промыть водой.[4]
Тетраиодомеркурат(II) серебра(I) Ag2[HgI4], 40°-45 °C (лимонно-жёлтый/коричневый)[править | править код]
- раствор 1: в 200 см³ воды растворить 5 г KI, нагреть, добавить 8 г HgI2 и перемешивать до полного растворения.
- раствор 2: 10 см³ воды + 2,5 г AgNO3 (ляписа).
- В темноте в холодный раствор 1 влить при перемешивании раствор 2. После 20-минутного отстаивания в темноте собрать (можно на свету) осадок лимонного цвета. Промыть водой. Просушить между 2 листами фильтровальной бумаги.[4]