Температура плавления медной проволоки — Морской флот
Медь входит в семёрку самых древних металлов, с которыми люди познакомились на самом начальном этапе своего существования. Период с 4 по 3 тысячелетие до нашей эры так и называется медный век в истории развития человечества. Древние люди изготавливали из неё предметы быта, орудия труда и боевое оружие. Это стало возможным благодаря относительно невысокой температуре плавления меди.
Купрум: характеристика элемента
Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.
Физические свойства
Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.
- Температура плавления 1083 градуса.
- Температура кипения 2567 градусов.
- Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
- Плотность 8,92 г/см.
Нахождение в природе
В природе встречается в самородном виде и в виде соединений.
Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.
В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.
Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.
Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.
Медные сплавы
Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:
- Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
- Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец. Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
- Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
- Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия. Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
- Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.
Переплавка меди дома
Этот металл обладает целым набором полезных свойств, которые делают её весьма желанным металлом в домашнем хозяйстве. А относительно невысокая температура при плавлении и изрядное количество медного лома, которое можно обнаружить на ближайшей свалке, позволяют задавать вопрос о том, как расплавить медь в домашних условиях, не как риторический, а вполне реальный и практический.
График плавления меди
Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:
- Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
- При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
- После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.
В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.
Температура кипения
Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.
Способы плавки
Медный лом можно переплавить в домашних условиях разными способами в зависимости от технического оснащения домашней мастерской. При этом нужно иметь в виду, что придётся нагревать медь не до её температуры плавления, а чуть выше — примерно до 1100−1200 градусов.
Для этих целей годятся следующие приспособления:
- Муфельная печь. Наиболее рациональное решение проблемы расплавления меди, так как такая печь позволяет регулировать температуру во время процесса плавки, что очень удобно. Подобные лабораторные печи оснащены специальным окном из жаропрочного стекла, что позволяет постоянно осуществлять визуальный контроль всего процесса.
- Газовая горелка. Ручная газовая горелка размещается под дном ёмкости из тугоплавкого материала, в которой непосредственно будет размещаться медный лом. Этот способ предполагает наличие тесного контакта расплавляемой массы металла с воздухом, что будет способствовать усилению процесса окисления расплавляемого металла. Чтобы этому как-то противостоять, на расплавляемую массу сверху насыпают слой древесного угля.
- Паяльная лампа. Способ практически ничем не отличается от плавки с помощью газовой горелки. Но в этом случае невозможно достигнуть относительно высоких температур, поэтому он годится для переплавки сплавов меди, которые обладают меньшей температурой плавления, чем чистая медь.
- Кузнечный горн. На раскалённые древесные угли специального костра помещается тугоплавкий тигель с измельчённым металлом. Для ускорения процесса расплавления задействуют обычный бытовой пылесос, включённый в режиме выдувания. Труба пылесоса должна быть небольшого диаметра и иметь металлический наконечник, в противном случае она расплавится. Данный способ подходит для тех, кто занимается плавкой меди дома регулярно и имеет дело с большими объёмами исходного материала, который необходимо отжечь.
- Микроволновая печь. Бытовая мощная микроволновка с небольшими изменениями конструкции может легко плавить довольно большие объёмы медного лома. Для этого необходимо убрать из микроволновки вращающуюся тарелку, а вместо неё поместить соответствующих размеров тигель, который необходимо сделать из тугоплавкого материала, например, из шамотного кирпича.
Пошаговая инструкция
Процесс плавления любого металла происходит поэтапно и подчиняется определённому алгоритму, который одинаков как для промышленного производства, так и для кустарного. Для тех, кто озадачен вопросом плавки меди в домашних условиях, пошаговая инструкция будет выглядеть следующим образом:
- Необходимо взять тугоплавкий тигель. Металл в измельчённом состоянии насыпается в тигель. После этого тигель помещается в предварительно прогретую муфельную печь. С помощью специального окошка наблюдают за процессом расплавления.
- После полного расплавления всего объёма медного лома тигель с помощью специальных длинных щипцов извлекается из печи.
- На поверхности расплавленного металла образуется плёнка его оксида. Эту плёнку необходимо аккуратно сдвинуть в сторону к одной из стенок тигля. Для этих целей используют специальный крючок, изготовленный из тугоплавкого металла.
- После того как металл освобождён от оксидной плёнки, необходимо его очень быстро разлить в предварительно подготовленные формы.
Практические рекомендации
Температура плавления меди в домашних условиях зависит от того, в каком сплаве она содержится.
Техническая чистая медь содержится в проводах и кабелях, а также в обмотках трансформаторов, электродвигателей и генераторов. При этом нужно иметь в виду, что химически чистая медь содержится только в столовых приборах и в прочей кухонной утвари. Во всех остальных случаях в ней присутствуют те или иные вредные компоненты.
В чистом виде обладает повышенной вязкостью в расплавленном состоянии, поэтому отливать из неё изделия сложной конфигурации и небольших размеров очень сложно. Гораздо легче для этих целей использовать латунь.
В сплавах бронзы, изготовленных вначале и середине прошлого века, использовали в качестве компонентов мышьяк и сурьму. Поэтому следует избегать расплавления так называемой старинной бронзы, так как пары мышьяка могут привести к отравлению организма.
- Как расплавить медь в домашних условиях
- Как расплавить латунь
- Как расплавить золото
- Тигель
- Щипцы для тигля
- Муфельная печь
- Древесный уголь
- Горн
- Бытовой пылесос
- Крюк из стальной проволоки
- Форма
Муфельная печь должна позволять получать следующие температуры: для плавления меди – 1083оС, для плавления бронзы – 930—1140оС, для плавления латуни — 880—950оС.
Красная медь является вязкоплавкой. Она малопригодна для тонкой отливки. Для этих целей больше подходит латунь. Чем светлее латунь, тем более легкоплавкой она является.
Не рекомендуется заниматься переплавкой старинной бронзы неизвестного происхождения, поскольку она может содержать в своем составе большое количество мышьяка.
Горн представляет собой открытую печь с вытяжкой, в которой сжигают древесный уголь. Для увеличения температуры в горн вдувают дополнительный воздух с помощью мехов или компрессора.
Для плавления меди применяются глиняные и керамические тигли.
Вместо горна можно использовать автоген или паяльную лампу.
Имеется в виду обычная газовая плита на кухне. Температура плавления меди 1085°С.
Это известный вопрос. Поступающее тепло (из пламени в проволоку) пропорционально площади поверхности (для цилиндрической проволоки — пропорционально первой степени диаметра), а отводящееся тепло — пропорционально площади сечения (второй степени диаметра). При уменьшении диаметра отводящееся тепло уменьшается гораздо резче поступающего, в результате температура повышается. Размерный эффект. (Не размерность, а размер!). О.Андреева не права — в пламени зажигалки тонкие медные провода отлично свариваются.
Провод до 0,15 можно спокойно расплавить в пламени обычной спички, сам таким способом сваривал провода в радиоэлектронных схемах, в газовой горелки плиты можно расплавить провод до 2 мм, часто отпускаю медные провода, иногда зазеваешься, и провод превращается в капли. Но диаметр провода влияет на температуру нагрева, потому что более толстый провод имеет большую теплоемкость и большую поверхность теплообмена с окружающей средой в сравнении с проводом малого диаметра. Но еще стоит знать температуру различных зон языка пламени, тогда можно и расплавить провод, и сохранить его при обжиге.
Начертите график плавления меди физика 8 класс
Начертите график плавления меди. По вертикали отложите температуру (1 клетка — 20 °С), а по горизонтали — время (1 клетка — 10 мин). Начальная температура меди равна 1000 °С, время нагревания до температуры плавления 20 мин, время перехода меди в жидкое состояние 30 мин.
Ответ
Температура плавления меди 1085 °С.
Сначала в течение 20 минут температура меди будет расти от 1000 °С до 1085 °С, потом температура будет оставаться постоянной до окончания плавления (в течении 30 мин), потом снова будет расти.
Плавление кристаллического тела — сложный процесс. Для его изучения рассмотрим график зависимости температуры кристаллического тела (льда) от времени его нагревания (рис. 18). На нём по горизонтальной оси отложено время, а по вертикальной — температура льда.
Рис. 18. График зависимости температуры льда от времени нагревания
Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С. При дальнейшем нагревании температура льда росла. На графике это участок АВ. Увеличение температуры происходило до 0 °С — температуры плавления льда. При 0 °С лёд начал плавиться, а его температура перестала расти. В течение всего времени плавления температура льда не менялась, хотя горелка продолжала гореть. Этому процессу соответствует горизонтальный участок графика — ВС.
После того как весь лёд расплавился и превратился в воду, температура снова стала подниматься (участок CD). Когда температура достигла +40 °С (точка D), горелка была погашена. Как видно из графика, температура воды после этого начала снижаться (участок DE). Вода стала охлаждаться. Когда её температура упала до 0 °С, начался процесс отвердевания воды — её кристаллизация, и пока вся вода не отвердеет, температура её не изменится (участок EF). Лишь после этого температура твёрдой воды — льда стала уменьшаться (участок FK).
Вопросы
- Пользуясь графиком (см. рис. 18) и текстом, относящимся к нему, объясните, что происходит с водой в отрезки времени, соответствующие каждому из участков графика.
- Как по графику можно судить об изменении температуры вещества при нагревании и охлаждении?
- Какие участки графика соответствуют плавлению и отвердеванию льда? Почему эти участки параллельны оси времени?
Задание
Начертите график плавления меди. По вертикали отложите температуру (1 клетка — 20 °С), а по горизонтали — время (1 клетка — 10 мин). Начальная температура меди равна 1000 °С, время нагревания до температуры плавления 20 мин, время перехода меди в жидкое состояние 30 мин.
Это любопытно.
Аморфные тела. Плавление аморфных тел
Существует особый вид тел, который принято также называть твёрдыми телами. Это аморфные тела. В естественных условиях они не обладают правильной геометрической формой.
К аморфным телам относятся: твёрдая смола (вар, канифоль), стекло, сургуч, эбонит, различные пластмассы.
По многим физическим свойствам, да и по внутреннему строению аморфные тела стоят ближе к жидкостям, чем к твёрдым телам.
Кусок твёрдой смолы от удара рассыпается на осколки, т. е. ведёт себя как хрупкое тело, но вместе с тем обнаруживает и свойства, присущие жидкостям. Твёрдые куски смолы, например, медленно растекаются по горизонтальной поверхности, а находясь в сосуде, со временем принимают его форму. По описанным свойствам твёрдую смолу можно рассматривать как очень густую и вязкую жидкость.
Аморфное тело — смола
Стекло обладает значительной прочностью и твёрдостью, т. е. свойствами, характерными для твёрдого тела. Однако стекло, хотя и очень медленно, способно течь, как смола.
В отличие от кристаллических тел, в аморфных телах атомы или молекулы расположены беспорядочно, как в жидкостях.
Кристаллические твёрдые тела, как мы видели (см. рис. 18), плавятся и отвердевают при одной и той же строго определённой для каждого вещества температуре. Иначе ведут себя аморфные вещества, например смола, воск, стекло. При нагревании они постепенно размягчаются, разжижаются и, наконец, превращаются в жидкость. Температура их при этом изменяется непрерывно. При отвердевании аморфных тел температура их также понижается непрерывно.
В аморфных твёрдых телах, как и в жидкостях, молекулы могут свободно перемещаться друг относительно друга. При нагревании аморфного тела скорость движения молекул увеличивается, увеличиваются расстояния между молекулами, а связи между ними ослабевают. В результате аморфное тело размягчается, становится текучим.
Зная строение аморфных тел, можно создавать материалы с заданными свойствами. В последние годы аморфные тела находят широкое применение при производстве считывающих головок аудио- и видеомагнитофонов, устройств записи и хранения информации в компьютерной технике, магнитных экранов и др.
Урок 15. Физика 8 класс
Конспект урока «Графики плавления и отвердевания»
График плавления и отвердевания тела показывает нам все этапы процесса. Из него мы можем извлечь информацию о температуре плавления тела, например, о том, как долго это тело потребовалось нагревать, чтобы достичь той или иной температуры. Для понимания того, как строятся подобные графики, рассмотрим некоторые примеры.
На рисунке представлен график плавления и отвердевания железа.
В начальный момент времени, температура была равна 1200 о С, и пока она не достигла 1539 о С, плавление не началось. Молекулы сохраняли свой порядок, что характерно для твёрдого тела. По достижении температуры плавления, порядок нарушается, поскольку тело переходит в жидкое состояние. Его температура какое-то время остаётся постоянной, о чем свидетельствует горизонтальный участок графика. После того, как железо полностью расплавилось, температура снова начала увеличиваться. Порядок полностью нарушился, поскольку этот участок графика соответствует периоду, когда железо было полностью жидким. Достигнув отметки 1880 о С, железо перестали нагревать, и температура начала падать. Достигнув температуры кристаллизации, железо начало твердеть. Это заняло какое-то время, в течение которого температура вновь не менялась, начал восстанавливаться порядок. После этого, температура стала ниже температуры отвердевания, и железо вновь стало полностью твёрдым, а порядок молекул восстановился. Этому соответствует последний участок графика.
1. Построить график плавления олова. Температура плавления составляет 232 о С, а начальная температура 200 о С. За 5 мин олово достигнет температуры плавления, и ещё 5 мин будет плавиться. 2,5 мин занимает нагревание олова от температуры плавления до 250 о С, и столько же займет охлаждение до 232 о С.
Итак, возьмём 20 о С за одну клетку по вертикали и 2,5 мин за одну клетку по горизонтали. Тогда первая точка будет иметь координаты 0 минут и 200 градусов, а вторая — 5 минут и 232 градуса. Соединим эти две точки. В этой точке начинается плавление длительностью 5 минут. Температура не меняется, поэтому координаты третьей точки будет 10 минут и 232 градуса. После этого, олово нагревается до 250 градусов за 2,5 минуты, поэтому координаты четвёртой точки будут 12,5 минут и 250 градусов. Это точка является пиком графика, поскольку в этот момент олово достигло наивысшей температуры. Дальше график симметричен, поэтому абсолютно аналогичным способом достраиваем и вторую часть графика.
Для построения этого графика мы использовали некую начальную информацию о теле. Значит, из готового графика можно извлечь информацию.
2. На рисунке представлен график плавления и отвердевания для какого-то вещества.
И нам надо найти ответы на вопросы:
— Какой самой высокой температуры достигло вещество?
Итак, смотрим на график. Вертикальная ось соответствует температуре, следовательно, наивысшая температура соответствует пику графика. Это 1250 о С.
— Какова температура плавления данного вещества?
Температуре плавления соответствуют горизонтальные участки графика, поскольку температура остаётся неизменной во время плавления или кристаллизации. На графике видно, что горизонтальные участки соответствуют температуре 1000 о С, поэтому, это и есть температура плавления.
— Сколько времени заняло плавление, и сколько времени заняла кристаллизация?
На графике мы видим, что по горизонтальной оси, соответствующей времени между отметкой 0 и отметкой 40 — две клетки. Длина горизонтальных отрезков тоже составляет две клетки. Поэтому, и плавление, и кристаллизация заняли по 40 минут.
— Какова скорость нагревания данного вещества в твердом состоянии, и какова скорость нагревания в жидком состоянии?
По вертикальной оси расстояние между отметкой 1000 и отметкой 1250 — одна клетка. Следовательно, расстояние в две клетки соответствует пятистам градусам. Тогда, в начальный момент времени, температура составляла 500 градусов. Мы видим на графике, что температура достигла температуры плавления за 40 минут. Поэтому, скорость нагревания в твердом состоянии равна 500 о С за 40 минут, т.е. 12,5 о С/мин.
На графике видно, что вещество в жидком состоянии нагрелось от 1000 о С до 1250 о С. По горизонтальной оси, длина этого процесса соответствует одной клетке, а, значит, двадцати минутам, т.к. 40 минут — это две клетки. Значит, скорость нагревания в жидком состоянии равна 250 о С за 20 минут, т.е. 12,5 о С/мин.
Следует помнить о том, что нагревание вещества в твердом состоянии на самом деле может происходить не с той же скоростью, что и нагревание вещества в жидком состоянии. Да и зависимость скорости нагревания или остывания от температуры может быть нелинейной. Несмотря на это, даже из такого графика можно извлечь, некоторую информацию.
Данный график предполагает достаточно сложные математические операции для подробного анализа, с которыми мы познакомимся намного позже. Однако, у нас достаточно знаний, чтобы ответить на следующие вопросы:
— Какая максимальная температура была достигнута данным веществом?
Опять же, обращаемся к самой высокой точке. Она соответствует 450 о С.
Держалась ли в какой-нибудь момент времени постоянная температура свыше 315 о С?
Постоянной температуре будет соответствовать горизонтальный участок графика. На данном графике, такой участок только один. Исходя из того, что отметка 450 о С находится на расстоянии 3 клетки от нулевой отметки по оси температуры, одна клетка соответствует 150 о С, а 2 клетки — 300 о С. Мы видим, что наш горизонтальный участок находится ниже отметки о С градусов, следовательно, температура выше 315 о С не держалась.
— Определите, нагревалось тело или остывало в первые 12 минут?
Одна клетка по горизонтальной оси соответствует 20 минутам. Мы видим, что на промежутке, более длительном, чем 12 минут, температура увеличивалась с течением времени. Следовательно, тело нагревалось.
Определите среднюю скорость нагревания в период с 40 до 100 минут.
Итак, отмечаем на графике интервал от 40 до 100 минут. Мы видим, что в этот период температура менялась по какому-то сложному закону. Однако, мы знаем, что бы ни происходило в этот период, температура возросла от 150 о С до 450 о С за 60 минут. Поэтому, в среднем, тело нагревалось со скоростью 300 о С в час или 5 о С в минуту.
При построении графиков помните, что очень важно соблюдать масштабирование, т.е. равные интервалы, относящиеся к одной и той же величине, обозначать равным количеством клеток.
Цены и новости на рынке химии
Новости и события
для утилизации, учитывая его объем.
ChemStor выполняет задачу, создавая график взаимодействия химических веществ друг с другом на основе групп, определенных Агентством по охране окружающей среды США. Все группы окрашиваются в свои определенные цвета…
Создать в Татарстане первое в РФ производство хлоропренового каучука предложил генеральный директор московского ООО «НИИЦ «Синтез» Марк ФЛИД. Об этом ИА Девон узнал в ходе сегодняшнего заседания…
Традиционные соляные смеси для борьбы с наледью можно заменить реагентом, произведенным на основе винограда. Такой вывод сделали американские ученые из Университета Вашингтона. Они уверены, что …
и оценки риска физических опасностей и химических веществ в потребительских товарах. Комиссия (SAC/TC 508) будет принимать замечания по электронной почте до 30 января 2020 года.
График выпуска трех добровольных национальных стандартов в окончательном…
В последнее время биопластики вызывают все больший интерес в качестве альтернативы обычным пластмассам. По этой причине их изготовление с использованием традиционных технологий, таких как экстру…
Он приурочен к 150-летию Периодической системы химических элементов
Компания Google в честь 150-летия Периодической системы химических элементов запустила образовательный проект. …
Информация
Создана программа для безопасности неопытных химиков
Уникальный каучук предлагают производить в Татарстане
Лед растопит виноград. США нашли способ заменить реагенты — но он не так хорош, как кажется
Создана программа для безопасности неопытных химиков
Уникальный каучук предлагают производить в Татарстане
Лед растопит виноград. США нашли способ заменить реагенты — но он не так хорош, как кажется
Каталог организаций и предприятий
Казахмыс», десятый по величине производитель меди в мире, увеличил выпуск своего основного продукта, катодной меди, в первом квартале 2007 г. на 12% до 99, 7 тыс. т. Вместе с тем, производство металлич…
Прием цветного лома пункт приема цветных металлов прием цветного металла в Москве прием лома меди сдать лом меди…
Компания работает на рынке услуг более 10 лет. У нас всегда есть свободные машины, график работы круглосуточно.
Компания Katanga Mining ставит своей целью начать производство меди на предприятии Камото (Kamoto) в Колвези в IV квартале 2007 г. По сообщению одного из руководителей компании Katanga, предприятие по…
Paranapanema SA — бразильская холдинговая компания, занимается добычей и производством цветных металлов, в основном олова, меди и цинка, а также проектированием, разработкой и производством металличе…
Находящаяся в полной собственности Amerigo компания Minera Valle Central (MVC) производит концентрат меди и молибдена на крупнейшей подземной шахте мира El Teniente компании Codelco. В 2007 MVC прои…
Предложения на покупку и продажу продукции
Vulcan S25 со склада. Покупая прибор Vulcan, Вы приобретаете экологичную систему обработки воды, долговременную защиту Вашего трубопровода и приборов от вредного воздействия коррозии и известкового на…
ООО «НПК ЕРМАКХИМ» предлагает со склада Москвы : высокомолекулярный , низкомолекулярный полиизобутилен . Высокомолекулярный полиизобутилен П-200 — полимер предназначен для использования в качестве ко…
ООО «НПК ЕРМАКХИМ» предлагает со склада Москвы : Флюс ПВ-209, ЛТИ-120, 16ВК, 34А, марки 100, ПВ-200, ПВ-201, ПВ -284, 34-А, ФК -235, СКФ, ФКТ, ФТБф (для пайки алюминия ОСТ 4Г 0.033.200) П…
График температуры плавления меди
Начертите график плавления меди. По вертикали отложите температуру (1 клетка — 20 °С), а по горизонтали — время (1 клетка — 10 мин). Начальная температура меди равна 1000 °С, время нагревания до температуры плавления 20 мин, время перехода меди в жидкое состояние 30 мин.
Ответ
Температура плавления меди 1085 °С.
Сначала в течение 20 минут температура меди будет расти от 1000 °С до 1085 °С, потом температура будет оставаться постоянной до окончания плавления (в течении 30 мин), потом снова будет расти.
Медь входит в семёрку самых древних металлов, с которыми люди познакомились на самом начальном этапе своего существования. Период с 4 по 3 тысячелетие до нашей эры так и называется медный век в истории развития человечества. Древние люди изготавливали из неё предметы быта, орудия труда и боевое оружие. Это стало возможным благодаря относительно невысокой температуре плавления меди.
Купрум: характеристика элемента
Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.
Физические свойства
Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.
- Температура плавления 1083 градуса.
- Температура кипения 2567 градусов.
- Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
- Плотность 8,92 г/см.
Нахождение в природе
В природе встречается в самородном виде и в виде соединений.
Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.
В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.
Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.
Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.
Медные сплавы
Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:
- Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
- Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец. Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
- Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
- Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия. Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
- Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.
Переплавка меди дома
Этот металл обладает целым набором полезных свойств, которые делают её весьма желанным металлом в домашнем хозяйстве. А относительно невысокая температура при плавлении и изрядное количество медного лома, которое можно обнаружить на ближайшей свалке, позволяют задавать вопрос о том, как расплавить медь в домашних условиях, не как риторический, а вполне реальный и практический.
График плавления меди
Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:
- Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
- При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
- После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.
В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.
Температура кипения
Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.
Способы плавки
Медный лом можно переплавить в домашних условиях разными способами в зависимости от технического оснащения домашней мастерской. При этом нужно иметь в виду, что придётся нагревать медь не до её температуры плавления, а чуть выше — примерно до 1100−1200 градусов.
Для этих целей годятся следующие приспособления:
- Муфельная печь. Наиболее рациональное решение проблемы расплавления меди, так как такая печь позволяет регулировать температуру во время процесса плавки, что очень удобно. Подобные лабораторные печи оснащены специальным окном из жаропрочного стекла, что позволяет постоянно осуществлять визуальный контроль всего процесса.
- Газовая горелка. Ручная газовая горелка размещается под дном ёмкости из тугоплавкого материала, в которой непосредственно будет размещаться медный лом. Этот способ предполагает наличие тесного контакта расплавляемой массы металла с воздухом, что будет способствовать усилению процесса окисления расплавляемого металла. Чтобы этому как-то противостоять, на расплавляемую массу сверху насыпают слой древесного угля.
- Паяльная лампа. Способ практически ничем не отличается от плавки с помощью газовой горелки. Но в этом случае невозможно достигнуть относительно высоких температур, поэтому он годится для переплавки сплавов меди, которые обладают меньшей температурой плавления, чем чистая медь.
- Кузнечный горн. На раскалённые древесные угли специального костра помещается тугоплавкий тигель с измельчённым металлом. Для ускорения процесса расплавления задействуют обычный бытовой пылесос, включённый в режиме выдувания. Труба пылесоса должна быть небольшого диаметра и иметь металлический наконечник, в противном случае она расплавится. Данный способ подходит для тех, кто занимается плавкой меди дома регулярно и имеет дело с большими объёмами исходного материала, который необходимо отжечь.
- Микроволновая печь. Бытовая мощная микроволновка с небольшими изменениями конструкции может легко плавить довольно большие объёмы медного лома. Для этого необходимо убрать из микроволновки вращающуюся тарелку, а вместо неё поместить соответствующих размеров тигель, который необходимо сделать из тугоплавкого материала, например, из шамотного кирпича.
Пошаговая инструкция
Процесс плавления любого металла происходит поэтапно и подчиняется определённому алгоритму, который одинаков как для промышленного производства, так и для кустарного. Для тех, кто озадачен вопросом плавки меди в домашних условиях, пошаговая инструкция будет выглядеть следующим образом:
- Необходимо взять тугоплавкий тигель. Металл в измельчённом состоянии насыпается в тигель. После этого тигель помещается в предварительно прогретую муфельную печь. С помощью специального окошка наблюдают за процессом расплавления.
- После полного расплавления всего объёма медного лома тигель с помощью специальных длинных щипцов извлекается из печи.
- На поверхности расплавленного металла образуется плёнка его оксида. Эту плёнку необходимо аккуратно сдвинуть в сторону к одной из стенок тигля. Для этих целей используют специальный крючок, изготовленный из тугоплавкого металла.
- После того как металл освобождён от оксидной плёнки, необходимо его очень быстро разлить в предварительно подготовленные формы.
Практические рекомендации
Температура плавления меди в домашних условиях зависит от того, в каком сплаве она содержится.
Техническая чистая медь содержится в проводах и кабелях, а также в обмотках трансформаторов, электродвигателей и генераторов. При этом нужно иметь в виду, что химически чистая медь содержится только в столовых приборах и в прочей кухонной утвари. Во всех остальных случаях в ней присутствуют те или иные вредные компоненты.
В чистом виде обладает повышенной вязкостью в расплавленном состоянии, поэтому отливать из неё изделия сложной конфигурации и небольших размеров очень сложно. Гораздо легче для этих целей использовать латунь.
В сплавах бронзы, изготовленных вначале и середине прошлого века, использовали в качестве компонентов мышьяк и сурьму. Поэтому следует избегать расплавления так называемой старинной бронзы, так как пары мышьяка могут привести к отравлению организма.
Твердый металл медь люди научились плавить еще до нашей эры. Название элемента по таблице Менделеева – Cuprum, в честь первого массового расположения производства меди. Именно на острове Кипр в третьем тысячелетии до н.э. начали добывать руду. Металл зарекомендовал себя как хорошее оружие и красивый, блестящий материал для изготовления посуды и других приборов.
Изготовление предметов требовало множество усилий при отсутствии технологий. В первых шагах развития цивилизации и поиску новых металлов, люди научились добывать и плавить медную руду. Получение руды происходило в малахитовом, а не в сульфидном состоянии. Получение на выходе свободной меди, из которой можно изготавливать детали, требовало обжига. Для исключения окислов, металл с древесным углем размещалась в сосуд из глины. Поджигался металл в специально подготовленной яме, образующийся в процессе угарный газ способствовал процессу появления свободной меди.
Для точных расчетов использовался график плавления меди. В то время производился точный расчет времени и примерная температура, при которой происходит плавка меди.
Медь и ее сплавы
Металл имеет красновато-желтый оттенок благодаря оксидной пленке, которая образуется при первом взаимодействии металла с кислородом. Пленка придает благородный вид и обладает антикоррозийными свойствами.
Сейчас доступно несколько способов добычи металла. Распространёнными являются медный колчедан и блеск, которые встречаются в виде сульфидных руд. Каждая из технологий получения меди требует особого подхода и следования процессу.
Добыча в природных условиях происходит в виде поиска медных сланцев и самородков. Объемные месторождения в виде осадочных пород находятся в Чили, а медные песчаники и сланцы расположились на территории Казахстана. Использование металла обусловлено невысокой температурой плавления. Практически все металлы плавятся путем разрушения кристаллической решетки.
Основной порядок плавления и свойства:
- на температурных порогах от 20 до 100° материал полностью сохраняет свои свойства и внешний вид, верхний оксидный слой остается на месте;
- кристаллическая решетка распадается на отметке 1082°, физическое состояние становится жидким, а цвет белым. Уровень температуры задерживается на некоторое время, а затем продолжает рост;
- температура кипения меди начинается на отметке 2595°, выделяется углерод, происходит характерное бурление;
- при отключении источника тепла происходит снижение температуры, происходит переход в твердую стадию.
Плавка меди возможна в домашних условиях, при соблюдении определенных условий. Этапы и сложность задачи зависят от выбора оборудования.
Физические свойства
Основные характеристики металла:
- в чистом виде плотность металла составляет 8.93 г/см 3 ;
- хорошая электропроводность с показателем 55,5S, при температуре около 20⁰;
- теплопередача 390 Дж/кг;
- кипение происходит на отметке 2600°, после чего начинает выделение углерода;
- удельное электрическое сопротивление в среднем температурном диапазоне – 1.78×10 Ом/м.
Основными направлениями эксплуатации меди является электротехнические цели. Высокая теплоотдача и пластичность дают возможность применения к различным задачам. Сплавы меди с никелем, латунью, бронзой, делаю более приемлемой себестоимость и улучшают характеристики.
Химический состав меди
В природе она не однородна по своему составу, так как содержит ряд кристаллических элементов, образующих с ней устойчивую структуру, так называемые растворы, которые можно подразделить на три группы:
- Твердые растворы. Образуются, если в составе содержаться примеси железа, цинка, сурьмы, олова, никеля и многих других веществ. Такие вхождения существенно снижают ее электрическую и тепловую проводимость. Они усложняют горячий вид обработки под давлением.
- Примеси, растворяющиеся в медной решетке. К ним относятся висмут, свинец и другие компоненты. Не ухудшают качества электропроводимости, но затрудняют обработку под давлением.
- Примеси, формирующие хрупкие химические соединения. Сюда входят кислород и сера, а также другие элементы. Они ухудшают прочностные качества, в том числе снижают электропроводность.
Масса меди с примесями гораздо больше, чем в чистом виде. Ко всему прочему, элементы примесей существенно влияют на конечные характеристики уже готового продукта. Поэтому их суммарный состав, в том числе количественный, по отдельности должен регулироваться еще на этапе производства. Рассмотрим более подробно влияние каждого элемента на характеристики конечных медных изделий.
- Кислород. Один из самых нежелательных элементов для любого материала, не только медного. С его ростом ухудшается такое качество, как пластичность и устойчивость к коррозионным процессам. Его содержание не должно превышать 0,008%. В ходе термической обработки в результате процессов окисления количественное содержание этого элемента уменьшается.
- Никель. Образует устойчивый раствор и существенно снижает показатели проводимости.
- Сера или селен. Оба компонента одинаково влияют на качество готовой продукции. Высокая концентрация таких вхождений снижает пластичные свойства медных изделий. Содержание таких компонентов не должно превышать 0,001% от общей массы.
- Висмут. Негативно влияет на механические и технологические характеристики готовой продукции. Максимальное содержание не должно превышать 0,001%.
- Мышьяк. Он не меняет свойств, но образует устойчивый раствор, является своего рода защитником от пагубного влияния других элементов, как кислород, сурьма или висмут.
Химический состав меди
- Марганец. Он способен полностью раствориться в меди практически при комнатной температуре. Влияет на проводимость тока.
- Сурьма. Компонент лучше всех растворятся в меди, наносит ей минимальный вред. Содержание его не должно превышать 0,05% от массы меди.
- Олово. Образует устойчивый раствор с медью и повышает ее свойства по проведению тепла.
- Цинк. Его содержание всегда минимально, поэтому такого пагубного влияния он не оказывает.
Фосфор. Основной раскислитель меди, максимальное содержание которого при температуре 714°С составляет 1,7%.
Латунь
Сплав на основе меди с добавлением цинка называется латунь. В некоторых ситуациях добавляется олово в меньших пропорциях. Джеймс Эмерсон в 1781 году решил запатентовать комбинацию. Содержание цинка в сплаве может варьироваться от 5 до 45%. Латуни различают в зависимости от предназначения и спецификации:
- простые, состоящие из двух компонентов – меди и цинка. Маркировка таких сплавов обозначается буквой «Л», напрямую значащая содержание меди в сплаве в процентах;
- многокомпонентные латуни – содержат множество других металлов в зависимости от назначения к использованию. Такие сплавы повышают эксплуатационные свойства изделий, обозначаются также буквой «Л», но с прибавлением цифр.
Физические свойства латуни относительно высокие, коррозийная стойкость на среднем уровне. Большинство сплавов не критично к пониженным температурам, возможно эксплуатировать металл в различных условиях.
Технологии получения латуни взаимодействует с процессами медной и цинковой промышленности, обработке вторичного сырья. Эффективным способом плавки является использование электропечи индукционного типа с магнитным отводом и регулировкой температуры. После получения однородной массы, она разливается в формы и подвергается процессам деформации.
Применение материала в различных отраслях, повышает на него спрос с каждым годом. Сплав применяется в суд строительстве и производстве боеприпасов, различных втулок, переходников, болтов, гаек и сантехнических материалов.
Бронза
Цветной металл для изготовки изделий разных типов начали использовать с древних времен. Данный факт подтверждается найденными материалами при археологических раскопках. Состав бронзы изначально был богат оловом.
Промышленностью выпускается различное количество разновидностей бронзы. Опытный мастер способен по цвету металла определить его предназначение. Однако не каждому под силу определить точную марку бронзы, для этого используется маркировка. Способы производства бронзы подразделяются на литейные, когда происходит плавление и отлив и деформируемые.
Состав металла зависит от предназначения к использованию. Основным показателем является наличие бериллия. Повышенная концентрация элемента в сплаве, подвергнутая процедуре закаливания, может соперничать с высокопрочными сталями. Наличие в составе олова отнимает у металла гибкость и пластичность.
Производство бронзовых сплавов изменилось с древних времен фактически внедрением современного оборудования. Технология с использованием в качестве флюса в виде древесного угля используется до сих пор. Последовательность получения бронзы:
- печь разогревается для требуемой температуры, после этого в нее устанавливается тигель;
- после плавки металл может окислится, во избежание этого добавляют флюс в качестве древесного угля;
- кислотным катализатором служит фосфорная медь, добавление происходит после полного прогрева сплава.
Старинные изделия из бронзы подвержены естественным процессам – патинирование. Зеленоватый цвет с белым оттенком проявляется из-за образования пленки, обволакивающей изделие. Искусственные методы патинирования включают в себя методы с использованием серы и параллельным нагреванием до определенной температуры.
Температура плавления меди
Плавится материал при определенной температуре, которая зависит от наличия и количества сплавов в составе.
В большинстве случаев, процесс происходит при температуре от 1085°. Наличие олова в сплаве дает разбег, плавление меди может начаться при 950°. Цинк в составе также понижает нижнюю границу до 900°.
Для точных расчетов времени понадобится график плавления меди. На обычном листке бумаги используется график, где по горизонтали отмечается время, а по вертикали градусы. График должен указывать, на каких моментах поддерживается температура при нагреве для полного процесса кристаллизации.
Печь для плавки меди
Плавление меди в домашних условиях
В домашних условиях медные сплавы возможно плавить несколькими способами. При использовании любого из методов, понадобятся сопутствующие материалы:
- тигель – посуда, изготовленная из закаленной меди или другого огнеупорного металла;
- древесный уголь, понадобится в роли флюса;
- крюк металлический;
- форма будущего изделия.
Наиболее легким вариантом для плавления является муфельная печь. В емкость опускаются куски материала. После установки температуры плавления процесс можно наблюдать через специальное окошко. Установленная дверца позволяет удалять образованную в процессе оксидную пленку, для этого понадобиться заранее подготовленный металлический крюк.
Вторым способом плавления в домашних условиях является использование горелки или резака. Пропан – кислородное пламя отлично подойдет для работ с цинком или оловом. Куски материалов для будущего сплава помещаются в тигель, и нагреваются мастером произвольными движениями. Максимальная температура плавления меди может быть достигнута при взаимодействии с пламенем синего цвета.
Плавка меди в домашних условиях подразумевает работу с повышенными температурами. Приоритетом служит соблюдение техники безопасности. Перед любой процедурой следует одеть защитные огнеупорный перчатки и плотную, полностью закрывающую тело одежду.
Значение плотности меди
Плотность — это отношение массы к объему. Выражается она в килограммах на кубический метр всего объема. В виду неоднородности состава, значение плотности может меняться в зависимости процентного содержания примесей. Поскольку существуют разные марки медных прокатов с разным содержанием компонентов, то и значение плотности у них будет разное. Плотность меди можно найти в специализированных технических таблицах, которая равна 8,93х10 3 кг/м 3 . Это справочная величина. В этих же таблицах показан удельный вес меди, который равен 8,93 г/см 3 . Таким совпадением значений плотности и его весовых показателей характеризуются не все металлы.
Основные показатели меди
Не секрет, что от плотности напрямую зависит конечная масса изготовленного изделия. Однако для расчетов гораздо правильнее использовать удельный вес. Этот показатель очень важен для производства изделий из меди или любых других металлов, но применим больше к сплавам. Он выражается отношением массы меди к объему всего сплава.
Расчет удельного веса
В настоящее время учеными разработано огромное количество способов, помогающих найти характеристики удельного веса меди, которые позволяют даже без обращения к специализированным таблицам вычислять этот немаловажный показатель. Зная его, можно с легкостью подобрать необходимые материалы, благодаря которым в конечном итоге можно получить нужную деталь с требуемыми параметрам. Это делается еще на стадии подготовки, когда планируется создать необходимую деталь из меди или ее содержащих сплавов.
Рассмотрим,» как можно вычислить удельный вес, если известна масса и объем медного изделия.
Например, имеем чистый медный лист толщиной 5 мм, шириной 2 м и длиной 1 м. Для начала посчитаем его объем: 5 мм * 1000 мм (1 м =»» 1000 мм) * 2000 мм, что составляет 10 000 000 мм 3 или 10 000 см 3 . Для удобства расчетов будем считать, что масса листа составляет 89 кг 300 грамм или 89300 грамм. Делим рассчитанный результат на объем и получаем 8,93 г/см 3 . Зная этот показатель, мы всегда с легкостью можем вычислить весовое содержание в меди того или иного сплава. Это удобно, например, для обработки металла.
Единицы измерения удельного веса
В разных системах измерения используются разные единицы для обозначения удельного веса меди:
- В системе измерения СГС или сантиметр-грамм-секунда используется дин/см 3 .
- В Международной СИ используются единицы н/м 3 .
- В системе МКСС или метр-килограмм-секунда-свеча применяется кг/м 3 .
Первые два показателя равны между собой, а третий при конвертации равен 0,102 кг/м 3 .
Расчет веса с использованием значений удельного веса
Не будем уходить далеко и воспользуемся примером, описанным выше. Вычислим общее содержание меди в 25 листах. Поменяем условие и будем считать, что листы изготовлены из медного сплава. Таким образом, берем удельный вес меди из таблицы и он равен 8.93 г/см 3 . Толщина листа 5 мм, площадь (1000 мм * 2000 мм) составляет 2 000 000 мм, соответственно объем будет равняться 10 000 000 мм 3 или 10 000 см 3 . Теперь умножаем удельный вес на объем и получаем 89 кг и 300 гр. Мы вычислили общий объем меди, который содержится в этих листах без учета веса самих примесей, то есть общее весовое значение может быть больше.
Теперь умножаем рассчитанный результат на 25 листов и получаем 2 235 кг. Такие расчеты уместно использовать при обработке медных деталей, так как позволяют узнать, сколько меди всего содержится в изначальных объектах. Аналогичным образом можно рассчитать медные прутки. Площадь сечения провода умножается на его длину, где получим объем прутка, а далее по аналогии с вышеописанным примером.
Как определяется плотность
Плотность меди, как и плотность любого другого вещества, является справочной величиной. Она выражается соотношением массы к объему. Самостоятельно вычислить этот показатель весьма сложно, так как без специальных приборов состав проверить невозможно.
Пример расчета плотности меди
Выражается показатель в килограммах на кубический метр или в граммах на кубический сантиметр. Показатель плотности более полезен для производителей, которые на основе имеющихся данных могут скомпоновать ту или иную деталь с требуемыми свойствами и характеристиками.
Области использования меди
Благодаря физико-механическим свойствам, она широко используется для различных отраслей промышленности. Наиболее часто ее можно встретить в электротехнической области в качестве составляющей части электрического провода. Не меньшей популярностью она пользуется также в производстве систем отопления и охлаждения, электроники и системах теплового обмена.
В строительной отрасли она используется, прежде всего, для создания разного рода конструкций, которые получаются гораздо меньше по массе, чем из любых других аналогичным материалов. Часто ее используют для кровли, так как такие изделия обладают легкостью и пластичностью. Такой материал легко обрабатывается и позволяет менять геометрии профиля, что очень удобно.
Как уже говорилось выше, основное свое применение она находит в изготовлении электрических и иных токопроводящих кабелей, где она используется для изготовления жил проводов и кабелей. Обладая хорошей электропроводностью, она дает достаточное сопротивление электронам тока.
Широко используются также сплавы меди, например, сплав меди и золота повышает прочность последнего в разы.
На стенках медных прокатов никогда не образуются соляные отложения. Такое качество полезно для транспортировки жидкостей и паров.
На основе оксидов меди получают сверхпроводники, а в чистом виде она идет на изготовление гальванических источников питания.
Схема гальванического источника питания
Она входит в состав бронзы, которая обладает стойкостью к агрессивным средам, как морская вода. Поэтому часто ее используют в навигации. Также бронзовые продукты можно увидеть на фасадах домов, как элемент декора, так как такой сплав обрабатывается легко, так как очень пластичен.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
>
Агрегатные состояние вещества. Плавление и отвердевание кристаллических тел. График плавления и отвердевания кристаллических тел. Удельная теплота плавления
820. Чем отличаются молекулы воды от молекул водяного пара?
Молекулы одинаковые. Различны расстояния между ними и скорости их движения.
821. Отличаются ли молекулы железа в болванке от молекул железа в расплавленном состоянии?
Нет.
822. С помощью таблиц определите, у какого вещества температура плавления выше: у серебра или стеарина?
Температура плавления серебра выше.
823. В сосуде с водой при 0 °С плавают куски льда. Что будет происходить: лед таять или вода замерзать? От чего это зависит?
При сохранении температуры воды система будет находиться в равновесии – лед не будет таять, а вода не будет замерзать.
824. Почему при плавлении или отвердевании температура тел не меняется?
Потому что вся энергия тратится на разрушение или восстановление кристаллической решетки.
825. Существует ли температура плавления для аморфных тел?
Нет.
826. Используя табличные данные, определите, у какого вещества температура плавления выше: у цезия или золота.
Температура плавления золота больше.
827. Можно ли для измерения температуры наружного воздуха использовать термометры со ртутью?
Нельзя, так как ртуть замерзает при -38,83°С.
828. В помещение, температура в котором 0 °C, внесли тающий лед. Будет ли он в этом помещении таять?
При сохранении постоянной температуры лед таять не будет.
829. Будет ли плавиться серебро, если его бросить в расплавленное железо?
Температура плавления серебра меньше температуры плавления железа, поэтому серебро будет плавиться.
830. Почему весной возле реки с плывущими по ней льдинами холоднее, чем вдали от нее?
Потому что льдины поглощают тепло.
831. Вода массой 125 кг при 0 °С превратилась в лед. Какое количество теплоты при этом выделилось?
832. Домашним ледником может служить ящик с двойными стенками, пространство между которыми заполнено льдом. Почему внутри такого ледника даже летом температура не поднимается выше 0 °С?
Лед будет постоянно охлаждать ящик, и температура внутри такого ледника не будет подниматься выше 0°С.
833. Почему поставленный на огонь чайник, когда в нем есть вода, просто кипит, а будучи пустым – раскаляется докрасна?
Потому что стенки чайника ведут теплообмен с водой и не раскаляются больше температуры кипения воды.
834. Будет ли плавиться свинец, если его довести до точки плавления и затем прекратить нагрев?
Не будет.
835. Удельная теплота плавления олова равна 59 кДж/кг. Что это означает?
Чтобы расплавить 1 кг олова нужно затратить 59 кДж энергии.
836. Во сколько раз больше теплоты идет на плавление 2 кг чугуна, чем на нагревание 2 кг чугуна на 1 °С?
837. Лед массой 3 кг при температуре 0 °С растаял. Сколько энергии при этом было затрачено?
838. Кусок алюминия массой 10 кг, взятый при температуре плавления 660 °С, полностью расплавился. Какое для этого потребовалось количество теплоты?
839. На рисунке 85 дан график изменения температуры твердого тела при нагревании.
Определите по этому графику:
а) при какой температуре плавится это тело;
б) как долго длилось нагревание от 60° до точки плавления;
в) как долго длилось плавление;
г) до какой температуры было нагрето вещество в жидком состоянии.
а) тело плавится при температуре 80°С;
б) нагревание длилось 4 мин;
в) плавление длилось 4 мин;
г) максимальная температура нагрева вещества 87,5°.
840. Почему для измерения температуры наружного воздуха в холодных районах применяют термометры со спиртом, а не с ртутью?
При низких температурах ртуть замерзает, а спирт — нет.
841. Будет ли плавиться олово, если его бросить в расплавленный свинец?
Будет, потому что температура плавления олова ниже, чем у свинца.
842. Чем выше температура накаленного тела, тем ярче оно светится. Волоски электрических ламп делают из металлов вольфрама, тантала и иридия. Чем можно объяснить употребление этих металлов для нитей лампочек?
Данные металлы обладают высокой температурой плавления и малой удельной теплоемкостью. Это позволяет нагревать металл до высоких температур, не расплавляя его.
843. В каком состоянии находится спирт при температуре -120 °С?
При данной температуре спирт замерзает и становится твердым телом.
844. В каком состоянии находится железо при температуре 1500 °С?
Температура плавления железа 1538°С, поэтому при 1500°С железо остается в твердом состоянии.
845. Кусок меди массой 4 кг расплавился. На сколько увеличилась его внутренняя энергия?
846. Сколько энергии понадобится для расплавления свинца массой 10 кг, взятого при температуре плавления?
847. Сколько энергии будет затрачено для расплавления свинца массой 10 кг, взятого при начальной температуре 27 °С?
848. Какое количество теплоты затрачено на расплавление 1 т железа, взятого при температуре 10 °С?
849. Свинец объемом 10 см3, взятый при начальной температуре 20 °С, полностью расплавился. Какое количество теплоты было при этом затрачено?
850. На плавление какого металла, взятого при температуре 20 °С, нужно большее количество энергии: на 1 г меди или 1 г серебра? На сколько больше?
851. В каком случае требуется большее количество энергии и на сколько: на плавление 1000 кг железа или 1000 кг алюминия, если и железо, и алюминий взяты при начальной температуре 10 °С?
852. На рисунке 86 изображены графики зависимости температуры от времени для слитка свинца (I) и слитка олова (II) одинаковой массы. Количество теплоты, получаемое каждым телом в единицу времени, одинаково. Определите по графику:
1) У какого слитка температура плавления выше?
2) У какого металла больше удельная теплоемкость?
3) У какого металла больше удельная теплота плавления?
1) у слитка свинца температура плавления выше;
2) удельная теплоемкость олова больше;
3) удельная теплота плавления у олова больше.
853. Нагревают два сосуда: в одном находится 0,2 кг воды при температуре 0 °С, в другом – 200 г снега. Одинаково ли будет повышаться температура в сосудах при одинаковой мощности нагревателя? Постройте график зависимости температуры каждого сосуда от получаемого количества теплоты.
854. Какое количество теплоты потребуется для превращения 10 кг льда в воду при 0 °С?
855. Какое количество теплоты потребуется для превращения 150 кг льда с температурой -8 °С в воду при температуре 0 °С?
856. Рассчитайте количество теплоты, потребное для превращения 20 кг льда при -4 °С в воду при 100 °С.
857. В банке содержится 2 кг воды при температуре 18 °С. Какое количество теплоты отдает вода охлаждающей смеси, в которую погружена банка, если вся вода в банке превращается в лед с температурой 0 °С?
858. В медный калориметр весом 200 г налито 100 г воды при 16 °С. В воду бросили кусочек льда при 0°С весом 9,3 г, который целиком расплавился. Окончательная температура воды после этого установилась 9 °С. Определите на основании этих данных удельную теплоту плавления льда.
859. Какое количество теплоты потребно для расплавления 1 кг железа, взятого при температуре 20 °С?
860. В 5 л воды при температуре 40 °С опустили 3 кг льда. Сколько льда растает?
861. В калориметр налили 0,2 кг воды при температуре 25 °С. Какова будет температура этой воды, если в ней растает 5 г льда?
862. Ледяной калориметр представляет собой массивный куб из льда, внутри которого выдолблено углубление и закрыто толстой крышкой из льда (рис. 87). В такой калориметр положили латунную гирю массой 1000 г, нагретую до 100 °С. Сколько граммов льда растает в этом калориметре к тому моменту, когда гиря остынет до 0 °С?
863. КПД спиртовки 10%. Сколько нужно сжечь спирта в спиртовке, чтобы расплавить 1 кг льда при 0 °С?
864. Сколько требуется сжечь каменного угля в печи, чтобы расплавить 100 т чугуна, взятого при температуре 20 °С, если КПД печи 40%?
865. В водопаде высотой 32 м ежесекундно падает 3,5 м3 воды. Какое количество энергии можно получить в час от этого водопада? Какое количество каменного угля надо сжигать каждый час, чтобы получить то же самое количество энергии?