Неразрушающий контроль сварных швов: Методы неразрушающего контроля для диагностики сварных швов

Содержание

Методы неразрушающего контроля для диагностики сварных швов

Методы неразрушающего контроля

Кандидаты и доктора технических наук из Томского политехнического университета (ТПИ) и ФГБУН института физики прочности и материаловедения Сибирского отделения Российской академии наук в Томске провели научное исследование, чтобы ответить на вопрос – какие методы неразрушающего контроля наиболее эффективны для контроля целостности сварных швов. Специалисты компании ПЕРГАМ приняли участие в исследовании и предоставили учёным профессиональный тепловизор с высоким разрешением.

Совместно изучили возможности различных методов неразрушающей дефектоскопии для швов, полученных методом сварки трением с перемешиванием (СТП) на алюминиевых сплавах. Метод сварки трением не предполагает плавления металла в зоне сварки и поэтому имеет свои типы дефектов. В связи с этим применяли такие методы неразрушающего контроля, как ультразвуковая ФАР-дефектоскопия, вихретоковый метод и тепловизионный контроль в ходе сварки, а также металлографические исследования полученных структур. В результате были получены данные о типах дефектов и местах их залегания, которые выявляются отдельными методами. Обследовали дефекты типа стыковой линии, возникающие при сварке трением с перемешиванием. Сравнили результаты по применяемым методам, подтвердили вывод о необходимости использования комплексного подхода к дефектоскопии СТП-соединений.

Сварка трением с перемешиванием к содержанию

Метод сварки трением с перемешиванием (СТП) широко используется сегодня для сварки алюминиевых сплавов в мировой практике, о чем говорит большое число публикаций в иностранных журналах. СТП характеризуется тем, что формирование и заполнение шва происходят при температуре металла ниже температуры плавления. Во многом процесс пластификации и пластического течения деформированного и пластифицированного материала при сварке трением схож с процессами структурообразования при трении в пластичных металлах. В связи с этим рассуждения и оценки, сделанные при исследовании процессов трения, справедливы и для сварки трением с перемешиванием. В частности, это касается механизмов формирования дефектов, которые отличаются от дефектов, получаемых при сварке традиционными методами, предусматривающими плавление металла в сварочной ванне.

В технической литературе давно и подробно исследованы типы дефектов и условия их возникновения в сварных соединениях, полученных СТП. Уменьшить вероятность, а в идеале и полностью исключить появление дефектов можно за счет подбора оптимальных параметров процесса: скорости поступательного движения инструмента вдоль шва, частоты его вращения, силы прижатия инструмента к заготовкам. Важным условием получения бездефектного шва является подготовленность кромок — отсутствие оксидных пленок и зазора между заготовками в стыке при сварке, а также небольшая степень изношенности инструмента. При правильном подборе параметров сварки и соблюдении указанных выше условий СТП гарантирует требуемую прочность соединения и отсутствие дефектов, обнаруживаемых известными методами неразрушающего контроля.

Но методы неразрушающего контроля имеют определенные ограничения. Для СТП-соединений одними из наиболее опасных и трудновыявляемых методами неразрушающего контроля дефектов являются дефекты типа стыковых линий. Они могут служить местами зарождения и распространения трещин при нагрузке, они существенно снижают прочность сварного соединения. Появление дефектов стыковых линий может быть обусловлено недостаточным перемешиванием материала в шве вследствие изношенности инструмента либо интенсивным налипанием на инструмент металла при сварке. Часто такие дефекты декорированы фрагментами оксидных пленок, перенесенных в шов с кромок свариваемых деталей, и хорошо видны на поперечном сечении шва. Однако при надлежащей обработке кромок перед сваркой заметить эти дефекты трудно даже при металлографическом анализе поперечного сечения шва. В настоящий момент возможности методов неразрушающего контроля в отношении стыковых линий не до конца ясны. Именно по этой причине мы решили изучить возможности методов неразрушающего контроля для диагностики сварных швов, полученных методом СТП.

Методы СТП в промышленном производстве

В последнее время СТП начинает находить применение и в России. Пионером использования СТП в серийном промышленном производстве ЗАО «Чебоксарское предприятие «Сеспель». На предприятии методом СТП изготавливают из алюминиевого сплава автомобильные цистерны-полуприцепы различного назначения.

В связи с широким внедрением СТП для изготовления ответственных изделий, в том числе корпусных деталей ракетно-космической техники, все большее внимание уделяется развитию неразрушающих методов контроля для диагностики сварных швов. Методы неразрушающего контроля, применяемые для СТП-соединений, включают традиционные способы, такие как радиография, ультразвуковой и вихретоковый способы, применяется термография, пенетрометрия. Перечисленные методы контроля по отдельности позволяют определять наличие дефекта с различной степенью достоверности и поэтому могут применяться с надежностью в отношении дефектов определенного типа и размера.

Методы неразрушающего контроля для поиска дефектов сварных швов

  • Радиография дает возможность прямого наблюдения дефектов, но чем больше толщина свариваемого металла, тем меньше возможности метода в отношении мелких дефектов;
  • Ультразвуковой метод с применением фазированных антенных решеток обладает хорошей разрешающей способностью по глубине, но также имеет ограничения при выявлении дефектов малого размера;
  • Вихретоковый метод позволяет надежно находить дефекты в тонком поверхностном слое, что особенно важно при определении дефектов типа трещин.

Применение всех этих методов стандартизовано в наибольшей степени в приложении к методам сварки плавлением и в меньшей степени к методам сварки трением. Использование термографии в качестве метода контроля швов в основном ограничивается методами активного контроля с помощью контролируемого нагрева соединения. При этом они не имеют преимущества перед радиографией или ультразвуковой дефектоскопией. Преимуществом данного метода может быть использование для мониторинга поверхности шва непосредственно в процессе сварки.

Обзор литературы по типам и размерам дефектов, формируемых при сварке трением с перемешиванием, показывает, что к ним можно отнести поры малого размера, дефекты в виде строчек оксидов и стыковых линий («kissing bonds», «Lazy S» и т.д.), червоточин или каналов («wormholes», «channels»), которые располагаются на стороне набегания («advancing side»). При соответствующей обработке и подгонке кромок свариваемых изделий из алюминиевых сплавов можно значительно уменьшить вероятность появления протяженных линейных дефектов типа стыковых линий при сварке в оптимальном режиме. Однако любое отклонение от режима либо неточность примыкания кромок ведет к образованию дефектов. В связи с этим существует необходимость использования нескольких дополняющих друг друга методов контроля, особенно при производстве ответственных соединений.

Целью данной работы является оценка и сравнение возможностей современных методов неразрушающего контроля сварных соединений для дефектоскопии СТП-швов.

Зачем это нужно?

Это необходимо для достоверного обнаружения, точной идентификации и определения размеров дефектов в реальном изделии по материалам неразрушающего контроля. В данной работе сделана попытка сравнительного анализа данных, полученных методами неразрушающего контроля – тепловизионным, ультразвуковым и вихретоковым, с результатами разрушающего контроля – металлографического анализа.

Сварное соединение и методика исследований к содержанию

Объектом исследований являлось сварное соединение двух пластин из термически неупрочняемого деформируемого сплава АМг5М в отожженном состоянии, выполненное сваркой трением с перемешиванием (рис. 1). Стыковые сварные пробы из листовых полуфабрикатов изготовляли на станции автоматической сварки листов из алюминиевых сплавов ЗАО «Чебоксарское предприятие «Сеспель». Толщина свариваемых пластин s составляла 5 мм, ширина образца w после сварки ≈185 мм, ширина сварного шва Lw = 19 мм. Длина сварных соединений, полученных при разных режимах сварки, в среднем составляла ≈500 мм.

За счет отклонения от штатного режима сварки путем изменения таких параметров сварочного процесса, как величина силы прижатия инструмента, частота вращения и скорость подачи инструмента, были получены образцы сварных соединений, содержащих различные дефекты. Некоторые из этих дефектов можно было наблюдать визуально на поверхности шва, а другие были скрытыми. Кромки листов также не обрабатывали перед сваркой для получения максимального числа дефектов.

Термография

Для теплового мониторинга в процессе сварки использовали тепловизор FLIR А655sc. Контроль выполняли в режиме видеосъемки. Размер кадра составлял 640×480 пикселей, частота 60 кадров/с. Тепловизор монтировали непосредственно на движущемся шпиндельном узле, в котором был установлен сварочный инструмент, на расстоянии около 30 см от образца, поле зрения составляло ≈15 см. Таким образом, зона теплового контроля оставалась неподвижной относительно сварочного инструмента и перемещалась по поверхности исследуемого образца со скоростью подачи. После записи данных проводили их обработку и строили термограмму процесса сварки. Термограмма позволяет сравнить между собой различные участки шва при одинаковых условиях остывания после прохождения сварочного инструмента и выявить возможные температурные аномалии.

Ультразвуковой (УЗ) контроль

УЗК контроль проводили с использованием дефектоскопа с фазированной решеткой HARFANG VEO 16:128. Применяли метод секторного сканирования с пьезоэлектрическим преобразователем (ПЭП) на фазированной антенной решетке, на призме с углом 36°, с угловым разрешением 0,2°. Углы ввода составляли от 45 до 65°, частота ПЭП – 10 МГц, опорное усиление 65 дБ. В качестве иммерсионной жидкости использовали водопроводную воду.

Призму размещали на корневой стороне перпендикулярно шву на расстоянии 11 мм от его оси. При сканировании призма перемещалась электроприводом с постоянной скоростью ≈2 мм/с вдоль шва от его начала до конца. Призма прижималась к поверхности силой 10 Н. Секторные сканы (S-сканы) поперечного сечения шва записывались с шагом 0,2 мм и строилась полная УЗ-дефектограмма сварного соединения.

Вихретоковый контроль

Для вихретокового контроля применяли дефектоскоп Ectane. Напряжение на вихретоковом преобразователе составляло 4 В, частота 50 кГц. Использовали вихретоковый преобразователь, состоящий из 32 катушек с шириной рабочей части 50 мм. Вихретоковый преобразователь помещался на корневую сторону перпендикулярно шву так, чтобы его середина совпадала с осью шва. При сканировании он нагружался силой 10 Н и перемещался вдоль шва от начала до конца вручную со скоростью около 10 мм/с. Сканы записывались с пространственным шагом 0,1 мм и строились Axial- и Trans-сканы для всего шва.

Металлографический анализ

В качестве разрушающего метода контроля для выявления типа, положения и размеров обнаруженных дефектов применяли металлографический анализ. Образцы для анализа вырезали из сварного шва (рис. 2, а). Затем изготавливали шлифы поперечного сечения шва (рис. 2, б), а также планарного сечения – плоскости, параллельной лицевой стороне образца (рис. 2, в). Фотографировали шлифы на металлографическом инвертированном микроскопе МЕТАМ ЛВ-31 с помощью цифровой фотокамеры с разрешением 4 Мп. Для получения детализированной макроскопической картины сварного шва его фотографировали по частям с 50-кратным увеличением, затем «сшивали» отдельные цифровые фотографии в единое изображение. В связи с этим на изображениях сварного шва могут проявляться небольшие периодические неоднородности по яркости.

Результаты исследования сварных швов неразрушающими методами к содержанию

При тепловом контроле на термограммах некоторых образцов были обнаружены аномалии температурного поля в виде темной полосы по оси сварного шва (рис. 3, б). Визуальный контроль показал, что никаких изменений на поверхности шва не наблюдается (рис. 3, а).

Ультразвуковая дефектоскопия показала, что в данном образце присутствует большое количество дефектов (рис. 3, в). Максимальное количество и интенсивность дефектов наблюдается в области начала темной полосы на термограмме (см. рис. 3, б).

Ультразвуковая дефектограмма, приведенная на рис. 3, в, представляет собой прозрачный вид сверху – на нем отображены все дефекты независимо от того, на какой глубине в образце они находятся. Анализ данного скана показал, что все обнаруженные дефекты расположены в виде цепочки на одной линии, на одинаковой глубине, на набегающей стороне шва (по общепринятой терминологии advancing side, далее AS), на расстоянии 2…3 мм от его оси.

Металлографическое исследование

Для идентификации обнаруженного дефекта был приготовлен шлиф по сечению, показанному на рис. 3. На рис. 4, а и б приведены изображение дефекта на УЗ-S-скане и фотографии поперечного сечения шлифа соответственно. Хорошо видно, что положение дефектной зоны на УЗ-скане (рис. 4, а) точно совпадает с расположением зоны, содержащей дефекты в виде пор на металлографическом шлифе. Дефектная зона расположена на глубине от 1 до 2,5 мм.

Для того чтобы получить более ясное пространственное представление о дефекте, был выполнен послойный металлографический анализ, который показал, что дефект расположен в ядре шва, справа по ходу движения инструмента (AS), на границе с основным материалом. Он представляет собой квазипериодическую пористую структуру (рис. 4, в), период которой совпадает с периодом чешуйчатости на лицевой стороне шва (рис. 3, а).

Свищ сварного шва

По общепринятой терминологии такие дефекты можно отнести к типу worm-hole. Поры в таком дефекте сварного шва ориентированы вдоль линий пластического течения материала и представляют собой микрообъемы неправильной формы, одна из границ которых имеет форму кругового сегмента (см. рис. 4, в). Рассмотрение поперечного сечения шва показывает, что форма сечения пор близка к равноосной (см. рис. 4, б). Размер пористой области может изменяться, но ее правая граница всегда находится на стыке шва и основного материала (см. рис. 4, в). Причина формирования дефекта связана с особенностями течения пластифицированного и модифицированного трением металла вблизи границы с неподвижным металлом основы.

В одном из образцов перед сваркой для внесения дополнительных дефектов в шов на стыке пластин было просверлено пять отверстий диаметром 5 мм и глубиной 3 мм с одинаковым интервалом. Визуальный контроль и термограмма сварки (рис. 5, а) показывают, что наличие отверстий привело к появлению непроваров на лицевой стороне шва с тем же интервалом. Места внешних непроваров однозначно идентифицируются на термограмме в виде более ярких участков по отношению к окружающим областям.

Помимо этого на термограмме видна температурная аномалия в виде темной полосы, которая начинается приблизительно с середины образца. УЗ-дефектограмма кроме внешних непроваров также показала наличие большого количества внутренних дефектов (рис. 5, б) на месте темной полосы.

Для приготовления металлографического шлифа была выбрана область, внешний вид которой не проявляет никаких признаков наличия дефекта (рис. 5, в). Ультразвуковой S-скан и результаты металлографических исследований данного образца приведены на рис. 6. В данном случае УЗ-дефектограмма показана не для всего образца, а только для слоя, прилегающего к лицевой стороне толщиной 1,5 мм (показан на рис. 6, а).

Здесь также наблюдается совпадение положения дефектной зоны на УЗ-S-скане (рис. 6, а) с реальным положением дефекта на металлографическом шлифе (рис. 6, б).

Анализ шлифа показывает, что по центру шва вблизи лицевой поверхности располагается дефект с поперечным размером 2…3 мм и глубиной около 2 мм (см. рис. 6, а). Он представляет собой несимметричное относительно центра шва скопление пор различной формы и размеров (см. рис. 6, б).

На шлифе, параллельном поверхности образца, выполненном на глубине 1 мм, проявляется структура дефекта, представляющая собой набор круговых сегментов, период которых совпадает с периодом чешуйчатости (рис. 6, в). Структура хорошо видна в правой части дефекта и практически не различима в левой. Кроме того, слева от описанного основного дефекта на расстоянии около 500 мкм располагается цепочка вытянутых пор, которая тянется вдоль линии сварного шва. Также обращает на себя внимание явное проявление другого дефекта – линии стыка или «Lazy S», находящейся еще левее, на расстоянии 200…300 мкм от цепочки пор (увеличенное изображение на рис. 6, в).

По сути описанный дефект является заглаженным сверху плечами сварочного инструмента непроваром лицевой стороны шва. Об этом свидетельствует его структура, напоминающая структуру горной породы, каковая наблюдается внутри видимых непроваров. Несмотря на то что такой дефект располагается очень близко к лицевой поверхности шва (минимальную глубину залегания по рис. 6, б можно оценить примерно в 100 мкм), его невозможно обнаружить методами визуального контроля.

Еще одним интересным фактом, требующим дальнейшего анализа, является то, что на УЗ-дефектограмме (см. рис. 6, а) проявление сплошного непровара под лицевой стороной шва практически совпадает с проявлением края шва.

Для проверки влияния механической обработки СТП-соединения на возможное появление новых дефектов была проведена фрезеровка группы образцов с лицевой стороны сварного шва до толщины 2,5 мм. После фрезеровки в некоторых образцах УЗ-дефектоскопия зафиксировала несплошность вблизи корневой стороны практически по всей длине сварного шва. Для проверки наличия выхода несплошности на поверхность была проведена вихретоковая дефектоскопия корневой стороны образцов.

Ультразвуковая и вихретоковая дефектоскопия сварного шва

Результаты УЗ- и вихретоковой дефектоскопии для одного из образцов приведены на рис. 7. По сравнению с данными контроля до фрезеровки значительно увеличилась длина участков несплошности по корню шва, обнаруженных УЗ-дефектоскопией, и существенно возросла амплитуда отраженного акустического сигнала. Кроме того, вихретоковой дефектоскопией, проведенной до фрезеровки, несплошностей в корне шва обнаружено не было.

При сравнении результатов двух видов контроля обращает на себя внимание то, что соответствие между дефектами, обнаруженными УЗ- (рис. 7, а) и вихретоковым (рис. 7, б) методами, наблюдается только на отдельных участках шва. На одних участках больше дефектов найдено УЗ-дефектоскопией, на других – вихретоковой. Кроме того, вихретоковым методом не обнаруживается цепочка дефектов на расстоянии 2…3 мм от осевой линии шва, которая хорошо видна на УЗ-дефектограмме (см. рис. 7, а).

Для идентификации обнаруженных дефектов был сделан металлографический шлиф по сечению, показанному на рис. 7. Сечение выбрано так, чтобы на него попали и несплошность корня, и один из цепочки дефектов, параллельной оси шва.

Положение дефектов на УЗ-S-скане (рис. 8, а), как и в рассмотренных случаях, точно совпадает с их реальным положением (рис. 8, б). Металлография показала, что дефекты соответствуют трещинам, начинающимся с корневой стороны шва. Дефект на оси шва (рис. 8, в) представляет собой отражение от трещины с небольшим раскрытием, распространяющейся вдоль линии стыка пластин – дефекта типа «Lazy S». Другой дефект соответствует более короткой трещине, расположенной правее, практически на краю корневой стороны сварного шва (рис. 8, г).

Так как кромки шва перед сваркой специально не приготавливались, то дефекты линии стыка «Lazy S» присутствовали во всех образцах, но были обнаружены только в данном случае, когда по дефекту распространилась трещина.

Полученные данные показывают, что наиболее надежным методом, использованным в работе для обнаружения дефектов тех типов (за исключением линии стыка), которые присутствовали в исследуемых образцах, является ультразвуковой метод неразрушающего контроля с применением фазированной антенной решетки. Он позволил обнаружить поры размером около 200 мкм и трещины с небольшим раскрытием. Применение фазированной решетки позволяет непосредственно видеть место расположения дефекта на предварительно заданной маске сварного шва и судить о его размере по амплитуде отраженного сигнала.

Результаты тепловизионного контроля свидетельствуют о хороших перспективах его применения в качестве первичного метода обнаружения критических дефектов в процессе мониторинга процесса СТП. Он дает возможность однозначно идентифицировать непровар по лицевой стороне шва. Также с помощью тепловизора можно обнаружить непровар под поверхностью материала по наличию темной полосы на термограмме. В то же время такая же темная полоса наблюдалась и в другом образце, в котором присутствовали дефекты типа worm-hole. Только по наличию температурной аномалии в виде темной полосы нельзя однозначно судить о наличии дефекта того или иного типа. Для более точной идентификации дефектов сварного шва необходимо увеличение разрешающей способности тепловизионной съемки, а также дальнейшее совершенствование процесса обработки данных.

По сравнению с описанными методами вихретоковый контроль позволяет обнаруживать дефекты только на поверхности и в непосредственной близости от нее. В случае фрезерованного образца проявление дефекта в виде продольной трещины по корню шва на вихретоковом скане не совпадает с УЗ-дефектограммой. С учетом потенциально высокой чувствительности вихретокового метода в данном случае, возможно, имели место неоптимальные калибровка дефектоскопа и подбор параметров сканирования. Чтобы гарантированно получить точные данные при использовании вихретокового метода контроля, рекомендуем использовать современные цифровые вихретоковые дефектоскопы. 

В целом полученные в совместном исследовании результаты показывают, что представленный комплексный подход может быть рекомендован для повышения достоверности обнаружения дефектов, получаемых при сварке трением с перемешиванием. Сравнительный анализ результатов дефектоскопии, полученных разными методами неразрушающего контроля, может помочь в выборе наиболее подходящего метода для выявления дефектов конкретного типа.

Исследование выполнено при финансовой поддержке Министерства образования и науки РФ (договор № 02.G25.31.0063) в рамках реализации Постановления Правительства РФ № 218.

Библиографический список
  • Mishra R. S., Mahoney M. Friction stir welding and processing. ASM International, 2007. 360 p.
  • Friction stir welding: From basics to applications / еd. by D. Lohwasser and Zh. Chen Woodhead Publishing Limited and CRC Press LLC, 2010. 432 р.
  • Бакшаев В. А., Васильев П. А. Сварка трением с перемешиванием в производстве крупногабаритных изделий из алюминиевых сплавов // Цветные металлы. 2014. № 1. С. 75 – 79.
  • Неразрушающий контроль: справочник: в 8 т. Т. 3 / под ред. В. В. Клюева. М.: Машиностроение, 2006. 864 с.
  • Неразрушающий контроль: справочник: в 8 т. Т. 2. Кн. 1, 2 / под ред. В. В. Клюева. М.: Машинострое- ние, 2006. 688 с.
  • Вавилов В. П. Инфракрасная термография и те- пловой контроль. 2-е изд., доп. М.: ИД «Спектр», 2013. 544 с.
  • Rubtsov V. E., Tarasov S. Yu., Kolubaev A. V. One-dimensional model of inhomogeneous shear in sliding // Phys. Mesomech. 2012. V. 15. N 5–6. Р. 337 – 341.

Неразрушающий контроль качества сварных соединений трубопроводов

На чтение 8 мин. Просмотров 4.1k. Обновлено

Как контролировать сварные соединения у трубопровода узнаем в данной статье. Чтобы получить представление о реальном состоянии металла в местах соединений, применяется так называемый неразрушающий контроль сварных соединений трубопроводов. Безопасность вместе с надёжностью конструкции часто определяется качественным уровнем швов.

Стандарты в законодательстве создают строгие нормативы для процесса. Его проводят только профессионалы, обладающие соответствующими навыками.

Контроль качества сварных соединений и необходимость его проведения

Когда проводятся сварочные работы на трубопроводах, появления дефектов не избежать. В свою очередь, эти недостатки оказывают негативное влияние на внешний вид сварных соединений, их технические характеристики вместе с надёжностью. Всего выделяют две разновидности повреждений: формирования шва и дефекты металлургического типа.

Формирование структурного шва приводит к появлению металлургических изъянов. Они обычно появляются, пока материал охлаждается или нагревается. Вторая группа повреждений вызвана несоблюдением норм во время проведения работ.

Заранее требуется выявлять следующие разновидности недостатков. Они все негативно влияют на качество всего трубопровода в итоге.

  1. Нарушения в металлической микроструктуре. Приводят к тому, что повышается содержание оксидов, появляется крупная зернистость, зёрна с окисленными краями.
  2. Наличие газовых включений или пор. Бывают групповыми или единичными, иногда выглядят как мостики. Или выходят на поверхность. Тогда их называют свищами.
  3. Примеси со шлаками внутри швов. Из-за них изделие теряет первоначальную прочность.
  4. Возникновение трещин разных типов характерно для участков со швами, околошовного пространства. Отличия кроются в размерах.
  5. Группа непроваров. Это название для локальных участков шва, в котором нет сцепления с основным материалом.
  6. Прожоги или отверстия в сварных швах, которые появляются при вытекании расплава, когда проходит сварка.
  7. Подрезы. Название для канавок в продольной плоскости на границах со швами, поверхности основного металла.
  8. Нарушения в формах и размерах швов.

Только в случае выявления каждого из дефектов можно гарантировать надёжность трубопровода на максимальном уровне.

Необходимо провести тщательную оценку того, как подобные изъяны влияют на конструкцию. Иначе невозможно исправить положение до того, как начинается эксплуатация трубопровода.

По каким принципам проводится неразрушающий контроль качества?

Всего существует два метода, на основании которых проводится контроль качества сварных соединений трубопроводов.

  • Когда целостность соединения не нарушают.
  • С нарушениями.

Чтобы оценить состояние всех сварных швов, применяют неразрушающий способ проверки качества. Такой контроль необходимо проводить как во время сварочных работ, так и после их завершения.

Это нужно для того, чтобы обезопасить конструкцию ещё до того, как начнётся непосредственная эксплуатация. В свою очередь, существуют свои методы для проведения неразрушающей оценки качества.

  1. По проницаемости.
  2. Магнитный, рентгенографический контроль.
  3. Метод с применением ультразвука.
  4. Капиллярная, радиационная дефектоскопия.
  5. Измерения и проведения внешнего осмотра.

Что касается разрушающих методов, то их проводят на образцах изделия, которые уже вырезаны из своей первоначальной позиции.

Правила внешнего и технического осмотра

Любую проверку качества трубопровода начинают проведением внешнего осмотра. Он бывает не только чисто визуальным, но и предполагает использование измерительных и других видов технических инструментов. Это позволит выявить проблемы во внешних факторах, соответствие текущего состояния нормативам и требованиям законодательства.

Видео


Обнаружение даже небольших трещин в сварных соединениях не составит труда, если очистить небольшой участок на шве, а потом обработать его при помощи спирта, кислотного слабого раствора.

Геометрические размеры не определить без линейки и штангенциркуля. Хорошее освещение сделает проверки более эффективными. Как и использование лупы, поддерживающей увеличение в 8-10 раз.

Капиллярные методики контроля сварных соединений: о сути

Этот контроль качества сварных соединений трубопроводов предполагает использование контрастных жидкостей, которые просачиваются внутрь металла через мельчайшие повреждения, если они обнаружены на поверхности. Так называемые пенетранты используются чаще всего.

Когда такие вещества используются, дефекты просто окрашиваются в определённый цвет.

Пенетранты могут состоять из разных основ:

  1. Трансформаторное масло.
  2. Бензол.
  3. Скипидар.
  4. Керосин.

Кроме того, и сами составы делятся на несколько разновидностей.

  • С красителями, которые наблюдаются при дневном цвете. Чаще всего используется ярко-красный оттенок.
  • С люминесцирующими компонентами. Недостатки проявляются, если использовать ультрафиолетовые лучи.

Метод обладает чувствительностью в 0,1-0,5 мкм. Она может достигать 500 мкм, если поддерживается верхний предел.

Видео

Установка АУЗК кольцевых сварных соединений (модель «УМКа»)


Watch this video on YouTube

Проверка сварного соединения трубопровода с помощью керосина считается одним из наиболее простых способов. Важно – наличие высоких свойств по проникновению у состава. У таких испытаний имеется свой отдельный порядок. Водную смесь с каолином или мелом наносят на соединительные участки. После чего всё подсушивают, пока не образуется плёнка белого цвета.

Керосин должен обильно смочить обратную сторону шва, на протяжении минимум получаса. Даже если есть только микроскопические трещины – керосин пройдёт сквозь поверхность. После чего он становится заметным с обратной стороны. Визуально дефекты выделить не составит труда.

Как проверяют проницаемость?

Когда сваривают ёмкости, трубопроводы и так далее, необходимостью становится именно оценка того, какой является герметичность. Такой контроль качества так же проводится с использованием различных методов и инструментов:

  1. Испытания по гидравлике и пневматике.
  2. Пузырьковым методом.
  3. Течеиспускание.

И так далее. Пневматические испытания – это когда внутрь трубопровода запускают воду или газ в больших количествах. Пенообразующий состав наносят на поверхность снаружи. Если появляются пенистые пузырьки – значит, герметичность была нарушена.

Видео

ERW-pipe welding machine for field application — Оборудование для сварки и неразрушающего контроля.


Watch this video on YouTube

Как правильно выбрать метод неразрушающего контроля соединений трубопровода?

Выбор оптимального способа проверки соединений трубопровода не составит труда. Нужно учесть всего лишь следующие факторы.

  1. Показатели экономии и технических свойств.
  2. Особенности изготовления сварной конструкции.
  3. Состояние, в котором находится поверхность.
  4. Сварное соединение по толщине и типу.
  5. Сам металл с определением физических свойств.

Видео


Главное – помнить, что при использовании неразрушающих методов дефекты выявляются лишь косвенно.

Неразрушающий контроль сварных соединений с помощью ультразвука

В основе метода – акустические изменения, которые происходят, когда сквозь исследуемое соединение проводят звуковые колебания, со сверхвысокой частотой. Степень ослабления обратного сигнала и скорость распространения становятся самыми важными свойствами звука для данного исследования.

Ультразвуковая дефектоскопия проводится на основе следующих принципов.

  • Источник ультразвука генерирует звуковые волны. Они точно проходят через зону, которая и требует диагностики. Потом отражаются от тех мест, где вероятнее всего появление недостатков.
  • Звуковая волна обязательно должна отражаться от чего-либо, иначе выявление изъянов будет невозможным. Угловая искательная головка – специальное приспособление, которое обеспечивает появление должного эффекта.
  • Звуковая волна не только отражается от участка с изъяном, он способствует изменению в угле преломления. О величине внутренних дефектов судят по тому, насколько большими оказались подобные изменения.

Результат: устранение дефектов

Устранения требуют любые недочеты, не соответствующие начальным техническим условиям. Если это невозможно, то изделие просто считается бракованным.

Видео

Плазменно – дуговая резка в обычной ситуации помогает справиться с проблемами. Для этого же проводят проверку, с последующей обработкой с применением абразивных кругов.

После отпуска сварных изделий исправляют дефекты, которые допускают проведение тепловой обработке. Главное – соблюдать определённые правила.

  • Участки с недочетами должны оставаться меньшими по сравнению с удаляемыми участками по длине, с каждой из сторон.
  • Разделка так же требует особой выборки. Двойная ширина швов до процедуры должна оставаться примерно такой же, как и после.
  • Обязательно сохранение надёжности проваров.
  • Наличие плавных очертаний без разрывов обязательно для поверхности при каждой выборке. Наличие острых заусенцев вместе с углублениями так же недопустимо.

Участок необходимо полностью очистить после того, как ремонтные работы завершатся. Переходы к основному металлу от дефектных участков должны быть плавными.

Видео

лаборатория неразрушающего контроля сварных соединений Симферополь


Watch this video on YouTube

Допустимо применение только механического метода, если речь идёт об алюминиевых, титановых сплавов. Применение шлифовки требует абразивов.

Устраняя недостатки, берут те же материалы с технологиями, что использовались для наложения основного шва. После чего становится обязательным проведение повторного контроля.

Как определить, в каких объёмах требуется контроль качества соединений?

Это индивидуальная черта в каждом методе. Обычно опираются на нормативные документы, действующие в той или иной сфере. Объёмы контроля устанавливаются в процентах от общей протяжённости самих сварных соединений.

Обязательно надо учитывать, к какой категории относится то или иное сварное соединение трубопровода. А так же назначение вместе с условиями эксплуатации. И последствиями, к которым может привести разрушение на тех или иных участках.

Требуется отдельно указать определённые участки, если объём контроля составляет меньше ста процентов. Рекомендуется составлять максимально подробные схемы.

Применение методов неразрушающего контроля стало привычным для многих отраслей промышленности. Причина того, что неразрушающий контроль сварных соединений трубопроводов стал таким популярным – в полном соответствии требованиям, которые предъявляются к самим методам контроля.

А таких требований тоже существует немало. Хорошо, если удаётся полностью автоматизировать контроль соединений. И использовать приборы, обладающие максимальной надёжностью.

Главное – чтобы они были доступными в условиях производства. Упрощёнными должны быть сами методики. А средства контроля нужно создавать так, чтобы они выдерживали продолжительную эксплуатацию.

Неразрушающий контроль сварных соединений

03.10.2016

Неразрушающий контроль сварных соединений — очень важная процедура в таких отраслях, как строительство и эксплуатация трубо- и газопроводов. Качество сварных швов, при помощи которых трубы соединяют в трубопроводы, может оказать существенное влияние на продолжительность и безопасность эксплуатации всей магистрали.

Наиболее распространенными дефектами сварного соединения являются:

  • Наплыв. Возникают при попадании расплава на пришовную зону, когда расплавленный металл натекает на основной, но не образует с ним гомогенного соединения. Могут быть в виде отдельных капель, а могут иметь продолговатую структуру. Сопровождаются неравномерным, некачественным проваром металла шва, а также приводят к появлению трещин. Устраняются срезанием с проверкой наличия непровара в этом месте.
  • Подрез. Канавки в металле на границе сварного шва, в месте перехода «основной металл-сварной шов». Подрезы уменьшают сечение шва, что в дальнейшем приводит к появлению избыточных напряжений и способно привести к появлению внешних и внутренних трещин. Чаще всего этот дефект образуется в горизонтальных швах. Устраняют его наплавкой тонкого шва по линии подреза.
  • Прожог. Сквозное проплавление и вытекание металла из сварочной ванны через сквозное отверстие в шве. Причинами появления таких дефектов служат — низкая скорость сварки, увеличенный зазор между торцами труб при их сваривании и превышение силы сварочного тока. Исправляют дефект зачисткой и последующей заваркой.
  • Непровар. Непровары — это локальные несплавления наплавленного металла с основным, или слоев шва между собой. К этому дефекту относят и незаполнение сечения шва. Непровары существенно снижают прочность шва и могут явиться причиной разрушения конструкции. Дефект возникает из-за заниженного сварочного тока, неправильной подготовки кромок, излишне высокой скорости сварки, наличия на кромках свариваемых деталей посторонних веществ (окалины, ржавчины, шлака) и загрязнений. При исправлении нужно вырезать зонунепровара и заварить её.
  • Кратер. Это дефекты в виде углубления, возникающего в результате обрыва сварочной дуги. Кратеры снижают прочность шва из-за уменьшения его сечения. В них могут находиться усадочные рыхлости, способствующие образованию трещин. Кратеры надлежит вырезать до основного металла и заварить.
  • Инородные включения. Включения могут состоять из различных веществ — шлака, вольфрама, окислов металлов и пр. Шлаковые включения образуются тогда, когда шлак не успевает всплыть на поверхность металла и остается внутри него. Это происходит при неправильном режиме сварки (завышенной скорости, например), плохой зачистке свариваемого металла или предыдущего слоя при многослойной сварке.Вольфрамовые включения возникают при сварке вольфрамовым электродом, окисные — из-за плохой растворимости окислов и чрезмерно быстрого охлаждения.Все виды включений уменьшают сечение шва и образуют очаг концентрации напряжения, снижая тем самым прочность соединения. Дефект устраняют вырезкой и завариванием.
  • Пористость. Полости, заполненные газами, возникающие из-за интенсивного газообразования внутри металла, при котором газовые пузырьки остаются в металле после его затвердевания. Размеры пор могут быть микроскопическими или достигать нескольких миллиметров. Нередко возникает целое скопление пор в сочетании со свищами и раковинами.
  • Перегрев и пережог металла. Пережог и перегрев возникают из-за чрезмерно большого сварочного тока или малой скорости сварки. При перегреве размеры зерен металла в шве и околошовной зоне увеличиваются, в результате чего снижаются прочностные характеристики сварного соединения, главным образом — ударная вязкость. Перегрев устраняется термической обработкой изделия. Пережог представляет собой более опасный дефект, чем перегрев. Пережженный металл становится хрупким из-за наличия окисленных зерен, обладающих малым взаимным сцеплением. Причины пережога те же самые, что и перегрева, а кроме этого еще и недостаточная защита расплавленного металла от азота и кислорода воздуха. Пережженный металл необходимо полностью вырезать и заварить это место заново.
  • Свищ. Воронкообразное углубление в сварочном шве, развивающееся из раковины или большой поры. Причиной развития свища чаще всего является некачественная подготовка поверхности и присадочной проволоки под сварку. Дефект обнаруживается визуально и подлежит переварке.
  • Поверхностное окисление. Окалина или пленка оксидов на поверхности сварного соединения. Поверхностное окисление зависит от плохой защиты сварочной ванны, качества подготовки свариваемых кромок, неправильной регулировки подачи защитного газа, его составом, большим вылетом электрода.
  • Трещины. Трещины можно отнести к наиболее опасным видам дефектов. Они могут появиться в любой точке сварочной зоны (включая пришовную область металла) и иметь любое направление (продольное и поперечное). По своим размерам они подразделяются на микротрещины и трещины. Такой дефект вызывается как неправильными условиями кристаллизации расплава, так и превышением концентрации углерода, серы и фосфора в сварочной ванне. Трещины заметно влияют на все основные параметры сварных соединений трубопроводов.

Методы неразрушающего контроля сварных соединений

Учитывая такое разнообразие дефектов, возникающих при сварке, способы контроля тоже могут существенно различаться.

Все сварные дефекты глобально можно разделить на внешние и внутренние, и если для контроля внешних дефектов чаще всего достаточно использования ВИК (визуально-измерительного контроля), то внутренние дефекты можно контролировать радиографическим или ультразвуковыми методами.

  • Визуально-оптический контроль – это один из методов неразрушающего контроля оптического вида. Он основан на получении первичной информации об объекте при визуальном наблюдении или с помощью оптических приборов. Это органолептический контроль, т.е. воспринимаемый органами чувств (органами зрения) ГОСТ 23479-79 «Контроль неразрушающий. Методы оптического вида» устанавливает требования к методам контроля оптического вида. Визуальный метод контроля позволяет обнаруживать несплошности, отклонения размера и формы от заданных более 0,1 мм при использовании приборов с увеличением до 10х. Визуальный контроль, как правило, производится невооруженным глазом или с использованием увеличительных луп 2х до 7х. В сомнительных случаях и при техдиагностировании допускается увеличение до 20х.
  • Радиационный вид неразрушающего контроля в соответствии с ГОСТ 18353-79 делится на методы: радиографический, радиоскопический, радиометрический. Радиографический метод контроля основан на преобразовании радиационного изображения контролируемого объекта в радиографический снимок. Требования к радиографическому контролю регламентированы ГОСТ 7512-82 «Контроль неразрушающий. Сварные соединения. Радиографический метод».
    Перейти к выбору приборов для радиографического контроля
  • Данный метод относится к акустическому виду неразрушающего контроля (ГОСТ 55724-2013 «Контроль неразрушающий. Соединения сварные. Методы ультразвуковые»), применяется при толщине металла шва не менее 4 мм. Он основан на использовании ультразвуковых волн, представляющих собой упругие колебания материальной среды с частотой выше 0,5-0,25 МГц (выше той, которую способны воспринимать слуховые органы человека). В этом методе контроля используется способность ультразвуковых волн отражаться от границы раздела двух сред, обладающих разными акустическими свойствами. Когда при прохождении через сварной шов ультразвуковые волны встречают на своем пути дефекты (трещины, поры, шлаковые включения, расслоения и т. д.), они отражаются от границы раздела металл–дефект и могут быть зафиксированы при помощи специального ультразвукового дефектоскопа.
    Перейти к выбору приборов для ультразвуковой дефектоскопии
  • Капиллярный контроль. Капиллярный контроль сварных соединений применяется для выявления наружных (поверхностных и сквозных) дефектов в сварных швах и прилегаюших зонах термического влияния.
    Такой способ проверки позволяет выявлять такие дефекты, как горячие и холодные трешины в сварных швах, непровары, поры, раковины и некоторые другие.

  • Перейти к выбору приборов для капиллярного контроля
К списку статей

Тепловой неразрушающий контроль сварных соединений и сварных швов

Неразрушающий контроль контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации.

ООО «УралКонтрольСервис» предлагает услуги в соответствии с свидетельством об аттестации лаборатории № 95А110018:

1. Оформление энергетического паспорта установленного образца, с перечнем рекомендуемых энергосберегающих мероприятий;
2. Технический отчет о проведенном комплексном энергетическом обследовании.
3. Проведение инструментального обследования в контрольных точках, для определения реальных расходов в сетях теплоснабжения, холодного и горячего водоснабжения, количества и качества потребляемой электроэнергии, определения соответствия помещений санитарным нормам и правилам (СанПиН)
4. Проведение тепловизионного контроля для выявления дефектов тепловой изоляции и ограждающих конструкций. Пример отчета, выдаваемого Заказчику.
5. Выдача рекомендаций по повышению эффективности ТЭР (топливно-энергетические ресурсы) и снижению затрат на энергообеспечение.

В соответствии с Законом Российской Федерации “Об энергосбережении”, принятым в 1996 году, обязательному энергетическому обследованию подлежат предприятия и учреждения, в том числе и жилые и общественные здания, потребляющие более 6000 т условного топлива в год (Федеральный закон “Об энергосбережении” № 28 от 03.04.1996 г., ГОСТ Р 51379-99 “Энергосбережение. Энергетический паспорт промышленного потребителя топливно-энергетических ресурсов”).

Официальным документом, подтверждающим факт обследования, является энергетический паспорт.

Энергообследование с оформлением энергетического паспорта может проводить либо организация, оказывающая услуги в области энергоаудита (с лицензией Госэнергонадзора, аккредитованная его региональным органом), либо специалисты этого регионального органа. Обязательные обследования проводятся один раз в пять лет силами УГЭН на основе утвержденных 25 марта 1998 г. Минтопэнерго России “Правил проведения энергетических обследований организаций”. Энергоаудит может проводиться и на добровольной основе, с согласия и по заявкам предприятий и организаций.

Однако, как выяснилось, в настоящее время энергетические обследования зданий с приборным замером фактических теплопотерь и составлением энергетических паспортов проводятся редко. Это дает возможность строительным и проектным организациям переложить свои недоработки по соответствию нормативных теплопотерь зданий на плечи их собственников и фактически обойти нормативные требования.

Физическая сущность теплового контроля

Методы неразрушающего контроля теплового вида (ГОСТ 18353 — 79) используют при исследовании тепловых процессов в изделиях. При нарушении термодинамического равновесия объекта с окружающей средой на его поверхности возникает избыточное температурное поле, характер которого позволяет получить информацию об интересующих свойствах объектов. Методы теплового контроля основаны на взаимодействии теплового поля объекта с термодинамическими чувствительными элементами (термопарой, фотоприемником, жидкокристаллическим индикатором и т.д.), преобразовании параметров поля (интенсивности, температурного градиента, контраста, лучистости и др.) в электрический сигнал и передаче его на регистрирующий прибор.

Тепловой контроль основан на измерении, мониторинге и анализе температуры контролируемых объектов. Основным условием применения теплового контроля является наличие в контролируемом объекте тепловых потоков. Процесс передачи тепловой энергии, выделение или поглощение тепла в объекте приводит к тому, что его температура изменяется относительно окружающей среды.  Распределение температуры по поверхности объекта является основным параметром в тепловом методе, так как несет информацию об особенностях процесса теплопередачи, режиме работы объекта, его внутренней структуре и наличии скрытых внутренних дефектов. Тепловые потоки в контролируемом объекте могут возникать по различным причинам.

Достоинствами теплового контроля являются: дистанционность, высокая скорость обработки информации; высокая производительность испытаний; высокое линейное разрешение : возможность контроля при одно- и двустороннем подходе к изделию; теоретическая возможность контроля любых материалов; многопараметрический характер испытаний; возможность взаимодополняющего сочетания ТНК с другими видами неразрушающего контроля; сочетаемость со стандартными системами обработки информации; возможность поточного контроля и создания автоматизированных систем контроля и управления технологическими процессами.

Различают:
1) пассивный ТНК;
2) активный ТНК.

Пассивный ТНК не нуждается во внешнем источнике теплового воздействия (ИТВ) — тепловое поле в объекте контроля (ОК) возникает при его эксплуатации (изделия радиоэлектроники, энергетическое оборудование, металлургические печи и т. п.) или изготовлении (закалке, отжиге, сварке и. т. п.).

При пассивном контроле может использоваться, как постоянно действующее естественное тепловое нагруженные объекта (стена здания или холодильника, разделяющая теплое и холодное помещения, работающий электродвигатель, контактные электрические соединения под нагрузкой и т.д.) так и переходные тепловые процессы (диагностика кровли здания, контроль авиационных сотовых панелей, поиск зон отслоения штукатурки от стен и т.д.)

Активный ТНК предполагает, нагрев объекта внешними источниками энергии. В случае использования АТНК в дефектоскопии, например, для обнаружения дефектов в виде нарушения сплошности (раковин, трещин, мест непроклея), информацию о дефектах несут в себе локальные неоднородности температурного поля на поверхности ОК.

Данный метод теплового контроля используется, если в процессе эксплуатации контролируемый объект не подвергается достаточному тепловому воздействию (например, детали из композиционных материалов, объекты искусства, настенные фрески), либо измерение температуры объекта в процессе эксплуатации технически невозможно (лопасти вертолета). Активный метод теплового контроля предполагает нагрев объекта специальными внешними источниками энергии для создания тепловых потоков во время контроля. Активный метод применяется преимущественно для неразрушающего контроля материалов и изделий.

Применение тепловизоров не ограничивается задачами неразрушающего контроля. Этот замечательный инструмент для визуализации тепловых полей и дистанционного измерения температуры нашел применение в военной технике, навигации, медицине, системах безопасности и охраны, противопожарном деле, экологии.

Общие сведения

В тепловых методах неразрушающего контроля в качестве пробной энергии используется тепловая энергия, распространяющаяся в объекте контроля. Температурное поле поверхности объекта является источником информации об особенностях процесса теплопередачи, которые, в свою очередь, зависят от наличия внутренних или наружных дефектов. Под дефектом при этом понимается наличие скрытых раковин, полостей, трещин, непроваров, инородных включений и т.д., всевозможных отклонений физических свойств объекта от нормы, наличия мест локального перегрева (охлаждения) и т.п.

Достоинствами теплового контроля являются: дистанционность, высокая скорость обработки информации; высокая производительность испытаний; высокое линейное разрешение : возможность контроля при одно- и двустороннем подходе к изделию; теоретическая возможность контроля любых материалов; многопараметрический характер испытаний; возможность взаимодополняющего сочетания ТНК с другими видами неразрушающего контроля; сочетаемость со стандартными системами обработки информации; возможность поточного контроля и создания автоматизированных систем контроля и управления технологическими процессами.

Неразрушающий контроль | Сварка и сварщик

ГОСТ 18353-79 «Контроль неразрушающий. Классификация видов и методов» в зависимости от физических явлений, положенных в основу неразрушающего контроля подразделяет его на виды:

— оптический;
— радиационный;
— акустический;
— магнитный;
— вихретоковый;
— электрический;
— радиоволновой;
— тепловой;
— проникающими веществами.

Вид контроля – это условная группировка методов неразрушающего контроля, объединенная общностью физических принципов, на которых они основаны. Методы каждого вида неразрушающего контроля классифицируются по определенным признакам:

— характеру взаимодействия физических полей с объектом;
— первичным информативным параметрам;
— способам получения первичной информации.

Методы контроля качества сварных соединений устанавливает ГОСТ 3242-79.

Применение метода или комплекса методов контроля для обнаружения дефектов сварных соединений при контроле конструкций при ее изготовлении, ремонте и реконструкции зависит от требований, предъявляемых к сварным соединениям в технической документации на конструкцию. Технология контроля сварных швов любым методом должна быть установлена в нормативно-технической документации на контроль.

Методы неразрушающего контроля качества сварных соединений

Визуальный контроль и измерения

Визуально-оптический контроль – это один из методов неразрушающего контроля оптического вида. Он основан на получении первичной информации об объекте при визуальном наблюдении или с помощью оптических приборов. Это органолептический контроль, т.е. воспринимаемый органами чувств (органами зрения) ГОСТ 23479-79 «Контроль неразрушающий. Методы оптического вида» устанавливает требования к методам контроля оптического вида. Визуальный метод контроля позволяет обнаруживать несплошности, отклонения размера и формы от заданных более 0,1 мм при использовании приборов с увеличением до 10х. Визуальный контроль, как правило, производится невооруженным глазом или с использованием увеличительных луп 2х до 7х. В сомнительных случаях и при техдиагностировании допускается увеличение до 20х.

Визуальный контроль выполняется до проведения других методов контроля. Дефекты, обнаруженные при визуальном контроле, должны быть исправлены до проведения контроля другими методами.

Радиографический контроль

Радиационный вид неразрушающего контроля в соответствии с ГОСТ 18353-79 делится на методы: радиографический, радиоскопический, радиометрический. Радиографический метод контроля основан на преобразовании радиационного изображения контролируемого объекта в радиографический снимок. Требования к радиографическому контролю регламентированы ГОСТ 7512-82 «Контроль неразрушающий. Сварные соединения. Радиографический метод».

Схема просвечивания рентгеновскими лучами:
1 – рентгеновская трубка; 2 – кассета; 3 – фотопленка; 4 – экраны.

Метод ультразвуковой дефектоскопии

Данный метод относится к акустическому виду неразрушающего контроля (ГОСТ 3242-79), применяется при толщине металла шва не менее 4 мм. Он основан на использовании ультразвуковых волн, представляющих собой упругие колебания материальной среды с частотой выше 0,5-0,25 МГц (выше той, которую способны воспринимать слуховые органы человека). В этом методе контроля (ГОСТ 14782-86) используется способность ультразвуковых волн отражаться от границы раздела двух сред, обладающих разными акустическими свойствами. Когда при прохождении через сварной шов ультразвуковые волны встречают на своем пути дефекты (трещины, поры, шлаковые включения, расслоения и т. д.), они отражаются от границы раздела металл–дефект и могут быть зафиксированы при помощи специального ультразвукового дефектоскопа.

Магнитные методы контроля

Магнитные методы контроля основаны на принципе использования магнитного рассеяния, возникающего над дефектом при намагничивании контролируемого изделия. Например, если сварной шов не имеет дефектов, то магнитные силовые линии по сечению шва распределяются равномерно. При наличии дефекта в шве вследствие меньшей магнитной проницаемости дефекта магнитный силовой поток будет огибать дефект, создавая магнитные потоки рассеяния.


Прохождение магнитного силового потока по сварочному шву:
а – без дефекта; б – с дефектом

В соответствии с ГОСТ 18353-79 в зависимости от способа регистрации потоков рассеяния различают три магнитных метода контроля: магнитопорошковый, индукционный, магнитографический. Наиболее распространен магнитопорошковый метод или магнитопорошковая дефектоскопия (МПД).

Вихретоковый контроль

Методы вихретокового контроля основаны на регистрации изменения электромагнитного поля вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте контроля. Вихревые токи – это замкнутые токи, индуктированные в проводящей среде изменяющимся магнитным полем. Если через катушку пропускать ток определенной частоты, то магнитное поле этой катушки меняет свой знак с той же частотой. Интенсивность и распределение вихревых токов в объекте зависят от его геометрических, электромагнитных параметров и от взаимного расположения изме­рительного вихретокового преобразователя (ВТП) и объекта. В качестве преобразователя используют обычно индуктивные катушки (одну или несколько). Синусоидальный или импульсный ток, действующий в катушках ВТП, создает электромагнитное поле, которое возбуждает вихревые токи в электропроводящем объекте. Электромагнитное поле вихревых токов воздействует на катушки преобразователя, наводя в них ЭДС или изменяя их полное сопротивление. Регистрируя напряжение на зажимах катушки (трансформаторный вихретоковый метод) или ее сопротивление (параметрический вихретоковый метод) получают информацию о свойствах объекта и о положении преобразователя относительно него.

Методы контроля проникающими веществами

Капиллярная дефектоскопия

Капиллярные методы НК предназначены для обнаружения открытых дефектов, выходящих на поверхность: трещин, пор, раковин, непроваров и других несплошностей поверхности изделий без их разрушения. Различают два основные метода капиллярной дефектоскопии: цветной и люминесцентный. Этими методами контролируют детали различной формы из аустенитных, титановых, алюминиевых, медных и других немагнитных материалов. Эти методы позволяют выявлять:

— трещины сварочные, термические, усталостные;
— пористость, непровары и другие дефекты типа открытых несплошностей различной локализации и протяженности, невидимые невооруженным глазом и лежащие в пределах чувствительности и надежности дефектоскопических средств.

Течеискание

Пузырьковый метод с использованием вакуумных камер

Вакуумный контроль сварных швов применяют в тех случаях, когда применение других способов почему-либо исключено. В частности, этот метод широко применяется при контроле сварных днищ резервуаров, газгольдеров, цистерн, гидроизоляционных ящиков. Он позволяет обнаружить отдельные поры диаметром до 0,004 0,005 мм, а производительность при его использовании достигает 40 – 60 м сварных швов в час. Вакуум создают при помощи переносной вакуум-камеры, которую устанавливают на наиболее доступной стороне проверяемого участка шва, предварительно обильно смоченной мыльным раствором. В результате разности давлений по обеим сторонам шва воздух будет проникать в камеру при наличии неплотностей в сварном соединении. В местах трещин, непроваров, газовых пор образуются стойкие мыльные пузырьки, хорошо видимые через прозрачный верх камеры. Отметив расположение дефектов мелом, цветным карандашом или краской, впускают атмосферный воздух, камеру снимают и сделанные отметки переносят на сварной шов.

Контроль швов газоэлектрическими течеискателями

В настоящее время применяют два вида газоэлектрических течеискателей: гелиевые и галоидные. Чувствительность газоэлектрических течеискателей к выявлению неплотностей в швах очень высока, но ввиду сложности конструкции и значительной стоимости изготовления их применяют только для контроля особо ответственных сварных конструкций.

Принцип работы гелиевого течеискателя основан на высокой способности гелия при определенном вакууме проходить сквозь неплотности сварных швов. При контроле сварные швы снаружи испытуемой емкости обдувают из резинового шланга тонкой струёй гелия, находящегося под небольшим давлением в специальном сосуде — газометре. При наличии неплотностей в швах гелий или его смесь с воздухом попадает из емкости в масс-спектрометрическую камеру, в которой поддерживается высокий вакуум. При попадании гелия в масс-спектрометрическую камеру в ней возникает ионный ток, который подается на индикаторы — миллиамперметр и сирену. Величина отклонения стрелки миллиамперметра позволяет судить о размерах дефекта.

Испытания плотности сварных швов

Испытаниям на плотность подвергают емкости для горючего, масла, воды, трубопроводы, газгольдеры, паровые котлы и др. Существуют несколько методов контроля плотности сварных швов: гидравлическое испытание, испытание водой без давления или наливом, испытание струей воды или поливом, пневматическое испытание, испытание аммиаком, испытание керосином.

Сварные соединения как основной объект неразрушающего контроля

Неразрушающий контроль сварных соединений – это комплекс мероприятий по диагностике сварных швов на наличие производственного брака. Характерной чертой такого контроля является отсутствие необходимости выводить из эксплуатации инспектируемый объект. Сегодня методы неразрушающего контроля сварных швов регламентированы ГОСТом и пользуются значительным спросом, поскольку позволяют выявить и скорректировать дефекты, сократив возможности разрушения соединения и поломки всей конструкции. В процессе неразрушающего исследования можно установить:

  • наружные и внутренние изъяны;
  • воздушные поры;
  • неметаллические элементы или шлаковые вложения.

К наиболее применяемым методам неразрушающего контроля сварных конструкций относятся:

  • визуально-измерительный;
  • капиллярный;
  • радиационный;
  • акустический;
  • магнитный;
  • течеискание.

Визуально-измерительный контроль представляет собой органолептическую диагностику поверхности шва на наличие видимых дефектов с помощью простейших измерительных приборов.

Капиллярный метод основан на обнаружении даже самых незначительных изъянов путем регистрации следов индикаторных жидкостей, наносимых на исследуемый участок. По схожей методике проводится и течеискание, когда на участок, где предполагается нарушение герметичности, наносится специальный пенетрант и проводится ряд манипуляций для определения целостности поверхности.

Радиационная проверка, как правило, рентгенографическая, базируется на анализе и фиксации ионизирующего излучения.

Акустический контроль направлен на обнаружение дефектов путем ультразвуковых волн.

Магнитное обследование обнаруживает дефекты швов по параметрам изменений форм магнитного поля при огибании им скрытых внутренних дефектов.

Выбор оптимального метода проверки сварного соединения зависит от ряда обстоятельств:

  • физических свойств обследуемого металла;
  • типа и толщины сварного соединения;
  • состояния поверхности;
  • технико-экономических показателей метода контроля.

Источник: https://rostbk.com/o-kompanii/stati/svarnye-nk/

Какой бы вид неразрушающего контроля или их совокупность не выбирали на производстве для диагностики сварочных конструкций, его применение невозможно при отсутствии квалифицированных специалистов, осуществляющих этот контроль согласно установленным методическим требованиям.

Сегодня на рынке услуг существует много компаний, оказывающих выездные услуги неразрушающего контроля, но их стоимость не всегда пропорциональна качеству. Для того, чтобы систематические проверки сторонних контролеров не вылились в непредусмотренное увеличение трат, в организациях, которые нацелены на качественную работу и контроль качества своей продукции, должны быть собственные специалисты, аттестованные по правилам ПБ 03-440-02, утвержденным постановлением Госгортехнадзора РФ от 23.01.2002 г N 3, и готовые квалифицированно и регулярно осуществлять контроль сварных соединений.

Аттестация специалистов на право проведения неразрушающего контроля ведется независимым органом аттестации персонала, однако компания «РостБизнесКонсалт» готова предложить содействие в получении аттестации, а также курс для ее подготовки.

Наш учебный центр разработал дистанционную подготовительную программу, которую можно проходить в любое удобное время. Помимо традиционного информационного обеспечения слушателям предлагаются вебинары, онлайн-конференции и консультации преподавателей. В финале итогового тестирования мы сами передаем Ваши документы в аттестующий орган для получения удостоверения установленного образца, где указывает уровень квалификации и виды неразрушающего контроля, к которым осуществлен допуск.

Уточнить детали и задать возникающие вопросы Вы всегда можете у наших менеджеров, позвонив по телефону компании «РостБизнесКонсалт» 8 800 333-96-76 или оставив заявку на сайте.

 

 

 


Неразрушающий контроль и механические испытания сварных швов в Екатеринбурге

С 2005 года в нашей организации действует лаборатория неразрушающего контроля. В Екатеринбурге это одна из опытнейших лабораторий, где работают квалифицированные и ответственные специалисты. Мы проводим техническую диагностику и освидетельствование технических устройств тех производственных объектов, где высока вероятность аварий. Это химические, нефтегазовые предприятия, трубопроводы и др. Экспертиза с применением традиционных и новейших методов неразрушающего контроля проводится как на стадии строительства объектов, так и в процессе их эксплуатации. ООО «Корпорация «Энергокомплекс» имеет свидетельство об аттестации лаборатории и отвечает требованиям Системы неразрушающего контроля.

Компания «Энергокомплекс» в Екатеринбурге проводит техническое диагностирование оборудования, материалов и сварных швов разрушающими и неразрушающими методами контроля при возведении, монтаже, ремонте либо реконструкции особо опасных производственных объектов.

Области проведения неразрушающего контроля качества сварки

  • Газораспределение и газоснабжение
  • Горнорудная промышленность
  • Нефтегазовый сектор
  • Металлургия
  • Котлонадзор
  • Химически опасные и взрывопожароопасные производства
  • Ж/д транспорт
  • Строительство
  • Подъемные сооружения

Испытания проводятся непосредственно на базе нашей лаборатории неразрушающего контроля сварных соединений либо на территории заказчика.

Методы технической диагностики и неразрушающего контроля

  • Визуально-измерительный метод контроля.

Первичная диагностика заготовок под сварку и сварных швов.

  • Радиационный (радиографический) метод контроля.

Высокоточное выявление размеров и характера скрытых дефектов внутри шва при помощи рентгена за короткое время. При необходимости к документам прилагаются снимки проверенных сварных соединений.

  • Ультразвуковой метод контроля.

Определение внутренних дефектов сварных швов и металлических конструкций с помощью ультразвука.

  • Ультразвуковая толщинометрия.

Метод, применяющийся в условиях, когда невозможно обойтись одними лишь механическими измерительными инструментами. УЗТ позволяет получить данные о толщине стенки изделия, имея доступ к нему только с одной стороны.

  • Магнитопорошковый метод контроля.

Выявление скрытых дефектов изделий из ферромагнитных сплавов. Метод основывается на принципе магнитного рассеяния, которое возникает над дефектом при намагничивании объекта.

  • Контроль проникающими веществами.

Определение наружных дефектов путем нанесения специальных индикаторных веществ — пенетрантов.

  • Вибрационно-диагностический метод контроля

Контроль техсостояния объектов в режиме постоянного либо периодического слежения за уровнем вибрации.

  • Электрический метод контроля

Обнаружение дефектов различных материалов; замер толщины стенок, покрытий и слоев; распределение металлов по маркам; контроль диэлектрических или проводящих материалов

Разрушающий контроль конструкционных материалов и соединений

Наша лаборатория имеет большой опыт в области проведения испытаний методом разрушающего контроля. В настоящее время с его помощью можно получить наиболее полную и верную информацию о возможности эксплуатации материала или соединения в тех или иных условиях. Однако данный метод имеет недостаток: продукция, прошедшая испытания, становится непригодной для дальнейшего использования.

Для исследования берутся отдельные образцы объекта контроля, затем делаются выводы о качестве всей партии.

Методы разрушающего контроля

  • Статические испытания (на сжатие/растяжение, изгиб)
  • Динамические испытания (на ударный изгиб)
  • Исследования на стойкость к коррозии
  • Измерение твердости материала по Бринеллю
  • Сплющивание и расплющивание
  • Металлографический контроль сварных швов
  • Стилоскопирование на наличие легирующих элементов

Все методы механических испытаний материалов регламентированы государственными стандартами.

Исследования позволяют проверить правильность выбранных материалов, режимов и технологий; соответствует ли сварное соединение ТУ и иным нормативам, принятым в данной области. По результатам механических испытаний также оценивают квалификацию сварщика. 

Лаборатория разрушающего и неразрушающего контроля компании «Энергокомплекс» готова предложить свои услуги для всех заинтересованных лиц. Мы имеем достаточный опыт в проведении исследований с помощью данных методов и все необходимое оборудование.

 

Заявки  на контроль  можно отравить на  naks-man@mail.ru

Для расчета стоимости и проведения контроля желательно предоставить следующие данные: количество и размеры объектов контроля (диаметр и/или толщина), чертежи или схемы объектов контроля, нормативные документы на оценку качества и методику проведения контроля.

Свидетельство об аттестации: 

Неразрушающий контроль стальных труб с прямым швом ERW

1. Основные требования к внешнему виду сварных швов стальных труб с прямым швом ERW
Перед неразрушающим контролем стальных труб с прямым швом (трубы ERW) внешний вид сварных швов должен соответствовать требованиям. Общие требования к внешнему виду прямошовных сварных швов стальных труб и качеству поверхности сварных соединений следующие:
Внешний вид сварного шва должен быть хорошо сформирован, а ширина должна быть на 2 мм выше края канавки с каждой стороны.Высота приварных ножек угловых швов должна соответствовать проектным требованиям, а форма должна плавно переходить.

Поверхность сварного шва:
(1) Трещины, нерасплавленные, воздушные прослойки, шлаковые включения и брызги не допускаются.
(2) На сварной поверхности труб с расчетной температурой ниже -29 градусов, труб из нержавеющей и легированной стали с большей склонностью к упрочнению не должно быть подрезов. Глубина подреза сварочного шва из других материалов должна быть больше 0.5 мм, длина непрерывной выточки не должна превышать 100 мм, а общая длина выточки с обеих сторон сварного шва не должна превышать 10% от общей длины сварного шва.
(3) Поверхность сварного шва не должна быть ниже поверхности трубопровода. Остаточная высота сварного шва не более 3 мм (максимальная ширина группы сварных швов до заднего паза).
(4) Неправильный край сварного шва не должен превышать 10% толщины стенки и не более 2 мм.

2. Неразрушающий контроль поверхности.
Принцип выбора метода неразрушающего контроля поверхности для стальных труб с прямым швом: для стальных труб из ферромагнитных материалов следует использовать контроль магнитными частицами; для стальных труб из неферромагнитных материалов следует выбирать испытания на проникновение.
Для сварных соединений, которые имеют тенденцию к задержке образования трещин, неразрушающий контроль поверхности следует проводить после охлаждения сварного шва в течение определенного периода времени; Для сварных соединений, которые имеют тенденцию к повторному нагреву трещин, неразрушающий контроль поверхности следует проводить один раз после сварки и после термообработки.

Применение неразрушающего контроля поверхности осуществляется в соответствии с требованиями стандарта. Объекты обнаружения и приложения обычно следующие:
(1) Контроль качества наружной поверхности материала трубы.
(2) Обнаружение поверхностных дефектов важных стыковых швов.
(3) Обнаружение поверхностных дефектов важных угловых швов.
(4) Обнаружение дефектов поверхности приварных муфт ответственных раструбов и перемычек трехходовых патрубков.
(5) Обнаружение дефектов поверхности после гибки труб.
(6) Определение угла наклона сварных соединений с большей склонностью к закалке материала.
(7) Обнаружение канавок труб из неаустенитной нержавеющей стали, расчетная температура которых ниже или равна минус 29 градусов Цельсия.
(8) Сварочный шов двухстороннего сварного шва с заданным укоренением Контроль после укоренения
(9) При использовании кислородно-ацетиленового пламени для резки сварочных приспособлений на трубах из сплава, которые имеют тенденцию к затвердеванию, обнаруживаются дефекты отремонтированных деталей.

3. Обнаружение лучей и ультразвуковое обнаружение
Основными объектами радиографического контроля и ультразвукового контроля являются стыковые соединения прямошовных стальных труб и стыковые соединения трубных фитингов, приваренных встык.
Выбор методов неразрушающего контроля должен соответствовать проектной документации. Для обнаружения сварных соединений титана, алюминия и алюминиевых сплавов, меди и медных сплавов, никеля и никелевых сплавов следует выбирать метод лучевого обнаружения.
Для сварных швов, склонных к задержке образования трещин, радиографические и ультразвуковые испытания следует проводить после того, как сварной шов остынет в течение определенного периода времени.
Если основная труба в рубашке имеет кольцевой сварной шов, сварной шов должен быть подвергнут 100% рентгенографическому контролю, и скрытая операция может быть выполнена после прохождения испытания под давлением.
Сварные стыки, закрываемые армирующим кольцом или опорной площадкой на трубопроводе, должны пройти 100% рентгенологический контроль и после прохождения испытания должны быть закрыты.
Для сварных швов, необходимых для промежуточного контроля сварки, неразрушающий контроль должен проводиться после аттестации внешнего вида, радиографический и ультразвуковой контроль должен проводиться после неразрушающего контроля поверхности, а проверенные сварные швы могут продолжать сварку после того, как они будут аттестованы.

https://www.permanentsteel.com/productshow/erw-steel-pipe.html

Неразрушающий контроль стальной трубы с прямым швом

Стальная труба делится на стальную бесшовную трубу и стальную сварную трубу. Среди них обычно используемые сварные стальные трубы можно разделить на три типа в зависимости от типа сварного шва, такие как труба, сваренная высокочастотной сваркой (ERW), прямошовная труба, сваренная дуговой сваркой под флюсом (LSAW), и спиральная труба, сваренная дугой под флюсом (SSAW). ).

1.Основные требования к внешнему виду прямошовных швов стальных труб

Перед неразрушающим контролем стальных труб с прямым швом проверка внешнего вида сварного шва должна соответствовать требованиям. Общие требования к внешнему виду прямошовных стальных швов и качеству поверхности сварных соединений следующие:

Внешний вид сварного шва должен быть хорошо сформирован, а ширина должна составлять 2 мм с каждой стороны над краем канавки.Высота углового шва углового шва должна соответствовать нормативам проектирования, а форма должна быть плавной переходной.

Поверхность сварного шва
(1) Трещины, неплавленые частицы, поры, включения шлака и брызги не допускаются.
(2) Поверхность сварного шва стальной трубы с расчетной температурой ниже -29 градусов, трубы из нержавеющей и легированной стали с более высокой тенденцией к упрочнению не должны иметь подрезов. Глубина подреза сварного шва трубы из другого материала должна быть больше 0.5 мм, длина непрерывной выточки должна быть не более 100 мм, а общая длина выточки с обеих сторон сварного шва составляет не более 10% от общей длины сварного шва.
(3) Поверхность сварного шва не должна быть ниже поверхности трубы. Высота сварного шва не более 3 мм (максимальная ширина группы сварных швов до заднего паза).
(4) Изнанка сварного шва должна составлять не более 10% толщины стенки и не более 2 мм.

2. Неразрушающий контроль поверхности
Принцип выбора метода неразрушающего контроля поверхности стальной трубы с прямым швом: для стальной трубы из ферромагнитного материала следует выбрать испытание магнитным порошком; для стальной трубы из неферромагнитного материала следует выбрать испытание на проникновение.
Для сварных соединений, склонных к замедлению образования трещин, неразрушающий контроль поверхности следует проводить после охлаждения сварного шва в течение определенного периода времени; для сварных соединений, склонных к повторному нагреву трещин, неразрушающий контроль поверхности следует проводить один раз после сварки и после термообработки.
Применение неразрушающего контроля поверхности осуществляется в соответствии со стандартными требованиями. Объекты и приложения объектов обычно следующие:
(1) Контроль качества наружной поверхности материала трубы.
(2) Обнаружение поверхностных дефектов важных стыковых швов.
(3) Проверка дефектов поверхности важных угловых швов.
(4) Обследование дефектов поверхности сварных соединений ответственных раструбных и тройниковых патрубков.
(5) Обнаружение дефектов поверхности после гибки трубы.
(6) Материал закаливается, и сварное соединение обнаруживает канавку.
(7) Осмотр трубной канавки из неаустенитной нержавеющей стали, расчетная температура которой ниже или равна минус 29 градусов Цельсия.
(8) Двусторонняя сварка предусматривает осмотр корней после их очистки
(9) Когда сварочное приспособление на трубе из сплава, имеющей тенденцию к упрочнению, разрезается кислородно-ацетиленовым пламенем, обнаруживается дефект шлифовальной части.

3. Обнаружение радиации и ультразвуковой контроль
Основными объектами радиационного контроля и ультразвукового контроля являются стыковые стыки прямошовных стальных труб и стыковые стыки трубных фитингов, сваренных встык.
Методы неразрушающего контроля выбираются согласно проектной документации. Для контроля сварных соединений титана, алюминия и алюминиевых сплавов, меди и медных сплавов, никеля и никелевых сплавов следует использовать метод радиационного контроля.
Для сварных швов с тенденцией к замедленному растрескиванию лучевой контроль и ультразвуковой контроль должны выполняться после того, как сварка остынет в течение определенного периода времени.
Если основная труба в обсадной колонне имеет кольцевой сварной шов, сварной шов должен проводиться со 100% -ным контролем луча, а скрытая операция может выполняться после того, как испытательное давление будет выдержано.
Сварные стыки, закрываемые армирующим кольцом или опорной площадкой на трубопроводе, должны пройти 100% лучевые испытания и должны быть закрыты после прохождения испытания.
Для сварных швов, требующих промежуточного контроля сварки, неразрушающий контроль должен проводиться после визуального контроля. Радиографический и ультразвуковой контроль проводят после неразрушающего контроля поверхности. Сварные соединения, которые были проверены, должны быть продолжены после прохождения оценки.

Разрушающий контроль сварных швов

Разрушающий контроль сварных швов, как следует из названия, включает в себя физическое разрушение готового сварного шва с целью оценки его характеристик. Этот метод тестирования часто используется для ряда приложений. Некоторые из этих приложений включают аттестацию процедуры сварки и аттестационные испытания сварщика, выборочный контроль производственных сварных швов, исследовательский контроль и работы по анализу отказов. Для определения целостности или рабочих характеристик сварного шва используется ряд методов разрушающего контроля сварных швов.Обычно они включают разрезание и / или разрыв сварного элемента и оценку различных механических и / или физических характеристик. Мы кратко рассмотрим некоторые из наиболее распространенных методов этого типа контроля сварки. Мы рассмотрим испытание на макротравление, испытание на разрыв углового сварного шва, испытание на поперечное растяжение и испытание на управляемый изгиб. Мы рассмотрим, как они используются и для определения каких характеристик сварных швов они предназначены. Мы рассмотрим их преимущества перед другими методами контроля и их ограничения.

Макро-травление — Этот метод испытаний обычно включает удаление небольших образцов сварного соединения. Эти образцы полируются по их поперечному сечению, а затем протравливаются с использованием некоторого типа смеси слабых кислот, в зависимости от используемого основного материала. Кислотное травление обеспечивает четкий внешний вид внутренней структуры сварного шва. Особый интерес часто проявляется к линии плавления, являющейся переходом между сварным швом и основным материалом.Такие параметры, как глубина проникновения, отсутствие плавления, недостаточное проникновение корня, внутренняя пористость, трещины и включения могут быть обнаружены во время осмотра протравленного образца. Этот тип контроля, очевидно, является моментальным снимком общего качества длины сварного шва, когда используется для выборочного контроля производственных сварных швов. Этот тип испытаний часто чрезвычайно успешно используется для выявления проблем сварки, таких как возникновение трещин, при использовании для анализа отказов.

Испытание на разрыв углового сварного шва — Этот тип испытания включает разрыв образца углового сварного шва, сваренного только с одной стороны.Образец имеет нагрузку, приложенную к его несваренной стороне, поперек сварного шва и направленную к его несваренной стороне (обычно в прессе). Нагрузка увеличивается до тех пор, пока сварной шов не разрушится. Затем неисправный образец проверяется, чтобы установить наличие и степень любых нарушений сплошности сварки. Этот тест даст хорошее представление о степени несплошностей на всей длине испытанного сварного шва (обычно от 6 до 12 дюймов), а не о появлении точек в поперечном сечении, как при испытании на макротравление. Этот тип контроля сварных швов позволяет обнаружить такие элементы, как отсутствие плавления, внутреннюю пористость и включения шлака.Этот метод тестирования часто используется вместе с тестом на макротравление. Эти два метода тестирования дополняют друг друга, предоставляя информацию об аналогичных характеристиках с разной детализацией и разными способами.

Испытание на поперечное растяжение — Поскольку большая часть конструкции основана на свойствах растяжения сварного соединения, важно, чтобы свойства растяжения основного металла, металла сварного шва, связи между основанием и сварным швом , и зона термического влияния соответствуют проектным требованиям.Предел прочности сварного соединения достигается растяжением образцов до разрушения. Прочность на растяжение определяется делением максимальной нагрузки, необходимой во время испытания, на площадь поперечного сечения. Результат будет в единицах натяжения на площадь поперечного сечения. Это испытание почти всегда требуется как часть механических испытаний при аттестации технических требований к процедуре сварки для швов с разделкой кромок.

Управляемое испытание на изгиб — это метод испытания, при котором образец изгибается до заданного радиуса изгиба.Для оценки пластичности и прочности сварных соединений используются различные типы испытаний на изгиб. Испытания на управляемый изгиб обычно проводятся поперек оси сварного шва, и их можно проводить в испытательных машинах плунжерного типа или в испытательных приспособлениях для испытания на изгиб по периметру. Испытания на изгиб торца выполняются при растяжении поверхности шва, а испытания на изгиб корня шва — при растяжении корня шва. При испытании толстых листов на изгиб образцы для испытаний на боковой изгиб обычно вырезают из сварного соединения и изгибают с поперечным сечением шва при растяжении.Испытание на управляемый изгиб чаще всего используется при испытаниях процедуры сварки и аттестации сварщиков. Этот тип испытаний особенно хорош при обнаружении дефектов плавления гильзы, которые часто открываются на поверхности пластины во время процедуры испытания.

Испытание сварных швов

Визуальное испытание
Пенетрантное испытание
Ультразвуковое испытание
Импульсное эхо
Техника захвата шага
Сквозная передача
Техника TOFD
Вихретоковая проверка
Магнитное испытание
Радиографический контроль


Сварные швы являются наиболее распространенным типом неразъемных соединений во всех отраслях промышленности.Существует много типов сварных швов, как с точки зрения методов сварки (ручная электрическая дуга, автоматическая или полуавтоматическая, дуга под флюсом, дуга в защитных газах, электросварка сопротивлением и т. Д.), Так и с точки зрения конфигурации стыка (стык, угловой, тройник, сварные швы внахлест). Однако в большинстве случаев, независимо от метода сварки, сварные соединения подлежат проверке качества по окончании сварки. Дефектоскопия направлена ​​на выявление различных дефектов, которые приводят к снижению прочности сварного шва или плохой герметичности. Своевременное обнаружение таких дефектов существенно влияет на определение срока службы всей сварной конструкции.Качество сварки особенно важно для сосудов и систем высокого давления, а также для несущих конструкций.

Неразрушающий контроль (NDT) — основной метод контроля сварных соединений, поскольку он позволяет сохранить целостность и рабочие характеристики испытываемого изделия. Для этого было создано множество методов неразрушающего контроля и разнообразное оборудование для испытаний сварных швов. При выборе любой из методик или выборе конкретного инструмента необходимо учитывать множество факторов, таких как материал свариваемых деталей, конфигурация сварного шва, состояние поверхности, требования к качеству, доступ, тип и расположение потенциального дефекта ( прерывность), производительности и стоимости тестирования.Поэтому не существует единой универсальной техники неразрушающего контроля, поэтому качество, надежность и долговечность готового изделия во многом будут зависеть от выбора наиболее подходящего варианта.


Визуальный контроль

Этот метод сочетает в себе визуальный осмотр и измерение геометрических параметров сварных швов для проверки их соответствия требуемым значениям. Перед испытанием сварные швы следует очистить от окалины, шлака и брызг металла.После этого поверхность следует обработать спиртом, либо протравить 10% -ным раствором азотной кислоты. В качестве инструмента для этого типа испытаний обычно используются лупа с увеличением 5 или 10, а также осветительные и измерительные приборы (линейка, штангенциркуль, шаблоны) для проверки размеров сварных швов и дефектов. Несмотря на кажущуюся простоту, этот тип тестирования очень эффективен и превосходит другие методы. Если дефекты обнаружены уже на этом этапе, сварной шов считается бракованным, и дальнейшие испытания не проводят.Очевидным недостатком этого метода является невозможность обнаружения большинства скрытых дефектов и субъективность методов оценки, что требует от инспектора неразрушающего контроля большого опыта. Поэтому, даже если визуальный контроль не выявил каких-либо дефектов, следует использовать оборудование для контроля сварных швов для дальнейшего осмотра, поскольку скрытые дефекты могут незаметно разрушить соединение и привести к очень опасной ситуации.

Испытание на проницаемость

Этот метод основан на способности жидкости проникать и заполнять мельчайшие капиллярные каналы, которые в основном образованы дефектами сварного шва.К таким дефектам относятся поры и трещины, разрушающие поверхность материала. Скорость и глубина проникновения жидкости зависит от радиуса капилляра и смачиваемости жидкости. Таким образом, пенетрантный метод очень эффективен для обнаружения поверхностных дефектов. Для повышения его эффективности используются так называемые пенетранты, которые могут проникать глубоко в капилляр из-за своего небольшого поверхностного натяжения. Их яркий цвет делает их заметными, что облегчает обнаружение дефекта.Набор для тестирования на пенетрант обычно включает пенетрант; очищающее средство для тщательной очистки поверхности перед тестированием; проявитель для извлечения пенетранта из дефекта и создания индикаторного рисунка на контрастном фоне, с помощью которого можно увидеть размер и форму дефекта.

Этот метод контроля аналогичен визуальному, поскольку предполагает визуальный контроль сварного шва, поэтому имеет те же недостатки. Чтобы убедиться, что скрытые дефекты не были пропущены, настоятельно рекомендуется использовать оборудование для вихретокового или ультразвукового контроля сварных швов после пенетрантного контроля.

Ультразвуковой контроль

UT — один из наиболее распространенных методов, поскольку он обеспечивает точное обнаружение скрытых дефектов, расположенных внутри сварного шва. Метод основан на использовании ультразвуковых волн, которые распространяются через слой металла и отражаются от его границы и границ внутренних несплошностей. На основании разницы во времени между отправленным и отраженным сигналами, а также формы и амплитуды отраженных сигналов можно оценить не только толщину металла, но и дефекты, встречающиеся на пути прохождения звука.Инструмент, который используется для ультразвукового контроля, называется «дефектоскоп». В дефектоскопе используются преобразователи специального назначения (передатчики / приемники ультразвукового сигнала), которые позволяют реализовать методы эхо-импульса, захвата основного тона и сквозной передачи.

OKOndt GROUP ™ производит различное оборудование для ультразвукового контроля сварных швов. Наряду с несколькими портативными дефектоскопами у нас есть специальный продукт для ручного контроля сварных соединений — комплект УСР-01 + Sonocon B.

Метод импульсного эха

При использовании метода импульсного эха преобразователь посылает зондирующий сигнал на тестовый объект и принимает эхо-сигналы, отраженные от дефектов, а также от конструктивных особенностей продукта.По времени прихода сигнала можно определить местоположение дефектов, а по амплитуде сигнала — размер дефектов. Недостатком этого метода является необходимость того, чтобы дефект имел отражающую поверхность, перпендикулярную ультразвуковому лучу, или располагался рядом с поверхностью изделия. Например, метод импульсного эха не позволяет обнаруживать плоские дефекты (трещины и отсутствие плавления), которые не расположены близко к поверхности тестируемого продукта.В случае предполагаемых глубоко укоренившихся дефектов следует использовать соответствующее оборудование для испытаний сварных швов, способное успешно обнаружить эти типы дефектов.

Метод улавливания шага

Метод импульсного эхо не позволяет обнаруживать плоские дефекты (трещины и отсутствие сплавления), которые не расположены близко к поверхности тестируемого продукта. Техника подбора мяча, дуэт и тандем, используются для распознавания вышеупомянутых недостатков. Это достигается с помощью пары преобразователей, установленных таким образом, что сигнал, излучаемый первым преобразователем, возвращается ко второму преобразователю после отражения от плоского дефекта.

Метод сквозной передачи

Однако даже режим захвата высоты тона не гарантирует обнаружение всех разнонаправленных дефектов. Для этого используется метод сквозной передачи, когда преобразователи размещаются по обе стороны от сварного шва, так что сигнал, отраженный от задней поверхности, поступает в приемник. Достаточно крупные дефекты практически любой ориентации, пересекающие ультразвуковой луч, затеняют указанный сигнал, что свидетельствует об их обнаружении.Но, к сожалению, этот тип оборудования для ультразвукового контроля сварных швов не дает точной информации о местоположении (координатах) обнаруженных дефектов. Для получения точных показаний ультразвукового дефектоскопа необходимо произвести предварительную настройку с помощью специализированных эталонных блоков, которые обычно поставляются вместе с прибором. Эталонные блоки различных типов также можно приобрести отдельно, в зависимости от конкретного приложения или конкретной задачи неразрушающего контроля.

Метод TOFD

В последние десятилетия метод ультразвуковой дифракции времени пролета (TOFD) для исследования сварных швов становится все более распространенным.Метод TOFD основан на взаимодействии ультразвуковых волн с краями несплошностей. Это взаимодействие приводит к генерации дифракционных волн с широким диапазоном углов. Обнаружение дифракционных волн позволяет установить наличие неоднородности. Время передачи сообщаемых сигналов является мерой оценки высоты несплошности, что позволяет измерить размер несплошности, который всегда определяется временем передачи дифракционного сигнала. Амплитуда сигнала не используется для измерения размеров.В этом случае генерируются и применяются как продольные, так и поперечные волны. Основная информационная характеристика — время прихода сигнала. Метод TOFD имеет ряд преимуществ по сравнению с традиционным ручным ультразвуковым контролем:

  • Производительность в несколько раз выше;
  • Низкая чувствительность к ориентации дефектов;
  • Возможность не оценивать, а измерять реальные размеры плоских дефектов;
  • Высокая степень отчётности результатов испытаний.

Для реализации метода TOFD используется специальное оборудование с одной или несколькими парами преобразователей, которые размещаются по обе стороны от сварного шва и перемещаются по нему во время контроля. OKOndt GROUP ™ имеет беспроводную систему TOFD-Man — один из уникальных инструментов в обширном ассортименте нашего оборудования для ультразвуковой и вихретоковой сварки.

Контроль вихретоковой сварки

Вихретоковый неразрушающий контроль основан на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наведенных этим полем в контролируемом объекте.Принцип действия извещателей ET основан на вихретоковом методе, заключающемся в искажении вихревых токов в локальной тестовой зоне с последующей регистрацией изменений электромагнитного поля вихревых токов, вызванных дефектом, и электрофизических воздействий. свойства тестового объекта. Этот метод отличается малой глубиной испытания, так как он используется для обнаружения трещин и разрывов в материале на глубине до 2 мм. Конструкция и процедура настройки оборудования для вихретоковой сварки напоминают процедуру проектирования и настройки их ультразвукового аналога, с использованием вихретоковых датчиков и эталонных блоков вихретокового контроля соответственно.Очевидно, что методы ультразвукового и вихретокового контроля дополняют друг друга, обеспечивая стопроцентно надежный контроль сварного шва по всей его глубине и протяженности. OKOndt GROUP ™ производит серию вихретоковых дефектоскопов для неразрушающего контроля сварных швов.

Контроль магнитных частиц

Контроль магнитных частиц — это метод неразрушающего контроля, основанный на явлении притяжения частиц магнитного порошка потоками магнитного рассеяния, возникающими над дефектами в намагниченных объектах контроля.

Метод магнитных частиц предназначен для обнаружения поверхностных и подповерхностных неоднородностей, таких как волосы, трещины различного происхождения, неплавление сварных соединений, флокен, закаты, разрывы и т. Д. Дефектоскоп с магнитными частицами позволяет контролировать различные формы, сварные швы, внутренние поверхности отверстий путем намагничивания отдельных контролируемых участков или изделия в целом круговым или продольным полем, создаваемым набором намагничивающих устройств, питаемых импульсным или постоянным током, или постоянными магнитами.

Радиографический контроль

Радиография описана здесь только с целью предоставить полное представление о методах неразрушающего контроля, которые используются для исследования сварных швов. Хотя этот метод достаточно строгий, его применение довольно ограничено, поскольку связано с использованием гамма-лучей и рентгеновских лучей с высокой проникающей способностью, что позволяет им проходить сквозь металл, в то время как дефекты фиксируются на пленке. Это увеличивает опасность для здоровья человека.К тому же инструменты этого типа довольно дороги. Итак, это очень специфический метод тестирования, который требует использования соответствующих средств индивидуальной защиты, а также создания лабораторных условий для тестирования.

Итак, мы рассмотрели основные методы неразрушающего контроля сварных швов и кратко упомянули соответствующее оборудование для контроля сварных швов. Очевидно, что совместное использование ультразвукового, вихретокового и магнитопорошкового контроля обеспечивает наиболее точные результаты испытаний и безопасные условия испытаний.

Введение в испытание разрушающих сварных швов

Введение в методы разрушающего контроля сварных швов.

Разрушающий контроль сварного шва, как следует из названия, включает физическое разрушение готового сварного шва для оценки его прочности и характеристик. Этот метод тестирования часто используется для следующих приложений:

  • Квалификация технологии сварки
  • Отбор проб
  • Научно-исследовательская инспекция
  • Квалификационные испытания сварщика
  • Работа по анализу отказов

Методы разрушающего контроля сварных швов обычно включают разрезание или разрыв сварного элемента и оценку различных механических и физических характеристик.Ознакомьтесь с некоторыми из наиболее распространенных методов проведения испытаний на разрушающую сварку ниже.

Разрушающие методы контроля сварных швов.

Макротравление.

Этот метод требует удаления небольших образцов из сварного шва. Эти образцы затем полируются по их поперечному сечению и протравливаются с использованием смеси слабых кислот, в зависимости от используемого основного материала. Кислотное травление обеспечивает четкую визуализацию внутренней структуры сварного шва.

Осмотр протравленного образца выявляет глубину проплавления, а также доказательства (если таковые имеются) отсутствия плавления, недостаточного проникновения корня, внутренней пористости и трещин на линии сплавления (которая является переходом между сварным швом и основным материалом. ).

Этот тип контроля является моментальным снимком общего качества длины сварного шва, когда используется для выборочного контроля производственных сварных швов. Макротравление также успешно используется при анализе отказов для выявления проблем сварки, таких как возникновение трещин.

Испытание на разрыв углового сварного шва.

Этот тип испытаний включает разрыв образца углового сварного шва, сваренного только с одной стороны. К несваренной стороне образца прилагается нагрузка, обычно в прессе, и нагрузка увеличивается до тех пор, пока сварной шов не развалится.Затем неисправный образец проверяется, чтобы установить наличие и степень любых нарушений сплошности сварки.

Испытания на разрыв углового сварного шва дают хорошее представление о несплошностях по всей длине испытуемого сварного шва (обычно от 6 до 12 дюймов), а не снимок поперечного сечения, как при испытании на макротравление. Этот тип контроля сварных швов позволяет выявить такие элементы, как отсутствие плавления, внутреннюю пористость и включения шлака.

Хотя испытание на разрыв углового сварного шва часто используется отдельно, его также можно использовать в сочетании с испытанием на макротравление, поскольку эти два метода дополняют друг друга, предоставляя информацию об аналогичных характеристиках, но с разными деталями.

Испытание на поперечное растяжение.

Поскольку большая часть конструкции основана на свойствах растяжения в сварном соединении, важно, чтобы свойства растяжения основного металла, металла сварного шва, связи между основанием и сварным швом и зоны термического влияния соответствовали требования к дизайну.

Испытание на поперечное растяжение проверяет все это путем вытягивания образцов до разрушения, а затем деление максимальной нагрузки, необходимой при испытании, на площадь поперечного сечения. Результат выражается в единицах натяжения на площадь поперечного сечения.

Управляемый тест на изгиб.

Это метод испытаний, при котором образец изгибается до заданного радиуса изгиба. Для оценки пластичности и прочности сварных соединений используются различные типы испытаний на изгиб. Испытания на управляемый изгиб обычно проводятся поперек оси сварного шва, и их можно проводить в испытательных машинах плунжерного типа или в испытательных приспособлениях для испытаний на изгиб с загибом. Испытания на изгиб торцевого шва проводят при растяжении поверхности шва, а испытания на изгиб корня шва — при растяжении корня шва. При испытании толстых листов на изгиб образцы для испытаний на боковой изгиб обычно вырезают из сварного соединения и изгибают с поперечным сечением шва при растяжении.

Испытание на управляемый изгиб наиболее часто используется при испытаниях процедуры сварки и аттестации сварщиков. Этот тип испытаний особенно хорош при обнаружении дефектов плавления гильзы, которые часто открываются на поверхности пластины во время испытаний.

Если вы хотите узнать больше о методах, инструментах и ​​приложениях для разрушающего контроля сварных швов, или если у вас есть вопрос, на который здесь нет ответа, пожалуйста, не стесняйтесь свяжитесь с нами.

Методы испытаний сварных швов: разрушающие и неразрушающие

Испытания сварных швов Методы , перечисленные ниже, очень специализированы и требуют навыков и способностей.Эти испытания проверяют навыки сварщика, а также качество металла шва и прочность сварного соединения для каждого вида металла, используемого в промышленности.

Зачем нужен тест на сварку?

Ошибка в процессе сварки может значительно повредить металлы сварного шва, что приведет к потере прочности, долговечности и разрушению конструкции. Эти методы испытаний сварки , такие как визуальный осмотр и другие, являются гарантией того, что продукты безопасны для использования по назначению.

Они обеспечивают соответствие установленным стандартам плавного плавания без множества ошибок и возможных дополнительных затрат.

Методы испытаний физических сварных швов

Эти типов испытаний сварки можно условно разделить на два типа.

  • Разрушающий контроль
  • Неразрушающий контроль (NDT)

Эти тесты могут обнаруживать дефекты, которые обычно не видны невооруженным глазом.

Разрушающие испытания

Испытания на растяжение и изгиб являются разрушительными, так как образцы для испытаний нагружают до тех пор, пока они не откажутся, чтобы получить желаемую информацию.

Эти разрушающие испытания делятся на две категории

  • Тест на основе мастерской
  • Лабораторные тесты, такие как химические, коррозионные, микроскопические и макроскопические стекла.

Неразрушающие испытания (NDT)

Целью этих испытаний является проверка сварного шва без повреждения. Они могут включать рентгеновские лучи, гидростатические испытания и т. Д., А также называемые неразрушающим контролем или неразрушающим контролем и NDI или неразрушающим контролем.

Типы неразрушающего контроля (NDT)

Виды разрушающих испытаний физических сварных швов

1. Тест кислотным травлением

Это физическое испытание сварного шва используется для проверки прочности сварного шва. Кислота воздействует на края дефектов основного металла или металла шва и идентифицирует дефекты сварного шва. В состоянии дефекта граница между основным металлом и металлом шва становится более четкой и может четко определять дефект, который в противном случае не виден невооруженным глазом.Это испытание проводится по поперечному сечению сварного шва.

В качестве кислотных растворов используются соляная кислота, персульфат аммония, азотная кислота или йод и йодид калия для травления углеродистой и низколегированной стали.

2. Управляемый тест на изгиб

Эти испытания на управляемый изгиб используются для определения качества металла шва в корне и на поверхности сварного соединения. Они также судят о плавлении и степени проплавления основного металла, а также об эффективности сварного шва.Испытания этого типа можно проводить на приспособлении. Требуемые образцы для испытаний изготавливаются из уже сваренных пластин, толщина этих образцов должна быть в пределах возможностей нашего приспособления для гибки. Образец для испытаний помещается на опоры штампа, который является нижней частью зажимного приспособления. Плунжер гидравлического домкрата вдавливал в него образец и придавал видимой форме форму штампа.

Требование этого испытания выполнено путем изгиба образцов на 180 градусов и теперь признано удовлетворительным.Нет, любая трещина более 3,2 мм в любом размере должна быть видна на поверхности. Испытания на изгиб торцевого изгиба проводятся в зажимном приспособлении, когда они обращены к сварному шву под напряжением за пределами изгиба. Теперь испытание корневого изгиба выполняется в зажимном приспособлении с лицевой стороной сварного шва в растянутом состоянии, как и на внешней стороне изгиба. Управляемые испытания на изгиб показаны на рисунке.

Примечания:

  • Толщина пластины для Т-теста
  • При необходимости на плечах можно использовать закаленный валок.
  • Определенный размер для 3/7 пластины
  • Все указанные размеры указаны в дюймах.

3. Испытание на свободный изгиб

Этот метод испытаний на физический изгиб без сварки разработан для оценки пластичности металла, наплавленного в сварном шве. Образец для этого испытания получают путем механической обработки из сварной пластины с поперечным сварным швом, как показано на рисунке A.

Время для скругления каждого угла образца в продольном направлении по радиусу, не превышающему 1/10 толщины образца. Следы инструмента, если таковые имеются, по длине образца.На лицевой стороне на расстоянии 1,6 мм от края сварного шва наносятся две разметочные линии. Теперь измерьте расстояние между двумя линиями в дюймах и запишите его как начальное расстояние X. Концы испытательного образца согнуты под углом примерно 30 градусов, эти изгибы составляют примерно 1/3 длины с каждого конца. Точка сварки расположена по центру, чтобы гарантировать, что весь изгиб происходит в сварном шве.

Изогнутый вначале образец для испытаний помещают в машину, способную оказывать большое сжимающее усилие, и непрерывно изгибают до образования трещины более 1/16 дюйма в любом измерении, видимом на лицевой стороне сварного шва.При отсутствии трещин изгибание может продолжаться до тех пор, пока образец толщиной 1/4 дюйма или меньше можно будет испытать в тисках. Толстый лист обычно испытывают на приспособлениях для гибки или прессе.

Вы можете использовать силовой пресс или тиски при проведении испытания на свободный изгиб. Лучше обработать верхнюю и нижнюю пластины изгибающих устройств, чтобы поверхности были параллельны концам испытуемого образца. Это упражнение предотвратит выскальзывание и выскальзывание образца из испытательного оборудования при его изгибе.

Испытание наплавленного металла на свободный изгиб.

После завершения испытания на изгиб после изгиба испытательного образца расстояние между нанесенными линиями измеряется в дюймах и записывается как расстояние Y. Чтобы вычислить процент удлинения, вычтите значение X из расстояния Y, разделите его на X или начальное расстояние и умножьте на 100. Обычно для прохождения этого испытания требуется минимальное удлинение на 15%, и на лицевой стороне сварного шва не должно быть трещин размером более 1/16 дюйма в любом размере.

Это испытание на свободный изгиб в основном заменяется испытанием на управляемый изгиб всякий раз, когда в нашем распоряжении имеется испытательное оборудование. Испытание на обратный изгиб.

4. Испытание на обратный изгиб

Это физическое испытание сварного шва, предназначенное для проверки качества металла шва и степени проникновения в основание Y стыкового соединения после сварки. Образец или образец, используемый для испытаний, аналогичен испытанию на свободный изгиб, за исключением того, что они изгибаются корнем сварного шва в сторону растяжения или наружу.Исследуемые образцы необходимо согнуть на 90 градусов, не отрываясь. Этот физический тест широко заменен на управляемый тест на изгиб.

5. Тест на разрыв по нику

Это испытание на разрыв было разработано для обнаружения в металле сварного шва стыкового стыка любых внутренних дефектов, таких как включения шлака, плохое плавление, газовые карманы, окисленный металл и обгоревший металл. Получите образец из сварного шва путем механической обработки или резки кислородно-ацетиленовой горелкой. На каждом краю стыка делается прорезь по центру.Подготовленный кусок образца соединяют перемычкой между двумя стальными блоками. Теперь закалываем образец тяжелым молотком до тех пор, пока участок сварного шва между пазами не сломается.

Открывающийся металл должен быть полностью расплавлен и очищен от шлаковых включений. Газовые карманы, если таковые имеются, никогда не должны быть больше 1,6 мм в поперечном направлении. Количество газовых карманов не должно превышать 6.

Для оценки прочности угловых швов используется другой метод испытания на разрыв, который называется испытанием на разрыв углового шва . Здесь усилие прилагается с помощью пресса, удара молотком, давления испытательной машины, прикладываемого к вершине V-образного образца, до тех пор, пока угловой шов не разорвется. Теперь проверьте поверхность излома на прочность сварки.

6. Испытание на предел прочности при растяжении

Испытание на прочность на разрыв предназначено для проверки прочности сварного соединения. Сегмент сварной пластины, подлежащий испытанию, должен располагать сварной шов посередине зажимов испытательной машины.Перед испытанием измеряют ширину и толщину испытуемого образца. Чтобы вычислить площадь в квадратных дюймах, умножьте это перед тестированием и вычислите путем умножения этих двух цифр, как в формуле на рисунке.

Образец для испытания физической прочности сварного шва на растяжение теперь установлен на машине, которая будет прилагать достаточное тянущее усилие для разрушения образца. Машина для испытаний может быть портативной или стационарной. Портативная испытательная машина, работающая по гидравлическому принципу, достаточная для вытягивания и сгибания образца, показана на рисунке.

Во время тестирования этой машины нагрузка в фунте видна на манометре. На станке стационарного типа показана нагрузка, приложенная к балансировочной балке. В любом случае нагрузка фиксируется в точке разрушения. Образцы, разрушенные при испытании на разрыв, показаны на рисунке.

Переносная машина для испытания на разрыв и изгиб.

Предел прочности при растяжении определяется напряжением в фунтах на квадратный дюйм. Он рассчитывается после деления разрушающей нагрузки образца на начальную площадь поперечного сечения образца.Приемлемые нормы прочности сварных швов на разрыв состоят в том, что образец должен тянуть не менее 90% прочности основного металла на разрыв.

Прочность на сдвиг продольного и поперечного углового шва оценивают по напряжению растяжения испытуемых образцов. Ширина испытуемого образца измеряется в дюймах. Испытуемый образец разрушается под действием растягивающей нагрузки, и максимальная нагрузка указывается в фунтах. Прочность на сдвиг определяется делением максимальной нагрузки на длину разорванного углового сварного шва.Он обозначается как фунт на линейный дюйм. Прочность на сдвиг в фунтах / дюйм может быть получена путем деления прочности на сдвиг в фунтах / линейный дюйм на средний размер горловины сварного шва в дюймах. Образцы делают шире, чем требуется, и обрабатывают до необходимого размера.

Неразрушающий контроль

1. Гидростатическое испытание

Этот тип физических испытаний путем неразрушающего контроля выполняется для проверки качества сварки в закрытых контейнерах, таких как резервуары и сосуды под давлением.Испытание проводится путем наполнения емкости водой и создания давления, превышающего рабочее давление емкости. Большие резервуары иногда наполняют водой без какого-либо давления, чтобы определить возможную утечку из-за дефектных сварных швов. Иногда мы можем провести проверку на утечку с помощью масла, когда пар выходит из сосуда и становится видимым как просачивание масла.

2. Испытание на магнитные частицы

Этот метод контроля или метод физических испытаний сварных швов применяется для сварных швов и изделий из магнитных легированных сталей.Этот тест используется только для ферромагнитных материалов, осажденный материал также является ферромагнитным. Сильное магнитное поле создается в испытательном образце за счет высоких электрических токов.

Поле, в котором ощущается утечка, создается любым нарушением, перекрывающим поля в тестовой части. Полюса локально образуются в результате появления полей утечки. Сгенерированные полюса притягивают и удерживают магнитные частицы, помещенные на поверхность по назначению.Образец дефекта или неоднородности, показанный этими частицами на поверхности детали, является индикатором дефекта.

3. Рентгеновское исследование

Этот радиографический метод физического контроля сварных швов выявляет наличие и характер внутренних дефектов в образце сварного шва, таких как трещины, раковины, шлак и зоны неправильного плавления. Мы держим рентгеновскую трубку с одной стороны пластины, сваренной с образцом, и рентгеновскую пленку, специально разработанную для чувствительной эмульсии, с другой стороны.В случае развитых дефектов металлической пластины это проявляется в виде темных пятен, полос. Эти дефекты может интерпретировать оператор, имеющий опыт работы с этими методами контроля.

Рентгеновский контроль показывает пористость и глубокое проникновение корня, как показано на рисунке.

4. Гамма-тест

Этот радиографический физический метод тестирования и контроля сварных швов аналогичен рентгеновскому методу, за исключением того, что эти гамма-лучи выходят из капсулы с сульфатом радия, а не из трубки на рентгеновском снимке.

Короткая длина волны гамма-излучения делает его идеальным для проникновения в секции большой толщины. Время, необходимое для экспонирования, больше, чем для рентгеновского излучения, из-за более низкой скорости образования гамма-излучения.

Рентгеновский контроль чаще всего используется при радиографическом контроле, но портативность — уникальная особенность гамма-лучей.

5. Тест флуоресцентного пенетрантного красителя

Этот неразрушающий контроль физических сварных швов флуоресцентным проплавлением предназначен для обнаружения утечек, трещин, пор и неоднородностей в материалах.Это тест на выбор для немагнитных материалов, таких как магний, алюминий и аустенитная сталь, для обнаружения любой утечки в каждом типе сварного шва. Краска смывается водой, обладает высокой флуоресцентной способностью и исключительной проникающей способностью.

Краситель наносится на испытуемую поверхность кистью, распылением и окунанием. Излишки материала удаляются протиранием, ополаскиванием тканью, смоченной водой. Проявитель можно наносить сухим или влажным способом на поверхность после ее надлежащей очистки. Пенетрант, обработанный проявителем, показывает яркие флуоресцентные индикаторы в черном свете.

Преимущества метода испытания красителем

  • Экономичный при низкой стоимости
  • Простой процесс и его интерпретация
  • Не требуется много обучения
  • Используется для черных и цветных металлов

Недостатки этого физического метода

  • Может пропустить проблему под поверхностью
  • Не работает на пористой поверхности

Типы красителей

Тип A — Этот тип красителя излучает видимый свет при просмотре в черном свете.

Тип B — Яркий краситель можно исследовать при обычном свете и легко использовать в полевых условиях.

6. Испытание на твердость

Способность вещества препятствовать вдавливанию локализованного сдвига определяется как твердость. Мы можем просто сказать сопротивление износу, истиранию и вдавливанию. Этот неразрушающий контроль обычно используется в лабораториях, а не в полевых условиях. Испытание на твердость используется как средство контроля свойств материалов, поскольку определенная твердость достигается для этого конкретного применения.

Испытание используется для определения твердости металла шва. Внимательно осмотрите сварное соединение, чтобы определить местонахождение твердой области и определить влияние тепла сварки на базовые свойства вытянутого основного металла.

Оборудование для испытаний на твердость
Тест файла

Тест напильника определяет сравнительную твердость очень простым методом. Мы пропускаем файл под давлением вручную над исследуемым образцом. Мы можем записать информацию о том, является ли проверяемый металл тверже или мягче, чем напильник, и другие металлы были выделены с такой же обработкой.

Оборудование для испытания на твердость

Существует большой выбор машин для определения твердости, и каждая из них предназначена для выполнения определенной функции в конкретной ситуации. Более того, машины более чем одного типа могут быть спроектированы для данного металла, и полученная твердость может быть удовлетворительно коррелирована. Два распространенных типа машин, используемых для определения твердости металла:

  • Твердомер по Бринеллю.
  • Твердомер по Роквеллу
Твердомер по Бринеллю

В этой процедуре образец остается отчеканенным на опоре машины и прикладывает нагрузку в 6620 фунтов (3003 кг) к твердому стальному шарику, который оставался в контакте с поверхностью испытуемого образца.Стальной шарик имеет диаметр 10,2 мм, и нагрузка должна оставаться в контакте в течение 1/2 минуты. Теперь ослабьте давление и измерьте глубину углубления, сделанного шариком на образце, и отметьте глубину. Диаметр углубления более важен, чем диаметр углубления для расчета твердости по твердости по Бринеллю. Таблицы чисел твердости по Бринеллю могут быть подготовлены для диапазона диаметров различных оттисков. Эти графики используются для определения чисел Бринелля.

Число твердости по Бриннеллю рассчитывается по следующей формуле.

Вот подробности

HB — число твердости по Бринеллю

D — Диаметр шарика в мм

d — Диаметр восстановленного отпечатка в мм

P — Прилагаемая нагрузка в кг

Твердомер по Роквеллу

Принцип тестирования здесь такой же, как и у тестера Бринелля. Отличие от тестера Бринелля заключается в том, что здесь требуется меньшая нагрузка, чтобы запечатлеть меньший алмаз в форме шара / конуса. Глубину вдавливания можно измерить с помощью шкалы, прикрепленной к машине.Здесь твердость условно выражается числами Роквелла. Эти числа начинаются с буквы, например «B» или «C», чтобы продемонстрировать размер используемого мяча, нагрузку для слепка и шкалу, использованную в конкретном тесте.

Другие доступные тесты: алмазная пирамида Викера и склероскоп.

7. Испытание физической сварки Magnaflux

Это быстрое неразрушающее физическое испытание сварного шва для локализации дефекта на поверхности металлической стали и магнитных сплавов или вблизи них с использованием средств правильного намагничивания с применением ферромагнитных частиц.

Основной принцип теста Magnaflux

В целом, при проверке магнитофлюксом, вероятно, будет использоваться увеличительное стекло в качестве метода проверки физических сварных швов. Здесь вместо стекла используются магнитное поле и ферромагнитный материал. Метод основан на двух принципах:

  • Магнитное поле создается, когда электрический ток проходит через металл.
  • Мельчайшие полюса образуются на поверхности, где магнитные поля нарушены или искажены.

Когда этот ферромагнитный материал находится рядом с намагниченной частью, он по своей природе сильно притягивается к этим полюсам и прочно удерживается там, образуя видимую индикацию.

8. Электромагнитные вихретоковые испытания

Магнитопорошковый контроль дефектов поверхности черных металлов.

Этот электромагнитный неразрушающий контроль основан на том принципе, что электрический ток всегда течет в проводнике, подверженном изменению магнитных полей.Этот тест полезен для проверки сварных швов немагнитных и магнитных материалов и является очень полезным инструментом при проверке угловых соединений, стержней, труб и сварных труб. Частота может варьироваться от 50 Гц до 1 МГц в зависимости от типа и толщины материала, используемого в настоящее время. В первом случае проводится проверка, когда решающим фактором является проницаемость материала, а во втором — когда решающим элементом является электропроводность.

Испытание здесь включает индукцию электрического тока, такого как токи Вихря или Фуко, в испытательном образце и запись изменений, произошедших в этих токах, или любых физических различий в испытательном металлическом предмете.Эти испытания могут не только обнаружить несплошность в испытываемых металлических деталях, но и измерить их размеры и удельное сопротивление. Удельное сопротивление пропорционально химическим свойствам, термообработке, ориентации кристаллов и твердости, и о них можно судить косвенно. Эти методы электромагнитных испытаний классифицируются как магнитоиндуктивные и вихретоковые.

Метод создания вихревого тока в испытуемом образце состоит в том, чтобы сделать испытуемый образец сердечником индукционной катушки переменного тока.Двумя способами можно измерить изменения, которые происходят в величине и рассеянии этих токов. Первый предназначен для измерения резистивной составляющей импеданса вторичной катушки, а второй — для измерения индуктивной составляющей импеданса вторичной катушки. Типы оборудования были разработаны для измерения либо резистивных, либо индуктивных компонентов импеданса по отдельности или одновременно для обоих.

Вихревой ток может быть вызван в испытуемом образце переменным действием электромагнитного трансформатора.Этот ток имеет электрическую природу со всеми своими свойствами. Для генерации вихревого тока образец для испытаний, который должен быть электрическим проводником, попадает в поля катушки, по которой проходит переменный ток. Катушка может охватывать образец в форме зонда, а в случае трубчатой ​​формы — намотанной, чтобы поместиться внутри трубы или трубки. Этот ток в металлическом образце для испытаний может создавать собственные магнитные поля, противодействующие исходным магнитным полям. Импеданс вторичной обмотки, соединенной с первой в непосредственной близости от испытуемого образца, изменяется из-за наличия вихревого тока.Вторая кулиса часто используется в качестве удобной, чувствительной или приемной катушки. Траектория этого вихревого тока может искажаться в случае разрыва. Вихревой ток может отклоняться или собираться в случае прерывания или дефектов. Это изменение можно измерить, и оно указывает на дефекты / различия в химической, физической и металлургической структуре.

9. Испытания на акустическую эмиссию

Акустический метод — удар по сварному шву и определение качества по тону.

Это физическое испытание сварного шва дополняет другие неразрушающие испытания. Они применяли это тестирование во время контрольных и периодических испытаний, обслуживания и изготовления. Этот тест включает в себя обнаружение акустических сигналов, возникающих в результате пластической деформации или образования трещин при нагружении. Эти сигналы имеют широкий спектр с окружающим шумом от многих других источников. Преобразователь, если он стратегически размещен на конструкции, активируется поступающими сигналами. Окружающий звук можно значительно уменьшить, добавив фильтры.Источник значимых сигналов отмечается в зависимости от времени прихода на разные преобразователи.

10. Тестирование феррита
Влияние содержания феррита

На сварных швах аустенитной нержавеющей стали образуются небольшие трещины даже при минимальных ограничениях. Эти трещины обычно видны поперек линии плавления сварного шва при повторном нагреве до температуры, близкой к температуре плавления. Эти трещины являются опасными дефектами, и их трудно переносить.Влияние этих трещин на характеристики сварного шва менее очевидно, поскольку эти микротрещины быстро покрываются прочной аустенитной матрицей. Эти трещины на металле сварного шва удовлетворительно работали в очень тяжелых условиях. Склонность к образованию больших трещин идет рука об руку с образованием больших трещин. Всегда желательно избегать металла сварных швов, чувствительного к образованию трещин.

Небольшая доля фазы магнитного дельта-феррита в немагнитных наплавленных швах предотвращает образование трещин и трещин по средней линии.Однако чрезмерное количество дельта-феррита может отрицательно сказаться на свойствах металла сварного шва. Чем больше дельта-феррит, тем меньше пластичность и вязкость. Более сильное воздействие высоких температур делает металл хрупким. и ухудшает качество.

Переносные индикаторы из феррита предназначены для использования на объектах. Содержание феррита в наплавленных швах указывается в процентах феррита и может быть заключено в скобки между двумя значениями. Это обеспечит достаточный контроль в приложениях, где указан минимальный диапазон содержания феррита / феррита.

Статьи по теме

Неразрушающий контроль

Введение в неразрушающий контроль

Неразрушающий контроль сварных швов

Вам также может понравиться :

Контроль качества сварных швов — неразрушающий контроль

Лучший материал для сварки

12 различных типов сварочных процессов [Полное руководство]

Неразрушающий контроль — Контактная ультразвуковая диагностика

Неразрушающий контроль используется для повышения качества изготовления и надежности продукции, а также для выявления опасных дефектов и недостатков структурной целостности компонента таким образом, чтобы не повредить испытываемый материал.Это может значительно помочь в устранении дефектных материалов по прибытии, обнаружении дефектов до того, как драгоценное время и деньги будут потрачены на разработку неисправной детали, улучшении производительности путем проверки деталей в процессе для обеспечения качества и подтверждения надежности и безопасности продукта на последних этапах.

CWI / Visual

Визуальный контроль — один из наиболее часто используемых и эффективных методов неразрушающего контроля. Все визуальные проверки проводятся сертифицированными инспекторами, обладающими обширными знаниями и опытом в своей области.Визуальный осмотр может проводиться прямым или косвенным методом. Примеры непрямого изображения могут включать в себя бора, удаленное видео и т. Д.

Ультразвуковая дефектоскопия — поперечное переплетение и прямая балка

Ультразвуковая дефектоскопия — это процедура неразрушающего контроля, в которой лучи высокочастотных звуковых волн используются для обнаружения поверхностных и подповерхностных дефектов. Звуковые волны проходят через материалы, затем отражаются на границах раздела металлов, способных выявить неоднородности.С помощью этого теста техник может определить наличие и расположение дефектов, таких как трещины, усадка, полости, разрывы, поры, несплавление и другие дефекты. Этот тест используется для контроля качества и тестирования материалов во всех основных отраслях промышленности. Процедуры ультразвукового дефектоскопирования включают испытания поковок, отливок, листового проката, сварных соединений и производства стали. Технические специалисты UT также проводят инспекции сборных конструкций, таких как сосуды под давлением, трубопроводы, буровые установки, корабли и другие стальные компоненты.Методы дефектоскопии включают:

  • Тестирование прямым лучом Продольная звуковая волна индуцируется в детали под углом 0 ° для обнаружения плоских неоднородностей (расслоений), параллельных поверхности материала.
  • Обычная волна сдвига Одна звуковая волна индуцируется в детали под одним углом для обнаружения дефектов основного материала или сварного шва.
  • Phased Array (PAUT) Множественные звуковые волны индуцируются в детали под разными углами для обнаружения дефектов основного материала или сварного шва.Сканы с фазированной решеткой можно записывать и хранить в электронном виде для сравнения с будущими сканированиями или для интерпретации третьей стороной.

Ультразвуковая толщина

Ультразвуковой контроль также может использоваться для измерения толщины металлических профилей во время производства и технического осмотра. Обычный УЗИ точный, быстрый и относительно недорогой. В этих испытаниях используется датчик, который излучает ультразвуковые импульсы в материал, которые затем отражаются обратно в датчик от задней стенки материала.Используя калибровочные стандарты, можно точно измерить толщину материала с точностью до тысячи дюймов. С помощью оборудования с фазированной решеткой сканирование коррозии может выполняться и регистрироваться в электронном виде. Сканирование коррозии показывает цветную шкалу задней стенки отсканированных деталей, например ямок и размытых участков.

Магнитная частица

Контроль магнитных частиц — это метод неразрушающего контроля (NDT) для определения поверхностных и приповерхностных дефектов в ферромагнитных материалах.Когда материалы или детали подвергаются испытанию МП, они временно намагничиваются, вызывая разрывы, излучающие более сильное магнитное поле, называемое рассеянием магнитного потока. Когда на деталь наносят мелкодисперсные ферромагнитные частицы, они группируются в месте утечки магнитного потока, обнажая несплошность. Техник может определить длину и расположение индикаторов, просмотрев группы частиц. Испытание на магнитные частицы можно использовать для обнаружения дефектов литья, ковки и сварки, таких как трещины, швы и ламинация, нарушающая поверхность.

Жидкий пенетрант

Liquid Penetrant Testing — это метод неразрушающего контроля, используемый для обнаружения разрывов поверхности в непористых материалах, таких как металлы, пластмассы и керамика. Жидкий пенетрант всасывается даже в самые мельчайшие отверстия на поверхности за счет капиллярного действия. По прошествии отведенного времени (времени выдержки) излишки красителя тщательно удаляются с поверхности, чтобы не удалить краситель с дефектов материала. Затем на поверхность материала наносится проявитель, чтобы удалить пенетрант и сделать видимыми дефекты.Этот метод испытаний может использоваться для обнаружения дефектов, открытых на поверхности в отливках, поковках, листах, трубах и сварных швах, таких как трещины, швы, расслоение и пористость как в новых, так и в находящихся в эксплуатации компонентах.

Твердость по Бринеллю

Испытание на твердость по Бринеллю позволяет установить устойчивость материала к вдавливанию. Твердость определяется путем сравнения диаметра вдавливания в исследуемом материале с диаметром вдавливания в стержне известной твердости после удара индентора о поверхность материала.Это помогает усреднить поверхностные и подповерхностные несоответствия. Этот тест чаще всего используется для материалов со слишком грубой структурой или слишком шероховатой поверхностью для тестирования другим методом

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *