Температура стали по цвету: Оценка температура металла по его цвету / Мастерская / НеПропаду

Содержание

Цвета нагрева стали — Энциклопедия по машиностроению XXL

Таблица 3 Цвета нагрева стали при различных температурах

Цвета нагрева стали 307  [c.781]

Определяют температуру нагрева по цветам побежалости или цветам нагрева стали непосредственно под ядром пламени (табл. 38).  [c.238]

Цвет побежалости Температура в град. 1 Цвет нагрева стали Температура в град.  [c.238]

Таблица 2. Цвета нагрева стали
Во время нагрева стали для отпуска в пределах 220—320° С на ее чистой поверхности образуются характерные цвета побежалости, которые появляются из-за возникновения тончайших пленок окислов. Толщина пленок окислов зависит от температуры нагрева и продолжительности выдержки при температурах нагрева. Низкие температуры дают наиболее тонкую пленку вызывая интерференцию коротких синих лучей, пленка принимает желтый цвет.  
[c.247]

Приближенный способ определения температур нагрева стали применяется также при нагреве для ковки, отжига, нормализации и закалки. Этот способ определения температур не точен, так как он зависит от состава стали. Например, легированная сталь, имея тот же цвет накала, что и обычная углеродистая сталь, будет иметь температуру нагрева, гораздо выше углеродистой стали.  [c.45]

Если очистить поверхность закаленной без отпуска стали от окалины, накипи масла и прочего и начать ее подогревать, то при нагреве на поверхности стали появятся цвета побежалости (тонкие окислы металла). По цветам побежалости можно приближенно определить температуру нагрева стали. Температуры отпуска, соответствующие цветам побежалости, приведены в табл. 18.  [c.45]

Наблюдая за раскаленными заготовками стали, он неоднократно замечал, что при определенных температурах нагрева или охлаждения в металле происходят какие-то внутренние превращения (изменения). Об этом можно было судить по двум признакам в определенный момент цвет охлаждаемой стали становится на несколько мгновений ярче, и в этот же момент от стали интенсивно отскакивает окалина. Это свидетельствует о том, что сокращение сплава сменилось на короткое время расширением. Д. К. Чернов назвал эти температуры критическими точками и обозначил буквами а ц Ь. В настоящее время эти точки обозначают Ас и Лсз Крис. 33).  

[c.114]


Научные основы термической обработки были заложены исследованиями выдающегося русского ученого Д. К. Чернова в середине XIX в. Наблюдая за раскаленными заготовками стали, он замечал, что при определенных температурах нагрева или охлаждения в металле происходят внутренние превращения. Об этом можно было судить по двум признакам в определенный момент цвет охлаждаемой стали становился на несколько мгновений ярче, и в этот же  
[c.96]

При нагреве стали выше 330° цвета побежалости исчезают и металл остается темным до 500°, при дальнейшем повышении температуры нагрева появляются калильные цвета.  [c.121]

Температуру нагрева можно определить по цвету каления стали с точностью, 50° на глаз , так как по мере повышения температуры цвет стали меняется.  [c.100]

Во время нагрева стали для отпуска в пределах температур 220—320° на чистой поверхности стали появляются характерные цвета побежалости. Это объясняется возникновением тончайшей пленки, образуемой соединениями железа с кислородом  [c.145]

Температуру нагрева деталей при термической обработке определяют специальными приборами, называемыми пирометрами. При отсутствии пирометров температуру нагрева металла можио определить грубо на глаз по цветам каления и по цветам побежалости стали.  

[c.83]

Температура нагрева и цвета каления стали  [c.83]

Во время нагрева стали для отпуска в пределах температур 220 — 320° на ее чистой поверхности образуются характерные цвета побежалости, которые появляются из-за возникновения тончайших пленок окислов. Толщина пленок окислов зависит от температуры п времени нагрева. Низкие температуры дают наиболее  [c.224]

Цвета побежалости при различных температурах нагрева стали  [c.307]

На фиг. 14 приведена температурная диаграмма сопротивления и пластичности стали, содержащей 0,8% С. Из этой диаграммы видно, что при нагреве стали до 300° предел прочности достигает максимума, а относительное удлинение минимума. Эта температура соответствует появлению на поверхности стали синего цвета побежалости, вследствие чего возникновение хрупкости при температуре около 300°С получило название синеломкости. Это явление возникает вследствие того, что из основного металла при этой температуре выделяются весьма размельченные (высокодисперсные) составляющие карбиды, нитриды, оксиды и т. п. Указанные выделения затрудняют скольжение в решетках кристаллитов, вследствие чего прочность возрастает, а пластичность снижается. Вторая зона пониженной пластичности — это зона А  

[c.51]

Для измерения температур при термической обработке сталей пользуются специальными приборами — термоэлектрическими пирометрами. При их отсутствии температуру нагрева определяют визуально по цветам побежалости и цветам каления стали.  [c.28]

При нагреве стали выше 530° сталь начинает светиться. С повышением температуры свечение стали меняется. Цвета, принимаемые сталью при нагреве выше 530°, называются цветами каления.  [c.70]

Температура и цвет нагрева при отжиге, закалке и отпуске резцов из быстрорежущей стали  [c.114]

Основоположником теории термической обработки является выдающийся русский ученый Д. К. Чернов, который в середине XIX в., наблюдая изменение цвета каления стали при ее нагреве и охлаждении и регистрируя температуру на глаз>, обнаружил критические точки (точки Чернова).  [c.200]

Синеломкость — хрупкость, возникающая при нагреве стали в интервале температур синего цвета побежалости (—300° С).  [c.305]

Температуру нагретой стали приближенно можно определить на глаз по цветам нагрева, приведенным в табл. 45.  [c.112]

При температурах от 330—350 до 530° С цвета побежалости не наблюдаются. При 530° С сталь начинает светиться. С повышением температуры свечение стали меняется и зависит от продолжительности нагрева. Цвета, принимаемые сталью при нагреве выше 530° С, называются цветами каления. Определить температуру по цветам побежалости и каления можно только при наличии соответствующего опыта работы.  

[c.75]

Образец, предварительно протравленный в растворах 21.1 или 24, нагревают до сине-красного цвета хромистые стали, например не больше 10 мин в интервале 500—700° С. Сокращение выдержек и повыщение температуры облегчают наблюдение Дифференцирует аустенит, феррит и 0-фазу. Аустенит окрашивается быстрее, чем 0-фаза. Для выявления феррита и а-фазы, по-видимо-му, пригоден один из реактивов 31.1, 31.2 или 31.3 [1, 3, 34, 431  [c.40]

Температуру нагрева стали, ° С, для отпуска определяют по цветам побежалости  [c.6]

Д. К. Чернов ещё в 1868 г. установил наличие в стали критических точек (точки Чернова), в которых при нагреве и охлаждении происходят фазовые превращения. Первая точка, соответствующая тёмновишнёвому цвету каления стали, названа Черновым точкой а, вторая, соответствующая красному цвету каления,— точкой б.  [c.476]

При температурах 200—300° С наблюдается снижение пластичности стали ( > и При этом уменьшение пластичности и вязкости стали в области тегчператур 200— 300° С носит название синеломкости, которое происходит от синего цвета побежалости при нагреве стали до 300° С.  

[c.41]

Толщина пленки окислов зависит от температуры нагрева стали, а пленки разной толщины по-разному отражают лучи света. Например, соломенный цвет побежалости характерен для углеродистых сталей при температуре 220—245°С, буровато-желтый—при 260° С, пурпуроватый — при 275—280° С, темно-синий— при 310° С. По цветам побежалости можно определять температуру нагрева стальных деталей при отпуске.  [c.90]

Выдаюш,ийся русский ученый Дмитрий Константинович Чернов, наблюдая изменение цвета каления стали при ее нагреве и охлаждении, определил температуру нагрева стали на глаз и открыл критические точки (точки Чернова), которые обозначил символами а, Ь, с (рис. I).  [c.4]

Определяют температуру нагрева, пользуясь термокраскамн и термокарандашами или визуально по цветам побежалости (нагрева) стали.  

[c.230]

Резкое падение прочности при высоких температурах (рис. 158, а) может привести к разрушению (проваливанию) твердого металла нерасплавившейся части кромок под действием веса сварочной ванны. В связи с высокой жидкотекучестью алюминий моягет вытекать через корень шва. Размеры сварочной ванны трудно контролировать, так как алюминий при нагреве практически не меняет своего цвета. Для предотвращения провалов или прожогов при однослойной сварке или сварке первых слоев многопроходных швов на большой погонной энергии необходимо применять формирующие подкладки из графита пли стали.  [c.354]

На рис. 4-6 показана зависимость степени черноты от температуры для покрытия черный хром , полученного электроосаждением из. хромового ангидрида, растворенного в кремнефтористо-водородпой кислоте [53]. Степень черноты при температурах 815— 1100 К равнялась 0,89. После испытаний цвет покрытий из.менился с черного на зеленый. В течение первого определения излучательной способности (покрытие наносилось на подложку из нержавеющей стали) степень черноты в интервале указанных температур оставалась в пределах 0,88. Во время повторного нагрева степень черноты увеличилась с 0,89 при 815 до 0,92 яри 1100 К цвет образца также изменился с черного на зеленый. При увеличении темпе-  

[c.100]

На поверхности стальных шлифов при нагреве на воздухе образуются тонкие окисные слои, которые растут в зависимости от температуры и продолжительности травления. Наблюдаемые при этом цвета побежалости являются результатом интерференции. При микроскопическом наблюдении обнаруживают, что поверхность шлифа окрашивается на отдельных зернах одной и той же фазы в зависимости от ориентировки зерен относительно поверхности шлифа образуются слои разной толш,ины. Толщина окисных слоев также неодинакова на разных фазах в стали цементите и феррите. Это явление используют для получения цветных изображений структуры.  

[c.96]

Проведение травления довольно просто. Шлиф после полирования слегка подтравливают. Благодаря этому проявляются границы зерен и одновременно удаляется оказывающий вредное влияние на окончательные результаты деформированный слой. Некоторые авторы, например Скортези и Дюранд [56], рекомендовали неоднократное травление и полирование. Хорошо обезжиренный образец помещают полированной стороной вверх на медную плиту или песчаную баню и нагревают. За поверхностью образца следует непрерывно наблюдать. По достижении желаемой окраски шлифа образец охлаждают в ртутной ванне или, если не стремятся избежать слабого дополнительного развития цветов побежалости, на холодной металлической плите. Горячее травление на воздухе можно применять в первую очередь для незакаленных сталей при нагреве практически неизбежны изменения мартенсита. Несмотря на это, Ханке и Хенкель [57] травили этим методом мартенситные и аустенитные образцы при этом они смогли очень хорошо выявить обе фазы.  [c.96]

Травитель 62 [термическое травление]. Нитрид железа, по данным Штрауса [50], выявляют при 250—300° С путем термического травления. Структурные составляющие, содержащие азот, окрашиваются быстрее. Феррит приобретает бледно-голубую окраску, перлит—темно-голубую, нитриды и зоны, обогащенные азотом, окрашиваются в красный цвет. В связи с этим Коэренс указывает на две картины окрашивания электролитического железа, азотированного в течение 12 ч при 250° С и нагретого до 250 С, и литой стали, азотированной в течение 8 ч при 850° С и нагретой до 280° С. В то время как в стали феррит выглядит красным, цементит (перлит) — фиолетовым, нитрид — голубым, в электролитическом железе феррит окрашивается в светло-желтый цвет, а нитрид — в интенсивный красно-коричневый. Чтобы всегда получать одинаковую картину окрашивания азотированного слоя для одного и того же материала, необходимо выдерживать постоянными температуру и длительность нагрева.  [c.124]

Торий — мягкий металл серовато-белого цвета. Плотность 11,5 г1см , температура плавления 1842° С, кипения 5200° С. Обладает хорошей пластичностью — куется и прокатывается без нагрева. На воздухе покрывается тонкой пленкой окиси. Применяется для легирования стали, алюминиевых и магниевых сплавов, для повышения прочности твердых сплавов, повышения сопротивления ползучести некоторых легких сплавов и т. д.  [c.108]


цвета каления — это… Что такое цвета каления?


цвета каления
цвета́ кале́ния
цвета свечения металла, зависящие от температуры нагрева. Для железа и стали характерны следующие цвета каления (см. табл.). До появления пирометров по цветам каления определяли температуру термической (закалка, отпуск), химико-термической (цементация, цианирование) и термомеханической обработки стали.

Цвета каления железа и стали

Энциклопедия «Техника». — М.: Росмэн. 2006.

.

  • Цандер
  • цвета побежалости

Смотреть что такое «цвета каления» в других словарях:

  • ЦВЕТА КАЛЕНИЯ — цвета свечения металла, зависящие от температуры нагрева. Цвета каления, характерные для стали, смотри в таблице Температуpa, ° С Цвет каления 550 Темно коричневый 630 Коричнево красный 680 Темно красный 740 Темно вишневый 770 Вишневый 800… …   Металлургический словарь

  • цвета каления — цвета свечения металла, нагретого до высоких температур (например, для стали от тёмно коричневого при 550°C до белого при 1300°C). * * * ЦВЕТА КАЛЕНИЯ ЦВЕТА КАЛЕНИЯ, цвета свечения металла, нагретого до высоких температур (напр., для стали от… …   Энциклопедический словарь

  • ЦВЕТА КАЛЕНИЯ — цвета свечения металла, нагретого до высоких температур (напр., для стали от темно коричневого при 550 .С до белого при 1300 .С) …   Большой Энциклопедический словарь

  • Цвета каления — О фильме см. Белое каление (фильм) Цвета каления  это цвета свечения металла, раскалённого до высокой температуры. Спектр …   Википедия

  • цвета каления — [heat colors] цвета свечения металла (сплава), зависящий от температуры его нагрева. Некоторые цвета каления, характерные для углеродной стали: темно коричневый (550 °С), темно красный (680 °С), вишневый (770 °С), яркокрасный (900 °С), желтый… …   Энциклопедический словарь по металлургии

  • Цвета каления —         цвета свечения металла (сплава), зависящие от температуры его нагрева. Некоторые Ц. к., характерные для углеродистой стали: тёмно коричневый (550 °С), тёмно красный (680 °С), вишнёвый (770 °С), ярко красный (900 °С), жёлтый (1000 °С),… …   Большая советская энциклопедия

  • ЦВЕТА КАЛЕНИЯ — цвета свечения металла, зависящие от темп ры нагрева. Для стали характерны след. Ц. к.: Темп ра, °С Цвет Темп ра. °С Цвет 550 Темно коричневый 850 …   Большой энциклопедический политехнический словарь

  • Цвета побежалости — на кристалле висмута …   Википедия

  • цвета побежалости стали — [annealing (temper) colors] 1. Радужная окраска, появляющаяся на чистой поверхности нагретой стали в результате образования на ней тончайшей оксидной пленки. Толщина пленки зависит от температуры нагрева; пленки разной толщины по разному отражают …   Энциклопедический словарь по металлургии

  • Цвета — [colors]: Смотри также: цвета побежалости стали цвета каления …   Энциклопедический словарь по металлургии

Цвет. Температура и восприятие — Подсайт Жизнь – для тем по касательной на DTF

Почему синий цвет теплее, чем красный и наоборот? И зачем художникам разбираться в температуре цвета?

Запрещающие знаки красят в красный, а от новой лампочки в светильнике дома стало холодно и неуютно. Почему? Просто цвет имеет значение. А точнее — его температура. Теплые и холодные цвета рождают ассоциации и по-разному влияют на настроение и восприятие. Как это происходит и как этим управлять? Разберемся вместе!

Цвет и его температура: что есть что?

Сейчас будет немного физики, а после все про рисунок.

Как мы видим цвета?

Цвет — это результат химической реакции, протекающей в фоторецепторах наших глаз. Электромагнитные волны распространяются в пространстве от источника возмущения магнитного поля, а затем воздействуют на зрительные пигменты красного, синего и зеленого цвета. Сигнал поступает в мозг, и окружающий мир приобретает краски.

Источник света испускает электромагнитное излучение. Часть его поглощается объектами, а оставшаяся — отражается от них, и воспринимается фоторецепторами глаза.

Восприятие цвета зависит от частоты колебаний электромагнитных волн или от их длины. Это величина промежутка между крайними точками волны, которая измеряется в нанометрах (1 нм = 10−9 метра). Наши глаза воспринимают не весь возможный диапазон колебаний, а лишь малую его часть, называемую видимым излучением. Его условные границы находятся в пределах от 380 до 780 нм.

Волны видимого излучения, испускаемого Солнцем, в совокупности выглядят как белый свет. Впервые его разложил на составные части Исаак Ньютон с помощью стеклянной призмы в 1672 году.

Как физики определяют температуру цвета?

Для определения температуры цвета ученые используют условный предмет — абсолютно черное тело, которое поглощает все электрома

Цвет. Температура и восприятие

Почему синий цвет теплее, чем красный и наоборот? И зачем художникам разбираться в температуре цвета?


Запрещающие знаки красят в красный, а от новой лампочки в светильнике дома стало холодно и неуютно. Почему? Просто цвет имеет значение. А точнее — его температура. Теплые и холодные цвета рождают ассоциации и по-разному влияют на настроение и восприятие. Как это происходит и как этим управлять? Разберемся вместе!

Цвет и его температура: что есть что?

Сейчас будет немного физики, а после все про рисунок.

Как мы видим цвета?

Цвет — это результат химической реакции, протекающей в фоторецепторах наших глаз. Электромагнитные волны распространяются в пространстве от источника возмущения магнитного поля, а затем воздействуют на зрительные пигменты красного, синего и зеленого цвета. Сигнал поступает в мозг, и окружающий мир приобретает краски.


Источник света испускает электромагнитное излучение. Часть его поглощается объектами, а оставшаяся — отражается от них, и воспринимается фоторецепторами глаза.

Восприятие цвета зависит от частоты колебаний электромагнитных волн или от их длины. Это величина промежутка между крайними точками волны, которая измеряется в нанометрах (1 нм = 10−9 метра). Наши глаза воспринимают не весь возможный диапазон колебаний, а лишь малую его часть, называемую видимым излучением. Его условные границы находятся в пределах от 380 до 780 нм.


Волны видимого излучения, испускаемого Солнцем, в совокупности выглядят как белый свет. Впервые его разложил на составные части Исаак Ньютон с помощью стеклянной призмы в 1672 году.

Как физики определяют температуру цвета?

Для определения температуры цвета ученые используют условный предмет — абсолютно черное тело, которое поглощает все электромагнитное излучение. Изначально оно имеет температуру абсолютного нуля: −273,15 °C, или ноль градусов по шкале Кельвина, которая используется для измерения температуры цвета. В этом состоянии прекращается движение атомов и молекул.
При нагревании частицы приходят в движение, и тело начинает испускать свечение в видимом диапазоне. По мере роста температуры оно становится темно-красным, а затем желтым, белым и голубым. Из видимых цветов красный соответствует самой низкой температуре.


Если на упаковке лампочки написано “6000 K”, это не значит, что она нагреется до температуры Солнца и испепелит все вокруг 🙂 Указывается коррелированная температура — соотношение цвета излучения со шкалой температуры абсолютно черного тела.

Но постойте, а где в шкале зеленый и фиолетовый? Дело в том, что цвет теплового излучения изменяется в пределах планковского локуса, а не проходит через весь спектр.


Так выглядит изменение видимого излучения абсолютно черного тела при нагревании в цветовом пространстве CIE 1931.

Как мы оцениваем температуру цвета и почему мозг нас обманывает

Какой напрашивается вывод? С точки зрения физики, оттенки красного — самые холодные, а синего — самые теплые. При этом в быту, дизайне и рисовании считается, что дела обстоят ровно наоборот: синий цвет — холодный, а красный — теплый.


Наглядное объяснение, почему в жаркую погоду лучше надеть белую футболку. Черный шар поглощает все цвета, белый — все отражает, а красный (или тот же синий) — только сам себя.

Почему так?

Бытие определяет сознание. В жизни мы почти не сталкиваемся с чудовищными температурами, дающими холодное свечение. Поэтому думая о цвете, человек ориентируется не на эфемерную частоту колебаний электромагнитных волн, а на собственный чувственный опыт.

Красный, желтый, оранжевый — это цвет жаркого пламени, тлеющих углей, закатного солнца; синий, зеленый, голубой — холод льда, неба, прохлада тени, листвы и водной глади. Видя цвет, мозг сопоставляет его с тем, что узнал в процессе жизни и выносит вердикт: синий — холодный, так как чаще мы видим его в холодной среде, а красный — теплый по тем же причинам.


Наше восприятие температуры цвета строится на ассоциациях с реальными объектами и явлениями.

Ожидание и реальность

Проверить влияние цвета на восприятие не сложно, что подтверждается экспериментом. Для этого автор использовал пять стеклянных банок, воду, пищевой краситель и электронный термометр. Банки, наполненные одинаковым количеством воды, выставили на солнце и добавили в четыре из них несколько капель пищевого красителя — красного, синего, зеленого и желтого. Через час автор эксперимента проверил температуру жидкости в каждой из банок.

Оказалось, что банка с красной водой на два градуса холоднее, чем с синей и зеленой, и на градус холоднее, чем прозрачная вода.

Банка с синей водой оказалась теплее, чем все остальные, хотя визуально кажется, что она холоднее.

Хотя реальная температура объектов теплых цветов ниже, чем холодных, человек склонен судить иначе. К примеру, в ходе этого опроса многие респонденты посчитали, что напиток в красной чашке горячее, чем в синей. Люди привыкли, что объект будет теплее или холоднее в зависимости от его цвета. Это мнение настолько прочно закрепилось в сознании, что многие до сих пор ошибаются. На эту тему есть еще один эксперимент.

Исследование состояло из двух этапов, каждый из них проводили дважды: с открытыми и закрытыми глазами. Сначала испытуемые касались предметов красного и синего цвета. Предметы нагревались и охлаждались, а участники опыта должны были описать свои чувства. На втором этапе опыта руку испытуемого подсвечивали светом разного цвета.

Выглядело это так:


Повтор эксперимента с закрытыми глазами считался «контрольным».

Испытуемые назвали синий предмет теплым, причем они заметили тепло при меньшем нагреве, чем в случае с красным предметом. Температуру красного предмета оценили практически одинаково как с открытыми, так и с закрытыми глазами. Для подсвеченных рук получилось наоборот — красную руку назвали теплой раньше, чем синюю.

Авторы объясняют результаты противоречием между ожиданием и реальность. Мы привыкли, что красные объекты — теплые, а синие — холодные, и быстрее замечаем разницу между ожидаемой и реальной температурой. Поэтому участники эксперимента оценили синие объекты и объекты, к которым прикасались рукой, освещенной красным светом, как более теплые. Ожидаемая разница между температурами объекта и руки оказалась меньше, чем фактическая. Это утверждение авторы эксперимента тоже проиллюстрировали:


Мозг сравнивает ожидаемую разницу температур (T exp) с фактической(T obj или T hand). Чем меньше эта разница, тем теплее объект. В случае «a» синий объект показался теплее, чем красный. В случае «b» теплее был объект, которого коснулись красной рукой.

Теплые и холодные цвета в искусстве. Когда это важно

Оставляем научпоп позади, переходим к рисованию. В первую очередь посмотрим на цветовой круг. Слева на нем мы видим холодные цвета, справа — теплые.


Раздел о теплых и холодных цветах можно найти в большинстве учебников по цветоведению и колористике.

Почему художникам важно знать о температуре цвета?

Соседство цветов

Температура цвета — не всегда абсолютное значение. Когда мы смотрим на картину, наше первое впечатление о ней создается не от мастерского мазка красной краской в левом нижнем углу, а от общего вида, собранного из разноцветных мазков. Поэтому важен не только цвет, но и его соседство.
Художник может сделать так, что теплый будет казаться холодным, а холодный – теплым, просто расположив нужные цвета рядом. Для этого необходимо сверяться с цветовым кругом. Чем ближе цвет к красному, тем он теплее, чем ближе к синему — тем холоднее.


Пурпурный выглядит теплее, чем фиолетовый, так как его получили, смешав фиолетовый с теплым красным. На цветовом круге пурпурный будет ближе к красному, чем его сосед.

Еще один пример:


В этой паре цвет слева — однозначно холоднее из-за того, что получен в результате смешения красного оттенка с холодным синим. Этот эффект усиливается за счет соседства с очень теплым красным.

Контраст температуры — классический прием в изобразительном искусстве. Холодный и теплый цвет, расположенные рядом, усиливают свойства друг друга. В художественных школах учат, что при теплом свете от объекта будет падать холодная тень и наоборот. Мы уже писали об этом, а также о том, что это правило работает не всегда.

Теплые холодные, холодные теплые

Определить температуру по кругу Иттена легко. Проблема в том, что в реальности чистые цвета встречаются нечасто. К примеру, зеленая листва не всегда зелена. Она приобретает желтый оттенок в свете солнца, а в тени становится тусклой и синеватой. Любой цвет может менять свою температуру в зависимости от подтона. Единственное исключение — оранжевый, который всегда остается теплым.


В лучах солнца к зеленому примешивается желтый и листва выглядит теплой. В тени она кажется холодной из-за примеси синего.

Как определить температуру цвета? Для этого снова пригодится цветовой круг, на этот раз — восьмисекторный, поскольку на нем отображено больше оттенков цвета. Нужно посмотреть, насколько цвет ближе к чистому холодному или теплому соседу. К примеру, зеленый цвет будет становится теплее на пути к красному (через желтый) и холоднее — на пути к синему.


Небольшая шпаргалка об изменении температуры цвета — на случай, если в уме представить пока сложно.

Отдельная история только с синим цветом. Он считается самым холодным, поэтому теплеет от смешения с любым цветом — вопрос лишь в том, насколько сильно.

Температура окружения

Солнце — основной источник света на планете. По мере движения светила по небосводу меняется его цвет. Это соответствующим образом влияет на то, как будут выглядеть объекты. Чем ближе солнце к зениту, тем холоднее его свечение. В ясный день оно светит белым цветом, а во время заката или рассвета уходит в теплые тона красного, оранжевого или розового.


Моне любил рисовать один и тот же объект в разное время суток.

Художнику важно помнить о том, какую температуру имеет основной источник света. В противном случае объекты на картине будут выглядеть инородно, их не удастся вписать в окружение. Вот так выглядит шкала цветовой температуры для привычных нам источников света:

Настроение и характер

Каждый цвет вызывает ассоциации и определенное настроение. Поэтому впечатление зрителя зависит от того, какой цвет доминирует на изображении. Об этом хорошо знают дизайнеры и маркетологи, которые разрабатывают фирменный стиль компании.


Корпорации тратят большие деньги, чтобы вызвать нужный отклик у потребителя.

Художники управляют настроением зрителя, используя цвета нужной температуры. Особенно в этом преуспели импрессионисты. Мастерски используя тепло-холодные отношения света и тени, они добивались живости и естественности в своих работах.


Само название художественного направления «импрессионизм» переводится, как “впечатление”.

Как это работает?

Мы реагируем на цвет неосознанно — на уровне вегетативной нервной системы. В 1972 году описан опыт, в котором исследовалась реакция испытуемых на четыре цветовых раздражителя — красный, желтый, зеленый, голубой. Изменение электрической активности кожи показало, что красный цвет стимулирует и возбуждает нервную систему сильнее, чем любой другой.


Существует теория, что такая реакция на красный вызвана развитием трехцветного зрения у предков человека и высших приматов — так было проще искать спелые фрукты среди листвы.

Горячий характер, холодная голова

«Цвет — это хороший способ передать информацию без слов».
Эндрю Хансон, старший научный сотрудник Национальной физической лаборатории UK.

Теплые цвета ассоциируются с энергией, жизнью, радостью, силой, храбростью и уютом. Но в то же время — с опасностью и гневом. Холодные тоже имеют двойственную природу. Они могут успокаивать и освежать, символизировать безопасность, а могут быть мрачными, ассоциироваться с печалью и смертью. Концепт-художник может многое рассказать о персонаже или окружении, просто используя подходящий цвет.


Аид — бог царства мертвых, поэтому его образ состоит из холодных цветов. Однако, в моменты гнева, он “закипает” ярким красным и желтым.

Франшиза о Гарри Поттере — яркий пример использования цвета для описания характера. Каждый студент, в зависимости от черт личности, попадал на факультет с соответствующей геральдикой. Красный и золотой для храбрых и благородных гриффиндорцев, желтый и черный — для дружных пуффендуйцев. Спокойные и рассудительные когтевранцы носят голубые цвета (теплый оттенок), а заклятые враги главных персонажей — изумрудные (холодный оттенок зеленого).


Персонажи в теплых цветах выглядят дружелюбнее, чем в холодных.

Соответствующая атмосфера царит и в гостиных факультетах. Место сбора Гарри и его друзей — теплое и уютное, здесь много красной мягкой мебели и все освещено пламенем камина и ламп. В обиталище Малфоя царят холодные цвета и вычурная, неуютная мебель.


Сразу понятно, где живут плохие парни. Немалую роль тут сыграла температура цвета.

Художнику следует помнить, что цвет в концепте персонажа играет вспомогательную роль. Он выполняет свою функцию только в сочетании с остальными элементами, такими как форма, силуэт и пропорции. Тут можно прочитать подробнее о том, какими принципами руководствуются при создании персонажей.

Иллюзия глубины

Воздух не такой прозрачный, как нам кажется. Между нами и объектами вдалеке находится толща воздуха, которая увеличивается по мере удаления от объекта. Поэтому дальний план теряет контрастность и насыщенность, а его цвет становится более холодным.


Горы вдалеке покрыты той же зеленой растительностью, что и на переднем плане, но выглядят они синими. Этот эффект называется воздушной перспективой.

Все дело в том, что в воздухе присутствуют мельчайшие частички воды, в которых отражается окружение, будь это небо или стены гигантского ангара. Поэтому предметы, расположенные ближе к зрителю, будут казаться теплее, чем те, что находятся в отдалении. Это не железное правило — тут мы рассказали, когда его можно и нужно нарушать.

Если вы хотите больше узнать о том, как образуются цвета, советуем эту статью. А тут можно прочитать о том, почему тон не менее важен, чем цвет, а иногда даже более.

Цветовая температура (Кельвин)

Что такое цветовая температура?

  • Цветовая температура — это способ описания внешнего вида света лампочки. Он измеряется в градусах Кельвина (K) по шкале от 1000 до 10000.
  • Обычно температура Кельвина для коммерческого и жилого освещения падает где-то в диапазоне от 2000K до 6500K.
  • Цветовая температура лампочки позволяет нам узнать, как будет выглядеть излучаемый свет.
  • Цветовая температура лампочки назначается на основе коррелированной цветовой температуры (CCT).
  • Например, если вы нагреете металлический предмет, он будет светиться. В зависимости от температуры Кельвина, при которой нагревается металлический объект, свечение будет разных цветов, например, оранжевого, желтого или синего. Цветовая температура лампочек должна повторять температуру Кельвина металлического объекта.

Какая цветовая температура мне подходит?

Понимание температуры по Кельвину (K) упрощает выбор освещения, которое придаст вам желаемый внешний вид.

  • В нижней части шкалы, от 2000K до 3000K, излучаемый свет называется «теплым белым» и имеет вид от оранжевого до желто-белого цвета.
  • Цветовые температуры от 3100K до 4500K называются «холодным белым» или «ярко-белым». Лампочки в этом диапазоне излучают более нейтральный белый свет и даже могут иметь слегка голубой оттенок.
  • Выше 4500K попадает в «дневную» цветовую температуру света.Лампочки с цветовой температурой 4500К и выше излучают бело-голубой свет, имитирующий дневной свет.
.

Общие сведения о заданном освещении и цветовой температуре

Шкала Кельвина. Цветовая температура. Вольфрамовые, HMI, флуоресцентные, светодиодные лампы. Вот полный спектр тонкостей и недостатков установленного освещения!

Изображение на обложке через Центральную службу бронирования

Освещение декорации так же важно, как и установка камеры. Освещение влияет на то, как выглядит фильм, поэтому отдел освещения напрямую подчиняется оператору.При таком большом количестве типов и цветов света легко потеряться. Вот посмотрите на все, что связано со светом.


Шкала Кельвина

Изображение через DownLights

Свет измеряется по шкале Кельвина. кельвин (K) — это единица измерения температуры, основанная на абсолютной шкале, что означает, что она начинается с нуля и только увеличивается оттуда.

Чем ниже K , тем больше красный цвет.Легче всего было запомнить это при свечах. От 1000K до 1900K мы находимся в диапазоне горящей спички или пламени свечи. Огонь = Красный .

По мере того, как мы поднимаемся выше по шкале Кельвина, мы будем переходить к желтому, белому и синему свету. Лампы накаливания и галогенные лампы встречаются в диапазоне от 2500K до 3000K. Прямой солнечный свет имеет эквивалент 4800 К. Дневной свет обычно составляет около 5600K . Облачное небо или холодный белый цвет можно найти между 6000K-7500K.Чистое голубое небо можно увидеть на 10 000К.

Вы можете увидеть этот прогресс на диаграмме цветовой температуры выше и на изображении лампочки ниже.


Типы огней

Есть много типов фонарей. Здесь мы сосредоточимся на свете, который вы чаще всего видите на съемочной площадке. Вольфрам , HMI , Флуоресцентный , Светодиод . Не забывайте, что каждый день бесплатно предоставляется еще один источник света — the sun.

Вольфрам (~ 3200 К)

Изображение через ARRI

Вольфрамовые лампы очень похожи на лампочки, которые могут быть у вас дома, только намного мощнее. Лампы Tungsten дают оранжевый оттенок . Лампы требуют большой мощности и сильно нагреваются, но они обладают более высокой цветовой температурой, чем вольфрамовые лампы накаливания. Лампы накаливания имеют диммер , что позволяет регулировать их по мере необходимости. Их обычно используют для освещения интерьеров.Добавьте синий гель к лампам накаливания, чтобы создать дневной свет.

HMI (~ 5600K)

Изображение через ARRI

Hydrageryrum Medium-Arc Iodide (HMI) Светильники являются наиболее часто используемым типом светильников на съемочной площадке. Лампы HMI излучают ультрафиолетовый свет с синим оттенком . Для включения освещения HMI требуется электрический балласт. Балласт воспламеняет смесь галогенидов металлов и паров ртути в баллоне. Балласты также ограничивают ток, чтобы предотвратить мерцание. Лампы HMI в четыре раза мощнее традиционных ламп накаливания. При включении лампочек HMI слышен очень громкий шум, поэтому светотехник должен выкрикнуть «ударяет» , чтобы уведомить актеров и команду.

Возраст лампы HMI очень важен. В течение первых нескольких часов новая лампа будет иметь цветовую температуру до 15 000 К. Эти лампы следует оставить включенными, чтобы достичь оптимального диапазона 5600K, близкого к дневному свету.Лампы нельзя использовать по истечении половины срока их службы. Лампы требуют большего напряжения, и цветовая температура будет продолжать снижаться на 1 кельвин каждый час горения, что в конечном итоге может привести к серьезным повреждениям при слишком долгом использовании.

Светильники HMI — довольно дорогие светильники, но они намного эффективнее. Лампы могут быть затемнены только до 50%, но это приводит к повышению цветовой температуры до более насыщенного синего цвета. При взрыве или падении лампы HMI взорвутся горячее стекло и пары ртути.При использовании HMI очень важно иметь в штате опытного светотехника.

Флуоресцентный (2700K — 6500K)

Изображение через ARRI

Флуоресцентные лампы были известны мерцанием и имели очень уродливый оранжево-зеленый оттенок. В последнее время были разработаны новые лампочки и светильники с балластами. Новые лампы не мерцают и предлагают различных цветовых температур . У них очень мягкий свет, который более эффективен, чем лампа накаливания, и может обеспечивать световой поток, аналогичный лампам HMI.

В зависимости от смеси люминофоров в лампах цветовая температура может варьироваться от вольфрамовой до естественного дневного света. Флуоресцентные лампы часто упаковывают в небольшие приспособления, что позволяет им быть компактными и легкими . Кроме того, они намного холоднее, чем любой другой вариант лампы.

LED (белый: 3000K — 5600K)

Изображение через ARRI

Светоизлучающие диоды (LED) в последнее время стали гораздо более распространенными в небольших устройствах.Наиболее популярны белые лампы LED , но на самом деле светодиодов производятся во всех цветах. Диоды предназначены для обеспечения направленного света. Они очень эффективны, но по-прежнему имеют ограниченную отдачу, поэтому обычно используются только в небольших бюджетных проектах.

Светодиодные лампы могут излучать свет только одной длины волны, поэтому для создания белого света требуется комбинация из красных, зеленых и синих (RGB) светодиодов . Белый цвет также можно создать с помощью комбинации люминофоров и ультрафиолета LED .Поскольку большинство светильников LED используют RGB , были разработаны новые «умные лампы», позволяющие изменять цвет по команде.

Изображение через Digital Trends

Светодиодные фонари

обеспечивают мягкое и равномерное освещение. Они невероятно эффективны и могут работать от аккумулятора. Их можно легко затемнить и просто перемещать по цветовому спектру. Они имеют долгий срок службы и не взорвутся.


Помогла ли эта статья вам разобраться в тонкостях системного освещения? Дайте нам свои советы по освещению в комментариях ниже!

.

304 Нержавеющая сталь Индукционная температура Изменение цвета Солома Металлическая солома Маленькие щетки | |

Мы поддерживаем прямую доставку, пожалуйста, свяжитесь с нами, и мы предоставим вам лучший сервис! Описание:
Материал: нержавеющая сталь
Цвет: как показано на рисунке
Размер: около 21 * 0,8 см, кисть 23 см
Количество: AG: 1 * солома; H: 1 * маленькая кисть

Особенности:
1. Он термохромный, пурпурный при постоянной температуре, помещенный в воду 45 ° C, становится розовым, помещается в воду -5 ° C, превращается в темно-синий.
2. Нержавеющая сталь, легко чистится.
3. Подходит для семей, кафе, чайных, отелей или в качестве подарков для друзей.
4. Вы можете получить удовольствие от изменения температуры, добавить красок к жизни и почувствовать летний стиль.
5. Его можно использовать повторно, прочный.

В пакет включено: AG: 1 * соломинка; H: 1 * маленькая щетка

Примечание:
Размер ручного измерения может иметь некоторую погрешность, он находится в диапазоне ± 1 см, фактический размер подлежат актуальному объекту.
Из-за разного освещения и условий съемки цвет изображения может отличаться от реального цвета продукта. Пожалуйста, обратитесь к фактическому продукту.

0

0 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *